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1. (a) The Cauchy-Riemann equations imply that

ux = vy = −2y(3x + 1) , uy = −vx = −3x2 − 2x + 3y2 .

Integrating we find that u = −3x2y − 2xy + y3.
(b) The general solution is u = −3x2y− 2xy + y3 + c for some constant c, because the

difference of any two solutions has by the Cauchy-Riemann equations, gradient zero. So
the difference must be a constant.

2. Suppose that g is twice continuously differentiable and real-valued on R2. You are to
prove that

∂2g

∂x∂y
(0, 0) =

∂2g

∂y∂x
(0, 0) , (∗)

using the following steps:
(a) ∫ b

0

∫ a

0

∂2g

∂x∂y
(x, y) dx dy =

∫ b

0

[∂g

∂y
(a, y)− ∂g

∂y
(0, y)

]
dy

= g(a, b) − g(a, 0) − g(0, b) + g(0, 0) .

(b) Using Fubini’s Theorem, we also find that∫ b

0

∫ a

0

∂2g

∂y∂x
(x, y) dx dy =

∫ a

0

∫ b

0

∂2g

∂y∂x
(x, y) dy dx

=
∫ a

0

[∂g

∂x
(x, b)− ∂g

∂x
(x, 0)

]
dx

= g(a, b) − g(0, b) − g(a, 0) + g(0, 0) .

(c) (a) and (b) are clearly the same.
(d) Using the Fundamental Theorem of Calculus, we conclude

∂2g

∂x∂y
(0, 0) = lim

a→0

1
a

∫ a

0

∂2g

∂x∂y
(x, 0) dx

= lim
b→0

1
b

∫ b

0

lim
a→0

1
a

∫ a

0

∂2g

∂x∂y
(x, y) dx dy

= lim
b→0

1
b

∫ b

0

lim
a→0

1
a

∫ a

0

∂2g

∂y∂x
(x, y) dx dy

= lim
a→0

1
a

∫ a

0

∂2g

∂x∂y
(x, 0) dx

=
∂2g

∂y∂x
(0, 0) .
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3. Suppose that D = {z ∈ C : |z| < 1}, f : D → D is holomorphic, and z0 ∈ D. Let
w0 = f(z0). Let

F (z) =
z − z0

1− z̄0z
, G(w) =

w − w0

1− w̄0w
, g(ζ) = (G ◦ f ◦ F−1)(ζ) .

Then, g : D → D is holomorphic with g(0) = (G ◦ f)(z0) = G(w0) = 0. Applying the
Schwarz Lemma to g, we conclude that |g(ζ)| ≤ |ζ| for all ζ ∈ D. So, with ζ = F (z),∣∣ f(z)− w0

1− w̄0f(z)

∣∣ = |G ◦ f(z)| = |g(ζ)| ≤ |ζ| =
∣∣ z − z0

1− z̄0z

∣∣ .

(b) From (a) we have that ∣∣ f(z)−w0
z−z0

∣∣
|1− w̄0f(z)|

≤ 1
|1− z̄0z|

.

Taking the limit as z → z0, and noting that w0 = f(z0) and that both 1 − |f(z0)|2 and
1− |z0|2 are positive, we conclude that

|f ′(z0)|
1− |f(z0)|2

≤ 1
1− |z0|2

,

and then replace z0 by z.

4.(a) Suppose that f : R → R is a continuous function such that, for almost all t ∈ R,
f ′(t) exists and |f ′(t)| ≤ 1. Is it true that, f(b)−f(a) =

∫ b

a
f ′(t) dt for −∞ < a < b < ∞?

No. If f(t) is the Cantor function for 0 ≤ t ≤ 1, f |(−∞, 0] ≡ 0, and f |[0,+∞) ≡ 0,
the f is continuous with f ′(t) = 0 for a.e. t, but f(1) 6= f(0).

(b) Suppose g : R → R is differentiable at every point t ∈ R. Is g necessarily of
bounded variation on every closed interval [a, b] ⊂ R?

No, we can define g(0) = 0 and g(t) = t2 cos(2π/t2) for t 6= 0. Here g′(0) = 0 because
|g(t)| ≤ t2 and, for t 6= 0, g′(t) exists by the product and chain rules. Taking tn = n−1/2,
we find that the variation of g is infinite on any interval containing 0 because

∑∞
n=1

1
n = ∞.

5. Suppose that f is a holomorphic function on the punctured plane C \ {0}.
(a) For each positive numbers ε < R < ∞, find a formula for f(z) on the annulus

{z ∈ C : ε < |z| < R} in terms of the values of f on the inner boundary circle {z : |z| = ε}
and on the outer boundary circle {z : |z| = R} . T get a suitable contour of integration,
we may remove any thin radial strip from the annular region {z ∈ C : ε < |z| < R}.
Applying the Cauchy integral formula on the boundary of this region and then letting the
width of the thin strip approach 0, we conclude that

f(z) =
1

2πi

[ ∫
∂BR

f(ζ
z − ζ

dζ −
∫

∂Bε

f(ζ
z − ζ

dζ
]

.
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(b) If f is meromorphic and∫
{z : 0<|z|<1}

|f(z)| dx dy < ∞ , (∗∗)

then, at 0, f either has a removable singularity or is meromorphic with a pole of order 1.
Since f is meromorphic, one has, on a punctured neighborhood of the origin, zkf(z) = g(z),
for some nonnegative integer k and nonvanishing holomorphic function g. If k ≥ 2, then,
for |z| < ε with ε sufficiently small,

1
2
|g(0)|
|z|k

< |f(z)| < 2
|g(0)|
|z|k

.

Also ∫
Bε

|z|−k dx dy =
∫ 2π

0

∫ ε

0

r1−kdr dθ < ∞

if and only if k < 2. For k = 0 the singularity is removable. For k = 1, it is a pole of order
1.

(c) Does the integrability assumption (**) alone imply that f is automatically
meromorphic at 0. Yes, for any r > 0 we can choose, by Fubini’s Theorem, a number
ε(r) ∈ [ r

2 , r] so that ∫
∂Bε(r)

|f | ≤ 2
r

∫
Br

|f | dx dy .

It follows that for fixed z the line integral

|
∫

∂Bε(r)

ζf(ζ)
z − ζ

dζ| ≤ 2
dist (z, ∂Bε(r))

∫
Br

|f | dx dy → 0 as r → 0 .

Applying the formula from (a) with f(z) replaced by zf(z), we conclude that zf(z)
has a removable singularity at 0, so that f is meromorphic with a pole of order ≤ 1 at 0.

6. Suppose that E1, E2, E3, . . . is a sequence of Lebesgue measurable subsets of the unit
ball B in Rn, and that each Ek has positive Lebesgue measure µ(Ek) > ε for a fixed ε > 0.
For each x ∈ B, let n(x) denote the number of integers k so that x ∈ Ek.

(a) Show that n(x) ≥ 2 for some x ∈ B. Otherwise, the Ek are disjoint and

∞ > µ(B) ≥ µ(∪∞k=1Ek) =
∞∑

k=1

µ(Ek) = ∞ .

(b) Show that supx∈B n(x) = ∞.

∞ =
∞∑

k=1

∫
χEk

≤
∫ ∞∑

k=1

χEk
≤ [sup

x∈B
n(x)]µ(B) .
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(c) Show that n(x) = ∞ for some x ∈ B.
The sets Fj = ∪∞k=jEk, form a decreasing sequence of measurable subsets of the finite

measure set B. So F = ∩∞j=1Fj is measurable with

µ(F ) = lim
j→∞

µ(Fj) ≥ lim
j→∞

µ(Ej) = ε > 0 .

So F contains a point x. Since x ∈ F1, x ∈ En(1) for some positive integer n(1). Since
x ∈ Fn(1)+1, x ∈ En(2) for some integer n(2) > n(1). Continuing, we inductively find a
sequence of integers n(1) < n(2) < n(3) < . . . so that x ∈ ∩∞i=1En(i).
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