SOLUTIONS OF ANALYSIS QUALIFYING EXAM
August 2004

1. (a) The Cauchy-Riemann equations imply that
Uy = v, = —2y(Bx+ 1), wu, =—v, = —32% — 2z + 3y*

Integrating we find that u = —3z%y — 2zy + 5.

(b) The general solution is u = —3z2y — 2zy +y> + ¢ for some constant ¢, because the
difference of any two solutions has by the Cauchy-Riemann equations, gradient zero. So
the difference must be a constant.

2. Suppose that ¢ is twice continuously differentiable and real-valued on R2. You are to
prove that
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using the following steps:
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(b) Using Fubini’s Theorem, we also find that

b a 829
/O/O—ayam(m,y)dxdy: / / aya (z,y) dy dx

— [ (52w - w0 ds
= g(avb) - g(o’b) - g(av()) + 9(070)'
(c) (a) and (b) are clearly the same.

(d) Using the Fundamental Theorem of Calculus, we conclude
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3. Suppose that D = {z € C: |z| < 1}, f: D — D is holomorphic, and zy € D. Let
Wo = f(ZO) Let

T Gw) = 0 Q) = (Go fo FTH(C).
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Then, g : D — D is holomorphic with g(0) = (G o f)(z0) = G(wy) = 0. Applying the

Schwarz Lemma to g, we conclude that |g(¢)| < |¢] for all { € D. So, with ( = F(z),

FE) =wo | _ a0 play = = |22
e = 16 s = 0@l < Kl = 7=

(b) From (a) we have that
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Taking the limit as z — 29, and noting that wy = f(z0) and that both 1 — |f(z0)|* and
1 — |2|? are positive, we conclude that

£ (z0)] 1
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and then replace zg by z.

4.(a) Suppose that f : R — R is a continuous function such that, for almost all t € R,
f/(t) exists and | f'(¢)| < 1. Is it true that, f(b)— f(a) = f; f(t)dt for —oo < a < b < 007

No. If f(t) is the Cantor function for 0 < ¢ < 1, f|(—o00,0] = 0, and f|[0,+0cc) = 0,
the f is continuous with f/(t) = 0 for a.e. t, but f(1) # f(0).

(b) Suppose g : R — R is differentiable at every point ¢ € R. Is g necessarily of
bounded variation on every closed interval [a,b] C R?

No, we can define g(0) = 0 and g(t) = t2 cos(2n/t2?) for t # 0. Here ¢’(0) = 0 because
lg(t)| < t? and, for t # 0, ¢/(t) exists by the product and chain rules. Taking t,, = n~%/2,

oo 1

we find that the variation of g is infinite on any interval containing 0 because )~ ; - = oo.

5. Suppose that f is a holomorphic function on the punctured plane C\ {0}.

(a) For each positive numbers ¢ < R < oo, find a formula for f(z) on the annulus
{z € C : € < |z| < R} in terms of the values of f on the inner boundary circle {z : |z| = ¢}
and on the outer boundary circle {z : |z| = R} . T get a suitable contour of integration,
we may remove any thin radial strip from the annular region {z € C : ¢ < |z| < R}.
Applying the Cauchy integral formula on the boundary of this region and then letting the
width of the thin strip approach 0, we conclude that
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(b) If f is meromorphic and

/ £ ddy <o (44
{z:0<]|z|<1}

then, at 0, f either has a removable singularity or is meromorphic with a pole of order 1.
Since f is meromorphic, one has, on a punctured neighborhood of the origin, z* f(z) = g(z),
for some nonnegative integer £ and nonvanishing holomorphic function g. If k¥ > 2, then,
for |z| < e with € sufficiently small,
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if and only if £ < 2. For k = 0 the singularity is removable. For k = 1, it is a pole of order
1.
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Also

(c) Does the integrability assumption (**) alone imply that f is automatically

meromorphic at 0. Yes, for any » > 0 we can choose, by Fubini’s Theorem, a number

e(r) € [5,7] so that
2
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It follows that for fixed z the line integral
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Applying the formula from (a) with f(z) replaced by zf(z), we conclude that zf(z)
has a removable singularity at 0, so that f is meromorphic with a pole of order <1 at 0.

6. Suppose that Fq, Es, E3, ... is a sequence of Lebesgue measurable subsets of the unit
ball B in R™, and that each Fj, has positive Lebesgue measure u(E}y) > ¢ for a fixed € > 0.
For each z € B, let n(x) denote the number of integers k so that z € Ej.

(a) Show that n(z) > 2 for some x € B. Otherwise, the Ej are disjoint and

oo

0o > p(B) > (W, Ey) =Y u(Ey) = oo
k=1

(b) Show that sup,cg n(z) = oco.
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(c) Show that n(z) = oo for some z € B.
The sets F; = Up2 B, form a decreasing sequence of measurable subsets of the finite
measure set B. So ' = N22, Fj is measurable with

p(F) = lim p(F;) > lim pw(Ej) = ¢ >0.
J—00 J—00
So F' contains a point x. Since z € F1, ¥ € E, (1) for some positive integer n(1). Since
r € Fy1)41, © € Ey(9) for some integer n(2) > n(1). Continuing, we inductively find a
sequence of integers n(1) < n(2) <n(3) <...so that x € N2 E, ;.



