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Chapter 1

Paradigms

1.1 Foreword

In this chapter we quickly describe the content of these lecture notes. To start
with we state some problems which will serve as paradigms as we go along. Here
they are stated loosely and they will be treated in more details in the coming
chapters. Next we touch upon the main themes that will occur on our way:
necessary conditions (Euler equations), sufficient conditions, existence theory.

1.2 Path of shortest length

Let A,B ∈ R2 be two distinct points. We look for a path of shortest length
joining A and B. In order to state the problem more precisely we need to define
what we mean by “path”, by “joining A and B”, and by “length of a path”.
There are several possibilities of doing so.

1.2.1 First model: curves

One can model a path joining A and B by a continuous function u : [0, 1] → R2

such that u(0) = A and u(1) = B. We insist that u be continuous so that
it really joins its endpoints A and B. In defining the length of such path we
must require more than the mere continuity of u (see chapter ... for a detailed
treatment of this question). Here we will content ourselves with defining the
length of u when u ∈ C1 (that is u is differentiable at each t ∈ [0, 1] and its
derivative u′ : [0, 1] → R2 is continuous) as is done in a course on curves and
surfaces.

length(u) =
∫ 1

0

‖u′(t)‖dt .

Here ‖u′(t)‖ denotes the Euclidean norm of the vector u′(t), i.e.

‖u′(t)‖ =
√
u′1(t)2 + u′2(t)2 .
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We can now express the minimization problem in the following abbreviated
form:

(P1)

{
minimize

∫ 1

0
‖u′(t)‖dt

among u ∈ C1([0, 1],R2) such that u(0) = A and u(1) = B

Of course we expect the solution to be the straight line segment with end-
points A and B. This requires a proof however. Now we state the corresponding
Theorem.

thm.1 1.2.1 Theorem. A function u ∈ C1([0, 1],R2) such that u(0) = A and u(1) =
B minimizes its length if and only if it is a one-to-one parametrization of the
straight line segment

[[A,B]] = R2 ∩ {A+ t(B −A) : t ∈ [0, 1]} .

This shows that minimizers for the minimization problem (P1) are not
unique even though we expect “the unique solution to be the straight line seg-
ment”. This is due, of course, to the way we have set up the problem and the
fact that there are many distinct ways to parametrize the straight line segment
as a curve.

1.2.2 Second model: graphs

In the previous paragraph we thought of a path as a continuous image of [0, 1].
Here we will think of a path as a continuous graph instead. The points A and
B have Cartesian coordinates, say, (a, a) and (b, b). Renaming A as B and B
as A if necessary we may assume that a ≤ b. We will subsequently assume that
a < b. A continuous graph joining A and B is then defined as a continuous
function u : [a, b] → R such that u(a) = a and u(b) = b. In accordance with the
previous paragraph the length of the graph of u is defined as

L(u) =
∫ b

a

√
1 + u′(x)2dx .

In this setting the minimizations problem reads

(P2)

{
minimize

∫ b

a

√
1 + u′(x)2dx

among u ∈ C1([a, b],R) such that u(a) = a and u(b) = b

In the present set up a minimizer exists and is unique.

thm.2 1.2.2 Theorem. A function u ∈ C1([a, b],R) such that u(a) = a and u(b) = b
minimizes L if and only if it is the (unique) affine function in that class.
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1.2.3 A third possible model

A third way to model this problem is to consider a path joining A and B to
be a (say compact) connected set in the plane containing the pair {A,B}. The
concept of connectedness for a set plays the role of that of continuity for a
function in the two previous models: it ensures that indeed the set joins A and
B in some sense. This more general viewpoint encompasses the two preceding
ones. There is some added difficulty, though, which consists in defining the
length of a subset of the plane. This turns out to be one of the motivational
challenges of the foundation of Geometric Measure Theory. We refer the reader
to ... for the particular case evoked here.

1.2.4 Vocabulary

The two minimization problems introduced so far are particular cases of the
following general setting. We let C denote a set and F : C → R a function.
We then consider the general minimization problem

(P)

{
minimize F (u)
among u ∈ C

The elements of C will usually be called the competitors. The infimum of the
problem is defined as follows:

inf(P) = inf{F (u) : u ∈ C } .

A minimizer is by definition a competitor u∗ ∈ C that achieves the infimum of
the problem:

F (u∗) = inf(P)

For example problem (P1) above corresponds to the case when

C = C1([0, 1],R2) ∩ {u : u(0) = A and u(1) = B}

and

F (u) =
∫ 1

0

‖u′(t)‖dt ,

whereas problem (P2) corresponds to

C = C1([a, b],R) ∩ {u : u(a) = a and u(b) = b}

and

F (u) =
∫ b

a

√
1 + u′(x)2dx .

It turns out that often C will consist in a class of functions, that is the variables
of F are functions. To avoid confusion between these functions u and F itself
it is customary to call F a functional.
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1.2.1 Exercise – Let C = R and F (u) = exp(u). Does F have a minimizer in C ?

ex.1 1.2.2 Exercise – This exercise is to the extent that problem (P1) is “more general”
that problem (P2).

(1) Given a competitor u for problem (P2), associate with u a competitor u for
problem (P1) such that graph(u) = im(u) and u is one-to-one.

(2) Show that length(u) = L(u).

(3) Show that inf(P1) ≤ inf(P2).

1.2.3 Exercise – Using Exercise 1.2.2 and assuming that Theorem 1.2.1 holds true,
prove Theorem 1.2.2.

1.2.4 Exercise – Without assuming that Theorem 1.2.1 holds, prove Theorem 1.2.2
in the special case when A = (0, 0) and B = (1, 0).

1.2.5 Piecewise affine functions

In this section we will proceed to proving Theorem 1.2.2. In fact we will provide
many different proofs of this result as we go along in these lecture notes. The
proof we offer here roughly runs as follows. We approximate the graph of a C1

competing function u : [a, b] → R by a “polygonal curve” (joining A and B) with
nearly the same length. Then we observe that the length of the said polygonal
curve is greater than or equal to the length of the straight line segment from
A to B according to the triangle inequality for the Euclidean norm. Since the
accuracy of the approximation is arbitrary the conclusion follows.

In order to make the previous argument rigorous we need a definition. Recall
that a function u : [c, d] → R is affine if there are constants p and q such that
u(x) = px + q. Given real numbers c, d ∈ R (and assuming that c < d) there
exists a unique affine function u on [c, d] such that u(c) = c and u(d) = d.

1.2.3 Definition. A function u : [a, b] → R is called piecewise affine if there
are a = a0 < a1 < . . . < aκ−1 < aκ = b and a0, a1, . . . , aκ1 , aκ ∈ R such that for
each k = 1, . . . , κ, u is affine on [ak−1, ak], u(ak−1) = ak−1 and u(ak) = ak. We
let APW ([a, b]) denote the collection of piecewise affine functions on [a, b].

Notice that piecewise affine functions are continuous, and in general are not
C1 (that is u as in the definition above is not necessarily differentiable at the
points ak, k = 1, . . . , κ− 1).

prop.approx.pa 1.2.4 Proposition. Let u ∈ C1([a, b]) and ε > 0. There exists a piecewise
affine function ũ ∈ APW ([a, b]) such that ũ(a) = u(a), ũ(b) = u(b) and

|u′(x)− ũ′(x)| < ε

for each x ∈ [a, b] at which ũ is differentiable.

Proof. Since the derivative u′ is a continuous function on [a, b] there exists δ > 0
such that if x1, x2 ∈ [a, b] and |x1−x2| < δ then |u′(x1)−u′(x2)| < ε. We choose
a partition of [a, b], a = a0 < . . . < aκ = b, such that |ak−1 − ak| < δ for each
k = 1, . . . , κ. Next we consider the piecewise affine function ũ on [a, b] which
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is affine on each interval [ak−1, ak], k = 1, . . . , κ, and such that ũ(ak) = u(ak),
k = 0, . . . , κ. Clearly ũ(a) = u(a) and ũ(b) = u(b). Finally if x ∈ [ak−1, ak],
k = 1, . . . , aκ, then

ũ′(x) =
u(ak)− u(ak−1)

ak − ak−1
.

On the other hand there exists x0 ∈ [ak, ak−1] such that

u′(x0) =
u(ak)− u(ak−1)

ak − ak−1
,

according to the Mean Value Theorem. Therefore ũ′(x) = u′(x0) for every x ∈
[ak−1, ak]. Since also |u′(x)− u(x0)| < ε for such x the conclusion follows.

ex.8 1.2.5 Exercise – Let u : [c, d] → R be an affine function. Prove that L(u) = ‖u(c)−
u(d)‖.

1.2.6 A fundamental theorem

We now turn to proving Theorem 1.2.2, i.e. the fact that the function whose
graph is the straight line segment joinging A and B does minimize the length
L functional and is its unique minimizer.

Proof. Let u∗ be the unique affine function on [a, b] such that u∗(a) = a and
u∗(b) = b. We want to show that u∗ is a minimizer for problem (P2) and is the
unique minimizer for that problem.

We now prove that u∗ is a minimizer. Let u be any competitor for problem
(P2), and ε > 0. Since u ∈ C1([a, b]) we infer from Proposition 1.2.4 that there
exists a piecewise affine function ũ on [a, b] verifying the conclusions of that
Proposition. Let a = a0 < . . . < aκ = b be a partition of [a, b] associated with
ũ in the definition of piecewise affine. We denote by Pk ∈ R2 the point in the
plane with coordinates (ak, u(ak)), k = 0, . . . , κ. Then Exercise 1.2.5 implies
that

κ∑
k=1

∫ ak

ak−1

√
1 + ũ′(x)2dx =

κ∑
k=1

‖Pk − Pk−1‖

≥ ‖Pκ − P0‖
= ‖A−B‖

=
∫ b

a

√
1 + u′∗(x)2dx .

(1.1) eq.7

On the other hand we infer from Exercise 1.2.6 and the choice of ũ that for each
k = 1, . . . , κ and each x ∈ [ak−1, ak] one has∣∣∣√1 + ũ′(x)2 −

√
1 + u′(x)2

∣∣∣ < ε .
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Therefore it follows from (1.1) that

L(u) =
∫ b

a

√
1 + u′(x)2dx

=
κ∑

k=1

∫ ak

ak−1

√
1 + u′(x)2dx

≥
κ∑

k=1

∫ ak

ak−1

(√
1 + ũ′(x)2 − ε

)
dx

≥
∫ b

a

√
1 + u′∗(x)2 −

∫ b

a

ε

= L(u∗)− ε(b− a) .

From the arbitrariness of ε we infer that L(u) ≥ L(u∗) and the proof that u∗ is
a minimizer is complete.

Next we prove that u∗ is the unique minimizer. In order to do so we introduce
some convenient notation. The problem under consideration is

(PA,B)

{
minimize

∫ b

a

√
1 + u′(x)2dx

among u ∈ C1([a, b]) such that u(a) = a and u(b) = b .

The first part of this proof established in particular that inf(PA,B) = ‖A−B‖.
This holds of course regardless of the choice of A and B.

Let u ∈ C1([a, b]) be such that u(a) = a and u(b) = b. We need to show that
if u 6= u∗ then L(u) > L(u∗). Assume that u 6= u∗. Then there exists c ∈ (a, b)
such that u(c) 6= u∗(c). Let P = (c, u(c)). It follows from the observation above
that ∫ c

a

√
1 + u′(x)2dx ≥ inf(PA,P ) = ‖A− P‖

and that ∫ b

c

√
1 + u′(x)2dx ≥ inf(PP,B) = ‖P −B‖ .

Therefore ∫ b

a

√
1 + u′(x)2dx ≥ ‖A− P‖+ ‖P −B‖

> ‖A−B‖

=
∫ b

a

√
1 + u′∗(x)2dx .

ex.9 1.2.6 Exercise – Let p, q ≥ 0. Show that |
√

1 + p−
√

1 + q| ≤ |p− q|/2.
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1.2.7 Exercise – Let κ ≥ 2 be an integer and P0, . . . , Pκ ∈ R2. Prove by induction
on κ (and referring to the triangle inequality) that

κX
k=1

‖Pk − Pk−1‖ ≥ ‖Pκ − P0‖ .

1.3 Paths of shortest weighted length

1.3.1 Fermat’s principle and Snell’s law
sec.snell.1

Here again we consider paths between two points A and B and we seek to
determine along which path light is going to travel. The material between A
and B may not be homogeneous, though, so that it may take more time to
travel along the straight line segment. Fermat’s principle states that “nature
always acts in the shortest way”. In the context of geometrical optics this means
that the light (locally) minimizes its “optical length” between its endpoints. The
optical length depends upon the material in which the light travels: the speed of
light is inversely proportional to the optical density of the medium. The nature
of the material visited may change along the way (i.e. the optical density is a
function of the space position). We interpret this mathematically by saying that
light minimizes a weighted length, the weight w being a real-valued function of
the ambient space, say w : R2 → R

In the case of paths being considered as C1 images in R2 the corresponding
weighted length is defined as

lengthw(u) =
∫ 1

0

‖u′(t)‖w(u(t))dt .

In case of a C1 graph the weighted length is defined by

Lw(u) =
∫ √

1 + u′(t)2w(t, u(t))dt .

In both cases some assumptions need be made (about w) in order that the
integrand is indeed an integrable function. It is worth noticing that w might be
discontinuous in some cases, for instance when the light is going to be refracted
by a lens. We now consider this example in some detail. Suppose that A and
B lie in two different media separated by the line y = 0, and that a > 0 and
b < 0. We denote the optical densities of these media by n1 > 0 and n2 > 0.
Therefore

w(x, y) =

{
n1 if y ≥ 0
n2 if y < 0 .

(1.2) eq.w.snell

Intuitively a ray of light will follow a straight path in the medium y ≥ 0 (because
its optical density is constant) and a straight path in the medium y < 0 (for the
same reason). However these two paths need not have the same direction. We
will subsequently derive the angle between these two line segments depending
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upon n1 and n2 – this relation is known as Snell’s law in geometrical optics.
In a classic analogy by Richard Feynman, the area of lower optical density is
replaced by a beach, the area of higher optical density by the sea, and the fastest
way for a rescuer on the beach to get to a drowning person in the sea is to run
along a path that follows Snell’s law.

We now derive Snell’s law under the additional assumption that

(H) Light travels straight paths in each of the media y ≥ 0 and y < 0.

Let denote by P = (x, 0) the point on the axis y = 0 where light possibly
chooses a different direction. We also let ux : [a, b] → R denote the piecewise
affine function joining A to P and then P to B. Then

Lw(ux) = n1‖A− P‖+ n2‖P −B‖

= n1

√
(x− a)2 + a2 + n2

√
(x− b)2 + b

2
.

We notice that the above formula defines a function f(x) of one real variable
x ∈ R.

prop.1 1.3.1 Proposition. Let f(x) = Lw(ux) be defined as above. Then f has exactly
one minimum x∗ ∈ R characterized by the equation

n1
x∗ − a√

(x∗ − a)2 + a2
= n2

b− x∗√
(x∗ − b)2 + b

2
.

Proof. Notice that f(x) →∞ as x→∞ and also as x→ −∞. Therefore, as f
is continuous it has at least one minimum. Since f is also derivable everywhere,
each such minimum x must be so that f ′(x) = 0. Furthermore we observe that

f ′(x) = n1
x− a√

(x− a)2 + a2
+ n2

x− b√
(x− b)2 + b

2
.

It remains to show that the equation f ′(x) = 0 has at most one solution (Exer-
cise 1.3.2)

We see that under assumption (H) our minimization problem admits exactly
one minimizer consisting of two pieces of straight line segments. This configu-
ration (corresponding to P ∗ = (x∗, 0)) is characterized by two angles θ1 and θ2.
The angle θ1 is the angle at vertex P ∗ of the triangle AP ∗O (where O = (a, 0))
and θ2 is the angle at vertex P ∗ of the triangle O′P ∗B (where O′ = (b, 0)).
With this notation Proposition 1.3.1 reads

n1

n2
=

cos θ2
cos θ1

.

A few comments are in order.
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(1) We found out heuristically that the minimization problem of this subsec-
tion has a solution, if any, which is piecewise affine but not C1 smooth
(when n1 6= n2). This actually means that the problem has no solution
in C1([a, b],R). It shows that we need to take some care in defining the
class C of all competitors to be large enough to ensure that a minimizer
actually exists.

(2) The minimizing problem under consideration here was reduced (under
assumption (H)) to a one dimensional minimization problem. We will
justify this reduction later on in section 1.3.5 In order to solve the one
dimensional problem we solved the equation f ′(x) = 0 and used some
specific arguments to show that the unique solution x∗ corresponds to a
minimum of f .

1.3.1 Exercise – Let A = (a, a), B = (b, b) and let u : [a, b] → R be the affine
function such that u(a) = a and u(b) = b. Show that L(u) = ‖A−B‖.

ex.2 1.3.2 Exercise – Let n > 0 and p, q ∈ R. We consider the function f(x) = n
p

(x− p)2 + q2,
x ∈ R. Compute f ′ and f ′′ and show that f ′′ > 0 whenever q 6= 0. Use this to finish
the proof of Proposition 1.3.1.

1.3.3 Exercise – Find a necessary and sufficient condition on n1 and n2 so that the
unique minimizer ux∗ described in Proposition 1.3.1 is of class C1. Prove your result.

1.3.2 Continuous piecewise smooth functions

We discovered in the preceding subsection that the natural problem of describing
the path of light in nonhomogeneous media leads us to enlarge the class C =
C1([a, b],R) to a class of functions including at least “piecewise affine” functions.
We now proceed to define precisely a class that will be convenient: that of
continuous piecewise smooth functions.

def.pwc 1.3.2 Definition. Let I ⊂ R be a closed bounded interval. A function u : I →
R is said to be piecewise continuous whenever the following condition holds.
There exists a finite (possibly empty) set S ⊂ I such that u is continuous on
I \S and for every component J of I \S and each endpoint ξ of J the following
limit exists

lim
x→ξ, x∈J

u(x) .

The collection of piecewise continuous functions on I is denoted CPW (I).

Notice that continuous functions are piecewise continuous (as is checked on
letting S = ∅ in the definition above).

Condition (2) says that I can be decomposed into finitely many intervals on
the interior of each of which u is continuous and so that the one sided limits
of u exist at the endpoints of these intervals. We can rephrase this by saying
that there are a0, . . . , aκ such that a = a0 < a1 < . . . < aκ−1 < aκ = b (here
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I = [a, b]) and u is continuous on each open interval (ak−1, ak), k = 1, . . . , κ
and the following limits exist

lim
x→a−k

u(x) and lim
x→a+

k

u(x) ,

k = 1, . . . , κ− 1, as well as

lim
x→a+

0

u(x) and lim
x→a−κ

u(x) .

Here S4{a1, . . . , aκ−1} ⊂ {a, b}. We insist that S depends upon the function
u. Finally we observe that the values achieved by u on the corresponding set
S do not really matter. Indeed if we redefine u on S arbitrarily the resulting
function will still be piecewise continuous.

For example the following function is piecewise continuous on [−1, 1].

u(x) =

{
−1 if x < 0
1 if x ≥ 0

whereas

u(x) =

{
sin 1

x if x 6= 0
3 if x = 0 .

is not.
We now introduce the class of indefinite (Riemann) integral of piecewise

continuous functions.

def.pws 1.3.3 Definition. Let I = [a, b] ⊂ R be a closed bounded interval. A function
u : I → R is said to be continuous piecewise smooth on I if there exists φ ∈
CPW (I) such that

u(x) = u(a) +
∫ x

a

φ(t)dt ,

for every x ∈ I. The collection of continuous piecewise smooth functions is
denoted C1

PW (I).

1.3.4 Exercise – Show that u : [−1, 1] → R : x 7→ |x| belongs to C1
PW ([−1, 1]) (you

need to exhibit a corresponding function φ and show it is piecewise continuous).

1.3.5 Exercise – Show that piecewise continuous functions are bounded.

1.3.6 Exercise – Show that CPW (I) is a linear space.

ex.6 1.3.7 Exercise – Let [c, d] ⊂ [a, b] and u ∈ CPW ([a, b]) (resp. u ∈ C1
PW ([a, b])).

Show that u|[c,d] ∈ CPW ([c, d]) (resp. u ∈ C1
PW ([c, d])).

ex.4 1.3.8 Exercise – Prove that each u ∈ CPW (I) is Riemann integrable on I.

1.3.9 Exercise – Show that C1
PW (I) is a linear space.

1.3.10 Exercise – Prove that if u is continuous piecewise smooth on I then it is
indeed continuous on I (This amounts to proving that an indefinite Riemann integral
is continuous).
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1.3.11 Exercise – We say that u : [0, 1] → R2 is continuous piecewise affine whenever
u is continuous and there are 0 = t0 < t1 < . . . < tκ = 1 such that the restriction of u
to each interval [tk−1, tk], k = 1, . . . , κ, is affine. Show that if u ∈ C1 then length(u)
equals the supremum of the lengths of continuous piecewise affine functions ū such
that ū(tk) = u(tk) for each k = 0, . . . , κ.

1.3.3 More vocabulary

So far we have introduced two problems: that of minimizing length and that of
minimizing weighted length. There are several ways of setting up these prob-
lems, mainly in the realm of curves on the one hand, and that of graphs on
the other hand. For the beginning of these lecture notes we shall stick with the
“graph formulation” which corresponds to classical calculus of variations. In
that setting, the weighted length of a “graph” u : [a, b] → R can be written as∫ b

a

√
1 + u′(x)2w(x, u(x))dx .

The case of length actually corresponds to the particular case when w = 1. We
will be interested in the sequel in functionals F of the type of that above, only
more general in that the integrand is allowed to be an arbitrary function of the
triple (x, u(x), u′(x)).

1.3.4 Definition. A Lagrangian on [a, b] is a function

F : [a, b]× R× R .

It is customary to write (x, y, p) for the variables of a Lagrangian.

1.3.5 Definition. Let C = C1
PW ([a, b],R) and F : C → R. We call F a

variational integral if there exists a Lagrangian F on [a, b] (called the Lagrangian
associated with F ) such that for every u ∈ C the function x 7→ F (x, u(x), u′(x))
is Riemann integrable on [a, b] and

F (u) =
∫ b

a

F (x, u(x), u′(x))dx .

For instance L(u) is a variational integral with corresponding Lagrangian

F (x, y, p) =
√

1 + p2

and the weighted length Lw(u) is a variational integral corresponding to the
Lagrangian

F (x, y, p) = w(x, y)
√

1 + p2 .

We now turn to discussing the assumption that

[a, b] → R : x 7→ F (x, u(x), u′(x))
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be Riemann integrable whenever u is continuous piecewise smooth. This is
going to be the case for instance when F is continuous (see Exercise 1.3.12),
e.g. F (x, y, p) =

√
1 + p2. Notwithstanding the reader is invited to read the

following small prints kind of bad news.

Recall however that in the case of Snell’s law alluded to above we considered a noncontinuous
weight function w (se (1.2)) corresponding to a noncontinuous Lagrangian F . Let us write wSnell and
FSnell for this particular weight and the corresponding Lagrangian. Perhaps somewhat surprisingly
it turns out that in this case there are functions u ∈ C1([a, b]) such that x 7→ FSnell(x, u(x), u′(x))
is not Riemann integrable on [a, b]. We will discuss this below but for now let us mention that
it is an unpleasant situation because we run into technical problems to even state properly Snell’s
law. Indeed we would want to state a Theorem to the effect that the unique minimizer of the
minimization problem(

minimize
R b

a
FSnell(x, u, u′(x))dx

among u ∈ C1
P W ([a, b]) ∩ {u : u(a) = a and u(b) = b}

is the piecewise affine function described in section 1.3.1. It turns out however that we cannot even
state the problem in this way because – as we shall explain – there are competitors u for which the
integral to be minimized is not defined.

Assume that u ∈ C1([a, b]). Then

FSnell(x, u(x), u
′
(x)) =

(
n1

p
1 + u′(x)2 if u(x) ≥ 0

n2
p

1 + u′(x)2 if u(x) < 0 .
(1.3) eq.F.snell

In other words,

FSnell(x, u(x), u′(x))p
1 + u′(x)2

=

(
n1 if u(x) ≥ 0

n2 if u(x) < 0 .

That function of x takes only two values, n1 and n2. It is equal to n1 on the closed set C =
[a, b] ∩ {x : u(x) ≥ 0}. The point is that we can realize any closed set C ⊂ [a, b] in this way. That
is, given any C we can find some u such that C = {u ≥ 0}. This means that choosing u properly

the integrand of our variational integral can be of the type fC(x)
p

1 + u′(x)2 where

fC(x) =

(
n1 if x ∈ C

n2 if x ∈ [a, b] \ C ,
(1.4) eq.bad.snell

for any closed set C ⊂ [a, b]. It turns out that there are sets C so that the function fC

p
1 + (u′)2

is not Riemann integrable on [a, b]. We now state the theorems to this effect.

1.3.6 Theorem. Let C ⊂ [a, b] be closed. Then there exists u ∈ C1([a, b]) such that

u(x) = 0 if x ∈ C

and
u(x) < 0 if x ∈ [a, b] \ C .

We recall from the following characterization of Riemann integrable functions.

1.3.7 Definition. A set S ⊂ R is called Lebesgue negligible if for every ε > 0 there are (finitely
many or countable many) intervals I1, I2, . . . in R such that

S ⊂ ∪jIj

and X
j

diam Ij < ε .

1.3.8 Theorem. A bounded function f : [a, b] → R is Riemann integrable if and only if the set
of points at which f is discontinuous is Lebesgue negligible.
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Since the set of points where fC is discontinuous is Bdry C, it remains to verify that there
exists a set C whose boundary is not Lebesgue negligible. These are “Cantor type sets”.

1.3.9 Theorem. There exists a closed set C ⊂ [0, 1] such that C = Bdry C and C is not Lebesgue
negligible.

In order to state properly Snell’s law we have to find a way around the
technical problem we just described. It seems that the more natural way is the
following. Given a Lagrangian on [a, b] we will restrict the class of competitors
to those functions u such that x 7→ F (x, u(x), u′(x)) is Riemann integrable on
[a, b].

1.3.10 Definition. Given a Lagrangian F on [a, b] we call the domain of F the
following collection of functions:

Dom(F ; [a, b]) = C1
PW ([a, b]) ∩ {u : the function x 7→ F (x, u(x), u′(x))

is Riemann integrable on [a, b]} .

We identified some continuous piecewise smooth functions u 6∈ Dom(FSnell),
the obstruction here being related to the possibility of the set {x : u(x) = 0}
being peculiar (specifically: having non Lebesgue negligible boundary). See
Exercise 1.3.15 for the description of a wealth of functions belonging to the
domain of FSnell.

Finally let us mention that the problem we have run into is an advocate
for using Lebesgue’s theory of the integral rather than Riemann’s. In fact,
x 7→ FSnell(x, u(x), u′(x)) is Lebesgue integrable whenever u ∈ C1

PW ([a, b]) so
that we wouldn’t have to introduce some artificial restriction on u (that u ∈
Dom(FSnell)) if we were working with the Lebesgue integral.

ex.3 1.3.12 Exercise – Prove that if u ∈ C1
PW ([a, b], R) and the Lagrangian F is contin-

uous then x 7→ F (x, u(x), u′(x)) is piecewise continuous, and therefore Riemann inte-
grable according to Exercise 1.3.8. In other words, if F is continuous then Dom(F ; [a, b]) =
C1

PW ([a, b]).

1.3.13 Exercise – Let [c, d] ⊂ [a, b] and let F be a Lagrangian on [a, b]. Prove that
if u ∈ Dom([a, b]) then u|[c,d] ∈ Dom([c, d]).

1.3.14 Exercise – Assume that n1 6= n2, C ⊂ [a, b] is closed, fC is defined in (1.4)
and u ∈ C1([a, b]). Prove that the set of points where fC

p
1 + (u′)2 is discontinuous

is Bdry C.

ex.7 1.3.15 Exercise – Let u ∈ C1
PW ([a, b]) be such that the set [a, b] ∩ {x : u(x) = 0} is

finite. Show that u belongs to the domain of FSnell.

1.3.16 Exercise – Some interesting functionals are not (generalized) variational in-
tegrals. Consider for instance the following minimization problem.

(P)

(
minimize sup{|u′(x)| : x ∈ [a, b]}
among u ∈ C1([a, b]) ∩ {u : u(a) = a and u(b) = b} .

(1) Determine inf(P).
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(2) Show that the affine competitor is a minimizer of (P).

(3) Show that the affine competitor is the unique minimizer of (P) (Hint: use the
Mean Value Theorem).

1.3.4 Localization principle

We now turn to proving a localization result which will be useful when we return
to Snell’s law more rigorously in the next subsection. Roughly speaking this says
that if u∗ minimizes some variational integral on [a, b], and [c, d] ⊂ [a, b], then
the restriction of u∗ to [c, d] minimizes the corresponding variational integral on
[c, d], with respect to its own boundary values.

prop.loc 1.3.11 Proposition (Localization Principle). Assume that

(1) [a, b] ⊃ [c, d] and [a, b] 6= [c, d];

(2) a, b ∈ R;

(3) F is a Lagrangian on [a, b];

(4) Ca,b = Dom(F ; [a, b]) ∩ {u : u(a) = a and u(b) = b};

(5) u∗ ∈ Ca,b;

(6) Cc,d = Dom(F ; [c, d]) ∩ {u : u(c) = u∗(c) and u(d) = u∗(d)};

(7) We define variational integrals respectively on Ca,b and Cc,d by the formu-
las

Fa,b(u) =
∫ b

a

F (x, u(x), u′(x))dx

whenever u ∈ Ca,b and

Fc,d(u) =
∫ d

c

F (x, u(x), u′(x))dx

whenever u ∈ Cc,d;

(8) u∗ is a minimizer of problem

(Pa,b)

{
minimize Fa,b(u)
among u ∈ Ca,b .

Then u∗∗ = u∗|[c,d] is a minimizer of problem

(Pc,d)

{
minimize Fc,d(u)
among u ∈ Cc,d .
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Proof. Before we give a fully detailed account of the proof let us briefly state
the (easy) idea. If u∗∗ were not a minimizer of problem (Pc,d) then there
would be some v∗∗ ∈ Cc,d such that Fc,d(v∗∗) < Fc,d(u∗∗). Defining v∗ on
[a, b] to coincide with v∗∗ on [c, d] and with u∗ on [a, b] \ [c, d] we would obtain a
competitor for (Pa,b) such that Fa,b(v∗) < Fa,b(u∗) (according to the additivity
of the integral), a contradiction. The proof of course consists in showing that
the function v∗ constructed piecewise still belongs to the class of competitors
(see Exercise 1.3.17).

We first need to show that u∗∗ ∈ Cc,d. Since u∗∗ clearly verifies the bound-
ary condition stated in the definition of Cc,d we are left with noticing that
u∗∗ ∈ C1

PW ([c, d]) and x 7→ F (x, u∗∗(x), u′∗∗(x)) is Riemann integrable on [c, d].
PPP Since u∗ ∈ C1

PW ([a, b]) there exists φ∗ ∈ CPW ([a, b]) such that

u∗(x) = u∗(a) +
∫ x

a

φ∗(t)dt (1.5) eq.1

whenever x ∈ [a, b]. Letting φ∗∗ = φ∗|[c,d] we infer from Exercise 1.3.7 that
φ∗∗ ∈ CPW ([c, d]). Furthermore for every x ∈ [c, d] one has

u∗∗(x) = u∗(x)

= u∗(a) +
∫ x

a

φ∗(t)dt

= u∗(a) +
∫ c

a

φ∗(t)dt+
∫ x

c

φ∗∗(t)dt

= u∗∗(c) +
∫ x

c

φ∗∗(t)dt

where the last equality follows from (1.5) applied with x = c. This shows that
u∗∗ ∈ C1

PW ([c,d]). Since f(x) = F (x, u∗(x), u∗(x)) is Riemann integrable on
[a, b], its restriction (f |[c,d])(x) = F (x, u∗∗(x), u′∗∗(x)) is Riemann integrable on
[c, d]. QQQ

Next we need to first show that Fc,d(u∗∗) ≤ Fc,d(v) for every v ∈ Cc,d.
Assume if possible that there exists v∗∗ ∈ Cc,d such that

Fc,d(v∗∗) < Fc,d(u∗∗) . (1.6) eq.2

We then define a function v∗ : [a, b] → R as follows

v∗(x) =

{
u∗(x) if x ∈ [a, b] \ (c, d)
v∗∗(x) if x ∈ (c, d) .

We claim that v∗ ∈ Fa,b, i.e. v∗ is a competitor for Pa,b. In order to prove
this we need to show that

v∗(x) = v∗(a) +
∫ x

a

ψ∗(t)dt (1.7) eq.3
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for some ψ∗ ∈ CPW ([a, b]). We let ψ∗∗ ∈ CPW ([c, d]) be such that

v∗∗(x) = v∗∗(c) +
∫ x

c

ψ∗∗(t)dt

whenever x ∈ [c, d], and φ∗ ∈ CPW ([a, b]) be such that

u∗(x) = u∗(a) +
∫ x

a

φ∗(t)dt

whenever x ∈ [a, b]. We define

ψ∗(x) =

{
φ∗(x) if x ∈ [a, b] \ (c, d)
ψ∗∗(x) if x ∈ (c, d) ,

and we observe that ψ∗ ∈ CPW ([a, b]). PPP If S∗ ⊂ [a, b] is associated with φ∗
in the definition of piecewise continuity and S∗∗ ⊂ [c, d] is associated with ψ∗∗,
then S = S∗ ∪ S∗∗ witnesses the piecewise continuity of ψ∗. QQQ Clearly (1.7)
holds for a ≤ x ≤ c. Next if c < x < d then, by definition of v∗,

v∗(x) = v∗∗(x)

which, according to the choice of ψ∗∗, equals

= v∗∗(c) +
∫ x

c

ψ∗∗(t)dt

and since v∗∗(c) = v∗(c)PPP v∗∗(c) = u∗(c) because v∗∗ ∈ Cc,d and v∗(c) = u∗(c)
by definition of v∗QQQ one has

= v∗(c) +
∫ x

c

ψ∗(t)dt

= v∗(a) +
∫ c

a

ψ∗(t)dt+
∫ x

c

ψ∗(t)dt

= v∗(a) +
∫ x

a

ψ∗(t)dt .

The proof of (1.7) when d ≤ x ≤ b is analogous. In order to finish the proof
that v∗ ∈ Ca,b we need to establish that x 7→ F (x, v∗(x), v′∗(x)) is Riemann
integrable on [a, b]. Letting f denote the latter, we see this is the case because
f is Riemann integrable on [a, c] PPP letting g(x) = F (x, u∗(x), u′∗(x)), x ∈ [a, b],
we see that g is Riemann integrable on [a, b] (because u∗ ∈ Dom(F ; [a, b])) and
therefore f |[a,c] = g|[a,c] is Riemann integrable on [a, c] QQQ , on [c, d] PPP letting
h = F (x, v∗∗(x), v′∗∗(x)), x ∈ [c, d], we see that f |[c,d] = h is Riemann integrable
on [c, d] because v∗∗ ∈ Dom(F ; [c, d])QQQ , and on [d, b]PPP because f |[d,b] = g|[d,b]

is Riemann integrable on [d, b].
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Finally,

Fa,b(v∗) =
∫ b

a

F (x, v∗(x), v′∗(x))dx

=
∫ c

a

F (x, v∗(x), v′∗(x))dx

+
∫ d

c

F (x, v∗(x), v′∗(x))dx

+
∫ b

d

F (x, v∗(x), v′∗(x))dx

=
∫ c

a

F (x, u∗(x), u′∗(x))dx

+
∫ d

c

F (x, v∗∗(x), v′∗∗(x))dx

+
∫ b

d

F (x, u∗(x), u′∗(x))dx

=
∫ c

a

F (x, u∗(x), u′∗(x))dx

+ Fc,d(v∗∗)

+
∫ b

d

F (x, u∗(x), u′∗(x))dx

<

∫ c

a

F (x, u∗(x), u′∗(x))dx

+ Fc,d(u∗∗)

+
∫ b

d

F (x, u∗(x), u′∗(x))dx

=
∫ c

a

F (x, u∗(x), u′∗(x))dx

+
∫ d

c

F (x, u∗(x), u′∗(x))dx

+
∫ b

d

F (x, u∗(x), u′∗(x))dx

=
∫ b

a

F (x, u∗(x), u′∗(x))dx

= Fa,b(u∗) ,

contradicting the minimality of u∗.

ex.5 1.3.17 Exercise – Explain why the proof of Proposition 1.3.11 fails if in the defini-
tions of Ca,b and Cc,d the space C1

PW is replaced with C1.
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1.3.18 Exercise – Let a < p < b, p ∈ R and let F be a Lagrangian on [a, b].
Generalize the localization principle to problems of the type8<:minimize

R b

a
F (x, u(x), u′(x))dx

among u ∈ C1
PW ([a, b]) ∩ {u : u(a) = a, u(p) = p and u(b) = b} .

1.3.19 Exercise – Let a < p < b and p ∈ R. Define C to be the collection of functions
u : [a, b] → R such that u|[a,p] ∈ C1([a, p]), u|[p,b] ∈ C1([p, b]), u(a) = a, u(p) = p and

u(b) = b. We consider the minimization problem(
minimize sup{|u′(x)| : x ∈ [a, b] \ {p}}
among u ∈ C .

(1) Show that this problem admits a minimizer.

(2) Find values of a, a, p, p, b, b such that the localization principle does not hold for
this problem.

1.3.5 Return to Snell’s law
sec.snell.2

Here we will derive Snell’s law rigorously in the setting of continuous piecewise
smooth functions. The main point will be to justify hypothesis (H) introduced
in subsection 1.3.1. Our argument will based on the following strengthening of
Theorem 1.2.2.

thm.3 1.3.12 Theorem. Let A = (a, a), B = (b, b) ∈ R2 be such that a < b. Then the
minimization problem

(PLength
A,B )

{
minimize

∫ b

a

√
1 + u′(x)2dx

among u ∈ C1
PW ([a, b]) ∩ {u : u(a) = a and u(b) = b}

admits a unique minimizer which is the affine competitor.

We are now ready to prove the main result of this subsection.

thm.snell 1.3.13 Theorem. Let A = (a, a), B = (b, b) ∈ R2 be such that a < b and
b < 0 < a. Let also n2 > n1 > 0 and define the weight w by formula (1.2).
Then the minimization problem

(PSnell
A,B )

{
minimize

∫ b

a

√
1 + u′(x)2w(x, u(x))dx

among u ∈ Dom(FSnell; [a, b]) ∩ {u : u(a) = a and u(b) = b}

admits a unique minimizer which is the piecewise affine competitor described in
section 1.3.1.
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Proof. We recall that x∗ ∈ [a, b] was characterized in Proposition 1.3.1 and we
denote by u∗ the competitor for our problem which is affine on [a, x∗] and affine
on [x∗, b] and such that u∗(a) = a, u∗(x∗) = 0 and u∗(b) = b. The goal is to
prove that u∗ is the unique minimizer of (PSnell

A,B ). In order to keep the notations
short we let F denote the weighted length Lw.

We start by proving that u∗ is a minimizer. This will be achieved in the
following way. With any competitor u we will associate another competitor ũ
such that F (u) ≥ F (ũ) and ũ is affine in [a, xu] and on [xu, b], with ũ(xu) = 0,
for some xu ∈ [a, b] (depending on u). Referring to Proposition 1.3.1 we see that
F (ũ) ≥ F (u∗) and therefore F (u) ≥ F (u∗) showing that u∗ minimizes F .

Let u be a competitor for (PSnell
A,B ). Define

X = [a, b] ∩ {u : u(x) = 0} .

Since u is continuous and u(a) > 0 > u(b) we infer that X 6= ∅ according to the
intermediate value Theorem. Put

b̃ = inf X and ã = supX .

Notice that u(b̃) = u(ã) = 0 by the continuity of u, and therefore a < b̃ ≤ ã < b.
Define a function u1 : [a, b̃] such that u1(a) = a, u1(b̃) = 0 and u1 is affine.

We claim that∫ b̃

a

√
1 + u′(x)2w(x, u(x))dx ≥

∫ b̃

a

√
1 + u′1(x)2w(x, u1(x))dx . (1.8) eq.4

(The length of u1, L(u1), is understood to be its length on its domain [a, b̃]). In
order to establish this inequality we observe that u(x) > 0 for every x ∈ [a, b̃)
by the definition of b̃, so that

∫ b̃

a

√
1 + u′(x)2w(x, u(x))dx = n1

∫ b̃

a

√
1 + u′(x)2dx

≥ n1L(u|[a,b̃])

≥ n1L(u1)

=
∫ b̃

a

√
1 + u′1(x)2w(x, u1(x))dx .

according to Theorem 1.3.12 and Exercise 1.3.7
Next we define a function u2 : [ã, b] so that u2(ã) = 0, u2(b) = b and u2 is

affine. An argument analogous to the one above show that∫ b

ã

√
1 + u′(x)2w(x, u(x))dx ≥

∫ b

ã

√
1 + u′2(x)2w(x, u2(x))dx . (1.9) eq.5
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In case b̃ = ã we let xu be the common value and we define ũ to coincide
with u1 on [a, b̃] and with u2 on [ã, b]. It then follows from (1.8) and (1.9) that

F (u) =
∫ b̃

a

√
1 + u′(x)2w(x, u(x))dx

+
∫ b

ã

√
1 + u′(x)2w(x, u(x))dx

≥
∫ b̃

a

√
1 + ũ′(x)2w(x, ũ(x))dx

+
∫ b

ã

√
1 + ũ′(x)2w(x, ũ(x))dx

= F (ũ) .

In case b̃ < ã we define u3 : [a, ã] such that u3(a) = a, u3(ã) = 0 and u3 is
affine. We infer from Theorem 1.3.12 and Exercise 1.3.7 that∫ ã

a

√
1 + u′(x)2w(x, u(x))dx ≥ n1

∫ ã

a

√
1 + u′(x)2dx

= n1L(u|[a,ã])
≥ n1L(u3)

=
∫ ã

a

√
1 + u′3(x)2w(x, u3(x))dx .

(1.10) eq.6

Now we set xu = ã and we define ũ to coincide with u3 on [a, ã] and with u2 on
[ã, b]. It follows from (1.10) and (1.9) that

F (u) =
∫ ã

a

√
1 + u′(x)2w(x, u(x))dx

+
∫ b

ã

√
1 + u′(x)2w(x, u(x))dx

≥
∫ ã

a

√
1 + ũ′(x)2w(x, ũ(x))dx

+
∫ b

ã

√
1 + ũ′(x)2w(x, ũ(x))dx

= F (ũ) .

This completes the proof that u∗ minimizes.
We now turn to proving that u∗ is the unique minimizer. Assume that u is a

minimizer of (PSnell
A,B ) and define X, ã, u2 and u3 as in the first part of the proof.

According to Proposition 1.3.1 we need only to show that u is affine on [a, ã] and
affine also on [ã, b]. Suppose that u is not affine on [a, ã]. Since u|[a,ã] minimizes
F restricted to [a, ã] (according to Proposition 1.3.11), Theorem 1.3.12 would
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imply that∫ ã

a

√
1 + u′(x)2w(x, u(x))dx ≥ n1

∫ ã

a

√
1 + u′(x)2dx

> n1

∫ ã

a

√
1 + u′3(x)2dx

=
∫ ã

a

√
1 + u′3(x)2w(x, u3(x))dx ,

contradicting the local minimality of u. Similarly if u were not affine on [ã, b]
then we would infer that∫ b

ã

√
1 + u′(x)2w(x, u(x))dx = n2

∫ b

ã

√
1 + u′(x)2dx

> n2

∫ b

ã

√
1 + u′2(x)2dx

=
∫ b

ã

√
1 + u′2(x)2w(x, u2(x))dx ,

contradicting the minimality of u|[ã,b].

1.3.20 Exercise – Prove Theorem 1.3.12.

1.4 Paths of shortest length on a sphere

1.5 More examples

1.5.1 Catenary

1.5.2 Brachistochrone

1.5.3 Elastic string
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