Today, we will use Hopf algebras to define invariants of oriented, closed 3-manifolds.
$\left[\begin{array}{ccc}\text { In } 2 \text {-dim, oriented closed } \\ \text { one of } \Sigma_{g}= & \underbrace{\text { manifolds }}_{g \text { holes }} \text { are } \\ \text { In } & \text { more interesting }\end{array}\right]$
In 3-dim, problem is much more interesting

E1 Heegaard diagrams
Every 3-diml closed, orientable 3-dimensional manifold can be described using fleegaard diagrams (uniquely upto some moves).

Defn A Heegoard diagram is a triple

$$
\begin{aligned}
& D=\left(\sum_{j} g,\left\{u_{i}\right\},\{l i\}\right) \\
& \begin{array}{l}
\text { genus } g \text { closed } \\
\text { oriented surface }
\end{array} \\
& \text { g' upper' }
\end{aligned} \underset{\substack{\text { circles } \\
\text { girclower } \\
\text { ciriented) }}}{\text { (oriented) }}
$$

Conditions on circles $\left\{u_{i}\right\},\left\{l_{i}\right\} \quad 1 \leq i \leq n$ for any $\rightarrow\left\{u_{i}\right\},\left\{l_{i}\right\}$ are respectively disjoint $n \geqslant 1$
$\rightarrow\left\{u_{i}\right\}$ separates $\sum_{g}$ into planar regions
$\rightarrow\left\{l_{i}\right\}$ separates $\Sigma_{g}$ into planar regions

Example:


Facts

- Given a Heegaard diagram? one can glue along the circles to get a closed, oriented 3-manifold $M(D)$
- Given a oriented, closed 3-mfld:' $\exists$ a tlegaard diagram ${ }^{D}$ such that $M(D) \simeq M$.
- There can be multiple Heegaard diagrams $D$ representing a 3 -mfed $M$. Two H.D. $D_{1}, D_{2}$ represent the same rifled if they are related by the following 3 relations
(RI)

(Re)

(RB)

$$
\begin{gathered}
\sim \\
D_{1} \sim_{R 1, R 2, R 3} D_{3}
\end{gathered} \Longleftrightarrow \text { (circle slide) }
$$

Eg: $\qquad$ $\sim 8$

$$
\text { - } D_{S_{2} \times 5}=\text { i }
$$

- Lens space $D_{l(p, q)}=$


Now, we are ready to define inarariants of 3 -mflds

Step 1: Assign a number $\theta(D)$ to every Heegard diagram
Step 2: Ensure that if $D_{1} \sim D_{2}$ then

$$
\theta\left(D_{1}\right) \sim \theta\left(D_{2}\right)
$$

Now for any oriented, closed 3 -mfd $M$. consider its Heegard diagram $D_{M}$. Then the assignment $\psi$

$$
\psi: M \longmapsto \theta\left(D_{M}\right)
$$

is an invariant of closed, oriented 3-mflds.

That is, $M_{1} \simeq M_{2} \quad \Rightarrow \quad \psi\left(M_{1}\right)=\psi\left(M_{2}\right)$
§2 Invariants constructed using involutory Hops algebras
(Involutory Hops algebras and 3-manifold invariants, Kuperberg)

- Let $H$ be a finite dimensional Hope algebra. satisfying $S^{2}=i d_{H}$
- Basis $=\left\{h_{i}\right\}$, dual basis $=\left\{h^{i}\right\}$

NOTATIONS:

$$
\rightarrow m=\varphi, u=i, \Delta=h, \varepsilon=\delta, S=\phi
$$

$\rightarrow$ evaluation map

$\rightarrow$

Consider a Heegaard diagram:

upper
lower
(1) arbitrarily orient all circles
(2) to each lower circle, assign the maps


2:

here the indices $c_{1}, c_{2} \ldots, c_{n}$ correspond to crossings on $l$ in the order that they are encountered when travelling along $l$ in positively oriented direction.
(3) to each upper circle assign

(4) if at crossing $c$, the tangent vectors of the lower and upper circle, in that order, form a positively oriented basis of $T \Sigma_{g}$ at $c$, compose the maps in steps (2). (3).

If not, interpose $s$ in between before composing



The invariant is

$$
\psi(D, H)=Z(H)(\operatorname{dim} H)^{-g}
$$

$\rightarrow$ Next we need to check that $\Psi(D, H)$ is preserved by the moves $R 1, R 2, R 3$.

- When $H=k G$, then

$$
\psi\left(D_{M}, H\right)=|\operatorname{Hom}(r(M), G)|
$$

- With char $(\mid B)=0, H$ is involutory $\Leftrightarrow \begin{aligned} & H \text { is } \\ & \text { lemisimple }\end{aligned}$ There is a non-semisimple generalization of above result as well.
- $\Lambda^{2}=$ right integral of $H \quad \Lambda^{2} h=\varepsilon(h) \lambda^{2}$
- $\lambda^{2}=$ right cointegral of $H \quad\left\langle\lambda^{2}, h_{h_{1}}\right\rangle h_{2}=\left\langle\lambda^{h}, h\right\rangle 1_{H}$ these satisfy $\left\langle\lambda^{r}, \lambda^{r}\right\rangle=1$
- 9 = distinguished grouplike elf. of $H$

$$
g:=\wedge_{1}\left\langle\lambda, \wedge_{1}\right\rangle
$$

- $\bar{\alpha}=$ distinguished character of $H$

$$
\langle\alpha, h\rangle:=\langle\lambda, h \Lambda\rangle
$$

$$
\Lambda_{1}\left\langle\alpha, N_{2}\right\rangle
$$

- For $n \in \mathbb{Z}$, define $\Lambda_{n-\frac{1}{2}}$, $\lambda_{n-\frac{1}{2}}$

$$
=\Lambda_{1}\left(\lambda, \Lambda_{2} n^{\prime}\right)
$$

$$
\begin{array}{ll}
\Lambda_{n-\frac{1}{2}}:=\Lambda_{1}\left\langle\alpha, \Lambda_{2} \Lambda_{3} \cdots \Lambda_{n+1}\right\rangle & \text { e.g. } \Lambda_{-\frac{1}{2}}=\left\langle\alpha, \Lambda_{1}\right\rangle \Lambda_{2} \\
\left\langle\lambda_{n-\frac{1}{2}}, h\right\rangle:=\left\langle\lambda, h g^{n}\right\rangle & \lambda_{-\frac{1}{2}}=\lambda
\end{array}
$$

- Set $q=\langle\alpha, g\rangle$ then $q$ is a root of unity

REFERENCE: On two invariants of three manifolds from Hopf algebras. (Chang, Chi)

Notation

| My notes | Chang-Cui |
| :---: | :---: |
| $\hat{\alpha}$ | $e^{R}$ |
| $\lambda$ | $\mu^{R}$ |
| 9 | $a$ |
| $\alpha$ | $\alpha$ |

- S antipode of $H$

$$
\text { - T : } \quad \begin{aligned}
T(h): & =\left\langle\alpha, s^{-2}(h)_{1}\right\rangle s^{-2}(h)_{2}\left\langle\alpha^{-1}, s^{-2}(h)_{3}\right\rangle \\
& =\left\langle\alpha, s^{-2}\left(h_{1}\right)\right\rangle s^{-2}\left(h_{2}\right)\left\langle\alpha^{-1}, s^{-2}\left(h_{3}\right)\right\rangle
\end{aligned}
$$



