On Unimodular module categories
Harshit Yadar (2 5min)
@ CRM, Montreal, 20221019
§1 Motivation
a) TQFT
is a symm monoidal functor $F: n \mathrm{COb} \rightarrow$ Vect

$$
\{2 D-T Q F T\} \leftrightarrow\left\{\begin{array}{c}
\text { commutative } \\
\text { Frobewius } \\
\text { algebras }
\end{array}\right\}
$$

(story about Row I got interested)

Hence we want more TQFT
\Rightarrow want more MTC s

There are many ways of producing new MTC

Common Sources of MTCS

- Reps of Qxarturm groups , VAs
- Drinfoed centers of spherical categories

Processes of getting new MTCS from old ones

- Deligne product $E \otimes D$
- graded extension
- Zesting
- category of local modules where $A=$ nice prob. algebra
$\rightarrow M_{y}$ talk focuses on
Drinfeld centers + local modules using nice Frobenins algebras in $Z(e)$

From CFT perspective, MICs encode the chiral data of some CFT
\rightarrow In the formulation of Fuchs-Runkl-Schueigert, Frob algs $A \longleftrightarrow$ boundary fields $A-A$ binodules \longleftrightarrow defects
\therefore From the TQFT + CFT motivations, it is important to understand Frobenius algebras in MTCs

PROBLEM: Construct Frobenius algebras (functorially) in the Drinfeld center.

STRATEGY: Construct Frobenius monoidal functors

$$
\ldots Z(Z(e)
$$

RESULTS
(1) Consider a strong monoidal functor $F: e \rightarrow \infty$ such that

- Ft Fra is a collopt adjunction
- $F^{r a}$ is exact + faithful
then get that

$$
\begin{array}{cl}
\text { (known) : Prob. monoidal is ale Prob mon } & F^{r a}\left(\mathbb{1}_{\infty}\right) \text { is } \\
& \text { Prob algebra } \\
\text { - separable } & \text { separable Frob } \\
\text { pivotal } & \text { symmetric Frob. }
\end{array}
$$

(2) Apply (1) to $\psi: Z(e) \longrightarrow$ Furn $(\mu) \quad \begin{aligned} & \text { category of right } \\ & \text { exact e-module }\end{aligned}$ $(c, \sigma) \longmapsto\left(c \triangleright-, s^{\sigma}\right)$ exact e-module endofunctors of a module category μ.

Get that
$\psi^{r a}:$ Fine $(M) \rightarrow Z(e)$ is $\Leftrightarrow \psi^{r a}\left(i d_{\mu}\right)$ is

- Frobenins monoidal
- pivotal
- Frobenius alg
- symm Frob-olg.
(3) Defn: Exact left e-module category is called unimodular if $\operatorname{Rex} e(\mu)$ is unimodular finite tensor category (ie $D \cong \mathbb{1}$).

The: The following are equivalent

- M is unimodular module cat.
- $S_{\mu} \cdot \mathbb{N}_{\mu} \cong i d_{\mu}$ as e-module functor
- Fume (μ) is unimodular FTC
$\mu_{\text {induc }} \begin{cases}\text { : } & \psi^{r a}(i d m) \\ \text {. } & \psi^{r a} \text { is } \text { a Prob algebra in } Z(e) \\ \text { Prob monoidal functor. }\end{cases}$
also able to reprove result of Fuchs-Schweigert.
The: Let e be pivotal, M unimodular + pivotal Then $\psi^{\text {ra }}\left(i d_{m}\right)$ is symom. Frobenius $\Rightarrow \psi^{r a}$ is pivotal Frob. mon- functor.
(4) Classify unimodular module categories over $e=\operatorname{Rep}(H)$.
\rightarrow Module categories are of the form $M=\operatorname{Rep}(L)$ where L is a left H-comodule algebra.

Tho: M is unimodular $\Longleftrightarrow L$ admits a unimodular element

- Some invertible element of L
- answers Q of Shimizu

