Unimodular module categories

Harshit Yadav

University of Alberta

harshit11y@gmail.com

- Frobenius monoidal functors from coHopf adjunctions, arxiv:2209.15606
- On unimodular module categories, arxiv:2302.06192

June 16, 2023

What is unimodularity?

Unimodularity

- An $n \times n$ matrix A with integer entries is called *unimodular* if $det(A) = \pm 1$.
- This idea is used to define unimodularity of
 - bilinear forms
 - lattices
 - Poisson algebras
 - Hopf algebras
 - Finite multi-tensor categories
- Fun fact: Unimodular lattices (E_8 and Leech lattice) were used in the work of Viazovska¹ to obtain efficient sphere packings in dimensions 8 and 24.

¹Viazovska, "The sphere packing problem in dimension 8".

Unimodular Hopf algebras

Let $(H,m,u,\Delta,\varepsilon,S)$ be a finite dimensional Hopf algebra.

• A left integral is an element $\Lambda^l \in H$ satisfying

$$h\Lambda^l = \varepsilon(h)\Lambda^l \qquad \forall \ h \in H$$

• A right integral is an element $\Lambda^r \in H$ satisfying

$$\Lambda^r h = \varepsilon(h)\Lambda^r \qquad \forall h \in H$$

• For any left integral Λ^l , there exists $\alpha : H \to \Bbbk$ (distinguished character) such that

$$\Lambda^l h = \alpha(h)\Lambda^l \qquad \forall h \in H$$

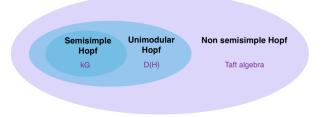
Definition

H is called *unimodular* if the following equivalent conditions are satisfied:

• *H* admits a two-sided integral $\iff \alpha = \varepsilon$.

Examples

- Let $G = \text{finite group with char}(\mathbb{k}) \nmid |G|$. Then, $\Lambda = \sum_{g \in G} g$ is a left and right integral of the $\mathbb{k}G$.
- Semisimple Hopf algebras are unimodular (Λ^lΛ^r is a two-sided integral).
- **③** When $char(\Bbbk)$ divides |G|, $\Bbbk G$ is not semisimple but still unimodular.
- Let $H_{2,i} = \frac{\Bbbk < g, x >}{(g^2 = 1, x^2 = 0, gx = -xg)}$. Then H does not admit a two-sided integral.



Unimodular tensor categories

A finite multi-tensor category is a finite, abelian, rigid, monoidal category $(\mathcal{C},\otimes,1\!\!1).$

Hopf algebras

- $\bullet \ (H,m,u) \ {\rm algebra}$
- Δ, ε are algebra maps
- ullet S bijective
- H unimodular ($\alpha = \varepsilon$)

In fact², $D \cong \int_{X \in \mathcal{C}} \operatorname{Hom}_{\mathcal{C}}(X, \mathbb{1}) \cdot X$.

Definition

A finite multi-tensor category C is called *unimodular* if $D \cong 1$.

Example: Drinfeld centers of finite tensor categories are unimodular.

Finite tensor categories

- $\operatorname{Rep}(H)$ abelian, \Bbbk -linear
- $(\mathsf{Rep}(H), \otimes_{\Bbbk}, \Bbbk_{\varepsilon})$ monoidal
- $\operatorname{Rep}(H)$ admits duals, is rigid

•
$$D := \Bbbk_{\alpha}$$
, then $D \cong \mathbb{1}$

²Shimizu, "On unimodular finite tensor categories".

Unimodular C-Module categories

Let \mathcal{C} be a finite multi-tensor category. A left \mathcal{C} -module category is a finite abelian category \mathcal{M} along with an exact functor $\triangleright : \mathcal{C} \times \mathcal{M} \to \mathcal{M}$ and coherent natural isomorphisms:

$$(X \otimes Y) \triangleright M \cong X \triangleright (Y \triangleright M), \qquad \mathbb{1} \triangleright M \cong M.$$

A C-module category \mathcal{M} is called *exact* is for all projective objects $X \in \mathcal{C}$ and any $M \in \mathcal{M}$, $X \triangleright M \in \mathcal{M}$ is projective.

Definition

An exact C-module category \mathcal{M} is called *unimodular*^a if the multi-tensor category $\text{Rex}_{\mathcal{C}}(\mathcal{M})$ is unimodular.

 $^{\rm a}{\rm Fuchs},$ Schaumann, and Schweigert, "Eilenberg-Watts calculus for finite categories and a bimodule Radford S^4 theorem".

Examples

- $\begin{array}{l} \bullet \ \ \mathcal{C} = \mbox{ finite tensor cat., } \mathcal{M} = \mathcal{C} \\ \mbox{ Then, } \operatorname{Rex}_{\mathcal{C}}(\mathcal{M}) \cong \mathcal{C}^{\operatorname{rev}}. \\ \implies \mathcal{M} \mbox{ is unimodular if and only if } \mathcal{C} \mbox{ is unimodular tensor cat. } \end{array}$
- $\begin{array}{ll} \textcircled{O} & \mathcal{D} = \mathcal{C} \boxtimes \mathcal{C}^{\mathsf{rev}}, \ \mathcal{M} = \mathcal{C} \\ & \mathsf{Then}, \ \mathsf{Rex}_{\mathcal{D}}(\mathcal{M}) \cong \mathcal{Z}(\mathcal{C}). \ \mathsf{But the} \ \mathcal{Z}(\mathcal{C}) \ \mathsf{is always unimodular}. \\ & \implies \mathcal{M} = \mathcal{C} \ \mathsf{is a unimodular} \ \mathcal{C} \boxtimes \mathcal{C}^{\mathsf{rev}} \ \mathsf{module category.} \end{array}$
- ③ C = Rep(H), M = Vec via the fiber functor F : Rep(H) → Vec Then, Rex_{Rep(H)}(Vec) ≅ Rep(H*).
 ⇒ Vec is a unimodular if and only if H* is unimodular.
- C = fusion cat. of dim≠ 0, M = any semisimple C-module cat. Then, Rex_C(M) is also fusion³, and hence, unimodular.
 ⇒ M is a unimodular C-module category.

³Etingof, Nikshych, and Ostrik, "On fusion categories".

Characterization of unimodularity

Understanding unimodularity

Let $U: \mathcal{Z}(\mathcal{C}) \to \mathcal{C}$ be the forgetful functor. Shimizu⁴ proved that: \mathcal{C} is unimodular $\iff U^{ra}(\mathbb{1}) \in \operatorname{Frob}(\mathcal{C})$

For $(\mathcal{M}, \triangleright)$ an exact, left \mathcal{C} -module category, consider the functor⁵:

$$\Psi: \mathcal{Z}(\mathcal{C}) \to \mathsf{Rex}_{\mathcal{C}}(\mathcal{M}), \qquad (X, \sigma) \mapsto (X \triangleright -, s^{\sigma})$$

As a corollary of Shimizu's result, we obtained that⁶:

Corollary $\mathcal{M} \text{ is unimodular } \iff \Psi^{\mathsf{ra}}(\mathbb{1}) \in \mathsf{Frob}(\mathsf{Rex}_{\mathcal{C}}(\mathcal{M})).$

⁴Shimizu, "On unimodular finite tensor categories".

⁵Shimizu, "Further results on the structure of (co) ends in finite tensor categories". ⁶Yadav, "On unimodular module categories".

Enhancing Shimizu's result

Definition

A Frobenius monoidal functor is a tuple (F, F_0, F_2, F^2, F^0) where $(F, F_2, F_0) : \mathcal{C} \to \mathcal{D}$ is a lax monoidal functor, $(F, F^2, F^0) : \mathcal{C} \to \mathcal{D}$ is an oplax monoidal functor and F^2, F_2 satisfy a certain 'Frobenius relation'.

- Strong monoidal functors are Frobenius monoidal.
- Crucially, if $A \in \operatorname{Frob}(\mathcal{C})$, then $F(A) \in \operatorname{Frob}(\mathcal{D})$.
- Frobenius monoidal functors preserve duals, i.e., $F(X^*) \cong F(X)^*$. This yields a natural iso $\xi_X^F : F(X^{**}) \to F(X)^{**}$.

Definition

A Frobenius monoidal functor $F : (\mathcal{C}, \mathfrak{p}) \to (\mathcal{D}, \mathfrak{q})$ is called *pivotal* if it satisfies: $\xi_X^F \circ F(\mathfrak{p}_X) = \mathfrak{q}_{F(X)}$ for all $X \in \mathcal{C}$.

• Pivotal Frobenius monoidal functors preserve symmetric Frobenius algebras.

Frobenius monoidal functors coHopf adjunctions

Theorem (^{ab})

^aBalan, "On Hopf adjunctions, Hopf monads and Frobenius-type properties". ^bYadav, "Frobenius monoidal functors from (co) Hopf adjunctions".

 \mathcal{C}, \mathcal{D} abelian monoidal categories,

 $U: \mathcal{C} \to \mathcal{D}$ be a strong monoidal functor admitting a right adjoint R, and R is exact, faithful and the adjunction $U \dashv R$ is coHopf. Then,

Input			$R(\mathbb{1}_{\mathcal{D}})$	R
\mathcal{C}	\mathcal{D}	U	*	*
\otimes	\otimes	strong \otimes	Frob.	Frob. monoidal
\otimes	\otimes	strong \otimes	separable Frob.	separable Frob.
\otimes	\otimes	strong \otimes	special Frob.	special Frob.
pivotal	pivotal	pivotal, strong \otimes	symmetric Frob.	pivotal Frob.
ribbon	ribbon	ribbon, strong \otimes	symmetric Frob.	ribbon Frob.

R is a \circledast monoidal functor $\iff R(\mathbb{1}_{\mathcal{D}})$ is a \ast algebra in \mathcal{C} .

Theorem

Let C be a finite tensor category and M and indecomposable, exact left C-module category. Then, the following conditions are equivalent:

- *M* is unimodular.
- $\Psi^{\rm ra}({\rm Id}_{\mathcal M})$ is a Frobenius algebra in ${\mathcal Z}({\mathcal C}).^{\rm a}$
- $\Psi^{\rm ra}$ is a Frobenius monoidal functor.^b
- $\mathbb{S}_{\mathcal{M}}\mathbb{N}_{\mathcal{M}}\cong_{\mathcal{C}} \mathsf{Id}_{\mathcal{M}}.^{c\,d}$

^aShimizu, "On unimodular finite tensor categories". ^bYadav, "On unimodular module categories". ^cFuchs et al., "Spherical Morita contexts and relative Serre functors". ^dShimizu, "Nakayama functor for monads on finite abelian categories".

For a pivotal category C, an exact left C-module category is called *pivotal* if $\mathbb{S}_{\mathcal{M}} \cong_{\mathcal{C}} Id_{\mathcal{M}}$ holds.

Theorem

If C is pivotal and M is a pivotal, unimodular left C-module category, then Ψ^{ra} is a pivotal Frobenius monoidal functor.

Application/Questions

• Internal natural transformation⁷:For $F, G \in \text{Rex}_{\mathcal{C}}(\mathcal{M})$, we have $\underline{\text{Nat}}(F, G) = \Psi^{\text{ra}}(G \circ F^{\text{ra}})$. Then, \mathcal{M} pivotal, unimodular $\implies \underline{\text{Nat}}(F, F) = \Psi^{\text{ra}}(F \circ F^{\text{ra}})$ is a symmetric Frobenius alg in $\mathcal{Z}(\mathcal{C})$.

Some questions:

- **1** What structure do internal homs of unimodular module cats. have?
- For C braided, we can carry out the above analysis with $\Theta: C \to \operatorname{Rex}_{\mathcal{C}}(\mathcal{M})$ to obtain commutative symmetric Frobenius algebras in C. For $\mathcal{M} = C_A$, define

$$Z_A(X) := \Theta^{\mathsf{ra}}(X \triangleright -)$$

How is the endofunctor Z_A is related to the endofunctors $E_A^{l/r}$ constructed in FFRS⁸ via idempotents?

⁸Fröhlich et al., "Correspondences of ribbon categories".

 $^{^{7}\}mathsf{Fuchs}$ and Schweigert, "Internal natural transformations and Frobenius algebras in the Drinfeld center".

Examples from Hopf algebras

Unimodular H-comodule algebras

Definition

A left *H*-comodule algebra is an algebra *A* with a left *H*-comodule structure $\rho: A \to H \otimes A$ such that ρ is an algebra map.

$$\rho(aa') = a_{(-1)}a'_{(-1)} \otimes a_{(0)}a'_{(0)}, \qquad \rho(1_A) = 1_H \otimes 1_A.$$

Using A, we can define a functor $\triangleright : \operatorname{Rep}(H) \times \operatorname{Rep}(A) \to \operatorname{Rep}(A)$ where,

• $X \triangleright M := X \otimes_{\Bbbk} M$ as a vector space, and

•
$$a \cdot (x \otimes_{\Bbbk} m) := a_{(-1)} \cdot x \otimes a_{(0)} \cdot m.$$

An *H*-comodule algebra A is called is *exact* if the Rep(H)-module category Rep(A) is exact.

Definition

An exact $H\text{-}{\rm comodule}$ algebra is called unimodular if the ${\rm Rep}(H)\text{-}{\rm module}$ category ${\rm Rep}(A)$ is unimodular.

$\mathsf{Hopf} \ \mathsf{algebras} \leftrightarrow \mathsf{tensor} \ \mathsf{categories}$

Hopf algebras

- (H, m, u) algebra
- Δ, ε are algebra maps
- S bijective
- H unimodular ($\alpha = \varepsilon$)
- H-comodule algebra (A, ρ)
- exact H-comodule algebra A
- unimodular H-comodule algebra A

Finite tensor categories

- $\operatorname{Rep}(H)$ abelian, k-linear
- $(\mathsf{Rep}(H), \otimes_{\Bbbk}, \Bbbk_{\varepsilon})$ monoidal
- $\operatorname{Rep}(H)$ admits duals, is rigid
- $D := \Bbbk_{\alpha}$, then $D \cong \mathbb{1}$
- $\operatorname{Rep}(H)$ -module category $\operatorname{Rep}(A)$
- $\operatorname{Rep}(A)$ is exact module category
- Rep(A) is unimodular module category

Main result

Theorem

An exact H-comodule algebra A is unimodular if and only if A admits a unimodular element.^a

^aYadav, "On unimodular module categories".

By results of Skryabin's⁹, we have:

- Exact *H*-comodule algebras are Frobenius. Let λ be a Frobenius form on *A* and $\{a^i\}, \{b_i\}$ dual basis satisfying $\langle \lambda, a^i b_j \rangle = \delta_{i,j}$.
- Let ν denote the Nakayama automorphism of A.

Definition

A unimodular element of A is an invertible element $\tilde{g} \in A$ satisfying:

$$\, {\tilde{g}} a {\tilde{g}}^{-1} = \langle \alpha, S(a_{(-1)}) \rangle \nu^2(a_{(0)})$$

$$1_h \otimes \tilde{g} = \tau \cdot \rho(\tilde{g})$$

where $\tau := \langle \lambda_A, a_0^i \rangle \langle \lambda_A, a_0^j \rangle g_H S^{-3}(a_{-1}^j) S^{-1}(a_{-1}^i) \otimes \nu(b_j b_i) \in H \otimes_{\Bbbk} L.$

⁹Skryabin, "Projectivity and freeness over comodule algebras".

Potential application

<u>Question</u>: Is there a notion of integrals for H-comodule algebra? Can it be used to characterize unimodularity?

Kaplansky's 5^{th} conjecture: If H is semisimple or cosemisimple then $S^2 = \text{Id}.$

Theorem¹⁰: H cosemisimple with $S^2 = Id$ implies H is unimodular.

K5 conjecture + Theorem together imply the following conjecture: Weak Kaplansky conjecture: Cosemisimple Hopf algebras H are unimodular.

Equivalently, in the language of unimodular module categories: <u>Conjecture</u>: Let H be a semisimple Hopf algebra. Then $\text{Vec} = \text{Rep}(\Bbbk)$ is a unimodular C = Rep(H) module category.

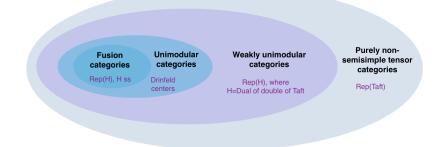
¹⁰Larson, "Characters of Hopf algebras".

Application

Theorem

The category C = Rep(Taft) is not categorically Morita equivalent to a unimodular tensor category.

A finite tensor category is called *weakly unimodular* is its categorical Morita equivalence class contains a unimodular category.



Question: Find a characterization of weakly unimodular categories.

Thank you!