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Motivation



History

An algebra is a triple (A,m : A⊗A → A, u : k → A) such that m is
associative and unital.

A is a right A-module under multiplication
⇒ A∗ is a left A module.

Frobenius 1903 studied (using the language of linear algebra) when
A ∼= A∗ as a left A module.

Brauer and Nesbitt 1937 named such algebras as Frobenius algebras.

Nakayama 1939 analyzed the rich duality structure and gave new
equivalent definitions.

Later Eilenberg, Thrall, Dieudonné made contributions.

Examples: Group algebras, exterior algebras, Hopf algebras



History

The same group of mathematicians parallelly also developed the theory of
quasi-Frobenius algebras.

An algebra A is called quasi-Frobenius is A is injective as a left
A-module.

Equivalently, A and A∗ have the same indecomposable summands.

Thus Frobenius algebras are quasi-Frobenius.

Example:

Groupoid algebras (kG)
G: Obj(G) = {1, . . . , n}, all morphisms are invertible
kG :=vector space spanned by Mor(G)
Product: given by composition
Unit: 1kG =

∑n
i=1 idi.

Weak Hopf algebras



Frobenius vs Quasi-Frobenius



What happened in the 1990s?

Quinn 1995, Abrams 1996 gave a new defintion of Frobenius algebras.
A Frobenius algebra is a 5-tuple (A,m, u,∆ : A → A⊗A, ε : A → k) such
that
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Connection to TQFTs

Commutative Frobenius algebras allow us to construct functors

Z : Category of 2D shapes −→ Vector spaces

Given a commutative Frobenius algebra A, we can define a functor ZA

which sends the shapes

7→

A A

A

, 7→
A A

A

, . . .

In this way, closed 2D manifolds map to endomorphism of k. Thus, we get
invariants of manifolds.



Quasi-Frobenius algebras

Question: Do quasi-Frobenius algebras admit a comultiplication which
satisfies the Frobenius law?

Definition

An algebra (A,m, u) equipped with a map ∆ : A → A⊗A is called
non-counital Frobenius if:

∆ is coassociative

∆ satisfies the Frobenius axiom

We investigate whether Quasi-Frobenius algebras are non-counital
Frobenius. In particular we get that

Theorem (Hernandez-Walton-Y.)

The following classes of quasi-Frobenius algebras are non-counital
Frobenius:

1 Nakayama-Skowroński-Yamagata (NSY) algebras

2 Weak Hopf algebras



Nakayama-Skowroński-Yamagata algebras



NSY algebras

Take n ∈ Z+ and 1 ≤ ℓ ≤ n− 1.

Q(n): n-cycle quiver with
- vertex set Q0 = {e0, e1, . . . , en−1}
- arrow set Q1 = {αi : ei → ei+1}i=0,...,n−1

R: arrow ideal of the path algebra kQ

Iℓ: be the admissible ideal Rℓ of kQ

Bn,ℓ := kQ(n)/Iℓ
Basis: {αi,k := αi αi+1 · · · αi+k}i,k
Indec. right Bn,ℓ modules: {Pi = eiBn,ℓ}i

Example: n = 4, l = 1

e0

e1

e2

e3

α0

α1α2

α3

I1 = R = ⟨α0, α1, α2, α3⟩
Basis = {α0, α1, α2, α3}

Definition (NSY algebras)

Bn,l(m0, . . . ,mn−1) := EndBn,l
(P⊕m0

0 ⊕ . . .⊕ P
mn−1

n−1 )



NSY algebras

We obtain the following about the NSY algebras:

Nakayama permutation: ν(i) = (i+ l − 1) mod n

Basis: {Xri,sj
i,j }i,j,ri,si+j

X
ri,si+j

i,j : P
si+j

i+j −→ P ri
i , α

si+j

i+j,k 7→ (αi,j · αi+j,k)
ri = αri

i,j+k

Dimension:
∑n−1

i=0

∑ℓ−1
j=0 mimi+j

Product: X
ri,si+j

i,j ·Xra,sa+b

a,b =

{
δa,i+j δra,si+j

X
ri,sa+b

i,j+b , for j + b < ℓ,

0, else;

Unit: 1A =
∑n−1

i=0

∑mi−1
ri=0 Xri,ri

i,0

Bn,l(m0, . . . ,mn−1) is quasi-Frobenius (Skowroński and Yamagata 2006).

Bn,l(m0, . . . ,mn−1) is Frobenius ⇐⇒ mi = mν(i) for all 1 ≤ i ≤ n
- B2,2(2, 1) is not Frobenius (ν(i) = i+ 1)
- B4,3(1, 2, 1, 2) is Frobenius (ν(i) = i+ 2)
- B4,3(1, 2, 1, 1) is not Frobenius (ν(i) = i+ 2)



Non-counital comultiplication

Theorem (Hernandez-Walton-Y.)

- Bn,l(m0, . . . ,mn−1) is non-counital Frobenius with

∆(X
ri,si+j

i,j ) =

ℓ−1−j∑
k=0

mi+j+k−1∑
ti+j+k=0

mi+j+k−ℓ+1−1∑
ti+j+k−ℓ+1=0

(
1− δmi+j+k,mi+j+k−ℓ+1

(1− δti+j+k,ti+j+k−ℓ+1
)
)

· Xri,ti+j+k

i,j+k ⊗ X
ti+j+k−ℓ+1,si+j

i+j+k−ℓ+1,ℓ−1−k.

- (A,∆) is Frobenius precisely when mi = mi−ℓ+1 for all i = 0, . . . n− 1; in
which case,

ε(X
ri,si+j

i,j ) = δj,ℓ−1 δri,si+j
1k

is the counit of ∆.



Weak Hopf algebras



Weak Hopf algebras

Generalization of Hopf algebras.

Definition

A weak Hopf algebra over k is a quintuple (H,m, u,∆wk, εwk, S) such that

1 (H,m, u) is a k-algebra,
2 (H, ∆wk, εwk) is a k-coalgebra,
3 ∆wk(ab) = ∆wk(a) ∆wk(b) for all a, b ∈ H,

4 εwk(abc) = εwk(ab1) εwk(b2c) = εwk(ab2) εwk(b1c) for all a, b, c ∈ H,

5 ∆2
wk(1H) = (∆wk(1H)⊗ 1H)(1H ⊗∆wk(1H)) =

(1H ⊗∆wk(1H))(∆wk(1H)⊗ 1H).

6 S : H → H is a k-linear map satisfying

S(h1)h2 = εs(h), h1S(h2) = εt(h), S(h1)h2S(h3) = S(h).



Weak Hopf algebras

Example: Groupoid algebras kG is weak Hopf with

∆wk(g) = g ⊗ g, εwk(g) = 1, S(g) = g−1

Definition

An element Λ in H is called a left integral if hΛ = εt(h)Λ for all h ∈ H,
where εt(x)=εwk(11x). An integral Λ is called non-degenerate if the linear
map

ΨΛ : H∗ → H, ϕ 7→ ϕ(Λ1)Λ2

is a bijection.

Böhm et al. 1999 proved the following for a weak Hopf algebra H:

1 H is self-injective.

2 H is Frobenius if and only if H has a non-degenerate left integral λ.



Results

Theorem (Hernandez-Walton-Y.)

Let H be a weak Hopf algebra. Then the following statements hold.

1 H is non-counital Frobenius with comultiplication ∆.

2 ∆ is counital if and only if H is Frobenius (e.g., precisely when H has
a non-degenerate integral).

Every weak Hopf algebras admits a non-zero left integral Λ.

Comultiplication: ∆(h) := Λ1 ⊗ S(Λ2)h

When Λ is non-degenerate, ∃ λ ∈ H∗ such that λ(Λ1)Λ2 = 1H . The,
the counit is given by λ.

Example: Groupoid algebra kG.
- Λ =

∑
g∈G g is a non-degenerate left integral, and

- ∆(g) =
∑

g∈G g ⊗ (g−1 · h), λ(h) = 1 if h = ei, 0 else.



Conclusion

- Are all quasi-Frobenius algebras non-counital Frobenius?
- What are the physical/topological uses of non-counital Frobenius
algebras, akin to the use of Frobenius algebras and 2D TQFTs?

Thank you!
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