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Introduction
Many geometrical problems find their origin in practical
ones. Darboux writes in his 1908 ICM talk titled “Les orig-
ines, les méthodes et les problèmes de la géométrie
infinitésimale” (The origins, methods and problems of
infinitesimal geometry) [4]: “Like many other branches of
human knowledge, infinitesimal geometry was born in the
study of practical problems.” He goes on explaining how
problems of cartography, that is, the art of representing re-
gions of the surface of the earth on a Euclidean piece of
paper, led to important developments in geometry made
by Lagrange, Euler, Lambert, Gauss, Beltrami, Chebyshev,
and others. In fact, Darboux himself was most interested
in cartography. In a memorial article read at the French
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Academy of Sciences on December 10, 1917, Picard recalls
that Darboux had planned to write a book on this sub-
ject, which, he says, seduced him because of its elegance
and practical importance.1 It is no accident that the vo-
cabulary concerning manifolds and geometric structures
includes terms such as “map,” “chart,” and “atlas.”

The mathematical problem of cartography is that of
finding maps that optimize distortion in a sense that
needs to be made precise. Indeed, the word “distortion”
is attached to a variety of parameters—distances, areas, and
angles—and the general problem is to find mappings that
are closest to mappings that make a compromise between
these parameters among all mappings from a given sub-
set of the sphere onto the Euclidean plane. Furthermore,
geographers usually had additional constraints on the de-
sired maps, such as preserving distances along a certain
meridian or along all meridians, or of sending parallels
(circles centered at the poles) to parallel straight lines or to
concentric circles or to other types of “parallel” curves in

1The address is published in a compendium of short texts by Picard: Émile Pi-
card, Discours et Mélanges, Paris, Gauthier-Villars, 1922.
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the plane. We shall mention examples of mappings from
the sphere to the Euclidean plane satisfying such require-
ments.

The various approaches to the question of maps with
minimal distortion from (subsets of) the sphere onto the
Euclidean plane acted as a motivation for Euler, Lagrange,
Gauss, Chebyshev, and other geometers to study general
maps between differentiable surfaces. Furthermore, geog-
raphy gave rise to an early version of extremal quasicon-
formal mappings as a particular class of least-distortion
mappings. This took place in the nineteenth century, be-
fore quasiconformal mappings were officially introduced
in the late 1920s as a tool in conformal geometry and be-
fore they led to the first knownmetric on Teichmüller space.
Thurston’s theory of best Lipschitz maps, developed in his
paper “Minimal stretchmaps between hyperbolic surfaces”
[19], is also based on the idea of studying maps with least
distortion between surfaces. It led him to the definition of
another metric on Teichmüller space, the Thurston metric,
which is today an active research topic. We shall discuss all
this in the present paper. We shall also see how least distor-
tion maps occur in art, biology, and the medical sciences,
and in particular in brain imaging.

A common feature of all the maps we mentioned is the
use of transformations of underlying systems of coordi-
nates that make these maps geometrically defined in a sim-
ple way; this is the theme we want to emphasize here. At
the same time, we shall illustrate Darboux’s claim that
several geometrical problems were motivated by practical
ones.

Old Cartography
Inmathematical terms, the object of cartography is to draw
mappings with least distortion from regions of the sphere
to the Euclidean plane. This art and science was developed
in Ancient Greece by mathematicians and geographers,
and it arose from practical needs. Indeed, maps of the
earth and of the celestial sphere were useful for navigation,
land surveying, the knowledge of the exact time of the day,
computation of dates of eclipses, etc. The fact that the rel-
ative magnitudes of lands needed to be represented in a
close-to-faithfulmanner came naturally fromneeds linked
to harvesting, the distribution of water, tax calculation, etc.
The question of finding the “best” maps, that is, those with
minimal distortion, arose very naturally.

There was speculation about whether the world was fi-
nite or infinite, but this did not affect the cartography of
the celestial dome, which was identified with a sphere
whose radius is irrelevant (and might be infinite): the dis-
tance between two points on the sphere is the angle made
by two rays starting at the observer’s eye and joining them.
It was known that the diameter of the earth was small
enough compared to its distances to the celestial bodies so

Figure 1. A world map from a fifteenth-century manuscript;
drawing attributed to Francesco di Antonio del Chierico,
British Library.

that the choice of the point at which the rays start makes
no significant difference.

Several preeminent mathematicians of Greek antiquity
were at the same time geographers and astronomers. From
the known results in spherical geometry, it was easy for
them to conclude that, except in very special cases, it is
not possible to represent a subset of the sphere onto the
plane by a map that preserves distances up to scaling. The
notion of conformal (that is, angle-preserving) mapping
was well known. The stereographic projection with cen-
ter a point on the sphere onto a plane containing the great
circle having that point as pole was probably themost pop-
ular projection from the sphere onto a Euclidean plane.2 It
was already used byHipparchus back in the second century
BC.3 This projection is not the most useful one, because it
distorts significantly distances and areas at points that are
close to the projection center.

Among the mathematicians of Greek antiquity who
were at the same time geographers, the name of Claudius
Ptolemy (second century AD) comes to the forefront. Be-
sides his major mathematical work called the Mathemati-
cal Syntaxis (later known as the Almagest), his Geography is
a treatise that had an enormous influence. Ptolemy devel-
oped there the theory of geographical maps using mathe-
matical tools of his predecessors and astronomical tables
he compiled. His Planisphaerium, which survives in Arabic
translations, may be regarded as a treatise on the stereo-
graphic projection.

Ptolemy’s Geography reached us through medieval edi-

2Sometimes, cartographers used a stereographic projection onto a plane tangent
to the sphere at the point diametrically opposite to the center of the projection.
3For the use of the stereographic projection in Greek antiquity, the reader may
refer to Delambre’s Histoire de l’astronomie ancienne, Courcier, Paris, 1817
(Vol. 1, p. 184ff), or d’Avezac’s “Coup d’œil historique sur la projection des
cartes de géographie (suite et fin),” Bull. Soc. Géographie, 5e série, t. V
(1863), pp. 437–485.

NOVEMBER 2019 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1629



Figure 2. Celestial globe with two perpendicular foliations,
Roman, c. 50–40 BC, Metropolitan Museum of Art, New York.

tions. Figure 1 is amap drawnof the oïkouménê (the known
world) in the second century AD, reconstructed from
Ptolemy’s Geography in fifteenth-century Florence, based
on earlier manuscripts. In this projection, the small cir-
cles on the sphere that are parallel to the equator (the par-
allels) are sent to ellipses, whereas the great circles passing
through the North and the South poles (the meridians) are
sent to Euclidean lines.

Figure 2 is a representation of a celestial globe from the
first century BC reduced to its most basic element: the two
perpendicular foliations of the coordinate system. The par-
allels and the meridians of the sphere form a pair of trans-
verse foliations (with singular points at the poles), and
drawing the images of these two foliations is a way of de-
scribing the map.

During the Renaissance, the need for geographicalmaps
was intensified by the discovery of new lands. Leonardo
da Vinci (1452–1519) and Albrecht Dürer (1471–1528),
besides being two of the greatest artists of their times, were
remarkable mathematicians who were highly interested in
geography. They worked on the technical problems raised
bymap drawing. They also drew geographicalmapswhose
esthetic value is highly praised. We shall talk more about
Dürer later in this article.

Figure 3 is a picture of the heart-shaped map “Recens
et integra orbis descriptio” (Recent and complete descrip-
tion of the world) by the French mathematician and as-
tronomer Oronce Fine.4 He drew it between 1534 and
1536. By this projection, the parallels are sent to a foli-
ation of the heart whose leaves are close to circles near

4Oronce Fine (1494–1555), or Oronteus Finaeus, was the first to hold the
chair of mathematics at the Collège de France.

Figure 3. A world map, drawn between 1534 and 1536 by
Oronce Fine, Bibliothèque Nationale de France.

the North Pole and to straight lines near the South Pole.
The meridians are sent to lines that are everywhere almost
perpendicular to the images of the parallels. One prop-
erty of this map is that the distances along the parallels
and along the central meridian are preserved up to scal-
ing. Such a projection is known as a Stabius–Werner pro-
jection, in honor of the cartographers Johannes Stabius
(1460–1522), who was the first to highlight it, and
Johannes Werner (1466–1528), who wrote a treatise on
it. The shape of this geographical map has several prac-
tical advantages, one of them being that it is agnostic on
the question—whose answer was unknown at that time—
of whether North America and Asia are connected or not.
This map is inspired by a drawing of Ptolemy, and its con-
ception uses advanced spherical geometry and geometrical
constructions combining the stereographic and the gno-
monic projections; see the discussion in [10].

Modern Cartography
The invention of analytic geometry by Descartes and Fer-
mat and of differential calculus by Newton and Leibniz
completely transformed the bases of mathematical cartog-
raphy. The definitions of a scaling factor, of deviation
from conformality, and of other distortion properties of
a map were gradually introduced, based on the concept
of derivative. Differential equations were used to study
the existence of geographical maps whose pointwise dis-
tortion satisfies specific properties. Cartography became
gradually part of the theory of differential geometry of sur-
faces.

Euler, besides being the most preeminent mathemati-
cian at the Academy of Sciences of St. Petersburg, was thor-
oughly engaged in cartography. For several years, he as-
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sisted the famous French geographer and astronomer
Joseph-Nicolas Delisle (1688–1768) in the huge project
of drawing geographical maps of the new Russian Empire.
In 1777, he published three memoirs that established the
foundations of the modern field of cartography. He ad-
dressed there the basic questions in terms of differential
calculus and the calculus of variations. In one of these
memoirs, Euler emphasizes the fact that he considers arbi-
trary maps from the sphere to the plane: “Any point of the
surface of the sphere is represented on the plane by any de-
sired rule” [5, §1]. This is probably one of the first explicit
occurrences of mappings that are not necessarily given by
analytic formulae. Euler then considers the question of
the nonexistence of a “perfect” map.5 His approach to the
problem consists of translating the given geometrical con-
ditions into a systemof differential equations and showing
that this system does not have a solution. After he shows
the nonexistence of a perfect map, Euler examines in de-
tail several projections from the sphere to the Euclidean
plane, searching systematically for the partial differential
equations they satisfy. The classes of maps he considers in-
clude conformal mappings (Euler calls them “similitudes
on the small scale”), area-preserving mappings, and map-
pings where the images of all the meridians are perpendic-
ular to a given axis while those of all parallels are parallel
to it. In each case, he gives examples and he studies their
distance and angle distortion.

In thememoir [6], Euler explains the advantage of a pro-
jection discovered by Delisle, and he develops the mathe-
matical theory behind it. He formulates the problem un-
der consideration as a problem of “minimizing the maxi-
mal error” over an entire region. He shows that in Delisle’s
projection, while the meridians are represented by straight
lines, the images of the other great circles “do not deviate
considerably from straight lines” [6, §22]. This is proba-
bly the first time where we encounter the notion of a map
sending geodesics to “quasigeodesics” (without the name).

5The question of what a “perfect map” is in the sense of Euler is a subject of
confusion. Wrong statements are attributed to him in the literature. R. Osser-
mann, in his paper “Mathematical mapping from Mercator to the millennium”
(Spectrum, MAA, 2004) attributes the following theorem to Euler: It is im-
possible to make an exact scale map of any part of a spherical sur-
face. By an exact scale map, Osserman means a map that preserves distances
up to scale, and he refers to Euler’s paper [5]. However, the result that Osser-
man states was already known to the Greeks from elementary spherical geom-
etry, and Euler certainly knew that. In fact, by a perfect map, Euler meant a
smooth map from a sphere to the Euclidean plane such that any point in the
domain has a neighborhood on which the restriction of the map preserves dis-
tances infinitesimally along the meridians and parallels and preserves angles be-
tween these lines. The same confusion about Euler’s result occurs in the paper
“Curvature and the notion of space” by A. Knoebel, J. Lodder, R. Laubenbacher,
and D. Pengelley (in Mathematical Masterpieces, Springer Verlag, 2007,
pp. 159–227) and in several other papers written by historians of mathematics.
Euler’s theorem is carefully analyzed and presented in modern terms in the re-
cent paper [2].

Such a property reappeared almost a century later in a pa-
per by Beltrami [1].6

Lagrange published two memoirs on cartography [11]
in which he refined Euler’s research and that of Lambert.
As a general rule, Lagrange replaced Euler’s analytic argu-
ments by geometric ones.

In the firstmemoir, Lagrange surveys various projections
of the earth and of the celestial sphere that were in use at
his time. The variety of geographicalmaps leads him to the
general question, What is a general mapping between two sur-
faces? This is a two-dimensional analogue of the question
What is a function? which was the subject of a debate that
lasted several decades and which involved the best mathe-
maticians of the eighteenth and nineteenth centuries: Eu-
ler, Lagrange, d’Alembert, Riemann, Fourier, etc.

Lagrange mentions the works of Ptolemy and Euler, but
especially those of Lambert, who, according to him, was
the first to study arbitrary angle-preserving maps from the
sphere to the plane and who, in his memoir [12], gave a
characterization of least-distortionmaps among those that
are angle-preserving. Lagrange then studies geographical
maps that are not necessarily angle-preserving and where
the images of the meridians and the parallels are not re-
quired to be circles or lines. They can be, using his terms,
arbitrary “mechanical lines.” This means that they are not
necessarily given by a formula. He declares that a geo-
graphical map is determined once these images—our fa-
miliar pair of transverse foliations—have been determined.
This is an obvious fact, but the idea is highly appealing. It
makes the relation with our exposition in the section “Art
and Biology,” where maps are described in terms of their
action on a grid of perpendicular lines.

In the same paper, Lagrange gives a formula for the lo-
cal distortion factor of a conformal map. This is a function
on the sphere that measures the length distortion at each
point. It is defined at each point as the ratio of the infin-
itesimal length element at the image by the infinitesimal
length element at the source. The fact that the map is con-
formal makes this quantity well defined.7 Lagrange then
gives a formula for the distortion of maps that send merid-
ians and parallels to circles or to circles and straight lines.

Lagrange’s formulae were used by Pafnouti Chebyshev
(1821–1894), whowas a devoted reader of Euler, Lagrange,
Gauss, Abel, and other mathematicians that preceded him.
We learn from Chebyshev’s biographer that he avoided
reading the mathematical works of his contemporaries,
considering that this would prevent him from having origi-

6Motivated by geography, Beltrami also considered the problem of mapping a
given surface onto the plane in such a way that the geodesics of the surface are
sent to straight lines, and he showed that this is not possible unless the surface
has constant curvature.
7The formula for the local distortion is given on p. 646 of Lagrange’s paper [11].
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nal ideas.8 Like Euler, Chebyshev was interested in almost
all branches of pure and applied mathematics. His Col-
lected Papers contains two papers on cartography [3], both
called “Sur la construction des cartes géographiques.” It is
interesting to read some sentences from the beginning of
the second paper; they remind us of the passage from Dar-
boux’s 1908 ICM lecture we quoted at the beginning of the
present article. Chebyshev writes: “Today, [mathematical
sciences] produce a greater interest because of their influ-
ence on art and industry. Not only practice makes profit of
these relations: conversely, science itself grows under the
influence of practice.” He then mentions the importance
of the problemof constructing geographicalmaps, making
relations with the problem of heat distribution and other
problems.

In the first paper, Chebyshev, using Lagrange’s formula
for the local distortion of a conformal map, addresses the
problem of finding conformal geographical maps whose
local distortion is minimal. He defines a “magnification
ratio” (“rapport d’agrandissement”) at each point, based
on Lagrange’s notion of local distortion. He makes the re-
lation with the Laplace equation and reduces the problem
of finding geographical maps that have least distortion to
a problem in potential theory. His main result, stated in
modern terms, is that any simply connected open subset of
the sphere bounded by a twice differentiable curve can be
conformally mapped to the Euclidean plane by a map that
is distortion minimizing and that such a map is unique up
to similarity. Furthermore, this map is characterized by the
fact that its magnification ratio is constant on the bound-
ary curve of the domain [3, p. 235]. In the introduction
to his second paper, Chebyshev places the problem of car-
tography in the context of one of his favorite subjects: op-
timization theory.

Milnor, in a paper titled “A problem in cartography,”
gave another proof of Chebyshev’s theorem. After review-
ing this result, he writes: “This result has been available
for more than a hundred years, but to my knowledge it
has never been used by actual map makers.” We shall say
more about Milnor’s work below.

Art and Biology
We consider now other kinds of maps between surfaces,
and for this we return to Renaissance art, more especially,
to Albrecht Dürer, whose drawings will lead us directly to
D’Arcy Thompson’s diagrams for growth and form in biol-
ogy.

Closely related to the subject of our article are Dürer’s
drawings represented in Figures 4 and 5. They are extracted
from his treatise titled Four Books of Human Proportions

8Cf. C. A. Possé, “Excerpts of a biography of Chebyshev,” contained in his Col-
lected Works, edited by A. Markoff and N. Sonin, Vol. 2, pp. I–VI.

Figure 4. From Dürer’s Four Books of Human Proportions
(Nuremberg, 1528).

(Nuremberg, 1528).9 The pictures are self-explanatory: the
head is divided into a certain number of significant parts
(the top of the head, the forehead, the part containing the
eyes and the nose, the part containing the mouth and the
chin), and each 2-dimensional transformation is divided
into transformations between these parts.10 At first approx-
imation, these transformations are affine.11

In the diagram represented in Figure 5, the heads are
transformed using grids that are not rectangular.

An important part of Dürer’s treatise is dedicated to
drawings of the human body based as well on proportions
and transformations between parts of this body. Like the
head, the body is divided by lines that are meaningful:
starting from the top, the division lines pass through the
top of the head, the forehead, the eyebrows, the nose, the
chin, the top of the shoulders, etc., until the ankle and the
sole. Goethe, as a biologist and observer of nature, highly
prized Dürer’s proportional transformations.12

FromDürer’s grid transformations, which allow amean-

9We are using the French version, Les quatre livres d’Albert Durer, Iean
Ieantz, Arnheim, 1614.
10Dürer was certainly thinking of 3-dimensional transformations, but this does
not change our discussion much.
11In fact, the maps between the pieces are not affine: if they were so, then the
resulting contour lines would not be smooth. Dürer gives a precise geometric
construction for the maps between the various pieces in Book III of the treatise
(p. 77ff).
12Goethe mentions Dürer in his 1776 poem “Hans Sachsens poetische
Sendung.”
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Figure 5. From Dürer’s Four Books of Human Proportions
(Nuremberg, 1528)

ingful comparison between forms, we pass to those of the
Scottish biologist D’Arcy Thompson.

In 1917, D’Arcy Wentworth Thompson (1860–1948)
published the first edition of a groundbreaking book, On
Growth and Form [16], in which he developed a theory of
change of form in biology based on simple geometric trans-
formations that use, like Dürer’s drawings, deformation of
a grid formed by two transverse families of lines. Thomp-
son declares on several occasions that he was inspired by
the drawings of fifteenth-century artists such as Leon-
Battista Alberti, Albrecht Dürer, and Leonardo da Vinci.
On p. 80 of his treatise, he writes:

[The general connection between growth and
form] is implicit in the “proportional diagrams”
by which Dürer and his brother-artists illustrated
the change in form, or of relative dimensions,
which mark the child’s growth to boyhood and to
manhood.

Chapter XVII, which is the last chapter of D’Arcy Thomp-
son’s book, is titled “On the Theory of Transformations, or
the Comparison of Related Forms.” It contains an expo-
sition of the author’s most interesting ideas on morphol-
ogy, a science whose name he borrowed from Goethe and
whosemethods and principles he considered to be derived
from mathematics. He writes (p. 1027): “We are apt to
think ofmathematical definitions as too strict and rigid for
common sense, but their rigour is combined with all but
endless freedom.” In the long introduction to his chapter,
he comments on the relation between mathematics and
experimentation, quoting Gauss, who called mathematics
“a science of the eye”; Sylvester, who said that “most, if
not all, of the great ideas of modern mathematics have
had their origin in observation”; and several other mathe-
maticians. D’Arcy Thompson also declares that Descartes
invented his method of coordinates as a generalization of
the Renaissance “proportional diagrams.” About form, he
says:

We never even seek for a formula to define this
fish or that, or this or that vertebrate skull. But
we may already use mathematical language to de-

Figure 6. Maps between shells, from D’Arcy Thompson’s
Growth and Form.

scribe, even to define in general terms, the shape
of a snail-shell, the twist of a horn, the outline of a
leaf, the texture of a bone, the fabric of a skeleton,
the stream-lines of fish or bird, the fairy lace-work
of an insects’ wing.... In a very large part of mor-
phology, our essential task lies in the comparison
of related forms rather than in the precise defini-
tion of each; and the deformation of a complicated
figure may be a phenomenon easy of comprehen-
sion, though the figure itself has to be left unanal-
ysed and undefined.

[This process of comparing forms] lies within
the immediate province ofmathematics, and finds
its solution in the elementary use of a certainmeth-
od of the mathematician.

D’Arcy Thompson, in his development, uses conformal
transformations and discusses isothermal coordinates
(see in particular p. 1047 of [16]). His theory is based
on geometric transformations that are exemplified in Fig-
ures 6 and 7, which we have reproduced from his book.
He writes:

The problem is closely akin to that of the cartog-
rapher who transfers identical data to one projec-
tion or another, and whose object is to secure (if it
be possible) a complete correspondence, in each
small unit of area, between the one representation
and the other. The morphologist will not seek to
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Figure 7. Maps between fish, from D’Arcy Thompson’s Growth
and Form.

draw his organic forms in a new and artificial pro-
jection; but, in the converse aspect of the problem,
he will enquire whether two different but more
or less obviously related forms can be so analysed
and interpreted that each may be shown to be a
transformed representation of the other.

On several occasions, René Thom expressed his admi-
ration of D’Arcy Thompson. He referred to diagrams such
as those represented in Figure 7 as examples of mappings
between stratified spaces.13 Thom’s paper “L’explication
des formes spatiales : réductionnisme ou platonisme? La
morphogenèse” (Paris, Malouine-Doin, 1980) concerns
the general notion of form and its classification. For him,
one of the fundamental problems in morphology is to
make precise, from the mathematical point of view, the
equivalence relation saying that two closed subsets of a Eu-
clidean four-dimensional space (parametrizing space and
time) have the same form. The relation satisfies certain
metrical constraints that he says “are generally impossi-
ble to formalize,” and he refers to the “congruences in the
sense of D’Arcy Thompson.”

Claude Levi-Strauss, the founder of structuralism in an-
thropology, ethnology, and linguistics, an approach to
these fields based on the idea that there is a universal
systemof deep structures that underlies them and that tran-
scends the separation between cultures, acknowledged on

13See for instance Chapter 5, §B, of Thom’s Esquisse d’une sémiophysique
and his 1988 Solignac lecture notes (Éditions du CNRS, 1988).

several occasions his debt to D’Arcy Thompson. In a book
of interviews with him,14 his interlocutor recalls that the
notion of “transformation” occupies a crucial role in his
essay “La pensée sauvage” and his four-volume work
Mythologiques, which is considered as the absolute refer-
ence in the field. He asks him, “From whom did you bor-
row this notion? From logicians?” Levi-Strauss’s answer
is, “Neither from logicians nor from linguists. It came to
me from a book which played a decisive role for me, On
Growth and Form.... It was an illumination.” In the same
interview, Levi-Strauss mentions Dürer, Goethe, together
with D’Arcy Thompson (p. 160).

Extremal Quasiconformal Mappings and
Minimal Stretch Maps
Geography led to the first rudiments of quasiconformal
mappings, that is, mappings with bounded conformal dis-
tortion. This notion (without the name) occurs in the
work of the nineteenth-century Frenchmathematician and
cartographer Nicolas-Auguste Tissot (1824–1897), whose
name is poorly known among mathematicians but well
known to geographers.

Tissot introduced a graphical device known under the
name Tissot indicatrix. This is a representation of a field
of ellipses on a geographical map where, at each point,
the ellipse (assumed to be infinitesimal) is the image of
an infinitesimal circle in the domain.15 The ellipses are
characterized by two parameters: their relative size and the
ratio of their two axes (the major axis divided by the mi-
nor axis). These parameters represent respectively the local
area distortion and angle distortion of the map. Thus, the
Tissot indicatrix contains information on the distortion of
the projection at the points where it is drawn, both in di-
rection and in magnitude.

Tissot studied extensively, from the differential-
geometric point of view, distortions of mappings from the
sphere onto the Euclidean plane, but he also developed
a theory for the distortion of mappings between general
surfaces. His work on the Tissot indicatrix makes him a di-
rect precursor of the theory of quasiconformal mappings.
Herbert Grötzsch (1902–1993), who is usually considered
to be the founder of the modern theory of quasiconformal
mappings, andOswald Teichmüller (1913–1943), who de-
veloped this field extensively, both quote Tissot. In partic-
ular, Grötzsch mentions Tissot several times in his 1930
paper [9], in which he studies extremal quasiconformal
representations of multiconnected domains, that is, map-

14De près et de loin (interviews with with Didier Eribon), Odile Jacob, 1988,
p. 158.
15The expression “infinitesimal circle” means a circle on the tangent space at a
point. The map is assumed to be differentiable so that it acts on tangent spaces,
sending infinitesimal circles centered at the origin to infinitesimal ellipses. The
form and the inclination of the image ellipse do not depend on the radius of the
circle.
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pings that minimize themaximal conformal distortion. In
the figures of that paper, the Tissot indicatrix is represented.
The relative size and the directions of the major and mi-
nor axes of this ellipse constitute important elements in
some of his results. We have reproduced one of his figures
in Figure 8 here: On the left-hand side, we have a triply
connected region in the complex plane, namely, the unit
disc with a shaded region and an arc deleted. On the right-
hand side, we have another triply connected region in the
complex plane: the unit disc with a smaller disc centered
at the origin and a circular arc centered at the same point
deleted. Grötzsch describes an extremal quasiconformal
map between the two regions. On the figure to the right,
the Tissot indicatrix is described by its great and small axes.

Figure 8. A figure from Grötzsch’s paper [9] where the Tissot
indicatrix is drawn. The direction of its minor axis points toward
the origin.

Teichmüller, in his fundamental paper “Extremale
quasikonforme Abbildungen und quadratische Differen-
tiale” (1939), has a section on the origin of quasiconfor-
mal mappings in which he declares that the theory started
with cartographers, and he mentions Tissot.16

Unlike Lagrange, Euler, and Chebyshev, who essentially
studied the metric distortion of conformal maps between
surfaces, Tissot studied extensively distortion-minimizing
nonconformal maps. He proved in particular that for any
mapping between two surfaces, there exists, at each point
of the domain, a pair of orthogonal directions that are sent
to a pair of orthogonal directions, and that unless themap-
ping is angle-preserving, these orthogonal directions are
unique. Assuming the map is not angle-preserving at any
point, the families of orthogonal directions on the two sur-
faces give a pair of unique orthogonal foliations on each
surface that are preserved by the mapping. Thus, we are
again in the realm of transformations that can be visual-
ized using two transverse foliations, as in geography, in
Dürer’s drawings, and in those of D’Arcy Thompson.

After extremal quasiconformal mappings, I would like
to talk about best Lipschitz maps between surfaces. I will
start with some work of Milnor, which was also motivated
by cartography.

16Section 164, p. 479 of the English translation, which appeared in the Hand-
book of Teichmüller Theory, Vol. V, Zürich, 2015.

In his paper [14], Milnor gives the following version of
the distortion of maps between surfaces: Consider a map
𝑓 ∶ 𝑈 → 𝐸 where 𝑈 and 𝐸 are metric spaces with distance
functions 𝑑𝑈 and 𝑑𝐸. The scale of 𝑓 with respect to two
arbitrary distinct points 𝑥 and 𝑦 in 𝑈 is defined as

𝑑𝐸(𝑓(𝑥), 𝑓(𝑦))
𝑑𝑈(𝑥, 𝑦)

.

The minimum scale of 𝑓 is the quantity

𝜎1 = inf
𝑥≠𝑦

𝑑𝐸(𝑓(𝑥), 𝑓(𝑦))
𝑑𝑈(𝑥, 𝑦)

,

and its maximum scale is the quantity

𝜎2 = sup
𝑥≠𝑦

𝑑𝐸(𝑓(𝑥), 𝑓(𝑦))
𝑑𝑈(𝑥, 𝑦)

.

The two quantities 𝜎1 and 𝜎2 may be zero, positive, or
infinite.

Milnor then defines the distortion of 𝑓 as

𝛿 = log 𝜎2
𝜎1

.

If the distortion is zero, then the map has constant scale.
Motivated by the problem of drawing geographi-

cal maps, Milnor addresses the question of study-
ing maps whose distortion is minimal among all maps
from a given subset of the sphere to the Euclidean plane.
He proves existence using elementary topology and he
addresses the question of uniqueness of such a map, of its
differentiability (assuming the domain of the map is such
that differentiability makes sense), of its constructiveness,
and of how to estimate the distortion of a minimal-distor-
tion map associated to a given domain of the sphere. He
obtains results in the case where the subset of the sphere is
a disc. He mentions that in this case, the map was known
to geographers as the azimuthal equidistant projection: it pre-
serves distances and directions from the center of the disc.
In the general case, the questions are open.

Milnor’s definition can be adapted to define distance
functions on various spaces of metric spaces (for instance,
simply connected open subsets of the Euclidean plane).
One can then study the properties of such distance func-
tions: existence of geodesics between two arbitrary points
in such a space of metric spaces, large-scale geometry, etc.
Experience shows that it is not easy to compute Lipschitz
distortions and minimal distortions for maps between sur-
faces, even in the simple cases.

In his paper “Minimal stretchmaps between hyperbolic
surfaces” [19], Thurston developed a theory of best Lip-
schitz maps between hyperbolic surfaces and used them
to define a new metric on Teichmüller space, which now
bears the name Thurston’s metric. The theory is parallel to
that of the Teichmüller metric in which distances are de-
fined using the quasiconformal instead of the Lipschitz di-
latation of mappings.
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Figure 9. A Lipschitz mapping between ideal triangles; figure
extracted from Thurston’s paper [19].

Thurston’s definition of distortion between surfaces
bears some analogy with Lagrange’s and Milnor’s defini-
tions, but it is global. The definition is as follows: Given
a homeomorphism 𝑓 between two marked hyperbolic sur-
faces 𝑔 and ℎ, one defines the quantity

𝐿(𝑓) = sup
𝑥≠𝑦

𝑑ℎ(𝑓(𝑥), 𝑓(𝑦))
𝑑𝑔(𝑥, 𝑦)

.

The distance from 𝑔 to ℎ is set to be

inf
𝑓
(log(𝐿(𝑓)),

the infimum being taken over homeomorphisms 𝑓 be-
tween the two surfaces respecting the marking. This dis-
tance function satisfies all the axioms of a metric except
the symmetry axiom (the distance from 𝑔 to ℎ is generally
different from the distance from ℎ to 𝑔).

Thurston built a comprehensive theory for this distance
function, constructing geodesics, showing that this metric
is Finsler, describing the infinitesimal norm at each point,
etc. He used in an essential way some deformations be-
tween hyperbolic surfaces that are built upon simply de-
fined Lipschitz maps between ideal hyperbolic triangles,
as shown in Figure 9, where each cuspidal region is foli-
ated by horocycles centered at that cusp. Such a foliation
admits a perpendicular foliation by geodesics that con-
verge to the corresponding cusp. The natural coordinates
associated with the two-dimensional grid formed by these
two orthogonal foliations allows the computation of the
Lipschitz constant of the map, indicated in Thurston’s
drawing: for 𝐾 > 0, the map keeps the central unfoli-
ated region untouched and sends a piece of horocycle at
distance 𝑡 from this unfoliated region to a piece of horo-
cycle at distance 𝐾𝑡. The horocycles are sent linearly onto

Figure 10. A Lipschitz mapping between two surfaces; figure
extracted from Thurston’s paper [19].

each other (with respect to their natural parametrization
by arclength).

With a proper choice of a decomposition of a hyper-
bolic surface into ideal triangles, suchmaps (with the same
𝐾) fit together and define a map from the surface to itself,
realizing the best Lipschitz constant between the two hy-
perbolic metrics (see Figure 10). Varying 𝐾 gives geodesic
lines in Teichmüller space equipped with Thurston’s met-
ric.

Thurston’s construction may be adapted to the con-
struction of 𝐾-Lipschitz maps between some hyperbolic
right-angled hexagons. Here, the hexagon is equippedwith
a foliation by hypercycles (lines equidistant to the edges)
and by the corresponding foliation by perpendicular geo-
desics (Figure 11). Again, varying the constant 𝐾 gives
a one-parameter family of geodesic lines in Teichmüller’s
space; see [15]. The coordinates associated to these orthog-
onal foliations are used in the computation of the Lips-
chitz constant of the map and in the proof of the fact that
it is optimal. There are very few other cases where best Lip-
schitz constants of maps between hyperbolic surfaces can
be explicitly computed.

In his paper [19], Thurston alludes to the relation be-
tween extremal maps between surfaces and cloth deforma-
tion. After he states the problem of finding best Lipschitz
maps, he writes:

This is closely related to the canonical problem
that arises when a person on the standard Amer-
ican diet digs into his or her wardrobe of a few
years earlier. The difference is that in the wardrobe
problem, one does not really care to know the
value of the best Lipschitz constant—one ismainly
concerned that the Lipschitz constant not be
significantly greater than 1. We shall see that, just
as cloth which is stretched tight develops stress
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Figure 11. A foliation of the right-angled hyperbolic hexagon
by pieces of hypercycles.

wrinkles, the least Lipschitz constant for a homeo-
morphism between two surfaces is dictated by a
certain geodesic lamination which is maximally
stretched....

Thurston elaborated on the analogy between extremal
maps between surfaces and deformations of garments in
several of his lectures.

Talking about garments, we return to Chebyshev, who
studied in amathematical setting the problemof binding a
general surface with a piece of fabric. Such a fabric is made
out of two perpendicular families of threads, forming a Eu-
clidean net of rectangles. It is designed to cover a surface of
a body, a piece of furniture, etc., and optimally—for some
kinds of garments: socks, pantyhose, etc.—it should take
the form of the surface that it covers. To achieve this, the
small rectangles formed by the net are deformed. During
this deformation, the lengths of the sides of the rectangles
remain constant, but the angles may change. Thus, the
rectangles become curvilinear parallelograms.

The problem of drawing geographical maps and that
of fitting of garments are in some sense inverse of each
other: on the one hand, one searches for best mappings
from a curved surface onto a Euclidean one, and on the
other hand, one searches for a map from a Euclidean sur-
face onto a curved one.

In the introduction to his first paper on cartography,
Chebyshev writes that from the mathematical point of
view, the question of finding best geographical maps bears
some strong analogy with some problems he considered
before concerning linkages. He calls the study of linkages
the theory of mechanisms, known under the name of parallel-
ograms. The word “parallelogram” refers here to four-bar
linkages that have the form of parallelograms that appear
in machines that fascinated Chebyshev, but it also refers to
the parallelograms that we mentioned, made by the trans-
verse threads of a garment; the two theories are related. In
his second paper on cartography, Chebyshev returns again

to the analogy between the theory of parallelograms and
cartography, and he talks more precisely about Watt’s par-
allelograms. These are mechanical linkages described by
JamesWatt (1736–1819) in 1784, when the latter patented
the so-called Watt steam engine, a machine that transforms
the back-and-forth motion of a piston into the rotational
motion of a wheel. Chebyshev notes that in both theories
(geographicalmaps and linkages), one looks for a function
of two variables that realizes a minimum among functions
that satisfy a certain partial differential equation. Let us
stop for a while on this analogy.

Given an analytic function 𝑓, one may approximate it,
at a given point, by its sequence of first 𝑛th Taylor series
polynomials. In his work on linkages, Chebyshev was led
to the question of finding the best approximation of a func-
tion 𝑓 by a polynomial 𝑃 on a whole interval and not just a
point; that is, he wanted the supremum over that interval
of the difference 𝑃(𝑥) − 𝑓(𝑥) to be minimal. In work-
ing on this problem, he found a differential equation that
must be satisfied by the desired polynomial. This general
scheme is the basis of a series of far-reaching results by
Chebyshev that apply to a variety of problems he tackled,
including that of geographical maps. He placed the two
theories (linkages and geographical maps) in the setting
of the calculus of variations, a subject which was dear to
Euler and Lagrange.

The name “Chebyshev net” was given to a net made out
of quadrilaterals of fixed side length. In a paper titled “On
the cutting of garments,”17 Chebyshev included the prob-
lem of the fitting of garments in the setting of the differen-
tial geometry of surfaces. The mathematical problem con-
cerns the possibility of covering a surface with a Chebyshev
net. The local problem was solved affirmatively by Bieber-
bach in 1926. It is known that for the global problem,
one needs to deal with singularities. Burago, Ivanov, and
Malev obtained a general result on the existence of a cov-
ering by a Chebyshev net for complete simply connected
Alexandrov surfaces under some constraints on the curva-
ture.18

Darboux, in his ICM talk in Rome (1908) [4], in which
he mentions questions related to geographical maps, also
talks about the work of Chebyshev on the fitting of gar-
ments. He addresses the following question, which is in
the lineage of the questions studied by the Russian geome-
ter: Consider a piece of fabric, in the form of a net that
women use to cover their hair. The net is formed by two

17P. L. Chebyshev, “Sur la coupe des vêtements,” Assoc. Franç. pour
l’Avancement des Sciences, 7ème session à Paris, 28 Août 1878, 154–155.
Reprinted in: P. L. Tchebycheff, Œuvres, Vol. 2, p. 708 (excerpt). Reprint,
Chelsea, NY. The complete text in Russian appears in the Russian Collected
Works.
18Y. D. Burago, S. V. Ivanov, and S. G. Malev, “Remarks on Chebyshev coordi-
nates,” Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI),
329 (Geom. i Topol. 9) 195 (2005), 5–13.
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perpendicular families of threads. These threads are at-
tached at their intersections in such a way that they form
small rectangles. The net can be deformed in such a way
that the angles at the vertices of the rectangles may vary,
but not the side lengths. The question is to determine the
form of the net when it is placed on a surface (part of a
human body).

Thurston, by the end of his short life, applied his math-
ematics to the art of haute couture. Around the year 2010,
he started working with the Japanese fashion label Issey
Miyake on the conception of geometrically inspired gar-
ments and more especially on patterns based on non-
Euclidean geometry. In an interview (ABC News report)
available on the Internet titled “Fashion and advanced
mathematics meet at Miyake,” along with the designer Dai
Fujiwara, Thurston says, “I have long been fascinated
(from a distance) by the art of clothing design and its con-
nections tomathematics.” In 2010, IsseyMiyake presented
in Paris a fashion collection with the title “8 Geometry
Link Models as Metaphor of the Universe,” inspired by
Thurston’s work. The collection is also known under the
name “Poincaré Odyssey.” The following is an excerpt of
a text of Thurston that was available at the fashion show:

Many people think of mathematics as austere and
self-contained. To the contrary, mathematics is
a very rich and very human subject, an art that
enables us to see and understand deep intercon-
nections in the world. The best mathematics uses
the whole mind, embraces human sensibility, and
is not at all limited to the small portion of our
brains that calculates and manipulates with sym-
bols. Through pursuing beauty we find truth, and
where we find truth, we discover incredible beauty.

Talking about Thurston, we also mention the theory of
circle packings. He was the main promoter of their use in
conformal geometry. In particular, he made a conjecture
(later proved by Sullivan and Rodin) on the approxima-
tion of the Riemann mapping using circle packings. Af-
ter this work, deformations of circle packings were used
in the algorithmic theory of discrete quasiconformal map-
pings between surfaces converging to continuous ones. We
have chosen Figure 12, extracted from the paper [20], to
show an example where circle packings and their deforma-
tion play the role of the more familiar Euclidean grid to
describe mappings between surfaces.

Brain Warping
Thurston also realized that conformal mappings may be
used in the study of the brain. In a memorial article on
him published in the Notices, Ian Agol recounts: “At one
point he read a book about vision and the brain, and ex-
plained to us how the image from the eye projected
onto the brain is approximately a conformal mapping” [7,

Figure 12. Circle packings used instead of rectangular
coordinates as maps between surfaces in the computation of
discrete quasiconformal mappings; figure from [20].

p. 36].
The brain is a singular part of our body where mental

images and abstract ideas are created. It is also the center
of the connection between ourmental andmaterial worlds.
It is not surprising that Thurston was highly interested in
its functioning.

The brain makes altered images of the reality. This is
also a setting where the notion of map distortion may be
used. Distortion in the study of the brain occurs at the
level of perception as well as at that of brain image registra-
tion. Investigations in this field carry the generic name of
brain warping. Here, the mathematical study of distortion
of maps between surfaces is intertwined with biological
research on growth and medical research on pathologies
such as Alzheimer’s and other neurodegenerative
diseases caused by cognitive dysfunction. Aspects in this
field include the problem of localizing visual perception
processes in specific brain regions and that of transferring
images from the brain to a computer, obtaining digital
brain images that have medical significance.

A large literature was published in the last few decades
on the study of brain alteration and comparison of form,
some of it written by mathematicians who used the tools
we have on maps between surfaces and their distortion.

As in geography, several kinds of surface transforma-
tions are considered in brain warping: angle-preserving,
area-preserving, minimal distance-distortion mappings,
etc. Classical mathematical techniques have been used by
neuro-scientists for computational solutions of such prob-
lems, including PDEs, the approximation of Lipschitzmap-
pings by 𝑝-harmonic maps, and discretization. In several
recent papers published on this subject, questions related
to brain imaging have been reduced to questions on min-
imizing quasiconformal and Lipschitz distortions of map-
pings between surfaces, with boundary conditions speci-
fied. In some of these approaches, the surfaces involved
represent cortical surfaces, in particular the surfaces be-
tween white matter and gray matter or between gray mat-
ter and the cerebrospinal fluid in the brain. The prob-
lems studied also include the ones of representing on a flat
plane and with least distortion the cerebral cortex surface.

There is a rich literature on the subject, and the inter-
ested reader may look at the collective book edited by Toga
[18] and the paper [13] by Memoli, Sapiro, and Thomp-
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son. Both contain several references.
Back in the fifteenth century, Leonardo da Vinci, defy-

ing a papal ban, spent a lot of time dissecting human bod-
ies and made several drawings of the brain. Some of the
techniques he introduced were used in three-dimensional
digital images; see e.g. [18, p. 299].

I would like to conclude this paper with a quote from
Chebyshev19:

Mathematics already traversed two epochs: one
where the problems were set by the gods (for in-
stance, the problem of the duplication of the cube)
and another one where the semi-gods, like Fermat,
Pascal and others, set them. Today we have en-
tered the third period, where the questions to be
solved are raised by the needs of humanity.
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19A. Vassilief, P. Tchébychef et son œuvre scientifique, Boll. di bibliografia
e storia delle scienze matematiche, I Turin, 1898, 45–46.

[10] Hapgood CH. Maps of the Ancient Sea Kings: Evidence of
Advanced Civilization in the Ice Age, Chilton Books, 1966.
Paperback edition, Adventures Unlimited Press, 1997.

[11] Lagrange J-L. Sur la construction des cartes géo-
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