
Math 222: Zero Content and Theory, optional problems

1. (Folland 4.1) Prove that if f is integrable on [a, b] then |f | is integrable on [a, b], and∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)| dx.

Suggestion: You can assume f is bounded on [a, b]. To prove that |f | is integrable, show that

SP |f | − sP |f | ≤ SP f − sP f.

For the inequality |
∫
f | ≤

∫
|f |, observe that ±f ≤ |f | and use Theorem 4.9(c), namely that if f, g

are integrable on [a, b] with f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b
a f ≤

∫ b
a g. You’ll want to use the

following lemma:

Lem. 4.5: If f is a bounded function on [a, b], the following conditions are equivalent:

(a) f is integrable on [a, b].

(b) For every ε > 0 there is a partition P of [a, b] such that SP f − sP f < ε.

2. (Folland 4.1) Let f(x) = 1 if x is rational, f(x) = 0 if x is irrational. Show that f is not Riemann
integrable on any interval.

Fun Fact: This characteristic/indicator function of the rationals is called the Dirichlet function,
f(x) = χQ(x). In Math 425 after defining the Lebesgue integral, you’ll see

∫
R χQ(x) = 0 because it

is zero except on the set of rational numbers, which are countable, and hence comprise a set of zero
Lebesgue measure in R.

Def: Recall that a set Z ⊂ Rn is said to have zero content if for every ε > 0 there is {R1, ..., RM} such
that Z ⊂ ∪M1 Rm and

∑M
i=1 vol(Rm) ≤ ε.

3. (Folland 4.1) Let {xk} be a convergent sequence in R. Show that the set {x1, x2, ...} has zero content
in R.

4. (Angenent) Let f : [a, b] → R be a nondecreasing function (e.g. if x ≤ x′ then f(x) ≤ f(x′)). Show
that the graph of f , i.e. the set

G = {(x, f(x)) | a ≤ x ≤ b}

has zero content in R2. Suggestion: For any (large) integer N , consider the rectangles

Rj = [xj−1, xj ]× [f(xj−1), f(xj)], 1 ≤ j ≤ N,

where xj = a+ j
N (b− a). There is a nice formula for the total area of the rectangles R1, ..., RN .

5. (Folland 4.2) Let f : [a, b]→ R be an integrable function.

(a) Show that the graph of f in R2 has zero content.

Suggestion: Given a partition P of [a, b], interpret sP f − SP f as a sum of areas of rectangles
that cover the graph of f .

(b) Suppose f ≥ 0, and let S = {(x, y) : x ∈ [a, b], 0 ≤ y ≤ f(x)}. Show that S is measurable,
e.g. S is bounded and and its boundary ∂S has zero content in R2, and that its area (which we

more precisely defined below) equals
∫ b
a f(x)dx.



Def: We can precisely define area as follows:

area(S) =

∫∫
S

1 dA :=

∫∫
R
χSdA,

where R is any rectangle containing S. This means, that given any bounded set S ⊂ R2, to compute∫∫
S 1 dA, we enclose S in a large rectangle R and consider a partition P of R, which produces a grid

of small rectangles that cover S. The lower sum for this partition is simply the sums of the areas of
the small rectangles that are contained in S, whereas the upper sum is the sum of the areas of the
small rectangles that intersect S.

Taking the suprememum of the lower sums and the infimum of the upper sums yields quantities
which we define to be the inner area and outer area of S:

A(S) =

∫
R

(χS) := sup
P
sP (χS), A(S) =

∫
R

(χS) := inf
P
SP (χS).

When A(S) = A(S), that is when the characteristic function χS is integrable, this common value of
the inner and outer areas is defined to be the area of S.

Figure 1: Approximations to the inner and outer areas of a region

Remarks: From the next set of exercises, we can conclude that the inner and outer areas of a bounded set S
coincide precisely when the outer area of the boundary ∂S is zero.

But this merely means the condition that the boundary ∂S should have zero content in R2. In short,
the inner and outer area of S coincide precisely when S is measurable. (A set S ⊂ R2 is said to be
measurable whenever S is bounded and ∂S has zero content in R2.).

This is the explanation for the name measurable: The measurable sets in R2 are those with a
well-defined area. One analogously defines the higher dimensional area, otherwise known as volume,
for measurable sets in any dimension Rn.

6. (Folland 4.2, Jones 10.A) Let S be a bounded set in R2. Show that S and its interior, Sint have the
same inner area.
Suggestion: For any rectangle contained in S, there are slightly smaller rectangles contained in Sint.

7. (Folland 4.2, Jones 10.A) Let S be a bounded set in R2. Show that S and its closure S have the
same outer area.
Suggestion: For any rectangle that intersects S, there are slightly larger rectangles that intersect S.

8. (Folland 4.2, Jones 10.A) Let S be a bounded set in R2. Show that the inner area of S plus the outer
area of ∂S equals the outer area of S.
Suggestion: Use the preceding two exercises.


