

Please start each question on a separate page from the previous question.

1. Lee 8-10 [Second Edition] (You don't have to read Chapter 8 to do this - it is meant to reassure you in how to compute differentials. Note F_* is the same notation for dF , without a point explicitly specified.

Let M be the open submanifold of \mathbb{R}^2 where both x and y are positive and let $F : M \rightarrow M$ be the map

$$F(x, y) = \left(xy, \frac{y}{x} \right).$$

Show that F is a diffeomorphism, and compute F_*X and F_*Y where

$$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}; \quad Y = y \frac{\partial}{\partial x}$$

Note: The definition of the differential/pushforward yields $(F_*Z)_{(s,t)} = dF_{F^{-1}(s,t)}Z_{F^{-1}(s,t)}$.

2. Lee 4-6 [Second Edition]

Let M be a nonempty smooth compact manifold. Show that there is no smooth submersion $F : M \rightarrow \mathbb{R}^k$ for any $k > 0$. A submersion is a smooth map whose differential is surjective.

3. Lee 5-1 [Second Edition]

Consider the map $\Phi : \mathbb{R}^4 \rightarrow \mathbb{R}^4$ defined by

$$\Phi(x, y, s, t) = (x^2 + y, x^2 + y^2 + s^2 + t^2 + y).$$

Show that $(0, 1)$ is a regular value of Φ in the sense of multivariable calculus. (*It turns out that the level set $\Phi^{-1}(0, 1)$ is diffeomorphic to S^2 , but this is surprisingly painful to prove, so I won't ask you to do this.*)

4. Lee 5-10 [Second Edition]

For each $a \in \mathbb{R}$, let M_a be the subset of \mathbb{R}^2 defined by

$$M_a = \{(x, y) \mid y^2 = x(x - 1)(x - a)\}.$$

For which values of a is M_a an embedded submanifold of \mathbb{R}^2 ? For which values can M_a be given a topology and smooth structure making it into an immersed submanifold? You don't need to give a rigorous proof for the a values which don't produce embedded submanifolds; this is surprisingly painful.

* Which problems provided a worthwhile learning experience? How many hours did you spend on it?