Do not upload solutions to the In Class Warm Up Problems to gradescope.

Pick one of 4 or 5 to upload to gradescope

* Multi Warm Up

Let $v(t) \in \mathbb{R}^n$ such that |v(t)| = c for all t. Show $v' \cdot v = 0$. Conclude $T(t) \cdot N(t) = 0$.

* Multi Warm Up: Jones Problem 11-1 (in class)

Suppose $C \subset \mathbb{R}^2$ is a curve described in polar coordinates by an equation $r = g(\theta)$, where $a \leq \theta \leq b$. Show that the length of C is

$$\int_{a}^{b} \sqrt{g'(\theta)^2 + g(\theta)^2} \ d\theta.$$

Remark: This formula is usually written as $\int_a^b \sqrt{\left(\frac{dr^2}{d\theta} + r^2\right)} \ d\theta$.

1. Exercise 1.12 (the multi-warm up will be advantageous)

Consider the logarithmic spiral $\alpha: \mathbb{R} \to \mathbb{R}^2$ given by

$$\alpha(t) = (ae^{bt}\cos t, ae^{bt}\sin t)$$

with a > 0, b < 0. Compute the arc length function $S : \mathbb{R} \to \mathbb{R}$ where $S(t) = \int_{t_0}^t |\alpha'(\tau)| d\tau$, where t_0 corresponds to an arbitrary choice of $t_0 \in \mathbb{R}$. Reparametrize by arclength (your formula will not be pretty). Describe/sketch the trace of this curve.

* Warm Up (in class)

- (a) Provide a counterexample to the claim: For every square matrix B, $||Bv|| = |\det B| \ ||v||$.
- (b) Given an orthogonal matrix $A \in O(n)$, show that A preserves vector norms: ||Av|| = ||v||. (Recall that an orthogonal matrix A satisfies $AA^T = A^TA = Id$.)

2. Exercise 1.8

Let $\alpha: I \to \mathbb{R}^3$ be a curve and let $M: \mathbb{R}^3 \to \mathbb{R}^3$ be a rigid motion, e.g. M = Ax + b, where $A \in O(3)$ and $b \in \mathbb{R}^3$ is a fixed vector. Prove that rigid motions preserve the length of curves, namely $L_b^a(\alpha) = L_b^a(M \circ \alpha)$.

3. Exercise 1.12

Let $\phi: J \to I$ be a diffeomorphism and let $\alpha: I \to \mathbb{R}^3$ be a curve. Given $[a, b] \subset J$ with $\phi([a, b]) = [c, d]$ prove that $L_a^b(\alpha \circ \phi) = L_c^d(\alpha)$.

4. Exercise 1.9, Theory, in lieu of (5)

Let $\alpha: I \to \mathbb{R}^3$ be a curve and $[a, b] \subset I$. Prove that

$$|\alpha(a) - \alpha(b)| \le L_b^a(\alpha).$$

In other words, straight lines are the shortest curves joining two given points.

5. Computation, in lieu of (4)

For the following curve $\alpha: \mathbb{R} \to \mathbb{R}$, compute $\mathbf{T}, \mathbf{N}, \mathbf{B}$, and k(t).

$$\alpha(t) = \langle e^t, e^{-t}, t\sqrt{2} \rangle.$$

* Assignment Reflections

How long did this take you? How was the difficulty? Which problems were meaningful?