Do not upload solutions to the In Class Warm Up Problems to gradescope.
Pick one of 4 or 5 to upload to gradescope

* Multi Warm Up

Let $v(t) \in \mathbb{R}^{n}$ such that $|v(t)|=c$ for all t. Show $v^{\prime} \cdot v=0$. Conclude $T(t) \cdot N(t)=0$.

* Multi Warm Up: Jones Problem 11-1 (in class)

Suppose $C \subset \mathbb{R}^{2}$ is a curve described in polar coordinates by an equation $r=g(\theta)$, where $a \leq \theta \leq b$. Show that the length of C is

$$
\int_{a}^{b} \sqrt{g^{\prime}(\theta)^{2}+g(\theta)^{2}} d \theta
$$

Remark: This formula is usually written as $\int_{a}^{b} \sqrt{\left(\frac{d r^{2}}{d \theta}+r^{2}\right)} d \theta$.

1. Exercise 1.12 (the multi-warm up will be advantageous)

Consider the logarithmic spiral $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by

$$
\alpha(t)=\left(a e^{b t} \cos t, a e^{b t} \sin t\right)
$$

with $a>0, b<0$. Compute the arc length function $S: \mathbb{R} \rightarrow \mathbb{R}$ where $S(t)=\int_{t_{0}}^{t}\left|\alpha^{\prime}(\tau)\right| d \tau$, where t_{0} corresponds to an arbitrary choice of $t_{0} \in \mathbb{R}$. Reparametrize by arclength (your formula will not be pretty). Describe/sketch the trace of this curve.
\star Warm Up (in class)
(a) Provide a counterexample to the claim: For every square matrix $B,\|B v\|=|\operatorname{det} B|\|v\|$.
(b) Given an orthogonal matrix $A \in \mathrm{O}(n)$, show that A preserves vector norms: $\|A v\|=\|v\|$. (Recall that an orthogonal matrix A satisfies $A A^{T}=A^{T} A=\mathrm{Id}$.)

2. Exercise 1.8

Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a curve and let $M: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a rigid motion, e.g. $M=A x+b$, where $A \in \mathrm{O}(3)$ and $b \in \mathbb{R}^{3}$ is a fixed vector. Prove that rigid motions preserve the length of curves, namely $L_{b}^{a}(\alpha)=L_{b}^{a}(M \circ \alpha)$.
3. Exercise 1.12

Let $\phi: J \rightarrow I$ be a diffeomorphism and let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a curve. Given $[a, b] \subset J$ with $\phi([a, b])=[c, d]$ prove that $L_{a}^{b}(\alpha \circ \phi)=L_{c}^{d}(\alpha)$.
4. Exercise 1.9, Theory, in lieu of (5)

Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a curve and $[a, b] \subset I$. Prove that

$$
|\alpha(a)-\alpha(b)| \leq L_{b}^{a}(\alpha)
$$

In other words, straight lines are the shortest curves joining two given points.

5. Computation, in lieu of (4)

For the following curve $\alpha: \mathbb{R} \rightarrow \mathbb{R}$, compute $\mathbf{T}, \mathbf{N}, \mathbf{B}$, and $k(t)$.

$$
\alpha(t)=\left\langle e^{t}, e^{-t}, t \sqrt{2}\right\rangle
$$

* Assignment Reflections

How long did this take you? How was the difficulty? Which problems were meaningful?

