1. Show that a space which is connected and locally path connected is path connected.
Recall that a subset A of a topological space X is called a retract of X if there exists a continuous map $r : X \to A$ (called a retraction) such that $r(a) = a$ for any $a \in A$.

2. Prove that the relation “is a retract of” is transitive, i.e. if A is a retract of B and B is a retract of C, then A is a retract of C.
Definition: A subspace $A \subset X$ is called a **strong deformation retract** of X if there exists a homotopy $F : X \times I \to X$ such that

\[
\begin{align*}
F(x, 0) &= x \\
F(x, 1) &\in A \\
F(a, t) &= a \quad \text{for } a \in A \text{ and all } t \in I.
\end{align*}
\]

The subspace A is merely a **deformation retract** if the last equation holds only when $t = 1$.

3. Show that a deformation retract of a Hausdorff space must be a closed subset.
4. Give an example of a space which is connected but not path connected. Be sure to show that it is in fact connected but not path connected.

Hint: *What can you do to the graph* \(y = \sin \left(\frac{1}{x} \right) \)? **DO NOT GOOGLE THIS.**
Prove that if \(A \) is a retract of a topological space \(X \), \(r : X \to A \) is a retraction, \(i : A \hookrightarrow X \) is inclusion, and \(i_*(\pi_1(A)) \) is a normal subgroup of \(\pi_1(X) \), then \(\pi_1(X) \) is the direct product of the subgroup image \(i_* \) and kernel \(r_* \).
everyone: How difficult was this assignment? How many hours did you spend on it? Indicate if you are math graduate student or not.