Do not upload solutions to the In Class Warm Up Problems to gradescope.
UPDATED: Exercise about parametrization giving a diffeo is moved to HW 3.

* Multi Warm Up

Find an equation for the tangent plane to the following parametrized surface at the point (1, -2, 1).

$$
S=\left\{\begin{array}{l}
x=e^{u-v} \\
y=u-3 v \\
z=\frac{1}{2}\left(u^{2}+v^{2}\right)
\end{array}\right.
$$

\star Multi Warm Up
Find a parametrization for each of the following surfaces (perhaps involving an angular variable that is defined only up to multiples of 2π).
(a) The surface obtained by revolving the curve $z=f(x), a<x<b$ in the $x z$-plane around the z-axis, where $a>0$.
(b) The surface obtained by revolving the curve $z=f(x), a<x<b$ in the $x z$-plane around the x-axis, where $f(x)>0$.
(c) The lower sheet of the hyperboloid $z^{2}-2 x^{2}-y^{2}=1$.
(d) The cylinder $x^{2}+z^{2}=9$.

1. For each of the following maps $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$,

- Describe or sketch the (possibly singular) surface $S=f\left(\mathbb{R}^{2}\right)$
- Find a description of S as the locus of an equation $F(x, y, z)=0$.
- Find the points where $\partial_{u} f$ and $\partial_{v} f$ are linearly dependent, and describe the singularities of S (if any) at these points.
(a) $f(u, v)=(2 u+v, u-v, 3 v)$
(b) $f(u, v)=(a u \cos v, b u \sin v, u)$ with $a, b>0$
(c) $f(u, v)=\left(u \cos v, u \sin v, u^{2}\right)$

2. Exercise 2.24

Prove that one-sheeted cone is not a surface: $C=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z^{2}=x^{2}+y^{2}, z \geq 0\right\}$
3. First part of Exercise 2 (7)

Let $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid e^{x^{2}}+e^{y^{2}}+e^{z^{2}}=a\right\}$, with $a>3$. Prove that S is a surface.

* Assignment Reflections

How difficult was this assignment? How many hours did you spend on it? Which problems did you find to provide a worthwhile learning experience?

