Do not upload solutions to the In Class Warm Up Problems to gradescope.
\star Multi Warm Up
Let $(x, y)=F(u, v)=\left(u^{2}-v^{2}, 2 u v\right)$.
(a) Restricting to $u>0$, sketch the image of the $x y$-plane of the coordinate grid.
(b) Draw the curves in the $u>0$ half-plane that map to the coordinate grid in the $x y$-plane.

1. Spherical coordinates

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the spherical coordinate map,

$$
(x, y, z)=f(\rho, \varphi, \theta)=(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi)
$$

(a) Describe the surfaces in $x y z$-space that are the images of $\rho=$ positive constant, $\varphi=\mathrm{c}$ (check $c \in\left(0, \frac{\pi}{2}\right), c=\frac{\pi}{2}, c \in\left(\frac{\pi}{2}, \pi\right)$ separately), and $\theta=k \in[0,2 \pi)$.
(b) Compute the derivative $D f$ and show the Jacobian is $\operatorname{det} D f(\rho, \varphi, \theta)=\rho^{2} \sin \varphi$.
(c) What is the condition on the point $\left(\rho_{0}, \varphi_{0}, \theta_{0}\right)$ for f to be locally invertible about this point? What is the corresponding condition on $\left(x_{0}, y_{0}, z_{0}\right)=f\left(\rho_{0}, \varphi_{0}, \theta_{0}\right)$?
2. Folland §3.4: Transformations and Coordinate Systems

Let $(u, v)=F(x, y)=(x-y, x y)$.
(a) Sketch some curves $x-y=$ constant and $x y=$ constant in the $x y$-plane. Which regions in the $x y$-plane map onto the rectangle in the $u v$-plane given by $0 \leq u \leq 1,1 \leq v \leq 4$? There are two of them; draw a picture of them.
(b) Compute the derivative $D F$ and the Jacobian $J=\operatorname{det} D F$
(c) When J vanishes at a point p, what can be said about the gradients $\nabla u(p)$ and $\nabla v(p)$?
(d) Notice that $F(2,-3)=(5,-6)$. Compute explicitly the local inverse G of F such that $G(5,-6)=(2,-3)$ and compute its derivative $D G$.
(e) Note that $D F(2,-3)$ and $D G(5,-6)$ are matrix inverses of each other.
3. Exercise 2.43

If $X: U \rightarrow S$ is a parametrization of a surface, show that $X: U \rightarrow X(U)$ is a diffeomorphism.

* Assignment Reflections

How difficult was this assignment? How many hours did you spend on it? Which problems did you find helpful?

