Math 401 HW#4, due Wednesday 9/25/19 NAME:

1. Exercise 2.62

Let $\phi: S_1 \to S_2$ be a diffeomorphism between surfaces and $p \in S_1$. Prove that $(d\phi)_p: T_pS_1 \to T_{\phi(p)}S_2$ is a linear isomorphism and that $(d\phi)_p^{-1} = (d\phi^{-1})_{\phi(p)}$.

2. Exercise $\S2(4)$

Let S be a compact surface, and let there be a differentiable function $f: S \to \mathbb{R}$ with at most three critical points. Show that S is connected.

3. Exercise $\S2(9)$

Let $\phi: S \to \mathbb{R}^3$ be a differentiable map defined on a surface that satisfies

- $(d\phi)_p: T_pS \to \mathbb{R}^3$ is injective for all $p \in S$.
- $\phi: S \to \phi(S)$ is a homeomorphism.

Prove that $\phi(S)$ is a surface and that $\phi: S \to \phi(S)$ is a diffeomorphism. If S is compact, show that the second requirement is equivalent to requiring that ϕ be injective.

4. Exercise 3.16

Consider two diffeomorphic surfaces S_1 and S_2 . Show that S_1 is orientable if and only if S_2 is orientable.

5. Exercise 3.17

If S is an oriented surface, N is the corresponding unit normal field, and $p \in S$, then we say that a basis $\{a, b\}$ of the tangent plane T_pS is *positively oriented* when det(a, b, N(p)) > 0. Otherwise we say that it is *negatively oriented*. If S_1 and S_2 are two oriented surfaces, we say that a local diffeomorphism $f : S_1 \to S_2$ preserves orientation if its differential at each point of S_1 takes positively oriented bases on S_1 into positively oriented bases on S_2 . We define a function

$$\operatorname{Jac} f: S_1 \to \mathbb{R}$$

that is called the Jacobian of f - compare with HW #3 - by the equation

$$(\operatorname{Jac} f)(p) = \det((df)_p(e_1), (df)_p(e_2), N_2(f(p))),$$

where $\{e_1, e_2\}$ is a positively oriented orthonormal basis of $T_p S_1$.

Prove that, if S_1 and S_2 are connected, f preserves orientation if and only if its Jacobian is positive everywhere.

* Assignment Reflections

How difficult was this assignment? How many hours did you spend on it? Which problems did you find to provide a worthwhile learning experience?