Math 401 HW #5, due Wednesday 10/2/24 NAME: UPDATED: #3 is about orientability, not the hyperbolic paraboloid

1. Guided Jones 11-10, A d'ol

Suppose $0 \le a \le b$. Find the surface area of the torus obtained by revolving the circle $(x-b)^2 + z^2 = a^2$ in the xz-plane about the z-axis.

Suggestion: Show that the torus admits the parametrization $0 \le \varphi, \theta \le 2\pi$ by

$$x = (b + a\cos\varphi)\cos\theta$$

$$y = (b + a\cos\varphi)\sin\theta$$

$$z = a\sin\varphi$$

Figure 1: The hollow blue donut

2. Exercise 3.17

If S is an oriented surface, N is the corresponding unit normal field, and $p \in S$, then we say that a basis $\{a,b\}$ of the tangent plane T_pS is positively oriented when $\det(a,b,N(p)) > 0$. Otherwise we say that it is negatively oriented. If S_1 and S_2 are two oriented surfaces, we say that a local diffeomorphism $f: S_1 \to S_2$ preserves orientation if its differential at each point of S_1 takes positively oriented bases on S_1 into positively oriented bases on S_2 . We define a function

$$\operatorname{Jac} f: S_1 \to \mathbb{R}$$

that is called the Jacobian of f by the equation

$$(\operatorname{Jac} f)(p) = \det((df)_p(e_1), (df)_p(e_2), N_2(f(p))),$$

where $\{e_1, e_2\}$ is a positively oriented orthonormal basis of T_pS_1 .

Prove that, if S_1 and S_2 are connected, f preserves orientation if and only if its Jacobian is positive everywhere.

3. Exercise 3.16

Consider two diffeomorphic surfaces S_1 and S_2 . Show that S_1 is orientable if and only if S_2 is orientable.

* Assignment Reflections

How difficult was this assignment? How many hours did you spend on it? Which problems did you find to provide a worthwhile learning experience?