1. Lee 3-4 [SECOND] = 4-1 [FIRST].
 Show that \(TS^1 \) is diffeomorphic to \(S^1 \times \mathbb{R} \).

2. Show that if \(M \) and \(N \) are smooth manifolds and if \(p \in M \) and \(q \in N \), then there is a canonical isomorphism
 \[
 T_{(p,q)}(M \times N) = T_pM \oplus T_qN.
 \]
 Describe this isomorphism in terms of (a) [math grads] derivations and (b) [everyone] linear combinations of partial derivatives with respect to coordinate charts.

3. The zero section of the tangent bundle \(TM \) is the set of zero tangent vectors,
 \[
 Z = \{(p,0)\} \subset TM = \{(p,V) \mid p \in M, V \in T_pM\}.
 \]
 (a) Show that \(Z \) is a submanifold of \(TM \) which is diffeomorphic to \(M \).
 (b) Show that if \((p,0) \in Z \), then there is a canonical (not depending on a choice of coordinates) isomorphism
 \[
 T_{(p,0)}TM = T_pM \oplus T_pM.
 \]

4. Lee 8-10 [SECOND]
 Let \(M \) be the open submanifold of \(\mathbb{R}^2 \) where both \(x \) and \(y \) are positive and let \(F : M \to N \) be the map
 \[
 F(x,y) = \left(xy, \frac{y}{x} \right).
 \]
 Show that \(F \) is a diffeomorphism, and compute \(F_*X \) and \(F_*Y \) where
 \[
 X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}; \quad Y = y \frac{\partial}{\partial x}
 \]

5. Lee 8-11 [SECOND] = 4-5 [FIRST]
 For each of the following vector fields on the plane, compute its coordinate representation in polar coordinates on the right half-plane \(\{(x,y) \in \mathbb{R}^2 \mid x > 0\} \).
 (a) \(X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \)
 (b) \(Y = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \)

6. Lee 8-16 [SECOND] = 4-11 [FIRST]
 For each of the following pairs of vector fields \(X, Y \) defined on \(\mathbb{R}^3 \), compute the Lie bracket \([X,Y]\).
 (a) \(X_1 = y \frac{\partial}{\partial z} - 2xy^2 \frac{\partial}{\partial y}; \quad Y_1 = \frac{\partial}{\partial y} \)
 (b) \(X_2 = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}; \quad Y_2 = y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \)
7. (Lee Second 4-6) Let M be a nonempty smooth compact manifold. Show that there is no smooth submersion $F : M \to \mathbb{R}^k$ for any $k > 0$.

Math* The Hopf fibration is the map $f : S^3 \to \mathbb{C}P^1$ sending $(z^1, z^2) \in \mathbb{C}^2$ with $|z^1|^2 + |z^2|^2 = 1$ to $[z^1 : z^2] \in \mathbb{C}P^1$. Show that the Hopf fibration is a submersion.

everyone: How difficult was this assignment? How many hours did you spend on it?