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Abstract. We recall the notion of a simple singularity and derive the equations for
its associated hypersurface f−1

Γ (0). We then define resolutions and link of a simple sin-
gularity. The contact structures for the link of a simple singularity and the Brieskorn
manifolds are derived following a review of pseudoconvexity. In particular we demon-
strate that the image of S3/Γ in f−1

Γ (0) is contactomorphic to the link of its singularity,

S5 ∩ f−1
Γ (0). The proof however relies on basic several complex variables.
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1. Introduction

The notion of a simple singularitiy (alternatively called a DuVal or Klein singularity) has
existed since antiquity and there are a number of ways in which they can be characterized
(see Reid [18]) . For the purpose of this note, we will primarily consider them as the
absolutely isolated double point quotient singularity of C2/Γ, where Γ ⊂ SU2(C) is a
finite subgroup. Klein proved the following theorem regarding the classification of finite
subgroups of SU2(C)

Theorem 1.1 (Klein). Γ is classified by the Dynkin diagrams of type (An)n≥1, (Dn)n≥4,
E6, E7, E8. These correspond to the cyclic group Zn+1, the binary dihedral group D∗2(n−2),
the binary tetrahedral group T∗, the binary octahedral group O∗ and the binary icosahedral
group I∗ respectively.

The Dynkin diagrams of the above types are diagrams with three branches of length p,
q, and r. The rank of the Cartan matrix corresponding to Γ is given by p + q + r − 2.
More regarding this and the relationship to the minimal resolution of the singularity will
follow. See also Table 1. Note that Γ acts on C2 holomorphically and the only fixed point
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of this group action is the origin (0, 0). Thus C2/Γ is an algebraic variety with an isolated
quotient singularity at the origin. A singularity obtained in this manner is considered to
be a simple singularity.

Alternatively we can realize the variety C2/Γ as a hypersurface f−1
Γ (0) embedded in C3.

This is done by regarding the action of Γ on the generators u, v of C[u, v] and observing
which monomials are invariant under the action of Γ. In this manner we obtain a basis
consisting of 3 monomials, which generate the whole ring of Γ-invariant polynomials in
u, v. Using these monomials one is then able to write the polynomial map

(1.1) ϕ : C2 → C3.

This descends to a map ϕ̂ : C2/Γ → C3, which maps the orbit space C2/Γ homeomor-
phically onto the hypersurface given by a single polynomial equation {fΓ(z0, z1, z2) = 0}.
Thus C2/Γ is isomorphic to C[u, v]Γ, which equivalent to C[z0, z1, z2]/(fΓ = 0). This ma-
nipulation allows us to realize C2/Γ as the complex hypersurface cut out by f−1

Γ (0). The
quotient singularity at the origin of C2/Γ coresponds to the isolated singularity at the
origin of f−1

Γ (0) which is precisely the simple singularity of type Γ. Note that away from
the origin, the map ϕ restricts to a diffeomorphism between the orbit space C2/Γ and the
hypersurface f−1

Γ (0). The explicit equations are given below, following Burban [2] and
Reid [19].

Example 1.2 (An). Consider the cyclic subgroup Zn+1, which acts on C2 by u 7→ εu, v 7→
ε−1v, where ε = e2πi/(n+1), a primitive (n + 1)-th order root of unity. Then the following
monomials will generate the whole ring of invariants:

z0 = uv, z1 = un+1, z2 = vn+1

They satisfy the relation:

zn+1
0 − z1z2 = 0

After a suitable change of coordinates in C3 we obtain:

fΓ(z0, z1, z2) = zn+1
0 + z1z2 = 0

or equivalently,

fΓ(z0, z1, z2) = zn+1
0 + z2

1 + z2
2 = 0

Example 1.3 (Dn). Consider the binary dihedral group D∗4(n−2). We have |D∗4(n−2)| =

8(n− 2) and D∗4(n−2) = 〈a, b〉 with relations
a(n−2) = b2

b4 = 1

bab−1 = a−1
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where

a =

(
ε 0

0 ε−1

)
, ε = eπi/(2(n−2)), b =

(
0 1

−1 0

)
.

This acts on C2 as follows{
u 7→ εu

v 7→ ε−1v

{
u 7→ −v
v 7→ u

A bit of introspection yields the following invariant monomials

z0 = u2(n−2) + v2(n−2), z1 = u2v2, z2 = uv(u2(n−2) − v2(n−2))

They satisfy the relation:

z2
2 = u2v2(u4(n−2) + v4(n−2) − 2u2(n−2)v2(n−2)) = z2

0z1 − 4z
(n−1)
1

And a change of coordinates in C3 with a bit more algebraic manipulation yields:

fΓ = z2
0z1 + zn−1

1 + z2
2 = 0

Example 1.4 (E6, E7, E8). For the exceptional groups E6, E7, E8 we consider the action
of the binary tetrahedral group T∗, the binary octahedral group O∗ and the binary icosa-
hedral group I∗ respectively. They are defined as follows:

T∗ : |T∗| = 24 and T∗ = 〈σ, τ, µ〉, where

σ =

(
i 0

0 −i

)
, τ =

(
0 −1

1 0

)
, µ =

1√
2

(
ε7 ε7

ε5 ε

)
, ε = e2πi/8.

O∗ : |O∗| = 48 and O∗ = 〈σ, τ, µ, κ〉, where σ, τ, µ are as in the case of T∗, and

κ =

(
0 1

−1 0

)
.

I∗ : |I∗| = 120 and I∗ = 〈σ, τ〉, where

σ = −

(
ε3 0

0 ε2

)
, τ =

1√
5

(
−ε+ ε4 ε2 − ε3

ε2 − ε3 ε− ε4

)
, ε = e2πi/5.
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It can be checked that we obtain the following equations for the simple singularities of
execptional type:

E6 : z4
0 + z3

1 + z2
2 = 0

E7 : z3
0y + z3

1 + z2
2 = 0

E8 : z5
0 + z3

1 + z2
2 = 0

In this manner we obtain the following table summarizing the relationship of Γ to fΓ. The
integer triple (p, q, r) correspond to the lengths of the 3 branches in the Dynkin diagrams,
and the rank of the Cartan matrix corresponding to Γ is given by p + q + r − 2. Note
also that the fΓ are weighted homogeneous polynomials. The weights (a, b, c) wil play an
important role in the compactification of the resolution of the singularity later.

Group Γ Polynomial fΓ(x, y, z) branches (p, q, r) weights (a, b, c) rank Γ

An zn+1
0 + z2

1 + z2
2 (1, k, l) (1, k, l) n

Dn z2
0z1 + zn−1

1 + z2
2 (2, 2, n− 2) (n− 2, 2, n− 1) n

E6 z4
0 + z3

1 + z2
2 (2, 3, 3) (3, 4, 6) 6

E7 z3
0z1 + z3

1 + z2
2 (2, 3, 4) (4, 6, 9) 7

E8 z5
0 + z3

1 + z2
2 (2, 3, 5) (6, 10, 15) 8

Table 1.

In the An case, (k, l) is an arbitrary pair of positive integers satisfying k + l = n+ 1.

2. Associated Topology and Geometry

Important objects considered in the study of hypersurface singularity theory include the
minimal and Milnor resolutions and the link of a singularity. We begin with a discussion
of the resolution of a singularity and prepare a few definitions. In the following sections
we discuss the associated contact structure to the link of a singularity and how one can
use the resolutions to create symplectic fillings of the link.

Let V n be an analytic space with an isolated singularity at 0. The resolution of the

singularity is proper map from a smooth analytic manifold Ṽ ⊂ Cn × CP n−1 to V n

which is an isomorphism on V n\{0}. A minimal resolution is a resolution such that
there are no embedded exceptional divisors in Ṽ , i.e. embedded copies of CP n−1 with self
intersection −1.

Hironaka proved that every analytic space admits a resolution of singularities. A natural
question to ask is whether or not there exists a unique minimal resolution of a singular
variety; that is if every other resolution can be mapped through it. This is a hard question
to answer in general, and is not true in all dimensions. Castelnuovo and Enriques proved
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however, that every singular complex curve and every singular complex surface admit a
unique minimal resolution.

A remarkable feature of simple singularities is that their minimal resolutions correspond
precisely to their associated Dynkin diagrams. Each dot in the Dynkin diagram represents
a curve (a CP 1, which is technically a sphere) in the resolution that is contracted. Each
line represents where the copies of CP 1 intersect, and each has self intersection −2. This
is why simple singularities are equivalently characterized as an absolutely isolated double
point singularity. The computations for the resolutions of A1 and E6 can be found in
Burban [2] and for D4 in Reid [18].

For the special case of hypersurface singularities one can obtain another resolution
using a family of deformations known as the Milnor fibration. The Milnor fibration is
obtained by considering pieces of the nearby levels of the hypersurface f−1

Γ (0), namely
f−1(λ), for λ 6= 0, contained in a ball of fixed radius

B6
ε = {(z0, z1, z2) ∈ C3| |z0|2 + |z1|2 + |z2|2 ≤ ε2}.

This family (Fr,λ)|λ|=const is called the Milnor fibration associated to the critical point,
and is a locally trivial fibration over the circle. Its fibers are called Milnor fibers. An
associated object of interest is the link of a singularity, which is the boundary of the
Milnor fibers:

(2.1) L = f−1
Γ (0)∩S5

ε = {(z0, z1, z2) ∈ C3| fΓ(z0, z1, z2) = 0 and z0z̄0 + z1z̄1 + z2z̄2 = 1}

Thus the topology of the variety f−1
Γ (0) within the disk bounded by S5

ε will be closely
related to the topology of the link.

Remark 2.1. Note that the link of a singularity is typically only well-defined in discus-
sions of conical type singularities; however simple singularities are such a class of conical
type singularities.

In fact for any algebraic set V , defined to be the locus of common zeros of some collection
of polynomial functions of CN , the following conic structure theorem holds. Here we take
Dε to be the closed disk given by the set {z ∈ CN | ||z− z∗|| ≤ ε} where z∗ is an isolated
singular point of V .

Theorem 2.2. For ε > 0 the intersection of V with Dε is homeomorphic to the cone over
the link L = V ∩ Sε. In fact the pair (Dε, V ∩Dε) is homeomorphic to the pair consisting
of the cone over Sε and the cone over L.

Remark 2.3. Brieskorn proved in the case of simple singularities, that amazingly the
minimal resolution and the Milnor fiber are diffeomorphic. This is a consequence of the
existence of a simultaneous resolution. Ohta and Ono proved in [17] a stronger theorem,
by considering the Milnor fiber and minimal resolution as symplectic fillings of the link
and then showing that the deformation type of any minimal syplectic filling is unique.
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In the case of An, E6, and E8 singularities, the link is an example of Brieskorn manifold;
however the analysis of interest to us carries through to the Dn and E7 cases. The
construction of Brieskorn manifolds and results pertaining to their topological and contact
structure are rather useful, so we shall digress slightly to discuss them.

Definition 2.4. Let a = (a0, ..., an) be an (n+ 1)-tupel of integers aj > 1, and set

V (a) := {z := (z0, ...zn) ∈ Cn+1| f(z) := za0
0 + ...+ zann = 0}.

Further, with S2n+1 denoting the unit sphere in Cn+1, we define the Brieskorn manifold

(2.2) Σ(a) := V (a) ∩ S2n+1

Proposition 2.5. Σ(a) is a smooth manifold of dimension 2n−1. The link L of a simple
singularity is smooth manifold of dimension 3.

Proof. This follows from the fact that the origin is the only critical point of f and fΓ,
respectively. �

In Brieskorn’s seminal paper [1], necessary and sufficent conditions for these manifolds
to be topological spheres are given. The Brieskorn manifolds were first constructed to
obtain exotic differentiable structures on the topological (2n − 1)-sphere, and the un-
derlying algebraic varieties V (a) were used as the prototypical example of hypersurfaces
containing an isolated singularity. The Brieskorn manifolds were also some of the less
boring examples of contact manifolds first known and studied. In the following sections
we will see that they also admit a contact form, which induces a Stein fillable contact
contact structure on them.

Of interest to us will be smoothings Vt(a), of the varieties V (a) obtained via the afore-
mentioned Milnor fibration. We define them, along with their Brieskornesque counter-
parts, as one might expect, to be:

Vt(a) = {z ∈ Cn+1| f(z) = t}
Σt(a) = Vt(a) ∩ S2n+1

with t ∈ R+. In the case of the Dn and E7 singularities, the smoothing we consider will
be f−1

Γ (t).
Next we recall a few important results from the theory of singular points of complex

hypersurfaces, which extend to the Brieskorn varieties and the hypersurfaces correspond-
ing to the simple singularities. These are originally due to Milnor, Brieskorn, Hirzebruch
and Ehresmann. We refer the reader to Milnor’s book on this subject [15] for further
details. For the initial study of complex hypersurfaces one wants to introduce a fibration
(as previously mentioned) which will be useful in describing the topology of the link.
This so-called fibration theorem relies on an earlier result of Ehresmann, as well as some
complex geometry .

Theorem 2.6 (Ehresmann). Let E and B be differentiable manifolds, B connected and
π : E → B a differentiable surjective map, such that for all x ∈ B the rank of the
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derivative dπx is equal to the dimension of B, and π−1(x) is compact and connected.
Then π : E → B is a differentiable fiber bundle, comprised of diffeomorphic fibers π−1(x).

Theorem 2.7 (Milnor’s Fibration Theorem). If z∗ is any point of the complex hypersur-
face V = f−1(0) and if Sε is a sufficiently small sphere centered at z∗, then the mapping

φ(z) =
f(z)

|f(z)|
from Sε \ L to the unit circle is the projection map of a smooth fiber bundle. Each fiber

Fθ = φ−1(eiθ) ⊂ Sε \ L
is a smooth parallelizable 2n-dimensional manifold.

An important observation in the cases of the simple and brieskorn singularities is that
it is not necessary to choose the ε used in defining the link of a singularity to be sufficently
small. This follows from the ability to “rescale” homogeneous and weighted homogeneous
polynomials.

Proposition 2.8. V1(a) is diffeomorphic to Vt(a) for t 6= 0. Likewise, f−1
Γ (1) is diffeo-

morphic to f−1
Γ (t) for t 6= 0.

Proof. Define the following bijective map of Cn+1

(z0, ...zn) 7→ (
a0
√
t z0, ...,

an
√
t zn)

where aj
√
t is the aj-th root of t. For the Milnor fibration corresponding to Dn and E7 we

take (a0, a1, a2) = (2 (n−1)
(n−2)

, (n− 1), 2) and (9
2
, 3, 2), respectively. The result follows. �

Using Morse theory one is able to further study the locally trivial fibration

φ : Sε \ L→ S1

associated to a complex polynomial f which vanishes at the origin. This allows us to
conclude that each fiber Fθ is diffeomorphic to an open subset of a non-singular complex
hypersurface, consisting of all z with ||z|| < ε and f(z) = constant.

Theorem 2.9. For sufficently small t 6= 0, Vt(a) is diffeomorphic to Vt(a) ∩ Int(B2n+2
1 )

Theorem 2.10. For sufficently small t, Σt(a) 6= ∅ and Σt(a) is diffeomorphic to Σ(a).

Theorem 2.11. Vt(a) ∩ B2n+2
1 is parallelizable manifold.

Proposition 2.12. L is diffeomorphic to the rational homology sphere S3/Γ.

Proof. This can be proven directly by standard computations. If we go back to the map
ϕ from (1.1), we see that ϕ descends to a map, ϕ̂ : C2/Γ → C3, which maps the orbit
space C2/Γ homeomorphically onto the hypersurface f−1

Γ (0). Thus ϕ̂(S3/Γ) is mapped
homeomorphically onto a submanifold of f−1

Γ (0), which is diffeomorphic to the intersection
L = f−1

Γ (0) ∩ S5
ε . �
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To see that ϕ̂(S3/Γ) is homeomorphic to f−1
Γ (0)∩S5

ε one must go through a bit of algebraic
manipulation and rescaling. We do this in the case of An directly; the computations for
the cases with different Γ’s follow in a similar fashion.

Example 2.13. Recall from Example 1.2 that the following monomials generate the
whole ring of invariants for the An case:

z0 = uv, z1 = un+1, z2 = vn+1

They satisfy the relation:

fAn(z0, z1, z2) = zn+1
0 − z1z2 = 0

Find the image of S3/An under ϕ̂ : C2/An → C3.

ϕ̂(S3/An) = ϕ({|u|2 + |v|2 = 1}/Zn+1)

= {(|z1|2/(n+1) + |z2|2/(n+1) = 1} ∩ f−1
An

(0)

= {(|z1|4/(n+1) + 2|z1|2/(n+1)|z2|2/(n+1) + |z2|4/(n+1) = 1} ∩ f−1
An

(0)

= {(|z1|4/(n+1) + 2|z0|2 + |z2|4/(n+1) = 1} ∩ f−1
An

(0)

By rescaling as follows:

(2.3)

z0 7→ z0/
√

2

z1 7→ |z1|(n−1)/2z1

z2 7→ |z2|(n−1)/2z2,

we see that ϕ̂(S3/An) will be homeomorphic to L = f−1
An

(0) ∩ S5
ε . Since any two homeo-

morphic 3-manifolds are diffeomorphic, we have the desired result.

Remark. Finding an explicit diffeomorphism between ϕ̂(S3/Γ) and L is possible by
reparametrizing the flow of a suitable vectorfield on f−1

Γ (0). The existence and con-
struction of this “mysterious” vector field, whose flow generates a contact structure, is
the subject of the subsequent discussion in this paper.

3. Contact Considerations

This section begins with an overview of contact geometry and provide a few basic
examples of contact manifolds. We wish to consider the link of a simple singularity as a
contact manifold. The link is a real hypersurface sitting inside complex space, which is
diffeomorphic to S3/Γ. One is able to describe a contact structure as the set of complex
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tangencies to a real hypersurface in a complex manifold. We will recall the definition and
useful properties of Liouville vector fields associated to hypersurfaces of contact type. The
following section contains the construction of contact structure arising in such a manner,
as well as a natural Liouville vector field that we will ultimately use to prove that ϕ(S3/Γ)
and L are contactomorphic.

Definition 3.1. Let V be a manifold of dimension 2n+1. A contact structure is a max-
imally non-integrable hyperplane field ξ = ker α ⊂ TV , that is, the defining differential
1-form α is required to satisfy

(3.1) α ∧ (dα)n 6= 0

Note that the contact structure is unaffected when we multiply the contact form α by
any postive or negative function on V. We say that two contact structures ξ0 = ker α0 and
ξ1 = ker α1 on a manifold V are contactomorphic whenever there is a diffeomorphism
ψ : V → V such that ψ sends ξ0 to ξ1:

ψ∗(ξ0) = ξ1

Note that the diffeomorphism ψ : V → V being a contactomorphism is equivalent to the
existence of a non-zero function g : V → R such that ψ∗α1 = gα0. Finding an explicit
contactomorphism often proves to be a rather difficult and messy task, but an application
of Moser’s argument yields Gray’s stability theorem, which essentially states that there
are no non-trivial deformations of contact structures on a fixed closed manifold.

Theorem 3.2 (Gray’s stability theorem). Let ξt, t ∈ [0, 1], be a smooth family of contact
structures on a closed manifold V . Then there is an isotopy (ψt)t∈[0,1] of V such that

ψt∗(ξ0) = ξt for each t ∈ [0, 1]

A proof of Gray’s stability theorem is provided in the appendix to this paper, and can
also be found in [8].

Here is another important concept of contact geometry.

Definition 3.3. For any contact manifold (M, ξ = ker α) the Reeb vector field is
defined as the unique vector field determined by α such that

ι(Rα)dα = 0, α(Rα) = 1.

The first condition says that Rα points along the unique null direction of the form dα and
the second condition normalizes Rα. Because

LRαα = dιRαα + ιRαdα

the flow of Rα preserves the form α and hence the contact strucuture ξ. Note that if one
chooses a different contact form fα, the corresponding vector field Rfα is very different
from Rα, and its flow may have quite different properties. If however, α and fα differ by
a contactomorphism then so do the Reeb vector fields Rα and Rfα
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Example 3.4. Consider R2n+1 with coordinates (x1, y1, ..., xn, yn, z) and the 1-form

α = dz +
n∑
j=1

xjdyj.

Then α is a contact form for R2n+1. The contact structure ξ = ker α is called the standard
contact strucutre on R2n+1

As in symplectic geometry a variant of Darboux’s theorem holds. This states that
locally all contact structures are diffeomorphic to the standard contact structure on R2n+1.
Next we discuss the contact structure equipped to everyone’s favorite closed manifold, the
sphere.

Example 3.5. Consider the unit (2n+1)-sphere, S2n+1, in R2n+2. Let

(3.2) α =
n+1∑
j=1

xj dyj − yj dxj|S2n+1

where (x1, y1, ..., xn+1, yn+2) are the standard Cartesian coordinates on R2n+2 with ξ =
ker α the standard contact strucure on S2n+1. To see that α satisfies the contact condition
(3.1) we carry out the following computation

α ∧ (dα)n =

(
n+1∑
j=1

xj dyj − yj dxj

)
∧

(
2

2n∑
j=1

dxj ∧ dyj

)n

=
2n+2∑
j=1

(−1)j−1xj dx1 ∧ ... ∧ d̂xj ∧ ... ∧ dx2n+2

= ∗dr
where ∗ is the Hodge star operator. Note that this is the volume form for S2n+1. For a
detailed derivation of the volume form for Sn see section 6.1 of [7].

Since contact geometry is an odd-dimensional sibling of symplectic geometry, one ex-
pects some natural setting where we might observe an interdependence between the two.
The most useful constructions relating the two arise when we consider hypsersurfaces in
symplectic manifolds. As it turns out, a hypersurface of a symplectic manifolds will admit
a contact form whenever we have a Liouville vector field defined in a neighborhood that
is transverse to the hypersurface. The quintessential example of this is the symplectiza-
tion of a contact manifold (V, α = ker ξ), which allows us to embed Q as a hypersurface
in an exact symplectic manifold. We take M = Q× R with symplectic form

ω = et(dα− α ∧ dt) = dλ, λ = etα.

Here t is the coordinate on R, and the symplectization of Q is (Q×R, d(etα)). At the end
of this section we will show that all hypersurfaces of contact type in (M,ω) look locally
in M like a contact manifold sitting inside its symplectization.
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Definition 3.6. A Liouville vector field Y on a symplectic manifold (M,ω) is a vector
field satisfying

LY ω = ω

The flow ψt of such a vector field is conformal symplectic, i.e. ψ∗t (ω) = etω. Note that the
flow of these fields are volume expanding, so such fields may only exist locally on compact
manifolds.

Proposition 3.7. When (M,ω) admits a Liouville vector field Y, one can define a 1-form
α := ιY ω, which will be a contact form on any hypersurface (a codimension 1 submanifold
of M) transverse to Y (that is, with Y nowhere tangent to M). Such hypersurfaces are
said to be of contact type.

Proof. The Cartain formula

LY = d ◦ ιY + ιY ◦ d
combined with the fact that ω is closed allows us to write the Liouville condition on Y as
d(ιY ω) = ω. Assuming M to be of dimension 2n, we compute:

α ∧ (dα)n−1 = ιY ω ∧ (d(ιY ω))n−1

= ιY ω ∧ ωn−1

= 1
n
ιY (ωn)

Since ωn is a volume form on M , it follows that α ∧ (dα)n−1 is a volume form when
restricted to the tangent bundle of any hypersurface transverse to Y in M . �

The following is a useful result regarding the existence of Liouville vector fields and the
associated contact form.

Proposition 3.8. Let (M,ω) be a symplectic manifold and Q ⊂M a compact hypersur-
face. Then the following are equivalent
(i) There exists a contact form α on Q such that dα = ω|Q.
(ii) There exists a Liouville vector field Y : U → TM defined in a neighborhood U of Q,
which is transverse to Q.

Proof. First assume that (ii) is satisfied and define α = ιY ω. Then

dα = d(ιY ω) = ω

Since TqQ is odd dimensional, there exists a nonzero ṽ ∈ TqQ such that ωq(ṽ, v) = 0 for
all v ∈ TqQ. Since ω is nondegerate we have αq(ṽ) = ωq(Y (q), ṽ) 6= 0. Hence

ξq = {v ∈ TqQ | ωq(Y (q), v) = 0}

is a hyperplane field on Q and ṽ is transversal to ξq. In fact, ξq is the symplectic comple-
ment of span{Y (q), ṽ}. This implies ω = dα is nondegenerate on ξq and hence α restricts
to a contact form on Q.
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Conversely suppose that α ∈ Ω1(Q) is a contact form such that dα = ω|Q. Let
Rα ∈ χ(Q) be the Reeb vector field of α:

ιRαdα = 0, ιRαα = 1

Choose a vector field Y ∈ χ(M) such that

ω(Y,Rα) = 1, ω(Y, ξ) = 0

on Q. This can be done by picking any vector field Y0 such that ω(Y0, Rα) = 1 on Q.
Then for every q ∈ Q there exists a unique vector Y1(q) ∈ ξq such that ω(Y0 + Y1, v) = 0
for all v ∈ ξq. Define Y = Y0 +Y1 on Q and extend to a vector field on M. Next we define
φ : Q× R→M by

φ(q, t) = expq(tY (q))

Then

φ∗ω|Q×{0} = φ∗dα|Q×{0}
= d(φ∗α)|Q×{0}
= d(etα)|Q×{0}
= dα− α ∧ dt

Now by Moser’s argument there exists a local diffeomorphism ψ : Q× (−ε, ε)→ M such
that

ψ(q, 0) = q, ψ∗ω = et(dα− α ∧ dt).
So the required Liouville vectorfield is ψ∗(

∂
∂t

).
�

Example 3.9. The radial vector field

X0 =
1

2

n∑
j=1

xj
∂

∂xj
+ yj

∂

∂yj

is a Liouville vector field on R2n. It is transverse along the unit sphere S2n−1. The
corresponding 1-form

(3.3) λ0 = ιX0ω0 =
1

2

n∑
j=1

(xjdyj − yjdxj)

is the canonical contact form for S2n−1.

Proposition 3.10. Considering S3/Γ as a hypersurface in C2/Γ, the vector field

Y0 =
1

2

n∑
j=2

xj
∂

∂xj
+ yj

∂

∂yj
|C2/Γ

is transverse along S3/Γ and is a Liouville vector on C2/Γ away from the origin.
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Proof. Note that away from the origin C2/Γ admits the structure of a smooth manifold.
Recall that we may write

S3/Γ = {(x1 + iy1, x2 + iy2) ∈ C2/Γ | x2
1 + y2

1 + x2
2 + y2

2 = 1}.

Then the defining equation h(x1, y1, x2, y2) = x2
1 + y2

1 + x2
2 + y2

2 is a smooth function from
C2/Γ to R, and we observe that S3/Γ is a regular level set of h. Then after choosing a
Riemannian metric on C2/Γ away from the origin we have

Y0 =
1

4
grad h.

So by this construction Y0 is a transverse vector field along S3/Γ.
Next we must prove that Y0 is a Liouville vector field on C2/Γ away from the origin.

Away from the origin C2/Γ inherits the flat standard Kähler form on C2, written as dλ
with

λ =
i

2
(udū− ūdu+ vdv̄ − v̄dv).

After taking the canonical identification of C2 with R4 we see that λ = λ0 as in (3.3).
Then a simple computation reveals that the Liouville condition

LY0dλ = d(ιY0dλ) = dλ

is satisfied as desired. �

There is an equivalent definition of contact type due to Weinstein, which uses the
characteristic line field of a compact hypersurface S in a symplectic manifold (M,ω).
The characteristic line field L is the real line bundle over S given by the symplectic
complement of TS in TM :

Lq := (TqS)ω = {v ∈ TqM | ω(v, w) = 0 for w ∈ TqS}.

Recall that every hypersurface of a symplectic manifold is a coisotropic manifold, thus Lq
is a one dimensional subspace of TqS for all q ∈ S. L integrates to give a 1-dimensional
foliation of S called the characteristic foliation. The leaves of this foliation are the integral
curves of any Hamiltonian vector field XH for which S is a regular level surface of H (or
a component of such a surface). Thus we see that we can alternatively define L to be the
span of the symplectic gradient XH .

Proposition 3.11. Let Q be a compact hypersurface in a symplectic manifold (M,ω) and
denote the inclusion map i : Q→M . Then Q has contact type if and only if there exists
a 1-form α on Q such that

(i) dα = i∗ω
(ii) the form α is never zero on the characteristic line field.

Proof. Exercise: Prove this.
�
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4. Notions of Convexity in Complex and Symplectic Geometry

Convexity is an important notion in both analysis and geometry, which has great im-
plications on symplectic and contact geometry. Strictly Levi pseudoconvex hypersurfaces
carry a natural contact structure arising from the set of complex tangencies to their
boundary. We explain this derivation and go through the calculations in obtaining this
contact structure for Brieskorn manifolds and the link of a simple singularity. These
derivations are a part of a deeper story involving the relationships between pseudocon-
vexity, Stein manifolds, contact type hypersurfaces, and fillings, which are elaborated in
this section. Many of the symplectic and contact applications of pseudoconvexity were
first noted and written about by Eliashberg, Gromov, and McDuff. Before delving into
the details of these matters, we motivate our discussion with an alternate derivation of
the contact structure on S3.

Example 4.1. Let f(x1, y1, x2, y2) = x2
1 + y2

1 + x2
2 + y2

2. Then S3 = f−1(1). Moreover at
a point (x1, y1, x2, y2) in S3 the tangent space is given by

T(x1,y1,x2,y2)S
3 = ker df(x1,y1,x2,y2) = ker (2x1dx1 + 2y1dy1 + 2x2dx2 + 2y2dy2).

Identifying R4 with C2 we have the standard complex structure J . We have Jxi =
yi, Jyi = −xi for i = 1, 2. The complex structure J induces a complex structure on each
tangent space: J ∂

∂xi
= ∂

∂yi
and J ∂

∂yi
= − ∂

∂xi
for i = 1, 2.

We now claim that ξ = kerα, where α is from (3.3) is equivalent to the set of complex
tangencies. By this we mean

ξ = TS3 ∩ J(TS3).

Since
J(T(x1,y1,x2,y2)S

3) = ker (df(x1,y1,x2,y2) ◦ J)

and
df(x1,y1,x2,y2) ◦ J = −2x1dy1 + 2y1dx1 − 2x2dy2 + 2y2dx2,

we have that α = −(df ◦ J)|S3 from (3.3) as claimed.

Complex structures are invariant under SU2(C), thus we can use the standard contact
structure on S3 to induce a contact structure on S3/Γ. Thus the proposition follows from
this example.

Proposition 4.2. Regarding the link of a simple singularity L as

S3/Γ = {(x1 + iy1, x2 + iy2) ∈ C2/Γ| x2
1 + y2

1 + x2
2 + y2

2 = 1},
and taking the standard complex structure JC2, we obtain the hyperplane field of maximal
complex tangencies:

ξS3/Γ = TS3/Γ ∩ JC2(TS3/Γ)

Then (S3/g, ξS3/Γ) is a contact manifold with the canonical contact form α, given by:

(4.1) α = (x1 dy1 − y1 dx1 + x2 dy2 − y2 dx2)|S3/Γ

such that ξS3/Γ = ker α.
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In general the set-up is as follows. Let X be a complex manifold with boundary and
J the induced complex structure on TX. Supposing we can find a function φ defined
in a neighborhood of the boundary such that φ−1(0) = ∂X, we have that the complex
tangencies to V = ∂X are given by ker (dφ ◦ J). Thus the complex tangencies ξ to V
form a contact structure whenever −d(dφ◦J) is a non-degenerate 2-form on ξ. Of course,
we are interested in more than just some abstract construction. One desires to explicitly
figure out which manifolds admit these special functions, and how one might procure
them. This is where the notions of pseudoconvexity and Stein manifolds come into play,
so we shall take a few moments to acquaint ourselves with these objects, beginning with
a few prelimary definitions.

An open connected subset Ω ⊂ Rm has differentiable boundary ∂Ω if there exists
a smooth function ρ : Rm → R such that

Ω = {x ∈ Rm : ρ(x) < 0}

and dρp 6= 0 in a neighborhood of ∂Ω. Then ∂Ω is a codimension 1 submanifold of Rm,
given by the zero set {ρ = 0}, with 0 a regular value of ρ.

The tangent space Tp(∂Ω) to ∂Ω at a point p ∈ ∂Ω can be described as

Tp(∂Ω) = {x ∈ Rm : dρp(x) = 0}

Next we wish to investigate the relative uniqueness of defining functions for ∂Ω. Given two
definining functions ρ1, ρ2 for Ω and a point p ∈ ∂Ω, choose local coordinates (x1, ..., xm)
near p such that p = 0 and

ρ2(x1, ..., xm) = xm.

Denote x′ := (x1, ..., xm−1). Then we have ρ1(x′, 0) = 0 for x′ near 0 ∈ Rm−1. The
fundamental theorem of calculus applied to t 7→ ρ1(x′, 0) yields

ρ1(x′, txm) = ρ(x′1, xm)− ρ1(x′, 0) = xm

∫ 1

0

∂ρ1

∂xm
(x′, txm)dt.

In other words, we have found a smooth function h such that ρ1 = hρ2 on Rm. Since
dρ1 = hdρ2 on ∂Ω, h is strictly positive. With this in mind, we can describe the (geometric)
convexity of Ω in terms of the function ρ.

Lemma 4.3. If Ω is convex near p ∈ ∂Ω, then

(4.2)
m∑

j,k=1

∂2ρ

∂xj∂xk
(p)XjXk ≥ 0 for all X = (X1, ...Xm) ∈ Tp(∂Ω)

Conversely if 4.2 holds with strict inequality for all 0 6= X ∈ Tp(∂Ω) we say Ω is strictly
convex at p. In this case Ω is convex in a neighborhood of p in Rm
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Proof. Note that the statements in this lemma are independent of the choice for the
defining function ρ and invariant under linear coordinate changes in Rm. This can be
concluded by means of computing derivatives, which we leave as an exercise. These
considerations then allow one to assume without loss of generality that p = 0 and Tp(∂Ω)
is the linear subspace of Rm corresponding to the first m− 1 coordinates. We may then
take the function ρ near p = 0 to be of the form

ρ(x1, ...xm) = f(x1, ..., xm−1)− xm
with df0 = 0. Convexity of ρ at p thus translates into saying that the function t 7→
f(tX1, .., tXm−1) is convex at t = 0 for any non-zero vector (X1, ...Xm−1). �

For the remainder of the discussion, we wish to work in Cn. We will take the canonical
identification of R2n with Cn, and J the complex bundle structure on the tangent bundle
TR2n induced by multiplication by i. Recall that this defines an isomorphism of the real
tangent space at a point to the holomorphic tangent space at a point:

TpR2n → T
(1,0)
p Cn

X 7→ Z = 1
2
(X − iJX)

This brings us to the following definition:

Definition 4.4. Given Ω as before, consider the complex tangent space to ∂Ω at a
point p ∈ ∂Ω as:

T (1,0)
p (∂Ω) := Tp(∂Ω) ∩ J(Tp(∂Ω))

This is the largest J-invariant subspace of Tp(∂Ω) ⊂ TpR2n, and has real dimension 2n−2.

In terms of the standard cartesian coordiantes (z1, ..., zn) on Cn we define complex
valued 1-forms on Cn, which are the C-linear and C-antilinear sections respectively of the
bundle T ∗R2n ⊗R C by:

∂ρ =
n∑
j=1

∂zjρ dzj

∂̄ρ =
n∑
j=1

∂z̄jρ dz̄j

so that

dρ = ∂ρ+ ∂̄ρ

We are then able to state the following lemma.

Lemma 4.5. The complex tangent space T
(1,0)
p (∂Ω) may be described as

T
(1,0)
p (∂Ω) = {X ∈ TpR2n | ∂ρp(X) = 0}

= {Z ∈ T (1,0)
p (∂Ω) | ∂ρp(Z) = 0}
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Proof. Since ρ is real valued we have ∂̄ρ = ∂ρ. This implies that dρ(X) = 2Re(∂ρ(X)).
Moreover, the C-linearity of the 1-form ∂̄ρ gives

Re(∂ρ(JX)) = Re(i∂ρ(X)) = −Im(∂ρ(X))

Since T
(1,0)
p (∂Ω) can be characterized as the vector space of the X ∈ R2n with

dρp(X) = dρp(JX) = 0

the first description of T
(1,0)
p (∂Ω) follows. The second description is obtained by writing

X in the form

X =
n∑
j=1

Zj∂zj + Z̄j∂z̄j .

�

We want to find a complex analogue of the convexity condition (4.2). However, in order
for it to bear relation to other notions of convexity in analysis, which are typically defined
in terms of the existence of certain holomorphic functions, it should be a condition that it
be invariant under biholomorphisms. Unfortunately, our previous convexity condition fails
this, but the following calculation gives us a portion of the quadratic form characterising
convexity that will be preserved under biholomorphic mappings. This form is called
the Levi form, and the collection of Levi pseudoconvex domains is, in a local sense, the
smallest class of domains that contains the convex domains and is closed under increasing
union and biholomorphic mappings.

Remark 4.6. Let Ω ⊂⊂ Cn be a convex subset with C2 boundary, and ρ ∈ C2 the
defining function as before. Let Ω̂ be a neighborhood of Ω̄ and let Φ : Ω̂ → Cn be
biholomorphic. Let Ω = Φ(Ω′) and ρ = ρ′ ◦ Φ. Let p′ = Φ(p) ∈ ∂Ω′ and denote

Z ′ =

(
n∑
j=1

∂Φ1(p)

∂zj
Zj, ...,

n∑
j=1

∂Φn(p)

∂zj
Zj

)
∈ Tp(∂Ω′)

We first begin by rewriting the convexity condition (4.2) as:

(4.3) 2 Re

{
n∑

j,k=1

∂2ρ

∂zj∂zk
(p)ZjZk

}
+ 2

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(p)ZjZ̄k

However

∂2ρ

∂zj∂zk
=

∂

∂zj

n∑
l=1

∂ρ′

∂z′l

∂Φl

∂zk
=

n∑
l,m=1

∂2ρ′

∂z′l∂z
′
m

∂Φl

∂zk

∂Φm

∂zj
+

n∑
l=1

∂ρ′

∂z′l

∂2Φl

∂zj∂zk

and
∂2ρ

∂zj∂z̄k
=

∂

∂zj

n∑
l=1

∂ρ′

∂z̄′l

∂Φ̄l

∂z̄k
=

n∑
l,m=1

∂2ρ′

∂z′m∂z̄
′
l

∂Φm

∂zj

∂Φ̄l

∂z̄k
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Therefore

equation (4.3) = 2 Re

{
n∑

l,m=1

∂2ρ′

∂z′l∂z
′
m

Z ′lZ
′
k +

n∑
j,k=1

n∑
l=1

∂ρ′

∂z′l

∂2Φl

∂zj∂zk
ZjZm

}
+2

n∑
l,m=1

∂2ρ′

∂z′m∂z̄
′
l

Z ′mZ̄
′
l .

So we see that the “portion” of the quadratic form characterizing convexity that is pre-
served under biholomorphic mappings is the second half,

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(p)ZjZ̄k.

In this manner we obtain the following definition for pseudoconvexity.

Definition 4.7. The Hermitian form

Lpρ(Z) =
n∑

j,k=1

∂2ρ

∂zj∂z̄k
(p)ZjZ̄k

is called the Levi form (or complex Hessian) of ρ at p ∈ ∂Ω. One says that Ω is (strictly)
Levi pseudoconvex if its boundary ∂Ω is smooth and Lpρ(Z) ≥ 0 for all p ∈ ∂Ω (with
strict inequality for z 6= 0).

With this in mind, we are now able to sensibly speak of Levi pseudoconvex hypersurfaces
in arbitrary complex manifolds, or pseudoconvex boundaries of complex manifolds. The
reader is likely to surmise at this point that these pseudoconvex (smooth) boundaries are
in fact contact manifolds. Accordingly, we would like to take a short interlude to discuss
various forms of symplectic convexity, which we will then relate to pseudoconvexity. This
is a story that is in and of itself rather complicated and not completely understood, but we
explore the situation anyways. Interestingly, symplectic convexity has strong implications
on the nature of contact structures in dimension 3, yet this does not completely carry
through to higher dimensions. For a more detailed perspective regarding these matters
see also Etnyre’s expository article [6].

Yet another useful notion of convexity, is that of ω-convexity. This is particularly
crucial in cut and paste constructions of symplectic manifolds. As seen in the below
definition, ω-convexity is essentially a way to “bound” a contact manifold by a symplectic
manifold of one higher dimension.

Definition 4.8. We say that a compact symplectic manifold (M2n, ω) is a strong sym-
plectic filling of the contact manifold (V 2n−1, ξ = ker α) whenever

(1) ∂M = V as oriented manifolds.
(2) There exists an extension α̃ on a collar neighborhood of V such that ω = dα̃.

(V, ξ) is said to be the ω-convex boundary of (M,ω). With the appropriate changes
of sign in the above conditions one obtains a strong concave filling or ω-concave
boundary. One may then glue ω-concave to ω-convex manifolds along V to obtain closed
symplectic manifolds.
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Remark 4.9. In first condition the orientation is induced by ωn on M and α ∧ (dα)n−1

on V . The second condition can be equivalently formulated in terms of the existence of a
Liouville vector field Y defined in a neighborhood of ∂M , pointing outwards along ∂M ,
and satisfying ξ = ker (ιY ω|TV ).

There also exists weaker notions of ω-convexity, namely domination and weak symplec-
tic filling. We say that ω dominates ξ when ω|ξ is in the canonical conformal class of
symplectic forms on ξ. This simply means that there exists a positive function f on V
such that ω = fdα when restricted to ξ. Recall that any contact form α multiplied by a
positive function yields the same contact structure, thus dα defines a unique conformal
class of symplectic forms on ξ. The definition of weakly symplectically fillable (some-
times referred to as just symplectically fillable) is obtained by weakening condition (2) of
the above definition (4.8) by replacing it with the condition that ω|ξ be nondegenerate.

Notice that if (M,ω) that dominates (V, ξ), then (M,ω) is also a weak symplectic filling
of (V, ξ). In dimension three, it is fairly easy to check that these two notions are the same.
When the dimension is greater than four, these two notions will not be the same. If (V, ξ)
is a strong symplectic filling of (M,ω) then ξ will be dominated by ω. What is surprising
is that in dimension greater than four, we have that domination and strong symplectic
fillability are equivalent concepts, as proved by McDuff [13]. In dimension three though,
strong symplectic fillability is stronger than domination, since strong symplectic fillability
implies that the symplectic form is exact, but there exist dominating symplectic forms
which are not exact.

Now we’d like to relate ω-convexity to strict pseudoconvexity, which addresses the ex-
istence of strong symplectic fillings. In fact, we can show what pseudoconvexity implies
weak symplectic fillability and that domination implies pseudoconvexity in all dimensions.
These three notions are equivalent concepts in dimension three. However, before we get
into those details we show that strictly pseudoconvex hypersurfaces carry a natural con-
tact structure.

Given a region Ω ⊂ R2n ≡ Cn as before, define a real 1-form α on T (∂Ω) by

α := −dρ ◦ J |T (∂Ω)

Since dz̄j ◦ J = i dzj and dz̄j ◦ J = −i dz̄j, this can be written as

α = i
n∑
j=1

∂ρ

∂z̄j
dz̄j −

∂ρ

∂zj
dzj

whose restriction to T (∂Ω) is from now on understood. We then compute:

dα = 2i
n∑

j,k=1

∂2ρ

∂zj∂z̄k
dzj ∧ dz̄j
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The purely holomorphic and antiholomorphic terms disappear since the second derivatives
of ρ commute and the antisymmetry of the wedge product. Observe that

α = i(∂̄ρ− ∂ρ) = 2 Im(∂ρ).

Thus ker αp = T
(1,0)
p (∂Ω). In this manner we obtain the following lemma.

Lemma 4.10. For X ∈ T (1,0)
p (∂Ω) and with Z = 1

2
(X − iJX) as before we have

dαp(X, JX) = 4Lpρ(Z)

Proof. Write X = Z + Z̄ with Z =
∑

j Zj∂zj and Z̄ =
∑

j Z̄j∂z̄j . Then JX = iZ − iZ̄.
Hence

dαp(X, JX) = 2i
n∑

j,k=1

∂2ρ

∂zj∂z̄k
dzj ∧ dz̄j(Z + Z̄, iZ − iZ̄)

= 4i
n∑

j,k=1

∂2ρ

∂zj∂z̄k
ZjZ̄k

= 4Lpρ(Z)

�

These calculations allow us to conclude that dα will be symplectic on T
(1,0)
p (∂Ω)

Proposition 4.11. Let Ω be a strictly pseudoconvex region. Then the hyperplane distri-

bution ξ on ∂Ω defined by T
(1,0)
p (∂Ω), p ∈ ∂Ω is a contact structure.

Proof. For all v, w ∈ T∂Ω ∩ J(∂Ω) = ker (dρ ◦ J),

(d(dρ ◦ J))(v, Jw) > 0.

Thus d(dρ ◦ J))|ξ is symplectic, so ξ is a contact structure.
�

Earlier we demonstrated that all odd dimensional spheres admit a contact structure.
This is possible since the map ρ : Cn → R, given by

ρ(z) =
||z||2 − 1

4
,

allows us to write the open unit ball as Ω = {ρ(z) > 0}. Then

dα =
i

2

∑
dzj ∧ dz̄j

is the standard symplectic form on Cn. So we see that the unit ball has a strictly pse-
duconvex boundary (i.e. unit sphere) and thus the set of complex tangiences to this
boundary define a contact structure.

A smooth function ρ : X → R on a complex manifold X is called strictly plurisub-
harmonic if the Levi form Lρ(v, w) = (d(dρ◦J))(v, Jw) is positive definite. Furthermore,
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ρ is called an exhausting function if it is proper and bounded below. A related con-
cept is that of a Stein manifold, which when regarded with the least number of bells
and whistles, is a complex manifold that admits a proper holomorphic embedding into
CN for some large integer N . A more sophisticated way of defining a Stein manifold is
done via holomorphic convexity or holomorphic separability, but for our purposes we may
avoid such a discussion. Grauert [9] showed that the Stein condition is equivalent to the
existence of strictly plurisubharmonic functions.

Theorem 4.12. A complex manifold is Stein if and only if it admits an exhausting
plurisubharmonic function.

One direction of this theorem follows from the fact that the function ρ =
∑N

j=1 |zj|2 on

CN restricts to an exhausting plurisubharmonic function on any Stein manifold. In light
of remark 4.6 we see that the pseudoconvex condition is a local condition that is preserved
under biholomorphic mappings. The requirement that a manifold be Stein, means that
there is a holomorphic embedding of X in CN . Thus we see that ρ =

∑N
j=1 |zj|2 restricts

to an exhausting plurisubharmonic function on X.
Thus we see that any Stein manifold admits a symplectic structure coming from the

exhausting plurisubharmonic function, ωρ = −d(dρ◦J). In fact, this symplectic structure
is essentially unique, as Eliashberg and Gromov [5] proved that given 2 plurisubharmonic
functions φ and ψ on a Stein manifold X, (X,ωφ) and (X,ωψ) will be symplectomorphic.
Remembering our earlier interest in Liouville vector fields and hypersurfaces of contact
type, we now demonstrate that these arise naturally in Stein manifolds. We also see that
given a strictly plurisubharmonic function ρ : X → R on a complex manifold (X, J) and
a regular value c of ρ, the complex tangencies define a contact structure on the level set
Qc = ρ−1(c). Such hypersurfaces also admit strong symplectic fillings.

Lemma 4.13. The gradient vector field ∇ρ of a plurisubharmonic function ρ on a Stein
manifold X is a Liouville vector field for ωρ. The gradient vector field ∇ρ is transverse
to Qc = ρ−1(c), when c is a regular value. Furthermore, for any regular value c of ρ, the
manifold Xc := {p ∈ X| ρ(p) ≤ c} is in a natural way a strong symplectic filling of the
contact manifold Qc.

Proof. Exercise: Prove this.
�

Remark. Xc is frequently called a Stein filling of Qc

We are now almost able to see why the set of complex tangencies to the link gives us a
contact structure on the link. However, one issue that remains to be “smoothed” over is
that our ambient space f−1

Γ (0) is singular at the origin and not a Stein manifold. In Section
2 we saw that we can perturb this variety to a smooth Stein manifold embedded into C3

by taking the Milnor fiber given by f−1
Γ (t). We then proved that L is diffeomorphic to

f−1
Γ (t)∩ S5 for sufficently small t > 0, which makes the aforementioned contact structure

well-defined. This special situation, in fact tells us a little bit more, namely that we
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obtain a Stein fillable contact structure on the link, which we elaborate on. A remarkable
theorem of Eliashberg and Gromov [5] is that any any weakly fillable contact structure
on a 3-manifold is tight.

Theorem 4.14. The real 1-form

α :=
i

4

n∑
j=0

(zjdz̄j − z̄jdzj)

induces a Stein fillable contact structure on any Brieskorn manifold Σ(a) (see 2.4 for the
defining equation) or link L of a simple singularity. The contact structure for each of these
manifolds, given by ξ = ker α is ξΣ(a) = TΣ(a) ∩ JCn+1(TΣ(a)) and ξL = TL ∩ JC3TL
respectively.

Proof. The function

ρ(z) =
||z||2 − 1

4
is strictly plurisubharmonic on Cn+1 as well as on its restriction to the complex subman-
ifold V (a) \ {0} or f−1

Γ (0) \ {0}. Notice that α = −dρ ◦ J . Then from the previous
calculations we see that ker α defines the complex tangencies of the strictly pseudoconvex
boundary of V (a) ∩B2n+2 or f−1

Γ (0) ∩B6 and is thus a contact structure.
Unfortunately, as previously mentioned, we have that V (a) and f−1

Γ (0) are not a com-
plex manifolds since they each have a singular point at 0. Thus in order to obtain a Stein
filling, we replace each of V (a) and f−1

Γ (0) by Vt(a) and f−1
Γ (t) respectively. Then Σ(a)

is replaced by Σt(a), likewise we replace L = f−1
Γ (0) ∩ S5 by Lt = f−1

Γ (t) ∩ S5. Now each
of Vt(a) and f−1

Γ (t) are non-singular Stein manifolds. As shown in Section 2, there exists
an ε > 0 such that Σt(a) is diffeomorphic to Σ(a) = Σ0(a) for all t ∈ [0, ε]; likewise we
have that Lt is diffeomorphic to L = L0 for all t ∈ [0, ε]. In fact, the proof showed that
each of the Σt(a) and Lt formed the fibers of a differentiable fiber bundle.

Our previous argument shows that the 1-form α induces a contact structure on each
Σt(a) and Lt, with a Stein filling given by Vt(a) ∩ B2n+2 or f−1

Γ (t) ∩ B6 respectively, for
t > 0. With the help of a connection on the fiber bundle formed by the Σt(a) and Lt, we
may regard these contact structures as a smooth family ξt, t ∈ [0, ε] of contact structures
on Σ(a) and L. By Gray’s stability theorem, the ξt are isotopic and since ξt is Stein
fillable for t > 0, so is ξ0.

�

5. Considerations of the Contactomorphic

We have already seen that S3/Γ and L are diffeomorphic, and in the previous sections
we discussed the natural contact structures they admit. In this section we will prove that
are contactomorphic. However, finding an explicit contactomorphism proves to be a rather
difficult and messy task, so we will appeal to Gray’s stability theorem, an application of
Moser’s argument. We obtain our 1-parameter family of diffeomorphic contact manifolds
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by using the flow of a Liouville vector field defined in a neighborhood of ϕ(S3/Γ). Before
proceeding we recall Gray’s stability theorem and prove a corollary.

Theorem 5.1 (Gray’s stability theorem). Let ξt, t ∈ [0, 1], be a smooth family of contact
structures on a closed manifold V . Then there is an isotopy (ψt)t∈[0,1] of V such that

ψt∗(ξ0) = ξt for each t ∈ [0, 1]

Corollary 5.2. Let (Vt, ξt), t ∈ [0, 1], be a smooth 1-parameter family of diffeomorphic

contact manifolds. Then there exists a diffeomorphism ψ̂ : V0 7→ V1 such that

ψ̂∗ξ0 = ξ1

Proof. Let φt : V0 7→ Vt be the 1-parameter family of diffeomorphisms, with φ0 = idV0 .
Then φ∗t ξtis a 1-parameter family of contact structures on V0. By Gray’s stability theorem,
there exists ψt : V0 → V0 such that

ψt∗ξ0 = φ∗t ξt

We have the following sequence of maps

(V0, ξ0)
ψ1−→ (V0, φ

∗
1ξ)

φ1−→ (V1, ξ1),

which yields

(φ1 ◦ ψ1)∗ξ0 = φ1∗φ
∗
1ξ1 = ξ1.

Thus we obtain ψ̂ = φ1 ◦ ψ1.
�

Theorem 5.3. (S3/Γ, ξS3/Γ) is contactomorphic to (L, ξL)

Proof. As shown in lemma 4.13 we have that the gradient vector field ∇ρ of a plurisubhar-
monic function ρ on a Stein manifold X, is a Liouville vector field for ωρ that is transverse
along ρ−1(0) = L. Here we take our plurisubharmonic function to be

ρ(z) =
||z||2 − 1

4
=
z0z̄0 + z1z̄1 + z2z̄2 − 1

4
.

Then

ωρ =
i

2
(dz0 ∧ dz̄0 + dz1 ∧ dz̄1 + dz2 ∧ dz̄2) ,

and

Y := ∇ρ =
1

2

(
z0

∂

∂z0

+ z1
∂

∂z1

+ z2
∂

∂z2

)
.

Now we consider the flow ψt of this Liouville vector field, starting at ϕ̂(S3/Γ) and
reparametrize such that the time-one map ψσ(1)(ϕ̂(S3/Γ)) = L. In this manner we ob-
tain a 1-parameter family of diffeomorphic manifolds, with a natural associated contact
structure, arising from the set of complex tangencies to a real hypersurface in a complex
manifold, which is given by Tψσ(t)(ϕ̂(S3/Γ)) ∩ JC3Tψσ(t)(ϕ̂(S3/Γ)).
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First we need ϕ(S3/Γ) and L to be disjoint submanifolds in f−1
Γ (0). This is accomplished

by choosing a suitable radius R for the S5 used in the defining equation of the link L.
Note also that our choice of Y = ∇ρ means that the Liouville vector field is still defined
on the portion of f−1

Γ (0) between ϕ(S3/Γ) and LR and still transversal to LR. For any
integral curve γ of Y we consider the following initial value problem:

(5.1)
γ′(t) = Y (γ(t))

γ(0) = z ∈ ϕ̂(S3/Γ)

Denote the flow of this vector field ψt(z) = γ(t). This exists and is smooth by the
fundamental theorem on flows. Write ψt(z) = γz(t) as the unique integral curve of Y
passing through z. By means of the implicit function theorem and the properties of the
Liouville vector field Y we can prove the following claim.

Claim 5.4. For every γz there exists some τ(z) ∈ R+ such that ψτ(z)(z) ∈ L. Furthermore,
the choice of τ(z) varies smoothly for each z ∈ ϕ̂(S3/Γ).

Proof. This follows from the fact that the Liouville vector field Y has no singular points
and any integral curve γ of Y must eventually pass through LR exactly once before exiting
the region of f−1

Γ (0) between ϕ̂(S3/Γ) and LR. This is due to the the conformal symplectic
and transversal nature of the Liouville vector field Y, which is used in the application of
the implict function theorem. Before proceeding with the full details, we recall the implicit
function theorem.

Theorem 5.5. Let f : Rn+m → Rm be a continuously differentiable function with coordi-
nates on Rn+m given by (x, y) = (x1, ...xn, y1, ..., ym). Fix a point (a, b) with f(a, b) = c,

where c ∈ Rm. If [(
∂fj
∂yj

)(a, b)] is invertible, then there exists an open set Un contain-

ing a, an open set V m containing b, and a uniquely continuously differentiable function
g : Un → V m such that

{(x, g(x)) | x ∈ U} = {(x, y) ∈ U × V | f(x, y) = c}

Furthermore, regarding the regularity of g, we have that whenever the additional hypothesis
that f is continuously differentiable up to k times inside U × V holds, then the same is
true for the explicit function g inside U.

In our situation we have:

γ : R× R6 → R6

ρ|f−1
Γ (0) : R6 → R

ρ ◦ γ : R× R6 → R

and are solving ρ(γ(t, z)) = 0 to find t for a given z (i.e., we want to find the map
τ : R6 → R). Thus to apply to implicit function theorem we must show that for all (t, z)
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with ρ ◦ γ = 0

∂(ρ ◦ γ)

∂t
6= 0.

Note that ρ ◦ γ is smooth. By the chain rule,

∂(ρ ◦ γ)

∂t

∣∣∣∣
(s,p)

= grad ρ|γ(s,p) · γ̇|(s,p),

where γ̇|(s,p) = ∂γ
∂t
|(s,p). But if grad ρ|γ(s,p) · γ̇|(s,p) = 0, then either grad ρ is not transverse

along {(ρ ◦ γ) (s, p) = 0} or γ̇|(s,p) = 0, since grad ρ 6= 0. However by construction
grad ρ = ∇ρ is a Liouville vector field transverse to L and also LR. Furthermore the
conformal symplectic nature of a Liouville vector field implies that for any integral curve
γ satisfying the initial value problem given by equation (5.1), γ̇|(s,p) 6= 0. Thus we see that
the conditions for the implicit function theorem are satisfied and our claim is proven. �

Now we normalize the time it takes the flow ψt(z) of Y to reach LR. This is done by
constructing a reparametrization

σz : [0, 1]→ [0, τ(z)]

of the time it takes to travel along the integral curve. Note that

z

τ(z)
: [0, τ(z)]→ [0, 1],

so

σ(z, s) = τ(z) · s

is our desired map.
We are thus able to define the following 1-parameter family of diffeomorphic contact

manifolds (Ms, ξs)s∈[0,1], where

Ms := ψτ(z)·s(z)(ϕ̂(S3/Γ)), ξs := TMs ∩ JC3(TMs)

and

M0 = ψ0(z)(ϕ̂(S3/Γ)) = ϕ̂(S3/Γ), M1 = ψτ(z)·1(ϕ̂(S3/Γ)) = LR.

After applying Gray’s stability theorem, it remains to check that (S3/Γ, ξS3/Γ) is con-
tactomorphic to (ϕ̂(S3/Γ), TM0 ∩ JC3(TM0)). Since ϕ : C2 → C3 is a holomorphism
and

ϕ(S3) = ϕ̂(S3/Γ)

ϕ∗(TS
3) = ϕ̂∗(TS

3/Γ),

we have
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ϕ̂∗(TS
3/Γ ∩ JC2(TS3/Γ)) = ϕ∗(TS

3 ∩ JC2(TS3))

= ϕ∗(TS
3) ∩ ϕ∗(JC2(TS3))

= ϕ∗(TS
3) ∩ JC3ϕ∗(TS

3))

= Tϕ(S3) ∩ JC3(Tϕ(S3))

= TM0 ∩ JC3(TM0)

as desired. �

The previous argument gave us a one-parameter family of diffeomorphic contact man-
ifolds from (ϕ̂(S3/Γ), ϕ̂∗ξS3/Γ) to (L, ξL) by means of reparametrizing the flow of ∇ρ.
Recall that we defined ξS3/Γ = TS3/Γ∩JC2(TS3/Γ) = ker (ιY0ωC2), where Y0 is the Liou-
ville vector field as given in proposition 3.10 and ωC2 is the standard symplectic form on
C2. However there are two natural symplectic structures we may consider on C2, namely

ωC2 :=
i

2
(du ∧ dū+ dv ∧ dv̄),

and

ϕ∗ωC3 :=
i

2
ϕ∗ (dz0 ∧ dz̄0 + dz1 ∧ dz̄1 + dz2 ∧ dz̄2) .

We see that these are equivalent, using Moser’s trick as follows.

Proposition 5.6. (C2, ωC2) and (C2, ϕ∗ωC3) are symplectomorphic.

Proof. We want to show that

ωt = (1− t)ωC2 + tϕ∗ωC3

gives us a family of symplectic forms with exact time derivative. The exactness of d
dt
ωt

follows from the fact that

ωt = dλt = (1− t)dλC2 + tϕ∗dλC3 .

To see that ωt is in fact a symplectic form follows from direct computations - we check
this in the case of An, where ϕ(u, v) = (uv, un+1, vn+1). We have that

2
i
ϕ∗ωC3 = d(uv) ∧ d(uv) + d(un+1) ∧ d(ūn+1) + d(vn+1) ∧ d(v̄n+1)

= ((n+ 1)2|u|2n + |v|2)du ∧ dū+ uv̄ dv ∧ dū+ vū du ∧ dv̄ + ((n+ 1)2|v|2n + |u|2)dv ∧ dv̄

= ((n+ 1)2|u|2n + |v|2)du ∧ dū+ 2Re(uv̄ dv ∧ dū) + ((n+ 1)2|v|2n + |u|2)dv ∧ dv̄

is clearly symplectic since |2Re(uv̄ dv ∧ dū)| ≤ 2|u||v||dv ∧ dū|. �
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Furthermore, since Γ ⊂ SU2 and from the above computation we see that both of ωC2

and ϕ∗ωC3 are preserved by the action of Γ. We say that an action of a Lie group G
preserves the symplectic form on a symplectic manifold (M,ω) whenever

ω(Dlg(x)(X), Dlg(x)(Y ) = ω(X, Y ) for X, Y ∈ TxM, x ∈M, g ∈ G,
where lg denotes the map x 7→ g ·x. Note that in the our setting the group Γ is a compact
0-dimensional Lie group. So a question that remains is if the symplectic structure on
C2/Γ\{0}, inherited from C2 is the same for each of these. (C2/Γ\{0}, ωC2) and (C2/Γ\
{0}, ϕ∗ωC3) are symplectomorphic. It follows that (S3/Γ, ιY0ωC2) and (S3/Γ, ϕ̂∗(ι∇ρωC3))
are contactomorphic.

Remark 5.7.

In fact, Caubel and Popescu-Pampu [3] prove a stronger statement regarding the
uniqueness of contact structures associated to rational homology spheres which admit
a Milnor filling. Namely they prove the following:

Theorem 5.8. If the 3-manifold M is a rational homology sphere, then there is at most
one isomorphism class of contact structures on it which admits a Milnor filling.

6. Appendix

Gray’s stability theorem states that there are no non-trivial deformations of contact
strucutres on closed manifolds. Before proceeding we prove a prepatory lemma regarding
derivatives of time dependent k-forms and recall the definition of the Reeb vector field.

Lemma 6.1. Let ωt, t ∈ [0, 1], be a smooth family of differential k-forms on a manifold
M and (ψt)t∈[0,1] an isotopy of M . Define a time-dependent vector field Xt on M by

Xt ◦ ψt = ψ̇t, where the dot denotes derivative with respect to t (so that ψt is the flow of
X). Then

d

dt
(ψ∗tωt)|t=t0 = ψ∗t0(ω̇t|t=t0 + LXt0ωt0)

Proof. Recall that for a time-indepdendent k-form ω we have

d

dt
(ψ∗tω)|t=t0 = ψ∗t0(LXt0ω)

We then merrily compute

d
dt

(ψ∗tωt) = lim
h→0

ψ∗t+hωt+h − ψ∗tωt
h

= lim
h→0

ψ∗t+hωt+h + ψ∗t+hωt − ψ∗t+hωt − ψ∗tωt
h

= lim
h→0

ψ∗t+h

(
ωt+h − ωt

h

)
+ lim

h→0

ψ∗t+hωt − ψ∗tωt
h

= ψ∗t (ω̇t + LXtωt).
Thereby obtaining the desired result. �
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Theorem 6.2 (Gray’s stability theorem). Let ξt, t ∈ [0, 1], be a smooth family of contact
structures on a closed manifold V . Then there is an isotopy (ψt)t∈[0,1] of V such that

ψt∗(ξ0) = ξt for each t ∈ [0, 1]

Proof. The simplest proof of this result relies on Moser’s trick regarding stability results
for (equicohomologous) volume and symplectic forms. The idea behind Moser’s trick is to
assume that ψt is the flow of a time-dependent vector field Xt. The desired equation for
ψt translates to an equation for Xt. If that equation can be solved, then the isotopy ψt is
found by integrating Xt. Recall that on a closed manifold the flow of Xt will be globally
defined.

Let αt be a smooth family of 1-forms with kerαt = ξt. The equation we desire our
isotopy of M to satisfy becomes:

ψ∗tαt = λtα0,

where λt : M → R+ is a suitable smooth family of smooth functions. The proceeding
lemma together with differentiation of this equation with respect to t yields,

ψ∗t (α̇t + LXtαt) = λ̇tα0 =
λ̇t
λt
ψ∗tαt.

With the aid of Cartan’s formula and writing µt = d
dt

(logλt) ◦ ψ−1
t , this becomes

ψ∗t (α̇t + d(αt(Xt)) + ιXtdαt) = ψ∗t (µtαt).

Choosing Xt ∈ ξt this is equation will be satisfied provided

(6.1) α̇t + ιXtdαt = µtαt.

Plugging in the Reeb vector field Rt of αt gives

(6.2) α̇t(Rt) = µt.

So we can use (6.2) to define µt, the non-degeneracy of dαt|ξt , and the fact that Rt ∈
ker(µt|At − α̇t) which allows us to find the unique solution Xt ∈ ξt of (6.1).

�
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