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10/4: Sanchit’s Talk on “Boltzmann’s H-theorem & Why kintetic theory
is so hard”

1. We have
∂tf + vi∂xif = Q(f, f)

where

Q(f, f) =

ˆ
R3

dv∗

ˆ
S2

B(v − v∗, σ)(f |v′f |v′∗ − f |vf |v∗)

2. Here the set up is we have two particles with initial velocities ~v and ~v∗. They then collide and leave with
velocities ~v′ and ~v∗

′. In paritcular

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗
2
− |v − v∗|

2
σ

via some laws of conservation of momentum and energy.

3. We further have

sin θB(v − v∗, σ) ∼= 〈v − v∗〉γθ2−2s =
√

1 + (v − v∗)2
i

4. Theorem: (H-theorem): (negative) Entropy is decreasing

ˆ
x

ˆ
v

log t[∂tf + vi∂xif ] =

ˆ
x

ˆ
v

Q(f, f)

this gives us
d

dt
H(f(t, ·, ·)) = −

ˆ
D(f, c, ·)dx ≤ 0

where

D =

ˆ
dvdv∗dσB(f ′f ′∗ − ff∗) log

(
f ′f ′∗
ff∗

)
and

H =

ˆ
f log f

and f ′ denotes f
∣∣∣
v′

and the like....

5. Consider the map
(x, y) 7→ (x− y)(log x− log y)

which is increasing, so that the integrand in the expression for D is positive

6. Somehow this tells us that
f ′f ′∗ = ff∗ f ∼= e−|v−u(x)|2

Boltzmann proved that
lim
t→∞

f(x) = M

where x depends on t, and M represents a “travelling maxwellian”
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7. This comes from the transport equation

∂tf + vi∂xif = 0, f
∣∣∣
t=0

= f0(x, v)

f(t, x, v) = f0(x− tv, v)

8. We have the following properties:

||f(t, x, v)||L∞x L∞v = ||f0||L∞x L∞vˆ
fdV =

ˆ
f0(x− tv, v)dV ≤ f0(1 + t)−3

9. Assume our space is π3
x, i.e. a 3-torus. We expect f

∣∣∣
t=∞

= M , but we cannot prove this. However, if we

begin close enough to this travelling Maxwell distribution, M , i.e. f = M + εjm, then there is a convergence
of f →M at exp−λt rate

10. Spatially Homogenous case:
∂tf = aij∂

2
vivjf − cf

Here, one uses entropic dissipation. We have that

aij = aij ∗ f

aij(z) =

(
Sij −

zizj
|z|2

)
|z|2+γ , ∀γ ∈ [−3, 1]

c = ∂2
vivja

11. The general idea is to get a bound of this form

− d

dt
H(t) ≥ θ(H(t))

for θ a positive function. Then we’ll get that

H(f) ≤ e−θtH(f0)

12. Theorem: (Fokker Planck)
∂tf = ∇v · (∇vf + fv)

we want to consider

H(f
∣∣∣M) =

ˆ
f log(f/M) I(f

∣∣∣M) =

ˆ
f |∇v log(f/M)|2

these are important to get exponential convergence.

13. Log-Sobolev tells us that

I(f
∣∣∣M) ≥ 2H(f

∣∣∣M)
d

dt
H = −I(f

∣∣∣M)

and so

− d

dt
H ≥ 2H(f) =⇒ H(f) ≤ e−2tH(f0)

by gronwall’s inequality

14. Open questions:

(a) Local existence for spatially inhomogenous Boltzmann for some physical regimes

(b) Global existence and regularity questions for large data

(c) Does f converge to Maxwellian for bounded domain?
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10/11: Felipe Hernandez’s talk on “Quantum Information Theory for
the Analyst”

1. We have H = C2 = span{|0 >, |1 >} hilbert

2. Ex:

v =
1√
2
|0 > +

1√
2
|1 >, w =

1√
2
|0 > − 1√

2
|1 >

then probability that |0 > and |1 > is each 1/2 in both states

3. Evolution: Occurs by applying a unitary matrix. As an example

U = 1/
√

2

(
1 −1
1 1

)
=⇒ Uv = |1 > Uw = |0 > w

4. Observables

(a) Self-adjoint operators A, v∗AV is some expectation

e.g. A =

(
1 0
0 0

)
=⇒ v∗Av =

1

2

for v as before

5. What is “|0 > with p = 1/2 and |1 > with p = 1/2? I.e. can get something that yields these probabilities, but
in a way that its invariant under unitary matrices U?

6. Solution: Expand our space from the hilbert space to a collection of density matrices

Instead of v, think about vv∗

7. Time evolution: v 7→ Uv, and vv∗ 7→ Uvv∗U

8. Observable: v 7→ v∗Av and vv∗ 7→ tr(Avv∗)

9. Note: vv∗ is

(a) positive semi-definite

(b) Trace equal to 1

(c) Self-adjoint

10. Both of the above properties are preserved under taking convex combinations

11. Ex: “|0 > with p = 1/2 and |1 > with p = 1/2 is given by the density matrix

1

2
|0 >< 0|+ 1

2
|1 >< 1| =

(
1
2 0
0 1

2

)
the above is a mixed state, i.e. it satisfies 1-3. Note that this is not a pure state, i.e. not equal to vv∗ for some
wave state v. This is because all such matrices vv∗ are rank 1, while the above is rank 2. In fact, any such
matrix which is a mixed state and is rank 1 is a pure state, i.e. arises as vv∗ for some v a wave state

12. As an aside, note that for

v =
1√
2
|0 > +

1√
2
|1 > =⇒ vv∗ =

[
1
1

] [
1 1

]
=

1

2

(
1 1
1 1

)
13. If ρ is a density matrix, then spectral theorem tell us that

ρ =
∑
i

λiviv
∗
i 0 ≤ λi ≤ 1,

∑
i

λi = 1

and {vi} the eigenvectors of the system. It makes sense to defien

S(ρ) =
∑
i

−λi log λi = tr(ρ log ρ)
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14. Quantum Channels

(a) Ex: U [ρ] = UρU∗

(b) In general, we want
O : B(H1)→ B(H2)

such that the above operator

i. preserves positive semi-definiteness

ii. Preserves trace

(c) O is called a completely positive trace-preserving operator

(d) Ex: Measurement

M [ρ] = |0 >< 0| < 0|ρ|0 > +|1 >< 1| < 1|ρ|1 > =⇒ tr(M [ρ]) = tr(ρ)

(e) Example:

v =
1√
2
|0 > +

1√
2
|1 >

m =
1√
2
|0 > ⊗|device says “0” > +

1√
2
|1 > ⊗|device says “1” >

Then

ρm =


1/2 0 0 1/2
0 0 0 0
0 0 0 0

1/2 0 0 1/2

 = mm∗

where the rows and columns are labelled by 00, 01, 10, and 11.

(f) The above still has 0 entropy because all of its eigenvalues are 0 or 1

(g) To get non-zero entropy, we look at Partial Trace

i. The follow set up
H = H1 ⊗H2 A ∈ B(H1), A2 ∈ B(H2)

trH2
(A1 ⊗A2) = A1tr(H2)

ii. In our previous example, if we have

trH2
(ρm) =

(
1/2 0
0 1/2

)
From the above, we can think of measurement as an operation that preserves the system and then a
partial trace

iii. Note: Partial traces are monotone w.r.t. the entropy, and so for any quantum channel, entropy is
always increasing!!!!!

(h) Part 2: For Analysts

i. Choose r > 0 (r is large and →∞), and a function

χ ∈ C∞c (Rd) s.t. ||χ||L2 = 1 supp(χ) ⊆ B1, “supp χ̂ ⊆ B1”

The last statement means that
|χ̂(p)| ≤ C(1 + |p|)−100100

i.e. χ̂ gets real fucking small outside of the unit ball

ii. Now for (x0, p0) ∈ Rd × Rd, then

φx0,p0(x) = r−d/2eip0·xχ

(
x− x0

r

)
= |x0, p0 >= |ξ0 > s.t. ξ0 = (x0, p0)

The Hilbert space we’re working in is H = L2(Rd) but the above collection of functions is not a basis
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iii. Cool thing

Id =

ˆ
Rd
|ξ >< ξ|dξ

the left hand side can be thought of as an integral of operators mapping from L2(Rd)⊗L2(Rd)→ R.
The above holds because

〈f, g〉 =

ˆ
〈f, φξ〉〈φξ, g〉dξ

And when you do the quadruple integral out, it all works out

iv. Fact: 〈ξ|ξ〉 = 1

v. Fact: ||f ||2 =
´
|〈f |ξ〉|2dξ

vi. Fact: 〈ξ|η〉 ∼= 0 unless |x− y| ≤ Cr and |p− q| ≤ Kr−1, where ξ = (x, p) and η = (y, q)

vii. If ρ ∈ B(L2(Rd)) (bounded maps from H to itself?), then

M [ρ] =

ˆ
|ξ >< ξ| < ξ|ρ|ξ > dξ

viii. Question: When is M [ρ] ∼= ρ?
Answer: If ρ =

´
F (η)|η > dη and F is smooth.

Proof: ˆ
F (ξ)| < η|ξ > |2|ξ >< ξ|dξ ≈ ρ

some how, maybe because the | < η|ξ > |2 is about 1 somewhere of interest

(i) Why we care:

i. Want to study the wave equation

i∂tψ +
1

2
∆ψ = εV ψ

for V a random weak potential

ii. We have that H = − 1
2∆ + εV , then eitHψ0 is a random linear combination of wavepackets

iii. Idea: ρ0 is a mixture of wavepackets. Need 2 facts

A. Ut[ρ0] = eitHρ0e
−itH

B. Then we look at
Ut ◦ · · · ◦ Ut[ρ0]

and Ut[M [ρ]] is easy to work with.

We want to replace
Ut ◦ · · · ◦ Ut[ρ0]

with
Ut ◦M ◦ Ut · · · ◦M ◦ Ut[ρ0]

10/18 Kevin Yang’s Talk on “Logarithmic Sobolev Inequalities”

1. In this talk µH(dx) = Z−1
H e−H(x)dx where

ZH =

ˆ
RN

e−H(x)dx

2. In this talk, we assume H ∈ C2 and D2H ≥ k > 0 (this is what “convexity” means) where D2H is the Hessian
of H

3. Ex: H(x) = ax2

2 and µH is a Gaussian with variance 1/a.

4. Note: can be extended to closed manifolds.

5. Here: convexity = “compactness”
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6. Definition: (Relative entropy/ KL divergence)

H(f) =

ˆ
Rn
f log fdµ f ∈ L1

dµ, f ≥ 0,

ˆ
fdµ = 1

7. Lemma: under these assumptions, H(f) ≥ 0 and H(f) = 0 ⇐⇒ f ≡ 1.
Proof: Use convexity of x 7→ x log x and apply Jensen’s inequality

8. Lemma: The following two equations holds

(a) 2||f − 1||L1 ≤
√
H(f) (Pinsker inequality)

(b) For p > 1, we have H(f) ≤ 2||f − 1||Lp + 2
p−1 ||f − 1||pLp

(c) H(f) = supϕ∈L∞{
´
fϕ− log

´
eϕdµ}

The third thing tells us ˆ
fϕdµ ≤ H(f) + log

ˆ
eϕdµ

Note that ||f − 1||L1 is a measure of the variation of f from the equilibrium measure.

9. Definition: The dirichlet energy/form of f is

D(f) =

ˆ
Rn
|∇f |2dµ

Here dµ is not just the lebesgue measure, because it must be normalized. Note: if µ(dx) = dx, then

D(f) = −
ˆ
Rn
f∆fdx

10. Definition: (Fisher Information) For f ≥ 0

D(f) := D(
√
f) =

ˆ
Rn
|∇
√
f |2dµ =

ˆ
|∇f |2

f
dµ

11. Operator
LH(f) = ∆f −∇H · ∇f

where H is our hamiltonian.

12. Check:

D(f) = −
ˆ
fLHfdµ

13. Note: LH is symmetric w.r.t. µ so ˆ
f(LHg)dµ =

ˆ
(LHf)g

14. Dynamic equation
∂Tu(T, x) = LHu(T, x)

Ex: If H(x) = ax2/2, then LH is a generator of an Orstein-Ulumbeck process

15. The relative entropy is some measure between fdµ and dµ

16. Entropy Production: u(T, x) solves (∂T − LH)u(T, x) = 0

17. Lemma: If u(0, x) ≥ 0,
´
Rn u(0, x)dµ = 1 then a) u(T, x) ≥ 0, b)

´
RN u(T, x)dµ = 1.

Proof: a) follows by the maximum principle, b) follows by differntiating under the integral

∂T

ˆ
u(T, x)dµ =

ˆ
LHu(T, x)dµ = 0

but now note that LH is symmetric, so we could writeˆ
LHu(T, x)dµ =

ˆ
LHu(T, x) · 1dµ =

ˆ
u(T, x) · LH(1)dµ = 0

because LH(1) = 0

6



18. Dynamical quantities:

H(T ) =

ˆ
RN

u(T, x) log u(T, x)dµ, D(T ) =

ˆ
RN
|∇
√
u(T, x)|2dµ

19. Lemma:
d

dT
H(T ) = −4D(T )

Proof: Just do it and use the parabolic equation

20. Note there’s an analogous thing that happens when instead of a differential operator, we have a jump process
(with no Leibniz rule). Then we have

Ḣ(T ) ≤ −4D(T )

21. Further note that if Ḣ(T ) ≤ −CH(T ), then H(T ) ≤ e−CTH(0)

22. But:
1

T

ˆ T

0

D(s)ds ≤ H(0)

T

23. Ex: Take an interval [0, N ], and µ(dx) = 1
N dx, with u(0, x) supported in some finite interval of width 1 and

height N , then

H(0, x) ≤ logN,
1

N2T

ˆ
D(s)ds ≤ c log(N)

N2T

24. Theorem: (Bakry-Emery Theorem) H(f) ≤ 2
kD(f), where D2H ≥ k > 0

25. Application: For ∂Tu(T, x) = ∆u(T, x) (i.e. a brownian motion/solution to classical heat equation), then we
get a magical fact

||u(T, x)||L∞ ≤ (4πT )−N/2||u(0, x)||L1(dx)

We get this by looking at

d

dt
log ||u(T, x)||p(T ) =

ṗ(T )

p(T )2

[
−4(p(T )− 1)

ṗ(T )

ˆ
|∇F (T )|2dx+

ˆ
|F (T,X)|2 log |F (T,X)|2dx

]
where p(T ) is some function such that p(0) = 1 and p(T ) =∞ and

F (T,X) =
u(T,X)p(T )/2

||u(T,X)||p(T )/2
p(T )

If we choose p(T ) so that
a2

π
=

4(p(T )− 1)

ṗ(T )

then the LSI (logarithmic sobolev inequality) yields

d

dT
log ||u(T, x)||p(T ) ≤ −

Nṗ(T )

p(T )2

(
1 +

1

2
log

(
4π(p(T )− 1)

ṗ(T )

))
having used gronwall and p(s) = T

T−S

26. Theorem: (Carlen-Loss), for ∂T − L = 0, L = ∇ · (D(T, x)∇) + b∇

27. Proof of Bakery-Emery: Recall
Ḣ(T ) = −4D(T )

We proceed as follows

Ḋ(t) =
d

dT

ˆ
|∇hT |2dµ

where hT =
√
u(T, x) and so

∂ThT =
1

2hT
Lh2

T = LhT +
1

hT
(∇hT )2
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and so

Ḋ(T ) =

ˆ
2∇hT · ∇∂ThT dµ =

ˆ
2∇hT · ∇LhT dµ+ 2

ˆ
∇hT · ∇

(
|∇hT |2

hT

)
dµ

more stuff follows, pushing through we finally get

d

dT
Ḋ(T ) ≤ −2

ˆ
∇hT ·D2H∇hT dx ≤ −2kD(T )

so integrating gives D(T ) ≤ e−2kTD(0) so as T →∞ we have u(T, x)→ 1.

28. From here, we get LSI and exponential relaxation

10/25: Shintaro Fushida-Hardy’s talk on “Using (a little bit of) Entropy
to Classify Surface Geometries”

1. Uniformization theorem

(a) For Σ, a complex structure, simply connected, then such a surface is biholomorphic to one of the following:
A Riemann sphere, the unit disk, or the entire complex plane

(b) In fact this gives a conformal equivalence between any such surface and one of the three above

2. The guide for this talk is as follows:

(a) Geometry

(b) Ricci Flow

(c) A priori estimates

(d) Convergence of solutions

3. Set up is: (M, g) a Riemannian manifold with a metric. We write

h = eug s.t. u : M → R smooth

Note that for this definition of h, we have h is conformally equivalent to g

4. We consider the equivalence classes of such conformally equivalent metrics, yielding (M, [g])

5. Connection: ∇

6. Theorem: (Fundamental theorem of Riemannian geometry): A levi-civita connection exists

7. Riemann curvature:
R(X,Y )Z = ∇X∇Y Z + . . .

where the coefficients are given by {Rijkl}. We also have

Ricjl = Rijil, Sc = Ricjj

8. TFAT (The following are true):

(a) Ric[cg] = Ric[g] if c > 0 is constnat

(b) For a 2-manifold: Ric = 1
2Sc · g. Note that on a surface, the gaussian curvature is a constant multiple of

the scalar curvature

(c) If g = euh, then
Sc[g] = e−u (Sc[h]−∆hu)

(d) For a two manifold:

[∆,∇] =
1

2
Sc · ∇

where ∆ = ∇ · ∇ = ∇i∇i
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9. Ricci Flow:
∂

∂t
g = −2Ric, g(0) = g0

the solution to this equation is the Ricci flow

10. Canonical example is (Sn, g0) where g0 is the canonical metric on Sn via embedding into Rn+1.

Note: Ric = (n− 1)g0 for the sphere. We guess g(t) = r2(t)g0, and then

2r
∂r

∂t
g0 =

∂

∂t
g = −2Ric[g] = −2Ric[g0] = −2(n− 1)g0

which yields
r(t)2 = r2

0 − 2(n− 1)t

having used scalar invariance of Ricci curvature.

11. The above is bad because the Ricci flow dies in finite time! And we can’t really classify surfaces via ricci flow
if they vanish in finite time

12. Volume: define as
´
M
dµ where dµ =

√
det gdx1 ∧ · · · ∧ dxn.

13. Claim: If g is a solution to Ricci flow, then

∂

∂t
dµ = −Scdµ

14. With the above claim, we normalize ricci flow by adding back in this scalar term to allow for volume preservation.
In particular

∂

∂t
g = −2Ric +

2

n
rg s.t. g(0) = g0

where r = Avg(Sc) = (
´
M
dµ)−1

(´
M
Scdµ

)
15. Note: we’re assuming that our manifolds are closed and oriented.

16. Hamilton: There is a one to one correspondence between solutions to Ricci flow and solutions to normalized
Ricci flow by reparameterizing time and space

17. Surfaces: (closed and oriented)

18. Uniformization: (Σ, g) a surface, g is conformally equivalent to a metric of constant curvature

19. Uniformization II: (Σ, g0) a surface, then there exists a solution to normalized ricci flow:

∂

∂t
g = (r − Sc)g s.t. g(0) = g0

and the solution exists for all time t. Moreover limt→∞ g(t) converges to a constant curvature metric in all Ck

norms

In particular, in the above, the solution is just an exponential times the initial metric, so we get a conformal
equivalence.

20. Gauss-Bonnet: Area(Σ) · r = π · χ(Σ) so r is a constant!

21. Going back to the solution for normalized Ricci flow on a surface:

g(t) = eug0, Scg(t) = e−u(Scg0 −∆g0u)

∂

∂t
Sc = ∆Sc+ Sc(Sc− r)

the last equation is nice because there’s a diffusion term, ∆Sc, and then a reaction term, Sc(Sc− r)

22. Maximum principle:

(a) M closed, F locally lipschitz

9



(b) Suppose u satisfies
∂u

∂t
= ∆g(t)u+ F (u)

Suppose ∃C ∈ R such that
u(x, 0) ≤ C ∀x ∈M

Let ϕ solve
dϕ

dt
= F (ϕ), ϕ(0) = C

then u(x, t) ≤ ϕ(t) for all t.

23. Other maximum principles exist: e.g. just reverse the direction of the inequalities and this also solves

24. Using both of the maximum principles: If g is a solution to the normalized Ricci Flow on (Σ, g0), then there
exists a C such that:

r < 0 =⇒ r − Cert ≤ Sc ≤ r + Cert

r = 0 =⇒ some polynomial bounds on both sides

r > 0 =⇒ −Ce−rt ≤ Sc ≤ r + Cert

25. Proposition: For (Σ, g0) our closed and oriented surface, there exists a unique solution, g(t), to the Normal-
ized Ricci Flow for all time t

26. Is Uniformization theorem true?

If r < 0, then things work out. Similar for other two cases. In particular for the r > 0 case, we define

N(g) =

ˆ
Σ

Sc log(Sc)dµ

then
d

dt
N = −

ˆ
|∇Sc+ Sc∇f |2

Sc
dµ = −2

ˆ
Σ

|M |2dµ

where
∆f = Sc− r, M := trace free Hessian of f

so in particular, the entropy never increases. Moreover, we can bound scalar curvature with something of the
form

log(Sc
∣∣∣
t
) < N(t) < N1

which will help us finish the r > 0 case to show that ricci flow converges to constant curvature metric.

11/1: Yuval’s Talk on “Claude Shannon, Master of Uncertainty”

1. Yuval will talk about the history and origin of Entropy and how it relates to information

2. In this talk,

(a) χ is a finite set

(b) X is a random variable on χ

(c) p(x), for x ∈ X, is defined p(x) = Pr[X = x]

(d) The entropy is

H(X) =
∑
x∈χ

p(x) log((1/p(x))) = −
∑
x∈χ

p(x) log(p(x)) = EX [− log p(x)]

3. Historically, Hartley in the ‘20s defined information in X is equal to log |χ|. This is additive if we consider χ1

and χ2 and take the product space.

4. Problem: This definition doesn’t care about the distribution of X
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5. How much information do we get by observing an outcome x ∈ χ?

6. Shannon says − log p(x) is a good measure

7. Ex: we’re supposed to guess a number between 1 and 8 by yes/no questions. How do? Binary search because
at each term, the probability of getting the answer yes is 1/2 and no is 1/2

At each step, you get − log(1/2) = 1 bits of information. In total 3 bits of information

8. In the “happy birthday” strategy (i.e. consecutively asking is it 1? 2? all the way until 8 until you get a “yes”),
at turn 1 we have Pr[Y es] = 1

8 and Pr[no] = 7
8 . If you get no, you’ve earned − log(7/8) bits of information

At turn 2, Pr[Y es] = 1/7 and Pr[no] = 6/7. Suppose you finally get it right at step n, total info:

− log(7/8)− log(6/7)− · · · − log(n/(n+ 1))− log(1/n) = − log

(
7

8
· 6

7
· · · n

n+ 1
· 1

n

)
= − log

(
1

8

)
= 3

where we get a bunch of “no”s until the last one which is a yes occurring with probability 1/n. Convince
yourself that any other guessing strategy will always result in 3 bits of information!

9. Another way to see that this is a good definition of information is there exists an axiomatic formulation such
that the information function exists and is unique up to a constant. This shows that the information must be
K
∑
x∈χ p(x) log(p(x)).

10. note that
0 ≤ H(x) ≤ log |χ|

where the left hand bound happens when we have a totally deterministic situation, i.e. p(x0) = 1. The right
hand bound occurs when we’re distributed uniformily

11. Aside: sometimes − log p(x) is called the “surprise” so the entropy, EX [− log p(x)], is called the expected
surprise!!!

12. Claude Shannon is a boss and apparently established a lot of this entropy/information theory machinery in
one paper

13. Theorem: (Noiseless coding theorem) Suppose you want to compress X s.t. if can always be recovered with
100 percent accuracy (to be defined). Then

E[length] ≥ H(X)

no matter how this is done. Moreover it can be done with E[length] ≤ H(X) + 1.

Formally, we think of encoding a function f : X → {0, 1}N for N = log2 |X| or comparable and then we’re
taking EX [|f(x)|]

14. Apparently, the above is how files are zipped and unzipped

15. Theorem: (Noisy/source coding theorem) If X1, . . . , Xn are iid copies of X, then the vector (X1, . . . , Xn)
can be compressed into {0, 1}k, if k > nH(x) with negligible probability. However, no matter how you map to
{0, 1}k, if k < nH(x), then Pr[error]→ 1.

16. Apparently, the above is how .jpeg’s are formmed

17. Theorem: (Channel Coding theorem) Let W be a noisy channel “W is a random function from χ→ Y” then
∃C = C(W ) some number. We define

rate =
Number of information bits communicated divided by
Number of bits sent

If rate � C(w), then there exists a coding scheme that fails with negligible probability. If rate > C(W ),
then all schemes fail with probability tending to 1. If the noise is gotten by “adding X”, then this capacity is
1−H(X) (maybe there should be some renormalization here).

18. The above is how phones work! When transmitting a signal, there is actually a lot of noise coming from cosmic
rays, trees, birds, etc. but there are built in error correcting codes which helps us transmit a coherent signal

11



19. Noiseless coding proof

(a) Definition: A map f : χ→ {0, 1}∗ (the codomain is the set of all finite binary strings) is called a prefix
code if no f(x) is a prefix of any f(x′), e.g.

{a, b, c} → {0, 10, 11}

is a good prefix code, but
{a, b, c} → {0, 01, 11}

is bad, because 0 is a prefix of 01.

(b) We convert as follows

01011110010011→ 0 10 11 11 0 0 10 0 11→ a b c c a a b a c

this procedure works because there’s no ambiguity given the prefix code

(c) Theorem: (Kraft’s inequality) Let f : χ→ {0, 1}∗ be a prefix code. Let `(x) = length of f(x). Then∑
x∈χ

2−`(x) ≤ 1

Proof: Pick a uniformily random infinite binary string U . Then

1 ≥ Pr[∃x : f(x) is a prefix of U] =
∑
x

Pr[f(x) is a prefix of U ] =
∑
x∈χ

2−`(x)

(d) Theorem: Let f : χ→ {0, 1}∗ be a prefix code. Then Ex[`(X)] ≥ H(X)
Proof: We compute

H(x)−E[`(X)] = EX [log(1/p(x))−`(x)] = EX [log

(
1

p(x)2`(x)

)
]
Jensen
≤ logEx[log

1

p(x)2`(x)
] = log

∑
x

2−`(x) ≤ 0

finishing the proof

20. Noisy coding proof

(a) We want an encoder E : χn → {0, 1}k and a decoder D : {0, 1}k → χn. Then

Pe = Probability of Error = PrX1,...,Xn [D(E(X1, . . . , Xn)) 6= (X1, . . . , Xn)]

(b) Theorem: If k > n(H(X) + 2), there exists a D, E such that Pe → 0 as n → ∞. If k < n(H(X)− ε),
then for all D and E, we have Pe→ 1
Proof: Define Yn = − log p(X1, . . . , Xn) = −

∑n
i=1 log p(Xi). We can use the weak law of large numbers

on Yn, to get

∀δ > 0, lim
n→∞

Pr[
1

n

∣∣∣Yn − EYn∣∣∣ > δ] = 0

where
EYn = E[− log p(X1, . . . , Xn)]

We can define the typical set

Tn,δ = {(x1, . . . , xn) ∈ χn | 2−n(H(X)+δ) ≤ p(X1, . . . , xn) ≤ 2−n(H(X)−δ)}

Then we have
Pr[(X1, . . . , Xn) 6∈ Tn,δ]→ 0

this somehow finishes the proof.
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11/15: Nikolas Kuhn’s talk on “Perelman Entropy and Ricci Flow with
Surgery”

1. Talk sketch

(a) Hamilton’s program (1982)

(b) Basic properties; long + short time existence

(c) Analysis of singularities

(d) Noncollapsing + Perelman entropy

2. In dimension 2, Ricci flow gives us the uniformization theorem.

3. Hamilton’s program told us that
ġ = −2Ric

so if Ric is positive then M (our manifold with the metric g) shrinks. If Ric is negative, then µ expands

4. On Sn, g(t) = 2(n− 1)(T − t)g0

5. Theorem: (Hamilton) For (M, g) a 3-fold such that Ric is everywhere positive, then blowup occurs as t→ T
at some time T with 0 < T <∞. Moreover, g(t)→ g∞ positive with g∞ a metric of constant positive, sectional
curvature.

6. Don’t expect uniformization. Even worse, consider S3 with a metric such that it looks like two spheres connected
by a little tube diffeomorphic to S2 × I. We hope that Ricci flow uniformizes this deformation of S3 back to
a single S3, but really it makes this little tube thinner and longer, stretching it towards two copies of S3

connected by a thin tube

7. Hamilton’s idea: Just before the singularity occurs, do surgery to break the tube and get two nice copies of S3

under Ricci flow

8. We now get some equations: If g(t) satisfies Ricci-flow then λ2g(t/λ2) does too.

9. We’ll get an equation like
Ṙ = ∆R+ 2(Ric)2

which we can bound below by ∆R + 2
dR, which is a heat transport esque equation and is in a nice class of

PDEs

10. We get some more equations that are too burdensome to copy down

11. In parabolic theorem, we have the weak maximum principle: Given u such that

∂u

∂t
≤ ∆u+ F (u, t), u(x, 0) ≤ α

for some function F . Suppose we also have a solution of dφ
dt = F (φ, t) such that φ(0) = α, then we can bound

u in terms of φ. In particular
u(x, t) ≤ φ(t) ∀x, t

now apply this to the absolute value of the Riemann tensor, squared, |Rm|2 and F = Cr3/2 so that

|Rm| ≤ M

1− 1
2CMt

, if |Rm|t=0 ≤M

12. Short time existence:
ġ = −2Ric

and we linearize
∂h

∂t
= ∆Lh+ LδG(h)#g =: L

we want to compute the symbol of L to show that it is parabolic, then

σ(L)(x, ξ)(h) = |ξ|2h− ξ × h(ξ#, ·)− h(ξ#, ·)ξ + (ξ × ξ)trh

where ξ# denotes the metric induced musical isomorphism. This is unfortunately not parabolic _̈

13



13. Via explicit computation, if we have h = ξ × ξ then the above symbol vanishes!

14. Through some reasoning, let
g(t) = ψ∗t g̃(t)

with g̃ parabolic. Then
˙̃g = −2Ric(g̃) + LX(t,g̃)g̃

In fact, x = (T−1δ(s(T )))# for T any positive symmmetric 2-cotensor.

15. Now the symbol of the linearization is |ξ|2h, which implies existence of a solution to our equation. With more
work we can get uniqueness

16. Loooooooong-time existence: Suppose (M, g(t)) has maximally extended Ricci flow on [0, T )

17. Theorem: Then supx∈M |Rm|(x, t)→∞ as t ↑ T

18. Lemma: If |Ric| ≤M , then
e−2Mtg(0) ≤ g(t) ≤ e2Mtg(0)

We also need bounds for |∇kRm| but this follows by estimates and an induction argument. This implies that
g(T ) exists and is smooth, so we can write [0, T ]

19. Analysis at singularities: M, g(t) a maximally extended Ricci-flow on [0, T ]. Let {ti} be a sequence ti ↑ T , and
let xi such that |Rm(ti, xi)| is maximal. Then define

gi(t) := |Rm(xi, ti)|g
(
ti +

t

|Rm(pi, ti)|

)
20. now think of this as a flow with a new time origin at ti. Then |Rmgi(0, x)| ≤ 1, and it exists on

[−ti · |Rm(ti, xi)|, (T − t)|Rm(pi, ti)]

21. We want to get a limiting flow g∞

22. We also want that as ti ↑ T , that rinj,ri doesn’t decay faster than |Rm| grows, where rinj is the injectivity
radius

23. In fact: rinj can be bounded below by the volume of small balls B(p, r) for certain r ≤ C|Rm|

24. Thus we want the volume of these balls to be bounded

25. This was achieved by Perelman using some entropy functional

W (g, f, τ) =

ˆ
M

[τ(R+ |∇f |2) + f − d]
e−f

(4πτ)d/2
dV = W (

g

τ
, f, 1)

where the last equality is some scale invariance by doing it out

26. Let u = e−t

(4πτ)d/2
then we get

d

dt
W (g, f, t) = 2τ

ˆ
M

|Ric +Hess(f)− g

2τ
|2 1

(4πτ)d/2
e−fdµ

27. Suppose g is Ricci flow, 0 < τ and τ̇ = −1, then u̇ = −∆u = Ru

14



11/22: Jared Marx-Kuo’s talk on “An Entropic View of the Central
Limit Theorem”

12/6: Andrea Ottolini’s Talk on “Equivalence of Ensembles”

1. We have a bunch of particles (ensemble) in some larger ambient collection, e.g. water. We have another
ensemble further away, but the latter ensemble is at temperature equilibrium

2. Let νCn = microcanonical distribution of n particles whose energy lies in C where C is some interval (the par-
ticles have maximum entropy given energy in C—)

3. Also define γβn = canonical distribution of n particles whose average energy (temp) is 1/β

4. Ex: Ideal gas - n particles v = (v1, . . . , vn) and
∑n
i=1 v

2
i = nE. In this case the microcanonical distribution is

νnEn is uniform on
√
nESn−1. Also γβn is the product of Gaussians with variance E for β = 1/(2E)

5. The theorem we’re trying to prove is: Theorem:

||νnEn,1 − ν
1/(2E)
n,1 ||TV ≤

1

n

where νnEn,1 denotes the one-dimensional marginal distribution (which is the context to which we apply the total
variation measure)

6. Lattice Systems: define {∧n}n∈Z ⊆ Zd, Vn = | ∧n |, Ωn = {−1, 1}Vn where ω ∈ Ωn then ξs(ω) = ω(s) is the
spin at site s

7. Also define Mn =
∑
s∈∧n ξs = total magnetization and ρn is a reference measure on Ωn. We have a map

Tn : Ωn → X ⊆ Rk, T is a “sufficient statistic”

8. Definition: The microcanonical ensemble with energy in C ⊆ X is given by

νCn (·) = αCn (·)ρCn (·)

αCn (·) =
1T−1

n (C)(·)
ρn(T−1

n (C))

9. Definition: The canonical distribution with inverse temperature β ∈ Rk is

γβn(·) = αβn(·)ρn(·)

αβn =
exp(Vn〈β, Tn(·)〉)

exp(Vnpn(β))

10. Ex: Take k = 1, ρn the counting measure, X = [−1, 1] and Tn = Mn

Vn
then this is called the paramagnet in

physic. In math, the microcanonical ensemble fixes the number of heads and then calculates a distribution,
whereas the canonical distribution is just normal coin flipping

11. Ex: k = 1, ρ
(·)
n = exp(a

M2
n(·)

2Vn
), X = [−1, 1], Tn = Mn

Vn
(Curie-Weiss Model)

12. Ex: k = 2, Un = −
∑
i∼s ξiξs, X = [−d, d] × [−1, 1] and Tn =

(
Un
Vn
, Mn

Vn

)
, ρn the counting measure (Ising

model)

13. Definition: We say equivalence of ensembles holds if ∀C ⊆ X, (for C convex and open), there exists a β ∈ Rk
such that ∀∆ finite subset of a lattice:

||νCn,∆ − γ
β
n,∆||TV → 0

14. Definition: Given two measures λ1, λ2 on some probability space Ω, the relative entropy of λ2 w.r.t. λ1 is
given by

H(λ1 | λ2) =

ˆ
Ω

ln

(
dλ1

dλ2

)
dλ1

if the Radon-Nikodym derivative, dλ1

dλ2
exists. Else H(λ1 | λ2) := +∞
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15. Suppose γβn is a product measure. Take ∆1,∆2 two disjoint copies of a fixed ∆. Under this assumption, if we
look at

H(νCn,∆1∪∆2
| γβn,∆1∪∆2

) ≥ H(νCn,∆1
| γβn,∆1

) +H(νCn,∆2
| γβn,∆2

)

16. We also have an eaiser bound

H(νCn | γβn) ≥ Vn
|∆|

H(νcn,∆ | γ
β
n,∆)

pinsker

≥ Vn
|∆|
||νCn,∆ − γ

β
n,∆||TV

where we assume that ∆ and the ∆i’s are nice shapes.

17. If
H(νCn | γ

β
n)

Vn
→ 0, then equivalence of ensembles holds

18. Note that γβn being a product measure is a big assumption, but by reductions using subadditivity, we can
remove this constraint for weaker ones

19. Somehow, we want to change the integral over Ω in the definition of relative entropy to just an integral over
X by using symmetry and the fact that our distributions only depend on the energy level

20. Idea: Use a change of variables from Ωn → X and the fact that Tn is sufficient to reduce the problem to

Mn(·) = ρn(T−1
n (·)), Mn[· | C] =

Mn[· ∩ C]

Mn[C]

Mβ
n [dx] =

exp(vn〈β, x〉)Mn[dx]

exp(vnρ(β))
Mn[dx]

H(νVn | γβn)

Vn
= −

ˆ
C

〈β, x〉Mn[dx | C] + pn(B)− 1

Vn
lnMn[C]

note that Mn is a measure on X

21. A short crash course on large deviations:

(a) Definition: We have a sequence of measures and scaling functions {(Mn, Vn)}. We say that this sequence
satisfies “L.D.P.” (large deviation principles) with rate function −µ if

∃M : X → R s.t. ∀C, open, convex

that

lim
n→∞

1

Vn
lnMn[C] = sup

x∈C
µ(x)

(b) From now on, an “L.D.P.” is assumed to hold. What is

lim inf
n→∞

ˆ
C

〈β, x〉Mn[dx | C] ≥ inf
x∈XC

〈β, x〉

where XC = {x ∈ X s.t. µ(x) = supy∈C µ(y)}
(c) Moreover, we have

pn(β)→ p(β) = sup
x∈X
{〈β, x〉+ µ(x)}

exp(vnp(β)) ≈
∑
x

exp(vn〈β, x〉) exp(vnµ(x))

and we define
XB := {x ∈ X s.t. 〈β, x〉+ µ(x) = p(β)}

22. Theorem: if an L̃.D.P holds, and if XC ⊆ Xβ , then equivalence of ensembles holds.

Proof:

lim sup
n→∞

H(νCn | γβn)

Vn
≤ inf
XC
〈β, x〉+ p(β)− sup

x∈C
µ(x)

≤ sup
XC

{p(β)− 〈β, λ〉 − µ(x)} = 0
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23. We consider two examples

24. Ex: (Paramagnet) µ(x) = (1 + x) ln(1 + x) + (1− x) ln(1− x). Given C = (c1, c2) then

XC =


c1 c1 > 0

c2 c2 < 0

0 0 ∈ (c1, c2)

For all C, there exists a β such that XC ⊆ Xβ , so we’re good

25. Ex: (Curie-Weiss), we have µ(x) = µ0(x) + ax2/2 + C for some constant C
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