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Introduction

These are notes from Professor Yi Lai’s Math 258 taught in Fall 2022 at Stanford. Thank you to her for a
great class! In addition, thank you to Yujie Wu and Shuli Chen for their comments and pictures incorporated
into these notes. These notes are not perfect, but may serve as an instructive reference for advanced ideas
in Ricci Flow. Professor Lai also has a hand written version of these notes on her website.

1 Lecture 1: 9-27-22

Schedule

� RF short time existence

� Basic RF identities

� Maximum principles

� RIcci solitons

� Perelman’s F , W, functionals

� Perelman’s no-local collapsing theorem

� Bamler’s compactness theory of Ricci Flows

Today: Review Riemannian Geometry - ricci curvature and its linearization

1.1 Riemannian Geometry

� Riemannian curvature tensor

X = Xi∂xi

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

= R`ijkX
IY jZk

∂

∂x`

= Rijk`g
`sXiY jZk

∂

∂xs

We note that in the third line, Rm is a (1, 3) tensor, while in the fourth line it is a (0, 4) tensor.

� Identities
Rijkl = −Rjikl = −Rijkl = Rklij

Rijkl +Rkijl +Rjkil = 0 (first bianchi identity)

∇iRjklm +∇jRkilm +∇kRijlm = 0 second bianchi identity

� Ricci curvature
Ric(X,Y ) = TrRm(·, X)Y = RicijX

iY j

Ricij = Rssij = gstRsijt

Ricij = Ricji, Ric ∈ S2(T∗M)

� Scalar Curvature

R = trgRic = gijRicij = gijgstRsijt

gst∇sRicti =
1

2
∇iR second contracted Bianchi identity
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1.2 Space of algebraic curvature tensors

Let (V, g) Euclidean vector space n = dimV <∞ (e.g. TpM, gp). Let {ei} an onb, S2(∧2V ) = {symmetric 2-forms on∧2

V }. Define
S2
B(∧V ) = {Rm = Rijkl(ei ∧ ej)⊗ (ek ∧ el) | Rijkl satisfies ∗

(here ∗ denotes the curvature symmetries and the first bianchi identity. In fact the B subscript stands for
Bianchi).

We have an algebraic curvature operator

Rm : ∧2(V )→ ∧2(V )

ei ∧ ej → −
1

2
Rijklek ∧ el

Example: Standard sphere, (Sn,K = 1), then ∀p ∈ Sn, Rm ∈ S2
B(∧2TpS

n), and

Rm = Id

because sphere has constant curvature

Rm(e1 ∧ e2) = −1

2
R12klek ∧ el

= −1

2
R1212e1 ∧ e2 = e1 ∧ e2

= −1

2
R1221e2 ∧ e1

1.3 Decomposition of Curvature Tensors

We have
S2
B(∧2V ) = 〈Id〉 ⊕ 〈R̊ic〉 ⊕ 〈Weyl〉

Note that if K is constant then Rm = KId, and hence Rm ∈< Id >

Rijkl = k(δjkδil − δikδjl)

e.g. spacetime curvature (i.e. riemannian manifolds with K = k ∈ R).

Now suppose that Rm ∈ 〈R̊ic〉, suppose Ric = (n− 2)A, then tr(A) = 0 and

Rijkl = Ailδjk +Ajkδil −Aikδjl −Ajlδik

If Rm ∈ 〈Weyl〉, we have Ric(Rm) = 0. (Would be good to get projection maps, presumably something like

Rm = Rg ⊗ g + g ⊗ (Ric−Rg) + else

or something).

When n = 2, S2
B(∧2V ) = 〈Id〉, e.g. 2-dimensional riemann manifold.

When n = 3
S2
B(∧2V ) = 〈Id〉 ⊕ 〈R̊ic〉

choose an onb {ei} such that

Ric =

ρ1

ρ2

ρ3



4



So the curavture operator is also diagonal and

Rm =

k1

k2

k3


where the rows and columns are e2 ∧ e3, e3 ∧ e1, e2 ∧ e1, and ρ1 = k2 + k3, ρ2 = k1 + k3, ρ3 = k1 + k2.

Also
k1 = K(e2 ∧ e3), k2 = K(e1 ∧ e3), k3 = K(e1 ∧ e2)

Corollary 1.0.1. (M3, g) Riemannian manifold. K ≥ 0 ⇐⇒ Rm ≥ 0

Note that Rm ≥ 0 always gives K ≥ 0 by definition of sectional curvature. The other direcion is only true
when n ≤ 3

1.4 Einstein Equation + Ricci Flow

Let (Mn, g) a riemannian manifold
Ric = λg

λ ∈ R - can prove via Schur’s lemma that if λ is a scalar function (not necessarily constant), then it has to
be constant everywhere.

We define Ricci Flow (Hamilton, 1982), (Mn, (gt)t∈I) such that

∂tgt = −2Ricgt

Ex: If Ric = λg, then

gt =


−2λtg, t > 0, if λ < 0

g t ∈ R, if λ = 0

−2λtg t < 0 if λ > 0

As an example, Yi draws pictures corresponding to a 2-hold torus with K = −1 (expanding surface), a torus
with K = 0 (Constant), and a sphere with K = 1 (round, shrinking sphere) 1 Example: If (Mi, (gi,t)t∈I)i=1,2

Figure 1

are ricci flows (RFs) then (M1 ×M2, (g1,t + g2,t)t∈I) is a ricci flow.

Example:
Sn × Rm, gt = −2(n− 1)tgSn + gRm , t < 0

See here 2

5



Figure 2

1.5 Symmetries of Ricci FLow

� Time-shift
g′t = gt−t0 , t ∈ I + t0

is also a ricci flow

� Parabolic rescaling
g′t = ∧2gλ−2t t ∈ λ2I,

Check that Ricci flow equation is

∂tg
′
t = −2Ricgλ−2t

= −2Ricλ2gλ−2t
= −2Ricg′t

� Diffeomorphism invariance: If φ : M → N diffeo, then

(N, gt) RF ⇐⇒ (M,φ∗gt) RF

� Under rescaling g′t = r2gr−2t, we say the scale of quantity is k if it changes by rk under the rescaling.

Then for any function f , vector V , we have

k = 2 k = 1 k = 0 k = −1 k = −2
gij |V | Ric gij

|V |2
√
t Γkij Rijkl

t Rlijk |Rm|, |Ric|, R
∇2f, df |∇2f |
∇kh ∇f = (df)]

1.6 Short time existence and uniqueness

Initial Value problem: Given (M, g), find T > 0, and (gt)t∈[0,T ) such that

∂t = −2Ricgt (1)

g0 = g

Theorem 1.1 (Hamilton). Suppose M compact

� Existence: The above system (1) has solution for some T > 0

� Uniqueness: If (gi,t)t∈[0,Ti) with gi,0 = g for i = 1, 2 both RFs, then

g1,t = g2,t ∀t ∈ [0,min(T1, T2))

This tells us that there exists a maximal Ricci Flow on each (M, g) compact, which will be unique by the
above

6



2 Lecture 2: 9-29-22

Goal:

� Analytic Properties of Ricci Flow

� Ricci-DeTurk Flow, Harmonic map heat flow

2.1 Diffeomorphism Invariance

Ricφ∗g = φ∗Ricg

If we assume we have a flow φs associated to a vector field X, then

(D(Ricg))(LXg) =
d

ds
(Ricφ∗sg) =

d

ds
(φ∗sRicg) = LX(Ric)

Note that on the left hand side, we have a priori 3 derivatives of X, since we have to differentiate the metric
twice to get the ricci curvature. On the right most side, we have 0 derivatives of X. In sum,

D(Ricg)(h) =
d

ds
Ricg+sh

One can use these two equations to derive the second contracted bianchi identity!

2.2 Some Operators

Recall: A linear differential operator, L, is elliptic if the principal symbol, σ(L)(ξ) is an isomorphism for
all ξ ∈ T ∗M .

Ex: L = ∆g : C∞(M)→ C∞(M), (Mn, g). Then in local coordinates we have

∆g = gij∂i∂j

σ[∆](ξ) = gijξiξj = |ξ|2g 6= 0

We also have the Lie Derivative:
δ∗ : C∞(T ∗M)→ C∞(S2T ∗M)

given by

δ∗W =
1

2
LW ]g

where W ] dual to W . In local coordinates, we have

(δ∗W )jk =
1

2
(∇jWk +∇kWj) =

1

2
(∂jWk + ∂kWj)

(I guess in geodesic normal coordinates at least) so that

σ[δ∗](ξ) =
1

2
(ξjWk + ξkWj)

The dual to δ∗ is called the divergence,

δ : C∞(S2T
∗M)→ C∞(T ∗M)

(δh)k = −gij∇ihjk
Note that

(DRic)(LXg) = LXRic

X = W ] =⇒ (DRic)(LW ]g) = LW ]Ric

((DRic) ◦ δ∗)(W ) =
1

2
LW ]Ric

0 = σ[(DRic) ◦ δ∗](ξ) = σ[DRic](ξ) ◦ σ[δ∗](ξ)

7



the last line follows since again it seems that DRic ◦ δ∗ is a 3rd order operator, but we showed that because
of the third line, this is actually first order, so σ[DRic ◦ δ∗] = σ3[DRic ◦ δ∗] = 0 since its actually first order.
In particular, this tells us that

Im(σ[δ∗](ξ)) ⊆ kerσ[DRic](ξ)

the left hand side is dimension n, so this says that DRic is not elliptic. We now show

Lemma 2.1.
D(−2Ric)(h)jk = ∆jk + gpq(∇j∇khqp −∇q∇jhkp −∇q∇khjp)

This follows by computing the formula for the first variation of the christoffel symbol. Rewrite this as

D(−2Ric)(hjk) = ∆hjk + gpq(∇j∇khqp −∇j∇qhkp −∇k∇qhjp)
+ gpq(2Rrqjkhrp −Rjphkq −Rkqhjq
= ∆Lhjk + gpq(∇j∇khqp −∇j∇qhkp −∇k∇qhjp)
= ∆Lhjk +∇j∇kgpqhqp −∇jgpq∇qhkp −∇kgpq∇ghjp
= ∆Lhjk −∇j∇ktr(h)−∇j(δh)k −∇k(δh)j

= ∆Lhjk −∇j∇ktr(h)− 2δ∗(δh)jk

where
∆L = ∆g + gpq(2Rrqjkhrp −Rjphkq −Rkqhjq

is the Lichnerowicz laplacian, and in the fourth line we’ve used that the metric is compatible with the
connection (torsion free or something) to commute connection with metric coefficients. We also have

Proposition 1. Choose a background metric g, and let

Wj = gjkg
pq(Γkpq − Γ

k

pq)

then
D(−2Ric +∇iWj +∇jWi)(h) = ∆Lh+ first order terms in h

i.e. the operator on the left is strongly elliptic

Proof: We compute

D(Wj)(h) = gjkg
pqD(Γkpq)(h) + zero order terms in h

= gjkg
pq · 1

2
gkl (∇qhlp +∇phlq −∇lhpq)

=
1

2
gpq (∇qhjp +∇phjq −∇jhpq) + z.o.t

= (δh)j −
1

2
∇jtr(h) + z.o.t

where z.o.t. denotes “zeroth order terms.” This tells us that

D(∇iWj +∇jWi)(h) = ∇i(δh)j +∇j(δh)i −∇i∇jtr(h) + (first order terms)

2.3 Ricci DeTurk Flow

Choose a background metric g. Then a metric, g̃, satisfies Ricci-DeTurk Flow if

(∂tg̃t)ij = −2(Ricg̃t)ij +∇iWj +∇jWi

where the connections are taken w.r.t. g̃t and where

(Wt)l = g̃lkg̃
ij(Γ̃kij − Γ

k

ij)

8



where the t subindex denotes time. Note that the Ricci-DeTurk Flow equation is a strongly elliptic PDE,
so it should satisfy short time existence and uniqueness.

We now want to compare Ricci flow and Ricci-DeTurk flow. Recall for χ : (M1, g1) → (M2, g2) a map
between two riemannian manifolds, we have that

∆g1,g2χ =

n∑
i=1

(
∇g2dχ(ei)

dχ(ei)− dχ(∇g1ei ei)
)

where {ei} is an onb on M1. Now consider (M, g) and (M, g̃t), let

W ] := ∆g̃t,gId

then
∂tg̃t = −2Ricg̃t + LW ] g̃t

2.4 Harmonic Map Heat Flow

Let {χt} a family of diffeos such that χ0 = Id. Then we say that χt satisfies the harmonic map heat flow if

∂tχt = ∆gt,gχt

when {gt} is a Ricci Flow. We now connect the Harmonic Map Heat Flow to Ricci De Turk Flow 3

Figure 3

Proposition 2. If (M, gt) is a Ricci Flow and {χt} a harmonic map heat flow w.r.t. {gt}, then (M, g̃t =
(χt)∗gt) is a Ricci De Turk Flow, and vice versa, i.e. if g̃t a Ricci-De-Turk Flow and {χt} a harmonic map
heat flow (still w.r.t. {gt}) then gt = (χt)

∗g̃t is a Ricci Flow

A natural question, if {χt} is always defined w.r.t {gt}, then how can we go from g̃t, a RDTF to {gt} a RF
without having {gt} in the first place? To resolve this, we compute

∂tgt = ∂t(χ
∗
t g̃t) = χ∗t (∂tg̃t) + χ∗t (L∂tχt g̃t)

= χ∗t (∂tg̃t) + χ∗t (L∆g̃t,gId
g̃t)∂tχt

= ∆gt,gχt

∂tχt ◦ χ−1
t = (∆gt,gχt) ◦ χ−1

t = ∆g̃t,gId

where the last line follows from the diffeomorphism invariance of the laplacian. But now plugging this
identity into the second line (and using the definition of RDTF flow), we get

∂tgt = χ∗t (−2Ric(g̃t)) = −2Ric(χ∗t g̃t) = −2Ricgt

9



This tells us that given the correspondence between {gt} ↔ {g̃t}, the harmonic map heat flow, {χt} actually
satisfies both of

∂tχt = ∆gt,gχt, gt a RF (2)

∂tχt = (∆g̃t,gId) ◦ χt, g̃t a RDTF (3)

i.e. {χt} satisfying either of the above is equivalent.

We now show existence of Ricci Flow: If we solve for g̃t a Ricci flow, then use the above to solve for
{χt} a harmonic map heat flow, we have via our proposition

gt := χ∗t g̃t

is a Ricci Flow. This gives short time existence.

Uniqueness: Essentially the same idea, but we formulate it in full: given {git} ricci flows for i = 1, 2
and g1

0 , g
2
0 , use (2) to solve for χit. Then via our proposition,

g̃it := (χit)∗gt

are RDTF flows with g̃1
0 = g̃2

0 . But now uniqueness of RDTF flow tells us that

g̃1
t = g̃2

t

for all t in our maximal interval. But then by (3), we have that

χ1
t = χ2

t

for all t because the harmonic map heat flow is strongly parabolic. Finally, this gives

g1
t = g2

t

for all t.

2.5 Solving non-linear strongly parabolic PDEs

We have a few non-linear strongly parabolic PDES: RDTF (Ricci De Turk Flow), HMHF (Harmonic Map
Heat Flow).

Let (M, g) compact Riemannian Manifold, (E, h) euclidean (real?) Vector Bundle over M with metric
connection (e.g. S2T∗M). Moreover, let (Ut)t∈[0,τ) smooth family of sections of E, (RDTF: g̃t). Want to
solve

∂tut = aij(ut, x, t)∇2
ijut + f(ut,∇ut, x, t)

u0 = ũ

Assume
aij ≥ Cgij

for some uniform C > 0. We have short time existence and uniqueness

Theorem 2.2. The above system has a unique solution for some τ > 0

3 Lecture 3: 10-4-22

Today’s goals:

� Non-linear parabolic PDE

� Evolution of length, distance

� Evolution of volume form

10



3.1 Solving non-linear strongly parabolic PDEs

We have

∂tut = aij(ut, x, t)∇2
ijut + f(ut,∇ut, x, t) (4)

u0 = ũ

for ũ given. We have ellipticity
aij ≥ cgij

for some c > 0. Then

Theorem 3.1. System (4) has a unique solution for some small τ > 0.

Proof: Let
Uτ := {u ∈ C2m+2,2α;m+1,α(M × [0, τ ];E) | u(·, 0) = 0}

where Ck,β;k′,β′ denotes regularity separately in spatial and time directions. Here, E is some bundle, e.g.
bundle of symmetric 2-forms. Similarly

Vτ = C2m,2α;m,α(M × [0, τ ], E)

for some τ small and determined later. We now consider the differential map

Fτ : Uτ → Vτ

u 7→ ∂t − aij(ut, x, t)∇2
ijut − f(ut,∇ut, x, t)

Our goal is to find a u such that F (u) = 0 and u ∈ Uτ . Of course, we do this by some implicit function

Figure 4

theorem or contraction map. Let
ut = tf(0, 0, x, t)

Then we see that
Ft(ut)(·, t = 0) = 0

So
lim
τ→0
||Fτ (ut)|| = 0

we now want to show that Fτ is non-degenerate as τ goes to 0 so we can truly find a zero. Consider the
linearization of Fτ at u = u = uτ

Lτ = (DFτ )u = ∂t − aij(u, x, t)∇2
ij − bi∇i − C

Lτ : Uτ → Vτ

parabolic schauder estimate =⇒ ||û||Uτ ≤ C(||Lτ û||V τ + ||û||C0)

11



here C is independent of τ . But now we claim that

||û||C0 ≤ C||Lτ û||V τ

Proof: Denote A = ||Lτ û||Vτ . Then

∂tû− aij∇ij û− bi∇iû− cû ≤ ||Lτ û||C0 ≤ A
(∂t − aij∇ij − bi∇i)û ≤ A+ cû ≤ A+ C||û||C0

maximum principle =⇒ û(·, t) ≤ (A+ C||û||C0) · t

This last line follows by comparing û with the following function

u s.t. ∂tu = A+ C||û||C0 = C̃

i.e. ∂tu is a constant. This is a bit opaque, but I guess the idea is to

(∂t − aij∇ij − bi∇i)û ≤ A+ C||û||C0

∂tu = A+ C||û||C0

and to subtract the two or something. Now choose τ very small such that c · τ ≤ 1
2 =⇒ ût ≤ C ·A.

We now do the same argument but with the reverse sign, i.e.

ût ≥ −CA

to get that ||ût|| ≤ C ·A, which means that

||û||V τ ≤ C||Lτ û||Vτ
=⇒ ||L−1

τ || ≤ C

Seems like the crux of this proof is the parabolic maximum principle.

We also need to check
||D2Fτ || ≤ C

But Yi asks that we do it on our own. Once we have this, the Inverse function theorem implies that Fτ
is invertible on

S = BUτ (u, r0) ⊆ Uτ
where r0 is independent of τ . But now the invertibility of Lτ says that balls of a given radius in Uτ will
yield balls of comparable radius under Lτ , i.e.

Fτ (BUτ (u, r0)) ⊇ BVτ (Fτ (u), cr0)

for some c > 0 independent of τ . But now, note that for τ sufficiently small, we have Fτ (ut)→ 0 as τ → 0,
so if we choose τ small so that ||Fτ (u)|| ≤ 1

2cr0, then we’re done.

3.2 Evolution of Lengths

Let γ : [a, b]→M , a C1 curve then

d

dt
`t(γ) =

d

dt

� b

a

|γ̇(s)|gtds = −
� b

a

Ric(γ̇(s), γ̇(s))

|γ̇(s)|
ds

assuming that {gt} is a Ricci Flow

12



Figure 5

3.3 Distance Distortions

Let x, y ∈ M compact, t0 ∈ I. Let γ be a minimizing geodesic (w.r.t. gt0) parameterized w.r.t. arclength
from x→ y. Then

dt(x, y) ≤ `t(γ)

The right hand side is an upper barrier of dt(x, y) at t0, with equality holding at t = t0.
Now by the same argument as in viscosity solutions, we have that

d

dt−

∣∣∣
t=t0

dt(x, y) ≥ d

dt

∣∣∣
t=t0

`t(γ) =

� d=dt0 (x,y)

0

−Ric(γ̇, γ̇)ds

d

dt+

∣∣∣
t=t0

dt(x, y) ≤ d

dt

∣∣∣
t=t0

`t(γ) =

� d=dt0 (x,y)

0

−Ric(γ̇, γ̇)ds

having used that the geodesics are unit speed parameterized w.r.t. gt0 . Then

Theorem 3.2. If k1gt ≤ Ric ≤ k2gt for all t ∈ I, then for t1 < t2 we have

e−k2(t2−t1)dt1(x, y) ≤ dt2(x, y) ≤ e−k1(t2−t1)dt1(x, y)

Remark k1, k2 ∈ R arbitrary, i.e. not necessarily positive nor negative. But if k1 > 0, then we essentially
have a shrinker and is k2 < 0 we have an expander.
Proof: Integrate our left and right hand derivative bounds.

We also have

Theorem 3.3 (Hamilton, distance shrinking estimate). If Ricgt ≤ r−2gt on Bt(x, r) ∪Bt(y, r), then

d

dt−
dt(x, y) ≥ −cnr−1

where cn is a dimensional constant but not dependent on the ambient manifold.

Corollary 3.3.1. If Ric ≤ kg in Bt(x, r) ∪Bt(y, r) then for t1 < t2, we have

dt2(x, y) ≥ dt1(x, y)− cn
√
k(t2 − t1)

We now prove the Hamilton theorem

Proof: Choose γ : [0, d]→M , a minimizing geodesic paramterized w.r.t. arclength between x, y, w.r.t. gt.
Case 1: dt(x, y) ≤ 2r. Then

13



Figure 6

d

dt−
dt(x, y) ≥ −

� d

0

Ric(γ̇, γ̇)ds ≥ −r−2dt(x, y) ≥ −2r−1

by using our assumption of −Ricgt ≥ −r−2gt.

Case 2: dt(x, y) > 2r, then define {γu(s)}, u ∈ (−ε, ε), a variation of γ = γ0(s), such that γu(0) = x
and γu(1) = y. We now look at the variational vector field

Figure 7

V (s) =
d

du

∣∣∣
u=0

γu(s), s.t. V (0) = V (d) = 0

because γ0 is a minimizing geodesic, then we compute

E(u) =
1

2

� d

0

|γ′u(s)|2ds

In particular

0 ≤ d2

du2

∣∣∣
u=0

E(u) =

� d

0

[|V ′(s)|2 −R(V (s), γ̇, γ̇, V )]ds

from the second variation formula. Now we use this to derive our result, in particular, choose a parallel
orthornormal frame {e1(s), . . . , en(s)}, with e1(s) = γ̇(s). Let ϕ : [0, d]→ [0, 1], a bump function with ϕ ≡ 1
on [r, d− r] and |ϕ′| ≤ 10

r
Now let V (s) = ϕ(s)ei(s) for i = 2, . . . , n. Then

0 ≤
� d

0

[|ϕ̇|2 − ϕ2R(ei, e1, e1, ei)]ds

Figure 8
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sum over i = 2, . . . , n. Then we have that

0 ≤
� d

0

(n− 1)|ϕ′(s)|2 − ϕ(s)2Ric(e1, e1)ds

=⇒
� d

0

ϕ2(s)Ric(γ̇, γ̇)ds ≤ (n− 1)

� d

0

|ϕ′(s)|2ds

But also by construction of the bump function we have

� d

0

(1− ϕ2(s))Ric(γ̇, γ̇)ds =

�
[0,r]∪[d−r,d]

(1− ϕ2(s))Ric(γ̇, γ̇)ds

≤ 2rr−2 =
2

r

=⇒
� d

0

Ric(γ̇, γ̇)ds ≤ 100(n− 1)

r
+

2

r
=
cn
r

=⇒ d

dt−
dt(x, y) ≥ −cn

r

Ending the proof.

We now show how volume changes under ricci flow:

Theorem 3.4. For a ricci flow, d
dtdV olgt = −RdV olgt

Proof: Use the ricci flow equation
∂tgt = −2Ricgt

4 Lecture 4: 10-6-22

Today:

� Uhlenbeck’s trick

� Gradient of heat flows

� Evolution of curvature tensor

4.1 Uhlenbeck’s trick

Let {ei(t0)}ni=0 onb of (TpM, (gt0)p) such that

d

dt
ei(t) = Rict(ei(t)), ei(t0) = ei(t0)

where we make sense of Rict : Vectors → Vectors by sharping it we note that

d

dt
gt(ei(t), ej(t)) = −2Rict(ei(t), ej(t)) + Rict(ei(t), ej(t)) + Ric(ei(t), ej(t)) = 0

so {ei(t)} is an onb of (TpM, (gt)p) for some small interval in time about t0.

This inspires us to look at the geometry of M in this time dependent but orthornormal frame. We de-
fine

projM :M × I →M

projI :M × I → I

T spat(M × I) = proj∗(TM) = ker(dt) ⊆ T (M × I)

{time-dependent vector field on M , {Xt}t∈I}
1−1↔ {X ∈ Γ(T spat(M × I)) : section of T spat(M × I)}

15



Figure 9

the idea is that Xt just a vector field on M , so it cannot have ∂t components but it still has time dependence
so we can lift it to T (M×I) with 0 component on TI (see fig 9) For X ∈ Γ(T spat(M×I)), define a connection
∇̃ by

∇̃vX = ∇gtv X = ∇vX ∈ T spat(p,t) (M × I)

∇̃∂tX = ∂tX − Rict(X)

∇̃∂tei(t) = 0

Here, I believe ∂tX means differentiate the coefficients of X at a fixed point p ∈M .

Theorem 4.1. ∇̃ is a metric connection on (T spat(M × I),proj∗Mgt)

Proof: Let {Xt}t∈I , {Yt}t∈I ∈ Γ(T spat(M × I)). Then

d

dt
gt(Xt, Yt) = −2Rict(Xt, Yt) + gt(∂tXt, Yt) + gt(Xt, ∂tYt)

= gt(∇̃∂tXt, Yt) + gt(Xt, ∇̃∂tYt)

Corollary 4.1.1. We have

∇̃v(X ⊗ Y ) = (∇̃vX)⊗ Y +X ⊗ (∇̃vY )

(∇̃vα)] = tilde∇v(α])

where α is a 1-form

4.2 Applications of ∇̃: Gradients of heat flow

Let u ∈ C2(M × I) and
∂tut = ∆gtut

implicitly coupled with Ricci flow. Then

∂tdut = d∂tut = d∆gtut = ∆gtdut + Ric(dut)

where the last equality is by Bochner’s formula. Here d is the exterior derivative on just the spatial compo-
nent.
Note:

(∇̃∂tαt)(v) = ∂t(αt(v))− αt(∇̃∂tv)

= ∂t(αt(v))− αt(∂t(v)− Rict(v))

= (∂tαt)(v) + Ric(αt)

=⇒ ∇̃∂tαt = ∂tαt + Ric(αt)
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Applying this for α = dut, we get

∇̃∂tdut = ∂t(dut) + Rict(dut)

=⇒ ∇̃∂tdut = ∆gtdut

Next we reduce

∇̃∂t(∇ut) = ∇̃∂t(dut)]

= (∇̃∂tdut)]

= (∆gtdut)
]

= ∆gt∇gtu
= ∆∇u

where we’ve applied commutativity of the connection and sharping multiple times. Now we note

∂t|∇u|2 = 2〈∇̃∂t∇u,∇u〉gt
= 2〈∆∇u,∇u〉gt
= ∆|∇u|2 − 2|∇2u|2

where the last line probably follows by a bochner formula. We also compute

∂t|∇u|2 = 2|∇u|∂t|∇u|
∆|∇u|2 = 2(∆|∇u|)|∇u|+ 2|∇|∇u||2

∂t|∇u| = ∆|∇u|+ 2(|∇|∇u||2 − |∇2u|2)

by Kato’s inequality, we have
|∇|∇u||2 − |∇2u|2 ≤ 0

which follows from |∇|u|| ≤ |∇u|. This implies that

∂t|∇u| ≤ ∆|∇u|

as a consequence of the above, if |∇u|(·, 0) ≤ C, then by the maximum principle, we have

|∇u(·, t)| ≤ C

4.3 Application 2: Evolution of Riemann Curvature Tensor

First, choose X,Y, Z time independent vector fields on M that commute with each other and ∂t, i.e.

0 = ∂tX = ∂tY = ∂tZ = [X,Y ] = [Y,Z] = [X,Z] = [∂t, X] = [∂t, Y ] = [∂t, Z]

(I think last three are superfluous requirements?) Moreover, at (p0, t0), we want

∇gt0X = ∇gt0Y = ∇gt0Z = 0

We compute the curvature of ∇̃

〈R(∂t, X)Y, Z〉 = 〈∇̃∂t∇̃XY − ∇̃X∇̃∂tY,Z〉
= 〈∂t(∇XY )− Ric(∇XY )− ∇̃X(∂tY − Rict(Y )), Z〉

at (p0, t0, we know that ∇XY = 0, and also use time independence to get

〈R(∂t, X)Y, Z〉 = 〈∂t∇XY +∇X(Ric(Y )), Z〉

=
1

2
∂t (X〈Y,Z〉+ Y 〈X,Z〉 − Z〈X,Y 〉) +∇XRic(Y,Z)
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Note that even though ∇XY = 0 and ∂tX = ∂tY = 0, ∂t∇XY may be non zero since ∇ = ∇gt is a time
dependent connection. In the last line, we used the Koszul formula and also the fact that ∇XY = ∇XZ = 0
and comptability of the connection to get (∇XRic)(Y, Z) = ∇X(Ric(Y, Z)).

Now we use the Ricci flow equation and get

〈R(∂t, X)Y, Z〉 =
1

2
∂t (X〈Y,Z〉+ Y 〈X,Z〉 − Z〈X,Y 〉) +∇XRic(Y, Z)

= −XRic(Y, Z)− Y Ric(X,Z) + ZRic(X,Y ) +∇XRic(Y, Z)

= −∇XRic(Y,Z)−∇Y Ric(X,Z) +∇ZRic(X,Y ) +∇XRic(Y,Z)

= −∇Y Ric(X,Z) +∇ZRic(X,Y )

now we take {ei} an orthonormal basis with ∇ei = 0 at (p0, t0). Then

〈R(∂t, X)Y,Z〉 = −∇Y Ric(X,Z) +∇ZRic(X,Y )

=

n∑
i=1

−∇YR(X, ei, ei, Z) +∇ZR(X, ei, ei, Y )

=

n∑
i=1

−∇eiR(X, ei, Y, Z) 2nd Bianchi Identity

2nd Bianchi identity is
∇iRjklm +∇jRkilm +∇kRijlm = 0

In sum, this tells us that

R̃(∂t, X)Y =

n∑
i=1

−(∇eiR)(X, ei)Y

Now we recall the definition of the covariant derivative of a tensor, still for X, Y , Z, nice time-independent
vectors with our initial assumption:

(∇̃∂tR)(X,Y )Z = ∇̃∂t(R(X,Y )Z)−R(X, ∇̃∂tY )Z −R(X,Y )∇̃∂tZ
= ∇̃∂t(∇X∇Y Z −∇Y∇XZ) +R(Ric(X), Y )Z +R(X,Ric(Y ))Z +R(X,Y )Ric(Z)

= ∇X∇̃∂t∇Y Z + R̃(∂t, X)∇Y Z −∇Y ∇̃∂t∇XZ − R̃(∂t, Y )∇XZ
+ [R(Ric(X), Y )Z +R(X,Ric(Y ))Z +R(X,Y )Ric(Z)]

= ∇X(∇Y ∇̃∂tZ + R̃(∂t, Y )Z)−∇Y (∇X∇̃∂tZ + R̃(∂t, X)Z)

+ [R(Ric(X), Y )Z +R(X,Ric(Y ))Z +R(X,Y )Ric(Z)]

now we use ∇̃∂tZ = Ric(Z) for our time independent vector field, and we get

(∇̃∂tR)(X,Y )Z = ∇X(R̃(∂t, Y )Z)−∇Y R̃(∂t, X)Z +R(Ric(X), Y )Z +R(X,Ric(Y ))Z

= −∇X(∇eiR)(Y, ei)Z +∇Y (∇eiR)(X, ei)Z +R(Ric(X), Y ) +R(X,Ric(Y ))Z

But now

−∇X(∇eiR)(Y, ei)Z = ∇ei(∇XR)(Y, ei)Z − (R(X, ei)R)(Y, ei)Z

= ∇ei(∇XR)(Y, ei)Z −R(X, ei)(R(Y, ei)Z)

+R(R(X, ei)Y, ei)Z +R(Y,R(X, ei)ei)Z +R(Y, ei)R(Y, ei)Z

where we now interpret R(X, ei) as a curvature tensor acting on tensors, e.g. R itself in (R(X, ei)R). Finally,
we sum over i, and do the same expansion for

∇Y (∇eiR)(X, ei)Z = ∇ei(∇YR)(X, ei)Z −R(Y, ei)(R(X, ei)Z) +R(R(Y, ei)X, ei)Z

+R(X,R(Y, ei)ei)Z +R(X, ei)R(Y, ei)
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subtracting these two, we get

−∇X(∇eiR)(Y, ei)Z +∇Y (∇eiR)(X, ei)Z = ∇ei((∇eiR)(X,Y )Z) + 2[R(X, ei), R(Y, ei)]Z

−R(R(X, ei)Y, ei)Z −R(R(Y, ei)X, ei)Z

where we’ve noted that

−R(X, ei)(R(Y, ei)Z) +R(Y, ei)R(X, ei)Z = [R(X, ei), R(Y, ei)]Z

This tells us that
(∇̃∂tR)(X,Y )(z) = ∆R(X,Y )Z +Q(R)

where Q(R) denotes quadratic terms in R. In general

∇̃∂tR = ∆R+Q(R)

5 Lecture 5: 10-11-22

Goal for today

� Evolution of Ric and R

� Scalar weak/strong maximum principle

Recall that

∇∂tRm = ∆Rm+Q(Rm)

Q(Rm)ijkl = −RijstRstkl + 2RistlRjstk − 2RjstlRistk

Here, ∇ is the special connection we constructed from last time using Uhlenbeck’s trick.

For general evolution of metrics {gt} (i.e. not necessarily Ricci flow), we have

∂tRijkl = ∇i(∂tΓljk)−∇j(∂tΓlik) + (lower order terms)

d

dt
gij(t) := hij

∂tRijkl =
1

2
(∇i∇khjl +∇i∇jhkl −∇i∇lhkl) + · · ·+ (lower order terms)

(h=−2Ric)
=

1

2
∇i∇kRicjl + · · ·

= ∆Rm

in a loose sense. I guess the point is that we can see the evolution equation from the normal formula for
variation of curvature tensor under a family of metrics.

5.1 Evolution of Ric

We have that

Q(Rm)ijki = 2RicstRjstk = 2Rm(Ric)jk

=⇒ ∇∂tRic = ∆Ric + 2Rm(Ric)
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Another way to obtain this is recall that

D(−2Ric)(h)jk = ∆Lhjk +∇j∇kTr(h) +∇j(δh)k +∇k(δh)j

= ∆Lhjk +∇j(δEh)k +∇k(δEh)j

E(h)ij = hij −
1

2
Tr(h)gij

δ∗ : Lie derivative = ∆Lhjk + (δ∗(δEh))jk

δE(Ric) = δ(Ricij −
1

2
Rgij) = (δRic− 1

2
dR)ij

= 0 (second contracted Bianchi identity)

here, ∆L is the Lichnerowicz laplacian, E(h) is the einstein operator. This tells us tbhat

D(−2Ric)(−2Ric) = ∆L(−2Ric) + 0 = −2∆LRic

=⇒ ∂t(Ric)∆LRic

because D(−2Ric)(−2Ric) = ∂t(−2Ric). This follows from work we did on previous days for computing
D(Ric)

5.2 Evolution of R

We have

Rm(Ric)ii = RikliRickl = RicklRickl = Ric2
kl

=⇒ ∇tR = ∂tR = ∆R+ 2Rm(Ric)ii

=⇒ ∂tR = ∆R+ 2|Ric|2

In two dimensions, we know that

Ric =

[
k 0
0 k

]
for K the scalar curvature, so |Ric|2 = 2k2 and R = 2k, which tells us that

∂tR = ∆R+R2

= 2∆K + 4k2

For M closed

∂t

�
Rdgt =

�
(∂tR)dgt +

�
R(dtgt)

=

�
∆R+R2 −R ·R

=

�
∆R

= 0

by closedness. This tells us that
�
Rtdgt is an invariant on 2D ricci flow - i.e. genus can’t change

5.3 Scalar Weak maximum principle

Theorem 5.1. Let M a compact, {gt}t∈[0,T ) any smooth family of Riemannian metrics. Moreover, suppose
we have

f ;R× [0, T )→ R
(Xt)t∈[0,T ) : vector fields

u ∈ C∞(M × [0, T ))

u ∈ C∞([0, T ))
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Figure 10

If

∂tut ≤ ∆ut +Xt · ∇ut + f(ut, t) (5)

and ut ≤ u on ∂(M × [0, T )) = ∂M × [0, T ] ∪M × {0} (6)

and ∂tu(t) ≥ f(u(t), t), then (7)

ut ≤ u everywhere

Proof:
Case 1, Assume (7), (6) have strict inequality. Let

t∗ = max{t ∈ [0, T ) | ut ≤ u on [0, t]}

then by (??) and M compact, we have t∗ > 0, then there exists an x∗ ∈ Int(M) such that u(x∗, t∗) = u(t∗).
THis implies

=⇒ ∂tu(x∗, t∗) ≥ ∂tu(t∗), ∇u(x∗, t∗) = 0, ∆u(x∗, t∗) ≤ 0

so at (x∗, t∗), we have

∂tu(t∗)− f(u(t∗), t∗) ≤ ∂tu(x∗, t∗) = f(u(x∗, t∗), t∗) +Xt · ∇u
≤ ∆ut

≤ 0

since ∇u(x∗, t∗) = 0 and ∆u(x∗, t∗) = ∆ut∗(x
∗) ≤ 0. Here, ut = u(·, t).

Case 2, here we handle non-strict inequality by creating a perturbation. Let

uε(t) = u(t) + εt+ ε2

then (??) and (??) will have strict inequality. For (??) its evident, for (??), we have

∂tuε = ∂tu+ ε

f(uε(t), t)− f(u(t), t) ≤ C|uε(t)− u(t)|

= C(εt+ ε2) ≤ 1

2
ε+ Cε2

≤ 3

4
ε2

here C is a bound on the gradient of f , and we choose τ such that for t ≤ τ , we have

Ct ≤ Cτ ≤ 1

2

which allows the last line to hold, assuming ε sufficiently small. So by case 1 ,we have ut ≤ uε(t), now let
ε→ 0, then we have

ut ≤ u(t) on t ∈ [0, τ ]

now extend to [0, T ] for T maximal by an open-closed argument and potentially repeating this construction.
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5.4 Scalar Strong maximum principle

Lemma 5.2. Let M be a compact manifold with boundary, {gt}, {Xt} as before, u ∈ C∞(M × [0, T ]). If
u ≥ 0 and

∂tu ≥ ∆ut +Xt · ∇ut ∀t ∈ [0, T ]

(Note this is a homogeneous inequality with no 0 order terms) and if ∃x0 ∈ Int(M) such that u(x0, T ) = 0,
then there exists a neighborhood of x0, U , and ε > 0 such that u ≡ 0 on U × [T − ε, T ].

Corollary 5.2.1. Same assumption and set up as the above but u ≡ 0 on M × [0, T ], by an open closed
argument

“Proof: ” - WLOG, assume M is covered by a coordinate chart. Consider

V := {(x, t) ∈M × [0, T ] : u(x, t)}

then use the above lemma to show that

V ∩ (M × {t}) = M

which makes sense if M is connected. For the time component, repeat the lemma but considering every-
thing on [0, T−ε], i.e. replace T → T−ε, should be a similar openness argument but in the time direction.

Proof of Lemma: Suppose that no such neighborhood existed, then

∃(x∗, t∗) near (x0, T ), u(x∗, t∗) > 0

Claim: ∃ϕ∞(M × [t∗, t]) such that

ϕ ≥ 0 (8)

ut∗ ≥ ϕt∗ (9)

ϕ ≡ 0 on ∂M × [t∗, T ] (10)

ϕ(x0, T ) > 0 (11)

∂tϕt ≤ ∆ϕt +Xt · ∇ϕt (12)

This ϕ is a barrier function. Assume the claim is true, then

∂t(ut − ϕt) ≥ ∆(ut − ϕt) +Xt · ∇(ut − ϕt)

then the weak maximum principle tells us that

u(x0, T )− ϕ(x0, T ) ≥ 0 =⇒ u(x0, T ) > 0

a contradiction, since we’ve assumed that u(x0, T ) = 0.

Now the point is to construct such a barrier function, ϕ, which satisfies the claim. Note that (8), (9), (10),
and (11) can be satisfied easily by constructing a bump function about x∗, t∗ and scaling it by 1

2u(x∗, t∗).
Thus, the work is in showing (12).

Proof of claim: Let
ϕ(x, t) = e−A(t+1)φ(|x− x∗| − s(t− t∗))

where A, S ∈ R, and φ : R→ R is decreasing and φ is a smoothed heaviside function with φ(t) ≡ 1, t ≤ 0
and φ(t) ≡ 0, t ≥ ε|x0 − x∗|. Moreover, on [0, ε|x0 − x∗|], we require that

−φ′′ ≤ Cφ, (φ′)2 ≤ Cφ′ ≤ Cφ
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Figure 11

Yi says that we can do this by inserting quadratic transitions at t = 0, t = 1 and then smooth appropriately.

Assume WLOG that B(x0, 2|x0 − x∗|) ⊆ Int(M). Choose

s ∈
([

1− 1

2
ε

]
|x0 − x∗|
T − t∗

, (2− ε) |x0 − x∗|
T − t∗

)
Then

φ(|x0 − x∗| − s(T − t∗)) > 0

φ(|x− x∗| − s(t− t∗)) = 0, ∀x ∈ ∂M, ∀t ∈ [t∗, T ]

=⇒ ϕ = 0 on ∂M × [t∗, T ]

Now to enforce ut∗ ≥ ϕt∗ , we take A to be very large and ε� 1. Now to verify (12), we have

∂tϕ = e−A(t+1)(−sφ′ −Aφ)

|∇ϕ| = e−A(t+1)C|φ′|
∆ϕ ≥ e−A(t+1)φ′′

(12) ⇐⇒ ∂tϕt ≤ ∆ϕt +Xt · ∇ϕt
⇐⇒ Cφ′ −Aφ ≤ φ′′ − C|φ′|
⇐⇒ C|φ′| − φ′′ ≤ Aφ

so taking A� 1, this is true, and we get (12) finishing the proof of the lemma.

We now state the Scalar Strong Maximum Principle

Theorem 5.3. Suppose M connected (not necessarily compact), {gt}, Xt, u, u, f , all as before. Suppose
that

ut(x) ≤ u(t) ∀t ∈ [0, T ]

and
u(x0, T ) = u(T ), for some x0 ∈ Int(m)

then ut ≡ u(t) everywhere on M .
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Proof: , let
Z = {(x, t) ∈M × [0, T ] | u(x, t) = u(t)}

Let

vt = ut − ut ≥ 0

∂tvt ≥ ∆vt +Xt · ∇vt + f(u(t), t)− f(ut, t)

≥ ∆vt +Xt · ∇vt − Cvt

Now let

ṽt = eCtvt

=⇒ ∂tṽt ≥ ∆ṽt +Xt · ∇ṽt
Cor
=⇒ Ṽt = 0 on M × [0, T ]

vt = 0

ut = ut everywhere

6 Lecture 6: 10-13-22

Goal:

� Application of weak and strong maximum principles

� Curvature derivative estimates

� Maximal existence time

6.1 Application of WMP and SMP

Let (M, gt) a ricci flow. Then we have

∂tR = ∆R+ 2|Ric|2 ≥ ∆R (13)

where R is the scalar curvature. If we assume that we can diagonalize the Ricci curvature (always true I
think?)

Ric =

 ρ1 . . . . . .
. . .

. . . . . . ρn

 =⇒ R = ρ1 + · · ·+ ρn

which implies that

2|Ric|2 ≥ 2

n
R2

by AM-GM or something. Then we have

Theorem 6.1. For t1 ≤ t2 ∈ I and any T ∈ R, we have

1. If R(·, t1) ≥ A =⇒ R(·, t2) ≥ A
Proof: (apply WMP to R(t) = A, ∂tR(t) = 0

2. If R(·, t1) ≥ n
2(T−t1) , then R(·, t2) ≥ n

2(T−t2)

Proof: (apply WMP to R(t) = n
2(T−t) , so that ∂tR(t) = 2

nR
2
(t), and use our statement about

bounding 2|Ric|2)
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Figure 12

3. If T ∈ I, then R(·, t) ≥ n
2(T−t) for all t > T

Proof: Let {ti} ↓ T , then we know that R(·, ti) ≥ −C just because I is compact, so we get uniform
lower bounds on scalar curvature. This tells us that

R(·, ti) ≥ −C ≥
n

2(T − ti)

where i is very large, i.e. when T − ti → 0−. Now apply the previous statement

4. If gt is defined on (−∞, t0] (ancient flow), then R ≥ 0.
Proof: Let T ↓ −∞ in the previous statement

5. If R(·, t0) ≥ n
2T > 0, then t0 + T 6∈ I (the solution cannot exist up to t0 + T )

Proof: If the above holds, then our second statement tells us that

R(·, t0) ≥ n

2(T + t0 − t)

ad the above tends to infinity as t→ t0 + T from below

Now we do applications of the strong maximum principle

Theorem 6.2. Assume M is connected but possibly non-compact

1. Assume I = [0, T ], R ≥ 0 everywhere. If R(x0, T ) = 0 for some x0 ∈M , then Ric ≡ 0 for all t ∈ [0, T ]
Proof: The strong maximum principle plus ∂tR ≥ ∆R =⇒ R ≡ 0. But now come back to evolution
equation

∂tR = ∆R+ 2|Ric|2 =⇒ Ric ≡ 0

since both ∂tR = ∆R = 0

2. If M is compact, I = (−∞,∞) (eternal flow), then Ric ≡ 0 (and d
dtgt = −2Ric = 0 so gt = g0)

Proof: First, eternal flow =⇒ ancient
compact

=⇒ R ≥ 0.
Claim EIther R ≡ 0 or R > 0 everywhere. This should follow from the strong maximum principle.
Assuming the claim is true, then if R ≡ 0, then by the previous computation, we have Ric ≡ 0. If
R > 0 everywhere (M compact means a positive lower bound on R) then by a previous statement, it
can only exist for a finite time, contradicting that this is an eternal flow.
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Proof of claim: Suppose not, then ∃R(x1, t1) > 0 and R(x2, t2) = 0. By our first statement in
this theorem, if we have R(x2, t2) = 0, then

=⇒ Ric = 0 ∀t ≤ t2
=⇒ gt = gt2 ∀t ≥ t2 =⇒ Ric = 0

The second line follows since the Ricci flow equation will be constant on (−∞, t2)

6.2 In 2-dimension

6.2.1 Lower Bound

In two dimensions, we have
∂tR = ∆R+R2

in this case. We note that R ≤ 0 is preserved by Ricci flow in this dimension. To see this, apply weak
maximum principle to the comparison function

R(t) = 0, ∂tR(t) = R
2
(t)

so that 0 is an upper barrier. Note that this is not true in dimension n ≥ 3, since R2 6= |Ric|2 in general

6.2.2 Normalized Volume

For (M, gt), M compact, I = [0,∞) (immortal flow), we define the normalized volume V (t) = t−n/2V (t)
(The scaling is supposed to be intuitive since t ∼ r2 since we have a parabolic flow, i.e. t−n/2 ∼ r−n and
V (t) ∼ rn). Thus, normalized volume is a scaling invariant and

d

dt
V (t) = t−n/2

(
− n

2t
V (t) + V ′(t)

)
= t−n/2

� (
− n

2t
−R

)
dV olt

The second line follows since

V ′(t) =
1

2
tr(ġ)dV ol

and
ġ = −2Ric =⇒ tr(ġ) = −2R

Recall that R ≥ − n
2t holds for t ∈ (0,∞), so that

d

dt
V (t) ≤ 0

thus V (t) is non-increasing and positive, so it has a limit as t→∞

V∞ = lim
t→∞

V (t)

6.2.3 Solitons

Let (M, g), and Ricg = LXg + λg for λ ∈ R and X some smooth vector field. We have

g(t) =


(−2λt)φ∗−t(g) λ > 0, t ∈ (−∞, 0) (shrinking)

φ∗−t(g) λ = 0, t ∈ (−∞,∞) (steady)

(−2λt)φ∗−t(g) λ < 0, t ∈ (0,∞) (expanding)

Where φt is the flow corresponding to X and φ0 = Id. Then gt satisfies a ricci flow!! This is a soliton
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Theorem 6.3. A compact steady soliton must be Einstein (i.e. with λ = 0 =⇒ Ric ≡ 0)

Proof: gt is an eternal compact Ricci flow, so Ric ≡ 0

Theorem 6.4. A compact expanding solution must be Einstein.

Proof: V (gt) is a constant in the expanding case because

V (gt) = V ((−2λt)φ∗−tg) = V (φ∗−tg) = V (g)

Thus

0 =
d

dt
V (gt) = t−n/2

� (
− n

2t
−R

)
dV olt

we know that
− n

2t
−R ≤ 0

so for the derivative to be exactly 0, we have

R =
−n
2t

everywhere. Now plugging this into the evolution of scalar curvature, we have

∂tR = ∆R+ 2|Ric|2 = 0 + 2|R̊ic|2 +
2

n
R2

but

∂tR =
n

2t2
=

2

n
R2

so we see that
R̊ic ≡ 0

which implies that

Ric =
R

n
gt

which is einstein. Now plugging in R, we have

Ric = − 1

2t
gt ∀t

6.3 Evolution of Curvature tensor

We have

∂t|Rm|2 = 2〈∇∂tRm,Rm〉 = 2〈∆Rm+Q(Rm), Rm〉
= ∆|Rm|2 − 2|∇Rm|2 + 2〈Q(Rm), Rm〉
≤ ∆|Rm|2 − 2|∇Rm|2 + C|Rm|3

≤ ∆|Rm|2 + C|Rm|3

Now we want to apply the weak maximum principle. Consider the comparison equation

∂tu(t) = Cu(t)3/2

=⇒ u(t) =
1(

C
2 (T − t)

)2
so if |Rm|2(·, 0) ≤ A, then the weak maximum principle gives

|Rm|2(·, t) ≤ 1(
C
2

(
2

C
√
A
− t
))2
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Exercise Study the equation of |Rm|, then if

|Rm|(·, 0) ≤ A

we have that

|Rm|(·, t) ≤ 1

A−1 − C
2 t

(this is a little different than just taking the square root of the previous bound)

Theorem 6.5. Let (M, gt) a Ricci flow, M compact, then either

� supM×[0,T ) |Rm| <∞ OR

� limt↑T maxM |Rm|(·, t) =∞ and

max
M
|Rm|(·, t) ≥ Cn

T − t
(exercise, which should be an application of previous exercises)

6.4 Curvature derivative estimates

Let (M, gt)t∈[0,T ) a ricci flow, M compact. Then

∇∂t∇Rm = ∇∇∂tRm+ R̃(∂t, ·)Rm = ∇∇∂tRm+∇Rm ∗Rm = ∇(∆Rm+Q(Rm)) +∇Rm ∗Rm
= ∆∇Rm+Rm ∗ ∇Rm+∇Rm ∗Rm
= ∆∇Rm+Rm ∗ ∇Rm

here
(A ∗B)jl = gikAijBkl

so for example
Rm(Ric) = Rm ∗Rm

Moreover, we’ll use that
|A ∗B| ≤ C|A||B|

where the norm is some tensor bound.

We also have

∂t|∇Rm|2 = 2〈∇∂t∇Rm,∇Rm〉 = 2〈∆∇Rm+∇Rm ∗Rm,∇Rm〉
≤ ∆|∇Rm|2 − 2|∇2Rm|+∇Rm ∗ ∇Rm ∗Rm
≤ ∆|∇Rm|2 + C|∇Rm|2 · |Rm|

Now our goal is to derive bounds on |∇Rm| in terms of bounds on |Rm|.

Suppose |Rm| ≤ A on M × [0, T ). Define

F = |Rm|2 + t|∇Rm|2

then we have

(∂t −∆)F ≤ |∇Rm|2 + t(C|∇Rm|2|Rm|) + (−2|∇Rm|2 + C|Rm|3)

≤ |∇Rm|2 + CtA|∇Rm|2 − 2|∇Rm|2 + C|Rm|3

≤ C|Rm|3 ≤ CA3

F (·, 0) = |Rm|2 ≤ A2
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having used our bounds on both |Rm|2 and |∇Rm|2. In the second to third line, we chose t small so that
CtA < 1 to cancel the first 3 terms (or rather, bound above by 0). Now the weak maximum princple on the
function F (·, t) gives

F (·, t) ≤ CA2 ∀t ∈
[
0,

1

A

]
Now taking a square root, we get

|∇Rm| ≤
√
CA√
t
, ∀t ∈

[
0,

1

A

]
so if the curvature norm has a bound, then |∇Rm| also has some bound in a small interval. Here, we’ve
chosen

F (t) = CA3t+A2

7 Lecture 7: 10-18-22

Today’s goals

� Curvature derivative estimates

� Maximal existence time

� Vector-valued maximum principle

7.1 Curvature derivative estimate

Theorem 7.1. Let (M, {gt}t∈[0,T )) compact ricci flow. Suppose |Rm| ≤ A on t ∈ [0, T ), then

|∇`∂t∇
kRm| ≤ Ck,`A

t`+k/2

on t ∈ [0, 1/A]. Here ∇ denotes the Uhlenbeck connection

Proof: Step 1: Assume ` = 0. Last time we did k = 1. Prove by induction, so assume this is true for k.
Then

∇∂t∇kRm = ∆∇kRm+
∑
i+j=k

∇iRm ∗ ∇jRm

(this formula can also be proved by induction).

∇∂t∇k+1Rm = ∇∇∂t∇kRm+ (R̃(·, ·) · ∇kRm)

= ∇(∆∇kRm+
∑
i+j=k

∇iRm ∗ ∇jRm) +∇Rm ∗ ∇kRm

= ∆∇k+1Rm+Rm ∗ ∇k+1Rm+
∑
i+j=k

∇iRm ∗ ∇jRm

= ∆∇k+1Rm+
∑

i+j=k+1

∇iRm ∗ ∇jRm

where in the second to third line we apply Bochner’s formula. Using this, we have

∂t|∇kRm|2 ≤ ∆|∇kRm|2 − 2|∇k+1Rm|2 + C
∑
i+j=k

|∇iRm| · |∇jRm| · |∇kRm|

Now using a similar trick to last time, we note the negative sign in front of 2|∇k+1Rm|2, and construct a
barrier of

F = t|∇k+1Rm|+ |∇kRm|
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This implies that the theorem is true for k + 1. Jere, we’ve used

∇∂t∇∇kRm = ∇∇∂t∇kRm+ R̃ ∗ ∇kRm

where R̃ is the curvature for ∇̃∂t , but also equals ∇Rm.

Now we induct on `. After rescaling, assume A = 1. Under this, we define

Figure 13

g̃t = Agt/A

Under this flow, we have |Rm| ≤ 1 and t ∈ (0, 1], so we want to show

|∇`∂t∇
kRm| ≤ Ck,`

t`+k/2
t ∈ (0, 1]

By another rescaling, it suffices to prove it at t = 1 - assume we want to show this at time t ∈ (0, 1]. We
choose another rescaling of the form above but by 1/t, which sends t→ 1 and 1→ 1/t. So that

|Rm| ≤ t ≤ 1, |∇`∂t∇
kRm|(·, 1) ≤ C

Now note that
∇∂t∇kRm = ∆∇kRm+

∑
i+j=k

∇iRm ∗ ∇jRm

so ∇∂t∇kRm is the ∗-composition of ∇iRm. So

|(∇∂t∇kRm)(·, 1)| ≤ C1,k

which shows it for (`, k) = (1, k) with K ∈ N. By induction, we have

∇`∂t∇
kRm = ∇∂t∇`−1

∂t
∇kRm

now write ∇`−1
∂t
∇kRm as a ∗-composition of ∇iRm. Thus

|(∇`∂t∇
kRm)(·, 1)| ≤ C`,k

which finishes the theorem.
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Corollary 7.1.1. Suppose |Rm| ≤ r−2, on [0, r2]¡ then

|∇`∂t∇
kRm|(·, r2) ≤ Ck,`

r2`+k+2

Proof: Take A = r−2 in theorem.

Note that this corollary gives a scale invariant bound since |∇`∂t∇
kRm|(·, r2) is order r−(2`+k+2). This

means that we’ll get such an inequality up to any order on the interval [0, r2]

7.2 Shi’s derivative estimates (local bounds on |∇`
∂t
∇kRm|)

THe previous section worked for (M, {gt}) a ricci flow with M compact. In this setting, we assume
(M, {gt}t∈[0,T )) a ricci flow, but not necessarily compact.

Theorem 7.2. For (M, gt) a Ricci flow (not necessarily compact). Choose x0 ∈M and r2 ≤ t0 < T so that
Bt0(x, r) ⊂⊂M (i.e. relatively compact). Assume

|Rm| ≤ r−2 on Bt0(x0, r)× [t0 − r2, t0]

Then

|∇`∂t∇
kRm| ≤ Ck,`

t2`+k+2

Figure 14

Note that
Bt0(x, r)× [t0 − r2, t] =: P (x0, t0; r,−r2)

is called the “backward parabolic neighborhood centered at x0 of scale r”

7.3 Maximal Existence Time

Lemma 7.3 (Equivalence of Metrics). Suppose (M, {gt}), RF, not necessarily compact, |Ric| ≤ k every-
where, then ∀t1 ≤ t2 ∈ I, we have

e−K(t2−t1)gt1 ≤ gt2 ≤ eK(t2−t1)gt1

i.e. this says that C−1g1 ≤ g2 ≤ Cg1.

Proof: Exercise, should probably just use ricci flow equation and integrate and use bound.

RemarkThis gives us that

dt1(x, y)e−K(t2−t1) ≤ dt2(x, y) ≤ eK(t2−t1)dt1(x, y)

We now show a theorem
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Theorem 7.4. If (M, {gt}t∈[0,T )) a Rf, not necessarily compact, T < ∞. Assume supM×[0,T ) |Rm| < ∞.
Then gt can be extended smoothly onto M × [0, T ]

Figure 15

i.e. we can find gT such that gt → gT smoothly.

Proof: Shi’s estimate gives that for any compact subset U ⊆M ¡ there exists a C`,k(U) such that

|∇`∂t∇
kRm| ≤ C`,k(U)

on U . Let p ∈M , (U, {xi}) a set of local coordinates about p, so

gt = gij(x, t)dx
idxj

Lemma =⇒ C−1gs ≤ gt ≤ Cgs ∀t, s ∈ I

We also have
|∂tgij | = 2|Ricij | ≤ C

so there exists gij(·, T ) such that

gij(·, t)
C0

−−→ gij(·, T )

Note that the C−1gs ≤ gt ≤ Cgs comparison guarantees that gij(·, T ) is a metric. Now we look at

|∂tΓkij(·, t)| ≤ C|∇Ric|
≤ C

by our formula for the christoffel symbols, and then using the ricci flow equation. In the second line, we use
Shi’s estimates. This tells us that

|Γkij | ≤ C

for all t uniformily in t. We also compute

(∇kRic)ij = ∂k(Ricij)− Γ`kiRici` − Γ`kjRicj`

But again ∇Ric is bounded, so the above gives

|∂(Ricij)| ≤ C

Now we note that
|∂t∂kgij | = 2|∂kRicij | ≤ C
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so we can integrate in time and get
|∂kgij | ≤ C

uniformily in time. Now by induction, we can show that

|∂qt ∂k1 · · · ∂kpgij | ≤ Cp,q,i,j

which allows us to upgrade our convergence of g(·, t)→ g(·, T ) from C0 convergence to smooth convergence.
Thus we have smooth convergence locally about any point, so we have global smooth convergence (though
not uniformily).

Corollary 7.4.1. We have (M, {gt}t∈[0,T )) with M compact and T <∞ maximal, then

max
M
|Rm|(·, t) t↑T−−→∞

As an interesting application, we have the following example:

Example:
For (M2, {gt}t∈[0,T )), compact, if Kg0 ≤ 0, then T =∞

Proof: Recall that our assumption gives
Kgt ≤ 0

by curvature bounds. Moreover,
|Rm| ≤ C|K|

but we know that
inf K ≤ 0

because scalar/gaussian curvature is non-decreasing in RF.

7.4 Vector valued maximum principle

For (M, {gt}t∈[0,T )) a family of smooth metrics. Let E be a vector bundle on M , rank k <∞. Then E×[0, T ]
is a vector bundle on M × [0, T ]. Let ∇ a connection on E × [0, T ] compatible with the induced horizontal
metric on E × [0, T ].

Remark In the above, we note that the Uhlenbeck connection is a such a connection on E × [0, T ]

Now let C ⊆ E × [0, T ) closed such that

�

Cx,t := C ∩ π−1(x, t) is convex ∀(x, t) ∈M × [0, T ]

� For all t, Cx,t are parallel (fixed t) (i.e. ∀γ(s) a curve in M × {t}, if e(0) ∈ Cγ(0,t and ∇γ̇(s)e(s) = 0
then e(s) ∈ Cγ(s),t

8 Lecture 8: 10-20-22

8.1 Vector valued maximum principle

Our set up is as follows: we have (M, {gt}t∈[0,τ)) smooth family of metrics, and E a vector bundle on
π : E → M . ∇ is a connection on E × [0, T ] compatible with the space time metric (i.e. just metric on M
plus dt2) induced by π.
C ⊆ E × [0, T ] closed, such that

1. Cx,t := C ∩ π−1(x, t) is convex for all (x, t) ∈M × [0, T ]
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Figure 16

2. ∀t, Cx,t are parallel

Now let φ: a smooth vector field on E× [0, T ], parallel to the fiber of E. Suppose C is preserved by the flow
of ∇∂tu = φ(u). This means that if u(t) ∈ π−1(x, t) for x fixed, if u(t0) ∈ Cx,t0 , ∇∂tu(t) = φ(u(t)), then
u(t) ∈ Cx,t for all t ≥ t0.

Then for u ∈ C∞(M × [0, T ];E × [0, T ]), suppose we have

∇∂tu = ∆u+ φ(u)

The weak vector-valued maximum principle is

Theorem 8.1 (WMP). Suppose u(x, t) ∈ Cx,t, for all (x, t) ∈ ∂par(M × [0, T ]), then u(x, t) ∈ Cx,t for all
(x, t) ∈M × [0, T ]

where ∂par denotes the parabolic boundary, i.e.

∂par(M × [0, T ]) = (∂M)× [0, T ] ∪M × {0}T

We also have the strong vector-valued maximum principle

Theorem 8.2 (SMP). Suppose u(x, t) ∈ Cx,t, for all (x, t) ∈ M × [0, T ], and u(x0, t0) ∈ ∂Cx0,t0 for some
x0 ∈M , t0 > 0, then u(x, t) ∈ ∂Cx,t for all (x, t) ∈M × [0, t0]

8.1.1 Application of Weak Maximum Principle

Suppose (M, {gt}[0,T ] a Ricci flow. Let M compact and E : SB(∧2Rn) → M be the bundle of algebraic
curvature tensors over M . Let ∇ be the uhlenbeck connection on E × [0, T ]. Let

u = Rm

Then the relevant ODE is
∇∂tF = Q(F )

and the relevant PDE which is satisfied by Rm itself, is

∂tRm = ∆Rm+Q(Rm)

Now let C be given by Cx,t ∼= Ct ⊆ SB(∧2Rn) some closed convex subset preserved by the ODE.

With this, we have the following:
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Theorem 8.3. If (M3, {gt}t∈[0,T ] a Ricci Flow, M compact. Then

1. secg0 ≥ 0 =⇒ secgt ≥ 0, ∀t ≥ 0

2. Ricg0 ≥ 0 =⇒ Ricgt ≥ 0, ∀t ≥ 0

Similarly

Theorem 8.4. If (M3, {gt}t∈[0,T ]) a Ricci flow with ∂M = ∅, then

1. secgt ≥ 0, secgT 6> 0 =⇒ secgt 6> 0, ∀t ∈ [0, T ]

2. Ricgt ≥ 0, RicgT 6> 0 =⇒ Ricgt 6> 0, ∀t ∈ [0, T ]

Here, we write secgt > 0 if secgt > λ(t)gt for some λ(t) > 0. So secgT can be ≥ 0 but not strictly greater
than 0 (i.e. 6>) if its 0 along one direction, but not the others (i.e. non-zero but lacks positive definiteness).
In this case, the tensor splits.

Proof: For (x0, t0) ∈M × [0, T ] we can choose an o.n.b. {ei} in (Tx0
M, gt0) such that

Rm =

k1 0 0
0 k2 0
0 0 k3

 , Ric =

ρ1 0 0
0 ρ2 0
0 0 ρ3


using the fact that the dimension is 3. Here,

ρ1 = k2 + k3

ρ2 = k1 + k3

ρ3 = k1 + k2

We also compute

Q(Rm) = 2

k2
1 + k2k3 0 0

0 k2
2 + k1k3 0

0 0 k2
3 + k1k2


Now extend {ei} to be an o.n.b. in a neighborhood of x0 such that

∇ei = 0 = ∆ei

at x0 and evolve ei by ∇∂tei = 0. Thus, the ODE of ∇tRm = φ(Rm) becomes

∂t(Rm(ei, ej)) = (∇∂tRm)(ei, ej) = Q(Rm)(ei, ej)

so we compute

∂tk1(t) = 2(k2
1 + k2k3)

∂tk2(t) = 2(k2
2 + k1k3)

∂tk3(t) = 2(k2
3 + k1k2)

If k1(x0, 0), k2(x0, 0), k3(x0, 0) ≥ 0, then evolving by the above gives

k1(x0, t), k2(x0, t), k3(x0, t) ≥ 0

for all t. Choose
Cx,t = Ct = {Rm ∈ Sb(∧2Rn), Rm ≥ 0}

(here Rm is just denoting some arbitrary tensor, not the actual Riemann curvature tensor). Then Cx,t is
preserved by the ODE, so Rm ≥ 0 is preserved by Ricci Flow. This proves the sectional curvature statement.

For Ric ≥ 0, choose Cx,t = Ct = {Rm : Ric ≥ 0}. Recall that

∂tRic = ∆Ric + 2Rm(Ric)

for our specific manifold and Ricci flow. Moreover, for every element F ∈ Ct, we have that the following
ODE is satisfied

∂tF = 2Rm(F )

where Rm is again the curvature tensor associated to our Ricci flow {gt}.
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8.2 Linear Support Functions

Definition 8.5. For C ⊆ Rk, closed, convex, a linear support function for C is an affine linear function

α : Rk → R
v 7→ ~a · v + b

such that |~a| = |∇α| = 1 and C ⊆ {α ≥ 0} and C ∩ kerα 6= ∅.

Figure 17

Now we have

Lemma 8.6. The signed distance is given by

dsigned(p, C) = inf
α:LSF

α(p)

and the infinum can be achieved by a linear support function α such that if q ∈ ∂C is the closest point to p
then α(p)∇α = p− q

here, LSF is“Linear Support Function” and

dsigned(p, C) :=

{
d(p,Rk\C) p ∈ C
−d(p, C) p 6∈ C

Note that when ∂C smooth, dsigned is the signed distance to ∂C in the usual sense. With this we prove the

Figure 18

vector valued WMP and SMP’s:
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Proof: Let
s(x, t) = dsigned(u(x, t), Cx,t)

Here the WMP holds if and only if: s(·, 0) ≥ 0, then s(·, t) ≥ 0 for all t ≥ 0

The SMP holds if and only if: s(x, t) ≥ 0 for all (x, t) ∈ M × [0, T ] and s(x0, T ) = 0, then s(x, t) ≡
0, ∀(x, t) ∈M × [0, T ]

To show this, we want to prove the following lemma

Lemma 8.7. ∃C > 0 such that (∂t −∆)s ≥ −C · s

Note that if this is true, then the WMP and SMP hold by comparing s(x, t) to 0.

Proof of Lemma: Assume for simplicity that s(x, t) is smooth. Let α be an LSF such that q ∈ ker(α), q
is the closest point to p = u(x0, t0). Let Ωt0 = {α ≥ 0} ⊆ Ex0,t0 . Then

s(x0, t0) = dsigned(u(x0, t0), Cx0,t0) = α(u(x0, t0))

Let {Ωt} be the flow of Ωt0 by the ODE ∇∂tu = φ(u). Then Cx0,t ⊆ Ωt for all t ≤ t0. Then

Figure 19

s(x0, t) ≤ dsigned(u(x0, t), Cx0,t) ≤ dsigned(u(x0, t),Ωt)

and equality holds at t = t0. This tells us that

Figure 20

d

dt

∣∣∣
t=t0

s(x0, t) ≥
d

dt

∣∣∣
t=t0

dsigned(u(x0, t),Ωt) = α(∇∂tu− φ(q))
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were the last equality is an exercise. Now we fix t0, and extend α to be a LSF on Cx,t0 by radially parallel
transport. Then

α(u(x, t0)) ≥ dsigned(u(x, t0), Cx,t0) = s(x, t0)

with equality holding at x = x0. Then we have

∆α(u(x, t0) ≥ ∆s(x, t0) at x = x0

α(∆u(x, t0)) ≥ ∆s(x, t0) at x = x0

(∂t −∆)s(x0, t0) ≥ α(∇∂tu− φ(q)−∆u)(x0, t0)

= α(φ(u)− φ(q))(x0, t0)

≥ −C|u(x0, t0)− q| = −Cs(x0, t0)

which proves the lemma

9 Lecture 9: 10-25-22

Today

� Rigidity of the SMP (strong maximum principle)

Theorem 9.1. We have (M, {gt}t∈[0,T ]) and

∇∂tu = ∆u+ φ(u), u(x, t) ∈ Cx,t ∀t ∈ [0, T ]

where Cx,t is convex, parallel, and preserved by the ODE. Suppose u(x0, t0) ∈ ∂Cx0,t0 for t0 > 0. Let α be
a linear support function for Cx0,t0 and α(u(x0, t0)) = 0. Then

Figure 21

∇vu, ∇2
v,vu, ∇∂tu− φ(u) ∈ ker(α)

for any v ∈ Tx0
M , when the above is evaluated at (x0, t0).

Let Ωt0 = {α ≥ 0}, and define {Ωt} to be the paralell transport of Ωt0 .

Proof: We have u(x0, t0) ∈ Cx0,t ⊆ Ωt. Moreover

dsigned(u(x0, t),Ωt) ≥ 0
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and equality holds at t = t0.Thus

0 ≥ d

dt

∣∣∣
t=t0

dsigned(u(x0, t),Ωt) = α(∇∂tu− φ(q))

= α(∇∂tu− φ(u))

= α(∆u) at (x0, t0)

here, q ∈ ∂Cx0,t0 is the closest point of u(x0, t0) and q = u(x0, t0).

Now fix t0, extend α by parallel transport, then

u(x0, t0) ∈ Cx,t0 ⊆ {α ≥ 0}, α(u(x, t0)) ≥ 0

and equality in the right hand equation holds at x = x0. Now

0 = ∂v(α(u(·, t0))) = α(∇vu(x0, t0)) =⇒ ∇vu ∈ kerα

0 ≤ ∂2
v,v(α(u(·, t0))) = α(∇2

v,vu(x0, t0)) =⇒ 0 ≤ α(∆u(x0, t0)) ≤ 0

=⇒ α(∆u) = 0

where α(∆u) ≤ 0 comes from the viscosity argument and differentiating with respect to t from before.

Theorem 9.2. With the same set up as in the previous theorem: Moreover if Cx0,t is parallel in t and if
one of the following conditions is satisfied

1. ∂Cx0,t0 is smooth at u(x0, t0)

2. t0 < T

Then ∇vu, ∇2
v,vu, ∇∂tu, φ(u) ∈ ker(α)

Proof: If 1 is true, then by SMP u(x0, t) ∈ ∂Cx0,t for all t ≤ t0, so

∇∂t
∣∣∣
t=t0

u(x0, t) ∈ Tu(x0,t0)∂Cx0,t = kerα

use
∇∂tu− φ(u) ∈ ker(α) =⇒ φ(u) ∈ ker(α)

If 2 is true, then α(u(x0, t)) ≥ 0 in (t0 − δ, t0 + δ) for some δ > 0 and equality holds at t = t0, this implies
that

∂t

∣∣∣
t=t0

α(u(x0, t)) = 0 = α(∇∂tu(x0, t0))

finishing the proof .

9.1 Application of theorem to RF

Let n = 3, (M3, {gt}t∈[0,T ]) RF, not necessarily compact. Let u = Rm and

∇∂tRm = ∆Rm+Q(Rm)

and
Cx,t = Ct = C = {Rm ∈ SB(∧2R3) : Ric(Rm) ≥ 0}

Suppose Ricgt ≥ 0 everywhere, but Ric > 0 fails at (x0, t0), t0 (i.e. has null direction). Then (M, {gt}) is
either flat or locally splits off a line ∀t ∈ [0, t0] (we’ll prove this!). First note that by the SMP for Ric ≥ 0,
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if Ric > 0 fails at (x0, t0) then it fails at all (x, t), t ≤ t0.

Proof: Let α be defined by
α : Rm ∈ SB(∧2R3) 7→ Ric(Rm)(e, e) ∈ R

where 0 6= e ∈ Tx0
M is a vector such that Ricx0,t0(e, e) = 0 (i.e. Ric(e, ·) = 0). Then α is a linear support

function on C and α(Rm(x0, t0)) = 0. We have that

0 = ∇∂tRic(e, e) = 2Rm ∗ Ric(e, e)

This is because our theorem gives

∇vu,∇2
v,vu, φ(u),∇∂tu ∈ ker(α)

and we’ve set u = Rm. We also know that (just from Ricci flow properties)

∇∂tRm = ∆Rm+Q(Rm)

tr
=⇒ ∇∂tRic = ∆Ric + 2Rm ∗ Ric

Now at (x0, t0) choose an o.n.b. e = e1, e2, e3 such that

Ric =

ρ1 0 0
0 ρ2 0
0 0 ρ3

 =

0 0 0
0 ρ2 0
0 0 ρ3


Moreover

0 =
d

dt
ρ1 = ρ1(ρ2 + ρ3) + (ρ2 − ρ3)2 =⇒ ρ2 = ρ3

=⇒ Ric =

0
ρ2

ρ2


The first equation comes from

∇∂tRic(e, e) = ∆Ric(e, e) + 2Rm ∗ Ric(e, e)

and then using Ric(e, e) = 0. This tells us that the nullity of Ric is either 1 or 3.

Case 1: If null(Ric) = 3, then R(x0, t0) = 0. The strong maximum principle applied to R gives that
R(x, t) = 0 for all x, t ≤ t0. Moreover Ric ≡ 0, and in three dimensions this means that Rm ≡ 0. Thus
(M, gt) = (M, g0) and g0 is flat.
Case 2: If null(Ric) = 1, we can assume that this is the case everywhere (i.e. ∀(x, t))

Proof: So there exists a smooth, unit vector field, e, such that Ric(e, e) = 0, Ric(e, ·) = 0. Recall that

∇2
v,vRic(e, e) = 0 = ∇vRic(e, e)

Goal: ∇e = 0 (e is a parallel vector field). Then

0 = ∂v(∇vRic(e, e)) = ∇2
v,vRic(e, e) + 2∇vRic(∇ve, e)

but we know that
∇2
v,vRic(e, e) = 0

which implies that
∇vRic(∇ve, e) = 0

but now we can compute

0 = ∂v(Ric(e,∇ve)) = ∇vRic(e,∇ve) + Ric(∇ve,∇ve) + Ric(e,∇2
v,ve)
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but we know that the first and last term are 0, so

Ric(∇ve,∇ve) = 0 =⇒ ∇ve = λe

|e| = 1 =⇒ ∇ve = 0, ∀v ∈ Tx0
M =⇒ ∇e = 0

Now as an exercise: If we have ∇∂te = ∂te = 0, then the splitting of our space is preserved by the flow.

Corollary 9.2.1. If (M3, g) compact and Ricg ≥ 0, but M3 doesn’t admit any metric with Ric > 0, then
(M3, g) is isometric to one of the following:

1. Quotient of R3

2. Quotient of S2 × R where (S2, h), κh > 0

Proof: Given (M3, g), we flow by Ricci flow and get {gt}. Then at some point we have nullity and use
the previous theorems to either get a splitting (e.g. S2 ×R) or show that the metric is flat (e.g. R3/Γ).

Note that the condition of finding a metric with Ric > 0 (or ruling it out) is partially dealt with by
Hamilton’s theorem.

Theorem 9.3. Let n = 3 and (M3, {gt}t∈[0,T ]) a Ricci Flow. Suppose that secgt ≥ 0 (i.e. Rm ≥ 0), and
Rm > 0 fails at (x0, t0) for t0 > 0, then one of the following is true

1. (M, gt) is flat for all t ≤ t0. OR

2. (M, gt) locally splits off a line

Note that in the latter case, the nullity of Rm is 2 because a basis for the domain of Rm is {e1 ∧ e2, e1 ∧
e3, e2 ∧ e3} and e = e1 is the null direction for Ric.

Proof: In fact, this can be deduced from the last theorem (Ric splitting theorem). It suffices to show
that Ric > 0 also fails at (x0, t0). Note that Rm > 0 fails implies that there exists e1, e2, e3 such that Rm is
diagonal under e1 ∧ e2, e1 ∧ e3, e2 ∧ e3 and

Rm =

κ1 0 0
0 κ2 0
0 0 κ3

 , κ1 ≤ κ2 ≤ κ3

and

0 =
d

dt
k1 = k2

1 + k2k3

where

Q(Rm) =

k2
1 + k2k3 0 . . .

0 . . . . . .
. . . . . . . . .


Note that k1 = 0 implies k2k3 = 0 so k2 = 0 or k3 = 0, i.e. the nullity of Rm is 2 or 3. In either case, this
implies that Ric > 0 fails at (x0, t0).

Theorem 9.4 (Cone Rigidity). Let n = 3, (M3, {gt}t∈[0,T ]) a RF not necessarily compact. Suppose Ricgt ≥
0. If (M3, gT ) is isometric to an open subset of a cone over a Riemannian manifold, then (M3, {gt}) is flat

Proof: Recall a cone is given by dr2 + r2h where (N,h) is a 2D manifold. It’s an exercise to show that
Ric(∂r, ∂r) = 0. Then the theorem tells us that we’re either flat, or we split off a line. Suppose not flat.
Then we have

gT = dr2 + hN ′ = dr2 + r2hN
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where we think of (N ′, hN ′) and (N,hN ) as two separate 2D manifolds. Now we write

Ric =

0
ρ2

ρ3


where ρ2 ↔ e2, ρ3 ↔ e3. Then ρ2 is constant in r if we split like a line, but also ρ2 scale like r−2 in r if we
have a cone splitting. This is a contradiction since r is variable in the cone perspective. Thus we must have
ρ2 = 0. Same for ρ3. Thus Ric = 0 and we’re flat!

10 Lecture 10: 10-27-22

Today

� More preserved curvature condition in n = 3

� Hamilton’s Ric > 0 theorem

10.1 More preserved curvature condition in n = 3

If C ⊆ E is defined as ψ−1([0,∞)) for some concave function

ψ : E → R

then C is a convex subset. Moreover, the preservation of C under the ODE if and only if for all e ∈ E with
ψ(e) = 0, let e(t) satisfy e(0) = e and the ODE

∇∂tu = φ(u)

Then,
d

dt
ψ(e(t)) ≥ 0

Figure 22

Lemma 10.1. Assume that

Rm =

κ1

κ2

κ3


with κ1 ≤ κ2 ≤ κ3. Then
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1. κ1 + κ2 + κ3 is both concave and convex (because its linear)

2. κ1 is concave, κ1(Rm1) ≥ C, κ1(Rm2) ≥ C =⇒ κ1(aRm1 + bRm1) ≥ C, for a, b ≥ 0 and a+ b = 1

3. κ3 is convex

4. ρ1 = κ1 + κ2 is concave

5. κ3 − κ1 is convex

Remark Here, the underlying space is R3, so we interpret concave and convex on R3. Remember that our
bundle E = SB(∧2R3)

Theorem 10.2 (Pinching condition). For all ε ∈ [0, 1/3), n = 3, (M3, {gt}t∈[0,T ]) a Ricci Flow, M3 compact,
then

Ric ≥ (ε ·R)g

is preserved

Remark Note that we’ve already proved this when ε = 0.
Remark

1. Note that
trRic ≥ tr(εR · g), R ≥ 3εR =⇒ R ≥ 0

2. In S3, we have Ric = 1
3R · g, i.e. sharpness for ε = 1

3. In a manifold with Ric > 0, there exists an ε > 0 such that Ric ≥ εR · g

Proof: We have

Ric =

κ1 + κ2

κ1 + κ3

κ2 + κ3


for κ1 ≤ κ2 ≤ κ.

Goal: Write Ric ≥ εRg as the 0-sublevel set of a concave function ψ and check

d

dt
ψ(e(t)) ≥ 0

whenever ψ(e(0)) = 0. Note that

Ric ≥ εRg ⇐⇒ κ1 + κ2 ≥ ε(2(κ1 + κ2 + κ3))

⇐⇒ κ1 + κ2 ≥
2ε

1− ε
κ3

∆
= δκ3, δ ∈ [0, 2)

⇐⇒ κ1 + κ2 ≥ δκ3

⇐⇒ κ1 + κ2 − δκ3 ≥ 0

Note that the first line holds since κ1+κ2 is the lowest eigenvalue. And in the last line κ1+κ2−δκ3 is concave.

When “ψ(e(0)) = 0”, then this corresponds to κ1 + κ2 = δκ3. Moreover “ d
dtψ(e(t))

∣∣∣
t=0

corresponds to

d

dt
(κ1 + κ2 − δκ3) ≥ 0

Now we use the underlying ODE to compute this, i.e.

∇∂tRm = φ(Rm)
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with ∂tκ1 = κ2
1 + κ2κ3 to get

d

dt
(κ1 + κ2 − δκ3) = κ2

1 + κ2κ3 + κ2
2 + κ1κ3 − δ(κ2

3 + κ1κ3)

Note that if κ3 = 0, then we’re done as Ric ≡ 0, so WLOG assume κ3 6= 0 and let

δ =
κ1 + κ2

κ3

Then with this choice of δ, we have that
κ1 + κ3 ≥ δκ3

and also plugging δ into the above we get

κ2
1 + κ2κ3 + κ2

2 + κ1κ3 − δ(κ2
3 + κ1κ3) ≥ 0

finishing the proof.

Lemma 10.3. ∀ε ∈ (0, 1), ∃δ(ε) > 0 such that

C = {ρ1

ρ3
≥ 1− 1

ρ
δ(ε)
3

, ρ1 ≥ ερ3 > 0}

and ρ1 ≤ ρ2 ≤ ρ3 eigenvalues of Ric are convex and preserved by Ricci Flow.

Remark The proof is similar but a bit more involved than the previous lemma, so we’ll skip this proof for
now.

Theorem 10.4 (Hamilton, Ric > 0). Let (M3, g) compact, Ric > 0, then M is diffeomorphic to S3/Γ

Proof: Run Ricci flow for g as the initial condition. Assume T is the maximal existence time. Then

T <∞ (Rg > 0
WMP−−−−→ R ↑ ∞ in finite time)

By compactness of the manifold, there exists ε > 0 such that

ρ1

ρ3
≥ ε

at time t = 0. After a rescaling, we can find δ(ε) > 0 such that

1− 1

ρ
δ(ε)
3

≤ ρ1

ρ3
≤ 1

Now our lemma implies that these are also true for all gt in our RF, t ∈ [0, T ). Now let

Qt = max
M

ρ3(·, t)

This →∞ as t ↑ T , since we now that scalar curvature blows up.
Claim 1: There exists C > 0 such that ∀α > 0, there exists δ̃ > 0 such that for any x ∈M , t ∈ [T − δ̃, T ), if

ρ3(x, t) ≥ 1

10
Qt ≥

1

100
max
M×[0,t]

ρ3

then
ρ(·, t) ∈ [(1− α)ρ3(x, t), (1 + α)ρ3(x, t)]
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Figure 23

in Bt(x, cρ
−1/2
3 (x, t)).

Remark Intuitively, this says that “(x, t) almost achieves the max of ρ3 in M × [0, t]” Proof: Let tk < T ,
tk ↑ T . Let

g′k = ρ3(xk, tk)gtk

Then ρ3 ≤ 100 on g′k (implies |Rm| ≤ C100). Now Shi’s derivative estimate gives that

|∇mRm| ≤ Cm

forall m ∈ N for g′k. Now let
g′′k = exp∗xk,g′k

g′k

on TxkM
∼= R3, then via an exercise, we have

|∂m(g′′k )ij | ≤ c′m

on B(0, 3c) for some c > 0 and g′′k satisfies

1− 1

(ρ3(x)ρ3(xk, tk))
δ(ε)
≤ ρ1(x)

ρ3(x)
≤ 1

here, ρ1(x), ρ3(x) is with respect to g′′k and ρ3(xk, tK) is with respect to the original setting and gtk . Thus

Figure 24

lim
k→∞

g′′k = g∞

with convergence in C∞ on B(~0, 2C) ⊆ R3. Moreover

1. ρ3(~0) = 1
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2. ∀x ∈ B(~0, 2C) if ρ3(x) 6= 0

1 ≤ ρ1(x)

ρ3(x)
≤ 1 =⇒ ρ1(x) = ρ2(x) = ρ3(x)

But if ρ3(x) = 0, then ρ1(x) = ρ2(x) = 0 by Ric ≥ 0 (before we take the limit, we know Ric > 0, so in
the limit we have Ric ≥ 0). This shows that in all cases ρ1(x) = ρ2(x) = ρ3(x), and we aim to show
that ρi is a constant in x.

Thus
Ric = λg

for λ : B(~0, 2c)→ R. By Schur’s lemma, λ is a constant. Morever

ρ3(~0) = 1

which implies that λ 6= 0 and ρ1 = ρ2 = ρ3 on B(~0, 2C).
Claim 2: ∀α′ > 0, we can find a point (x, t) such that

ρ3(·, t) ∈ [(1− α′)ρ3(x, t), (1 + α′)ρ3(x, t)] inBt(x, 10πρ3(x, t)−1/2)

Proof: Repeat Claim 1

Figure 25

ρ3(·, t) ∈ [(1− α)ρ3(x, t), (1 + α)ρ3(x, t) in Bt(x,Cρ
−1/2(x, t))

for
[

10π
C

]
+ 1 times, and we can find (x, t), as long as (xk, tk) almost achieves the maxM×[0,t] ρ3. I.e.

∀k, ρ3(xk, tk) ≥ 1

10
Qtk ≥

1

100
max

M×[0,tk]
ρ3

ρ3(xk, tk) ∈ [(1− α)k−1ρ3(x1, t1), (1− α)k−1ρ3(x1, t1)]

k ≤
[

10π

C

]
+ 1

If we choose α � 1 such that the first line holds for any k. Assume α′ � 1. Then Bonnet-Meyers theorem
tells us that

diamt(M) < 4πρ
−1/2
3 (x, t) =⇒ Bt(x, 10πρ3(x, t)−1/2)) = M

and we know that
ρ3(·, t) ∈ [(1− α′)ρ3(x, t), (1 + α′)ρ3(x, t)]

for any other point. Now the differential sphere theorem implies that M ∼= S3/Γ.

For posterity, we recall the differential sphere theorem

Theorem 10.5. Let (M3, g) compact and

κ3 ≤ (1 + ε)κ1

(κ1 ≤ κ2 ≤ κ3), then
=⇒ M ∼= S3/Γ
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11 Lecture 11: 11-1-22

Today

� Curvature estimate of Hamilton’s Ric > 0 theorem

� Hamilton-Ivey pinching (3D)

� Preserved curvature condition in n ≥ 3

11.1 Hamilton’s Ric > 0 theorem

Theorem 11.1 (Hamilton). For (M3, g) compact with Ricg > 0, then the Ricci flow (M, {gt}t∈[0,T ]) with
T the maximal existence time and g0 = g satisfies

|Rm(·, t)| ≤ C

T − t
(14)

for some C > 0.

Remark Equation (14) is called a “Type I singularity” and a “Type II singularity” is when (14) fails to hold.

Proof: Let
Rmax(t) = max

M
R(·, t)

Claim: For all t < T that is sufficiently close to T , we have

d

dt+
R−1
max(t) ≤ −C C > 0

Proof: Suppose not, then we can find a sequence tk ↑ T , εk → 0, εk > 0 so that

d

dt+
R−1
max(t) ≥ −εk

Suppose R(xk, tk) = Rmax(tk). Then we showed last time that

R−1(xk, tk)gtk → gS3

smoothly. Recall the ODE for R
d

dt
R = ∆R+ 2|Ric|2

and so
d

dt
R−1 = −∂tR

R2
= − 1

R2

(
∆R+ 2|Ric|2

)
Note that

− 1

R2

(
∆R+ 2|Ric|2

)
= −C

on (S3, gS3) with C > 0. Thus
d

dt
R−1(xk, tk) ≤ −C

2

for C large, a contradiction. Here, we’ve noted that d
dtR

−1 is a scale invariant, i.e.

d

dt
R−1
gtk

=
d

dt
R−1
R(xk,tk)gtk

This tells us the claim is true, and now

d

dt+
R−1
max(t) ≤ −C =⇒ Rmax(t) ≤ C−1

T − t
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but now scalar curvature bounds norm of the Riemannian tensor up to a constant so

|Rm|(t) ≤ C

T − t

Remark To be formal, we have to connect

d

dt
R−1(xk, tk)

to
d

dt
Rmax(tk)

which aren’t the same. But there’s a viscosity argument that gives the same bound (see 26) since

Figure 26

Rmax(t) ≥ R(xk, t)

we can show that the appropriate bound on the derivative holds in the correct direction.

Remark We have
(T − t)−1gt

C∞−−→ gS3

11.2 Hamilton-Ivey Pinching

Lemma 11.2. The following subset Ct is convex and preserved by

∇∂tRm = Q(Rm)

for any t > 0. Let

Ct =

{
Rm ∈ SB(∧2R3) : R ≥ − 3

2t

∃X > 0 s.t. sec ≥ −C and 2X(log(2Xt)− 3) ≥ R

Remark We call Ct the “t−1-positive curvature” subset, i.e. Rmg ∈ Ct means that it has “t−1-positive
curvature”

Corollary 11.2.1. If (M3, {gt}t∈[0,T ]) compact Ricci Flow, assume Rmgt0
∈ Ct0 , then Rmgt ∈ Ct

Lemma 11.3. Suppose (M3, g) is t−1-positive for t > 0, then ∀λ > 0, we have that (M3, λg) is λ−1t−1-
positive, i.e.

Rmg ∈ Ct =⇒ Rmλg ∈ Cλt

Lemma 11.4. (M3, g) is T−1
i -positive for a sequence of Ti →∞ then secg ≥ 0.
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Proof: Fix a point x0 ∈M . The first condition of being in CTi means that

R ≥ − 3

2Ti
→ 0

The second condition means there exists an xTi (a constant) such that sec ≥ −xTi and

2xTi(log(2xTiTi)− 3) ≤ R(x0)

(here x0 is a point, not Ti = 0). Note that xTi → 0, else T0 →∞ forces

2xTi(log(2xTiTi)− 3)→∞

a contradiction to the fixed upper bound of R(x0). This implies that

sec(x0) ≥ lim
i
−xTi = 0

Theorem 11.5. (M3, {gt}t≤0) an RF implies that sec ≥ 0 for all x ∈M , for all t ≤ 0

Proof: Fix t0 ≤ 0, let Ti →∞ and gi,t = gt−Ti , t ≤ Ti (27)

Figure 27

Lemma 11.6. For a Ricci flow (M3, {gt}t∈[0,T ]) we have Rmgt ∈ Ct for all t > 0 (i.e. t−1-positive using
our definition of Ct as before)

Proof: Can find εi → 0 such that
Rmgεi

∈ Cεi
This follows by compactness of M . Now use the strong maximum principle to preserve the properties defined
by Ct for all t > 0. This finishes the proof.

Now apply the lemma to gi,T then

Rmgi,t ∈ Ct, ∀t > 0

=⇒ Rmgt−Ti
∈ Ct, ∀t > 0

=⇒ Rmgt0
∈ Ct0+Ti , (take t = t0 + Ti)

This implies that Rmgt0
is (t0 + Ti)

−1-positive. Now send Ti →∞ and get

sec(·, t0) ≥ 0

Corollary 11.6.1. A closed shrinking solution in 3D must be the shrinking sphere
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Proof: Recall that a shrinking soliton generates an ancient Ricci Flow

gt = (−2λt)φ∗t g

where φt is a diffeo and t ∈ (−∞, 0]. Our theorem then gives that secgt ≥ 0. If Ric > 0, then Hamilton’s
Ric > 0 theorem tells us that gt is asymptotically round (i.e. R−1

max(t)gt → gS3), which implies that gt itself
must be round. This is because we have for t close to T

(−2λt)−1gt → gS2

φ∗t g → gS3 , t ↑ T
g → gS3 , t ↑ T

the last metric, g, is constant and g = gS3 .

If Ric > 0 fails at a certain point, then

M ∼= (S2, h)× R/Γ or M ∼= T 3/Γ

which implies that the diameter stays bounded away fro m0 as t ↑ 0 (i.e. diamgt ≥ C > 0 for all t). THis is
a contradiction by the definition of the flow

gt = (−2λt)φ∗t g =⇒ diam(gt) = diam(g) · (−2λt)1/2 → 0

so we must be in the first case, i.e. the shrinking sphere. (Here we note that φt is an isometry so the diameter
with respect to g is the same as that with respect to φ∗t (g))

11.3 Preserved curvature conditions for n ≥ 3

Here we make a table

name definition properties
Rm ≥ 0 λ1(Rm) ≥ 0, λ1 ≤ λ2 ≤ . . . =⇒ sec ≥ 0

2-non-negative curvature λ1(Rm) + λ2(Rm) ≥ 0 =⇒ Ric ≥ 0 (n ≤ 3, equiv to Ric ≥ 0)
weakly PIC2 M × R2 is weakly PIC =⇒ sec ≥ 0
weakly PIC1 M × R is weakly PIC
weakly PIC ∀{ei} o.n.b a 4-frame

s.t. R1331 +R1441 +R2332 +R2442 + 2R1234 ≥ 0

where PIC = “Positive isotopic curvature”. Note that weakly PIC2 =⇒ weakly PIC1 =⇒ weakly PIC.
Note that every surface is weakly PIC, but not weakly PIC2

12 Lecture 12: 11-3-22

Today

� Generalization of WMP

� Geometric Compactness theorem

12.1 Generalization of WMP

Theorem 12.1 (Shi, Short-time Existence). Let (Mn, g) complete, |Rm| ≤ C, then ∃ a Ricci Flow, {gt}[0,T ]

with g0 = g and T = T (C)

Remark We won’t prove this but note that the maximal time can be bounded above by a function depen-
dent on the curvature bound.

We also have that “almost non-negative” curvature is preserved by Ricci Flow.
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Theorem 12.2 (Simon-Topping). For (M3, g), Ricg0 ≥ −1 and vol(Bg0(x, 1)) ≥ v0 > 0, ∀x ∈ M . Then
there exists a Ricci flow {gt}t∈[0,T ] such that Ricgt ≥ −C where τ(v0)C(v0) > 0

here C is the curvature bound and only depends on v0. Moreover, τ(v0) is some multiplicative constant.

Theorem 12.3 (Bamler, Cabezas-Rivas, Wilking). Let C be one of the following

C1 = {Rm : Rm ≥ 0}
C2 = {Rm : λ1(Rm) + λ2(Rm) ≥ 0}
C3 = {Rm : weakly PIC1}
C4 = {Rm : weakly PIC2}

Let (Mn, g0) complete and Rmg0 + Id ∈ C and vol(B(x, 1)) ≥ v0, ∀x. Assume moreover that (M3, g0) is
compact (or complete with bounded curvature) if C = C2 or C = C3, then ∃{gt}t∈[0,T ] and Rm+C ·Id ∈ C,
and τ(v0)C(v0) > 0.

Remark Here, we think of Rm : ∧2Rn → ∧2Rn and Id : ∧2Rn → ∧2Rn so that their sum makes sense.

Theorem 12.4 (L.). Theorem 12.3 holds without assuming anything when C = C2, C3

Remark In the above theorem, non-collapsing (i.e. volume bound) is important. Yi constructs a counter
example of a shrinking sphere bundle (see 28) In this example, Ric ≥ −ε

Figure 28

Conjecture 12.4.1. For (M3, g) complete, Ric ≥ 0, then ∃{gt}t∈[0,T ] a complete Ricci Flow such that
g0 = g

Theorem 12.5 (L.). The conjecture is true modulo completeness assertion

Remark Yi says he idea is to run Singular Ricci Flow and then use the Ric ≥ 0 assumption to prevent the
formations of singularities. Once the flow exists, Ric ≥ 0 is preserved.

Corollary 12.5.1 (A gap theorem). Let C = C1, C2, C3, C4. For all D > 0, v0 > 0, there exists
ε(D, v0) > 0 such that if (Mn, g) closed, diam(M) ≤ D, vol(M) ≥ v0, Rm + εId ∈ C, then M admists a
metric g̃ such that Rmg̃ ∈ C

Proof: Suppose not, then there exists {(Mk, gk)} and εk → 0 such that Rmgk + εkId ∈ C, but Mk does
not have a metric such that Rm ∈ C. The above theorems imply that ∃gk,t a Ricci Flow for t ∈ [0, T ].

Moreover, |Rm|gk,t ≤
C(v0)
t (also obtained in out theorems), so that

(Mk, gk,t)
Cheeger-Gromov-Hamilton−−−−−−−−−−−−−−−−−→ (M∞, g∞,t) t ∈ (0, τ ]

Moreover
Rmgk,t + CεkId ∈ C =⇒ Rmg∞,t ∈ C

so M∞ has a metric such that Rm ∈ C. Because Mk is diffeomorphic to M∞ for large k we see that we’ve
found such a metric in C on Mk, a contradiction.
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12.2 Geometric Compactness Theorem

We define Gromov-Hausdorff distance. Let (Z, dz), metric space and X1, X2 ⊆ Z, then the hausdorff
distance between them is

dH(X1, X2) = inf{r > 0 | Br(X1) ⊇ X2, Br(X2) ⊇ X1}

There’s a remark that this can be thought of as a min-max characterization

dH(X1, X2) = inf
p∈X1

sup
q∈X2

d(p, q)

or something similar.

Now let (X1, d1), (X2, d2) be two metric spaces. Then

dGH(X1, X2) = inf
ϕi:Xi→Z isometric embedding
from Xi to a metric space Z

dH(ϕ1(X1), ϕ2(X2)

Now let
M = isometry class of all compact separable metric spaces

Theorem 12.6. (M, dGH) is a separable and complete metric space.

Proof: We go through the metric space requirements

1. We show that dGH(X,Y ) = 0 =⇒ (X, dx) ∼= (Y, dY ). To see this, we have that

dZH(X,Y ) ≤ i−1 → 0

for all i. This means there exists Ii(x) ∈ Y such that d(x, Ii(x)) ≤ i−1, and there exists Ji(y) ∈ X
such that d(y, Ji(y)) ≤ i−1. This tells us that

d(Ii(x1), Ii(x2)) ≤ d(x1, x2) + 2i−1

for all x1, x2 ∈ X. Similar for J and Y (see 29) In particular, d(x, Ji(Ii(x)) ≤ 2i−1. By a diagonalization

Figure 29

argument, for a dense countable subset A ⊆ X (using separability of X) such that

Ii → I : A→ Y

How to do this? For each xi ∈ A, consider Ii(xj) ∈ Y . Using compactness of Y (without thinking
about the ambient Y ⊆ Zi), we can take (along a subsequence) Ii(xj)→ I(xj) ∈ Y . Thus I is defined
for A. Now if we extend I : X → Y , distance decreasing extension (and the same for J), we have that

d(x, J(I(x)) = 0

i.e. I is an isometry with J = I−1.
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2. Triangle inequality - exercise

3. Completeness - Let {Xi} cauchy. We find metric spaces {Zi,i+1} such that Xi, Xi+1 isometrically
embedd in Zi,i+1. Now we glue together Zi−1,i and Zi,i+1 along for all i to get a limiting space Z that
isometrically contains all Xi. In Z, we actually have hausdorff convergence, and completeness under
the hausdorff distance gives us a space in the limit.

4. Separable - let
S = {(X, d) ∈M | |X| <∞, dx takes rational values}

This is clearly countable, and to see density, we take any X compact, then approximate X by an ε-net.
Using compactness we get a finite cover.

12.2.1 Examples of G-H convergence

� Let (M, g) riemannian manifold. Let Xi be an approximating εi-net of M (finite sets!). Then this
converges in the GH sense back to (M, g). Note that this works even when (M, g) is smooth, so
smoothness (or lack of it) not really preserved by GH (see 30)

Figure 30

� Let
Xi = S1(1)× S1(1/i)

GH,i→∞−−−−−−→ S1(1)

This is collapsing (see 31)

� Consider S3/Zk with the induced standard metric on S3. Then there exists

τ : S3/Zk → S2

τ−1(p) has length
1

2k
→ 0

S3/Zk
GH−−→ S2, k →∞

So the topology can totally change under GH convergence, because the first fundamental grouops are
all different

Figure 31
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� Consider the berger sphere S3(ε)→ S2. Then

S3(i−1)
GH−−→ S2

13 Lecture 13: 11-10-22

Today:

� Pointed Gromov-Hausdorff convergence

� Smooth Cheeger-Gromov Convergence

Recall for D > 0, N : R+ → N, set

M(D,N) = {(X, d) ∈M | diam(X, d) ≤ D, N (X,d)(r) ≤ N(r), ∀r}

where N (X,d) is the minimal number of {r−net}. Formally, N (X,d) - have {x1, . . . , xN} such that ∪iB(xi, r) ⊇
X, then {xi} is an “r-net” and N (X,d)(r) is the minimal such N for given r

Theorem 13.1. M(D,N) is compact w.r.t dGH , i.e. closed and totally bounded

Corollary 13.1.1. ∀n ∈ N, D, k > 0. Then

{(Mn, dg) | diamg(M) ≤ D, Ric ≥ −kg}

(where M is compact and g is riemannian metric) is precompact in M.

Note that we may not have a smooth object in the limit.
Proof: Choose {x1, . . . , xn} ⊆M to be a maximal set such that B(xi, r/2) are pairwise disjoint. Then

M = ∪ni=1B(xi, r)

Then

N ≤ Vol(M, g)

min1≤i≤N Vol(B(xi, r/2))
=

Vol(B(xj , 0))

Vol(B(xj , r/2))
≤ C(n,D, k, r)

assuming that the minimum ball volume is achieved at j for some j. The last inequality follows by a volume
comparison theorem. Here, we note that the constant does not depend on the manifold itself, but rather the
lower bound for Ricci. Now our theorem gives precompactness.

Definition 13.2. A metric space (X, d) is a “length space” if

d(x, y) = inf{`(γ) | γ : [0, 1]→ X, γ ∈ C0, γ(0) = x, γ(1) = y}

where the length of a continuous curve is the sup of the partitions. I.e.

`(γ) = sup
P∈P

∑
ti∈P

d(γ(ti), γ(ti+1))

where P is the collection of all partitions of [0, 1].

Theorem 13.3. (X, d) is a length space if and only if ∀x, y ∈ X, ∀ε > 0, there exists z ∈ X, z 6= x, such
that

d(x, z) ≤ 1

2
d(x, y) + ε
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Figure 32

Examples: Let X be the unit circle of radius 1 union the origin (see 32) This is because d(x, 0) = 1 and we
cannot find a continuous curve from the origin to the unit circle. On the other side of the theorem, let x be
the origin, then d(x, z) = 1 for all z 6= x and so the above would give

1 ≤ 1

2
+ ε

which is false for ε small.

Let X = R2\{(0, 0)} - then this is a length space.

Lemma 13.4. If (X, d) is a length space, then

B(x, r) = D(x, r)

where

B(x, r) = {y ∈ X, d(x, y) < r}
D(x, r) = {y ∈ X, d(x, y) ≤ r}

Ex: B(x, 1) = {0} = {0}, and D(x, 1) = X for X = S1\{0}.

Definition 13.5. Let (Xi, di, xi) pointed complete, metric length space, i ≤ ∞. Suppose all the bounded
closed subsets are compact. We write

(Xi, di, xi)
PGH−−−→ (X∞, d∞, x∞)

if ∀r > 0
(D(xi, r), di)

GH−−→ (D(x∞, r), d∞), i→∞

RemarkHere, we assume that X∞ exists and is a length space.

RemarkSimilarly we can find a correspondence (Z, dZ) such that ({ϕi}∞i=1, Z) and ϕi : Xi → Z isometric
embedding such that for all r

ϕi(D(xi, r))
H−→ ϕ∞(D(x∞, r))

see (33)

Theorem 13.6. Let (Xi, di, xi) be a pointed complete length space such that bounded subsets are compact.
Suppose ∃{rk} → ∞ such that

(D(xi, rk), di)
GH−−→ (X∞,k, d∞,k)

then

(X∞,k, d∞,k)
isometric,embed

↪→ (X∞,k′ , d∞,k′) ∀k ≤ k′

and there exists (X∞, d∞, x∞) such that

(Xi, di, xi)
PGH−−−→ (X∞, d∞, x∞)
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Figure 33

Remark This gives a sufficient condition for getting PGH.

Example. Let X =
∨∞
i=1[0, 1]i. Then X is bounded, closed, but not compact. Here

dX(A,B) = dX(A, 0) + dX(B, 0)

if A, B are not on the same interval (see )

Figure 34

Corollary 13.6.1. ∀k ∈ R, ∀n ∈ N

{(Mn, dg, p) | (M, g) complete , Ric ≥ −kg}

is precompact in the space of pointed, complete length space whose bounded closed subsets are all compact

Proof: Follows from the compact case of this theorem.

RemarkThis corollary holds true when replacing k by a function k(r), r = d(·, p).

Example. Let (Mn, g, p) and {λi} → ∞. Let (Mn, λ2
i g, p) → (Mn, dλ2

i g
, p) a complete length space

(bounded subsets are compact). And now

(Mn, dλ2
i g
, p)

PGH−−−→ (TpM
n, geuc, p)

Similarly, (35) if we have a manifold with a cone point and we consider the sequence

(Mn, dλ2
i g
, p)

PGH−−−→ (Cn, dr2 + cr2dgNn−1 , p)

i.e. we get convergence to a cone. Note that the tangent cones at a point are not necessarily metric cones,
and not necessarily unique (i.e. may depend on {λi}).
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Figure 35

Example. Cigar soliton (call it (M, g)). If we choose {pi} arbitrary sequence of points

(M, g, pi)
PGH−−−→

{
(M, g, p1) {pi} bounded

(R× S1, gR×S1) {pi} → ∞

see 46

Figure 36

13.1 Smooth Cheeger-Gromov Convergence

Theorem 13.7. Let (Mn
i , dgi , pi)

PGH,Z,i→∞−−−−−−−−−→ (X∞, g∞, p∞) where each (Mi, dgi) is a complete RM and
(X∞, g∞) is a complete length space. Then we say convergence is smooth at q∞ ∈ X∞ if ∃{qi} ∈ Xi with

qi
Z−→ q∞

where Z is the larger ambient space where this whole correspondence occures. Moreover, there exists r, V > 0,
Cm > 0 such that

1. V ol(B(qi, r)) ≥ C > 0

2. |∇mRm| ≤ Cm in B(qi, r)

Furthermore, if we define

R∗ = {q∞ ∈ X∞ : convergence qi
Z−→ q∞ is smooth at q∞}

Then R∗ is n-dimensional and has a smooth RM, (R∗, g∗) such that (R∗, dg∗)
Id
↪→ (X∞, d∞) is a local isometry

Remark Consider {Mi} a sequence of tori getting progressively more pinched which converges in a PGH
sense to a sphere with two points touching (i.e. fully pinched torus at a point), . Then R∗ is everything
except the point where we pinch. But

(R∗, dg∗) ↪→ (X∞, d∞)

is not an isometry. Topologically
R∗ ∼= (0, 1)× S1

see 37
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Remark Without the first condition (volume preservation), we can construct the following perverse ex-
ample of

S1(1)× S1(ε)
S−→

1

and R∗ = ∅.

Without the second condition (bounded curvature), we can let {Mi} be a sequence of wedges smoothed
out at the vertex, converging to a wedge/cone. In this case

R∗ = X∞\{cone point}

also see 37

Figure 37

14 Lecture 14: 11-15-22

14.1 Smooth Cheeger-Gromov Convergence

Recall from last time:

Theorem 14.1. Assume {(Mn
i , dgi , pi)}

PGH,Z, i→∞−−−−−−−−−→ (X∞, d∞, p∞) and

R∗ = {smooth points} on Bgi(qi, r)

then

1. R∗ ⊆ X is open, and there exists a riemannian metric g∞ such that (R∗, g∞)
id
↪→ (X∞, d∞) is a local

isometry.

2. There exists an open subset U1 ⊆ · · · ⊆ Un ⊆ R∗, such that
⋂∞
i=1 Ui = R∗ and a diffeo

ψi : Ui → Vi ⊆Mi

such that

(a) ψ∗i gi
C∞loc,i→∞−−−−−−→ g∞ on R∗

(b) ψ∗i
Z, i→∞−−−−−→ id

Recall that q∞ ∈ R∗ is smooth there exists {qi ∈Mi} such that

qi
Z−→ q∞

and

Vol(Bgi(qi, r)) ≥ V > 0 (15)

|∇mRm| ≤ Cm (16)
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Proof: First, for 1., note that the Gromov theorem (We haven’t proved this) and equation (15) and (16)
give that

inj(qi) ≥ c > 0

i.e. the injectivity radius is bounded from below. Thus

(D(qi, C/2), di)︸ ︷︷ ︸
topological ball

GH,i→∞−−−−−−→ (D(q∞, c/2), d∞))

Then there exists local coordinates near qi ∈M and

~xi : B(qi, γ0)→ Rn

qi → 0

such that

1. B(~0, r1) ⊆ ~xi(B(qi, r0))

2. gij = gij,stdx
s
idx

t
j

see 38

Recall the three types of coordinates

Figure 38

1. Exponential coordinates
C ′m = C ′m(C0, C1, . . . , Cm)

where {Ci} are our curvature bounds

2. Distance coordinates give
C ′m = C ′m(C0, C1, . . . , Cm−1)

(Here Yi draws a picture explaining this, essentially you have a base point qi, and then you fix n points
x1, . . . , xn in the ambient space, and we map

q 7→ (d(q, x1), . . . , d(q, xn))

)

3. Harmonic coordinates gives
||C ′m||α = C ′m(C0, C1, . . . , Cm−1)
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Arzela-Ascoli and our lemma give that

gi,st
C∞−−→ g∞,st on B(~0,

r1

2
)

Recall
(D(qi, C/2), di)

GH,i→∞−−−−−−→ (D(q∞, c/2), d∞))

then GH limit uniqueness implies that

(D(q∞, r2), d∞)
isom∼= (D(q∞, r2), dg∞)

we can find maps ψi : D(q∞, r2) → Mi diffeos onto the image such that (a) and (b) in our initial theorem

Figure 39

statement (see initial theorem conditions in 2.) are true on D(q∞, r2). This proves 1. (see 40) in our theorem.

Figure 40

Proof: of 2. First, we can find {x1, x2, . . . } ⊆ R∗ with {U j} neighborhoods of xk. Form a locally fi-
nite cover of R∗ and there exists

ψji : U j → V ji ⊆Mi

such that (a) and (b) are true on U j . Now let Xj
i : V ji → U j be the inverse of ψji (see 41)

We now claim that

Xj2
i ◦ ψ

j1
i

C∞loc,i→∞−−−−−−→ id on U j1 ∩ U j2

(Xj2
i ◦ ψ

j1
i )∗g∞

C∞loc,i→∞−−−−−−→ g∞

hint: ψj1i , ψ
j2
i are almost isometries. Same with Xj1

i , X
j2
i . Then

ψji
Z−→ Id

Xj
i
Z−→ Id

=⇒ Xj2
i ◦ ψ

j1
i

Z−→ Id
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Figure 41

Proof: Next: “glue-up” the maps Xj
i : V ji → U j for a fixed i. Let {ηj}∞j=1 be a partition of unity surbor-

dinate to {U j}∞j=1.

Claim: There exist smooth maps σk : [0, 1]k × ∆k → R∗, where ∆k is a diagonal neighborhood of
(R∗)k = R∗ × · · · ×R∗ and the diagonal is just {(x, . . . , x) | x ∈ R∗}, such that

σk(s1, . . . , sk, x, . . . , x) = x (17)

σk(0, . . . , 1, . . . , 0, x1, . . . , xj , . . . , xk) = xj (18)

σk(s1, . . . , sk−i, 0, . . . , 0, x1, . . . , xk) = σk−i(s1, . . . , sk−1, x1, . . . , xk−i) (19)

Note that for k = 2, σ2 is the “mid point” of any two nearby points. Now let

χ̂i(x) = σN (η1(χ1
i (x)), . . . , ηN (xNi (x)), x1

i (x), . . . , xNi (x))

where N is an integer such that
ηk(xki (x)) = 0 ∀k ≥ N

can check that χ̂i are diffeos and
ψ̂i = χ̂−1

i

and ψ̂i satisfy (a) and (b) from the theorem assumption.

Definition 14.2 (C∞-CG convergence). We say (M, gi)
CG−−→ (M∞, g∞) if there exists open U1 ⊆ . . . Un ⊆

M∞, and
∞⋂
i=1

Ui = M∞

and diffeos

ψi : Ui → Vi
open

⊆ Mi

such that

ψ∗i gi
C∞loc−−−→ g∞

ψ−1
i (pi)→ p∞

So 2. from the theorem: (Mn, gn, pn)
CG−−→ (R∗, g∞, p∞

Corollary 14.2.1. Let (Mn
i , gi, pi) complete RM and if ∃r > 0 and for all D > 0 such that

1. |∇mRm| ≤ Cm(D) on B(pi, D)

2. Vol(B(pi, r)) ≥ V > 0 (non-collapsing)

implies that there exists a subsequence such that

(Mi, gi, pi)
CG−−→ (M∞, g∞, p∞)
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14.2 Compactness of RF/Smooth Cheeger-Gromov-Hamilton Convergence

Setup: (Mi, (gi,t)t∈[−T−i ,T
+
i ], pi) pointed complete Ricci Flows, T−i < 0, T+

i > 0 and assume

[−T−i , T
+
i ]→ Î∞

then let I∞ = Î∞\{left end point}, e.g. Î∞ = [0, 1], then I∞ = (0, 1] and

(Mi, gi,0, pi)
PGH,Z,i→∞−−−−−−−−−→ (X∞, d∞, p∞) (20)

and R∗ ⊂ X∞ as the subset of smooth points of (20). Let

R∗∗ =
{
q∞ ∈ R∗ | ∃qi

Z−→ q∞ s.t. ∀[−T̂−, T̂+] ⊆ I∞, ∃C, r > 0

s.t. |Rm| ≤ C on Bgi,0(qi, r)× [−T̂−, T̂+]
}

for large i.

Claim: R∗∗ ⊆ R∗ (see 42)

Proof : Shi’s estimate gies that if |Rm| ≤ C for a small time interval locally at a point in X∞, then

Figure 42

|∇mRm| ≤ Cm
Theorem 14.3. Let ψi : R∗ ⊇ Ui → Vi ⊆Mi and ∪∞i=1Ui = R∗ be diffeos of

(Mi, gi,0, pi)
CG−−→ (R∗, g∞, p∞)

such that
ψ∗i gi,0

C∞−−→ g∞

and
ψi

Z−→ id i→∞
then after passing to a subsequence, we have

ψ∗i gi,t
C∞−−→ g∞,t

a smooth ricci flow on R∗∗ with t ∈ I∞ (where g∞,0 = g∞)

Proof: Take
g̃i,t = ψ∗i (gi,t)

on R∗∗ ∩ Ui. And Shi’s derivative estimate tells us that g̃i,t has bounded derivative up to any order on any
compact subset of I∞. The Arzela-Ascoli lemma now tells us that

g̃i,t
C∞−−→ g∞,t on R∗∗ as i→∞

Moreover, g̃i,t satisfies Ricci Flow, so does g∞,t.
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15 Lecture 15: 11-17-22

Today

� Blow-up analysis

� Solitons

15.1 Application of compactness in blow-ups

Let (M, {gt}t∈[0,T )) compact RF, T <∞ maximal existence time. Choose (xi, ti) ∈M × [0, T ], ti ↑ T and

max
M×[0,ti]

|Rm| ≤ C · |Rm|(xi, ti) := CQi →∞

where C is independent of i. Let

gi,t = QigQ−1
i t+ti

, t ∈ [−Qiti, 0]

Figure 43

Assume for some r > 0, v > 0
Vol(Bgi,t(xi, r)) ≥ vr3

(We will confirm this later using Perlman’s no-local collapsing theorem). So applying the convergence
theorem, we have

(M, gi,t, xi)
CGH−−−→ (M∞, g∞,t, x∞) RF, complete t ∈ (−∞, 0]

Example. Consider two separate sequences, one converging to the sphere, and one converging to the Bryant
soliton. These are called the “neck-pinch” and the “degenerate neck-pinch” (see 44)

Theorem 15.1 (Perelman-Brendle). The only possible singularity models for 3D compact Ricci Flows are
S3/Γ, S2 × R, S2 × R/Z2, and the Bryant soliton.

15.2 Solitions (Revisit)

Definition 15.2. We say that a triple (M, g,X) is a soliton if

Ric +
1

2
LXg −

λ

2
g = 0, λ ∈ R
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Figure 44

if X = ∇f then this is a gradiaent solution and the above becomes

Ric +∇2f − λ

2
g = 0

Moreover

shrinking λ > 0

steady λ = 0

expanding λ < 0

Now consider the diffeo

φt := flow of


− 1
λt t < 0, when λ > 0

X t ∈ R, λ = 0

− 1
λtX, t > 0, λ < 0

Let

gt =


−λtφ∗t g t < 0, λ > 0

φ∗t g t ∈ R, λ = 0

−λtφ∗t g, t > 0, λ < 0

Theorem 15.3. {gt} is a Ricci Flow.

Proof: Assume λ > 0, then

d

dt
(−λt)φ∗t g = (−λ)φ∗t g − λt∂tφ∗t g

= (−λ)φ∗t g + φ∗t (LXg)

= φ∗t (−λg + LXg)

= φ∗t (−2Ric)

= −2Ric(φ∗t g)

= −2Ric(gt)
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Example. All Einstein manifolds, i.e. Ric = λ
2 g and let X be a killing field, then

Ric +
1

2
LXg = Ric =

λ

2
g

Example. Gaussian gradient soliton: (Rn, geuc, f = λ
4 |x|

2) euclidean coordinates. Note that

∇2|x|2 = 2geuc

Check

Ric +∇2f − λ

2
geuc = ∇2f − λ

2
geucl

=
λ

4
2geuc −

λ

2
geuc

= 0

see 45

Figure 45

Example. Hamilton-Cigar soliton - on R2, with g = dr2 +h(r)2dθ2, and f . h and f have explicit formulae,
but not stated here. This is a steady gradient soliton with h(r) < ∞ as r → ∞. Here k > 0, i.e. positive
gauss curvature everywhere. Moreover for {pi} a sequence with r →∞

(M, g, pi)
CG−−→ R× S1

In 2D, steady solitons are either

� flat

� Cigar soliton

due to Hamilton, Seseum, . . . see 46

Figure 46
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Example. In n ≥ 3, the rotationally symmetric soliton is called the Bryant soliton (due to R. Bryant). We
work on Rn and

g = dr2 + h(r)2gSn−1

and an f . see 47
Both h and f unique. This is not like a cigar soliton and the graph of the Bryant soliton is like a polynomial

Figure 47

of degree two. If you measure the diameter of the sphere at distance r, we have that h(r) ∼
√
r. Moreover,

Rm > 0 everywhere, and also for {pi} a sequence tending to r =∞

(M, g, pi)
CG−−→ Rn

we can also get nice convergence if we rescale

(M,R(pi)g, pi)
CG−−→ Sn−1 × R

Finally, if we take {λi} → 0 and take the distinguished parabolic point, p, on the Bryant soliton, we have
that

(M,λig, p)
GH−−→ R+ = [0,∞)

Example. In generalized cylinders

(Sk × Rn−k, g = gSk + gRn−k , f =
λ

4
|x|2)

where x is just n− k coordinates on Rn−k see 48

Figure 48

In 2D, shrinking soliton converges to S2/Γ, R2 (Gaussian shrinking).
In 3D, shrinking soliton converges to S3/Γ, S2 × R/Γ, and R3 (Gauss).
We have yet to classify steady solitons, though Hamilton conjectured that there is at least one more besides
the 3D Bryant soliton and R× Cigar. see 49

Recently Yi found a family of steady solitons called “flying wings”, the difference is that
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Figure 49

3D Bryant soliton
Blow down, GH−−−−−−−−−−→ R+

Flying Wing
Blow down, GH−−−−−−−−−−→ (cone)

R× cigar
Blow down, GH−−−−−−−−−−→ R× R+

Conjecture 15.3.1. Are these all the 3D steady gradient solitons?

We’ve shown the existence of at least one more with the flying wings. Moreover this example has Z2 ×O(2)
symmetry, but all 3D steady gradient solitons have O(2) symmetry. Uniqueness is still open

Example. Danielle: ∀(Nn−1, h) with Rm > Id, ∃!(Mn, g, f) expanding with Rm > 0 and R(p) = 1,
∇f(p) = 0 such that (M, g) asymptotic to C(N), the metric cone over N , dr2 + r2h, see 50
We have

(M,λig, p)
GH−−→ C(N)

Moreover, let {gt} be a RF associated to g, i.e.

gt = (−λt)φ∗t g

Then

(M, gt, p)
GH, t↓0−−−−−→ (C(N), p)

As an aside: Metric comparison geometry say that for (M, g, p) with sec ≥ 0, λi → 0, then

(M,λig, p)
GH−−→ (P (X), p∞)

where P (X) is a cone. Here X is the class of geodesic rays on M , which admits a metric

Example. Due to Yi, in n ≥ 4, there is a family of Z2 × O(n − 1)-symmetric steady gradient solitons for
Rm > 0, see 51
Let

λ1 = λ2 = · · · = λn−2 > λn−1 = λn

Let α = λ2

λ1
Here, if we take pi → 0 then

(M,R(pi)g, pi)→ R× Bryn−1 or R2 × Sn−2
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Figure 50

Figure 51

Question: What is (M,λig, p) as λi → 0 and i → ∞? If α = 1, we get the bryant soliton. If α = 0, we get
the R× Bryn−1. What about other values of α?

16 Lecture 16: 11-29-22

Today we’ll discuss heat flows and conjugate heat flows

16.1 F-functional and λ-invariants

We try to view the ricci flow as a gradient flow of some functional. Let {gt}t∈I be a Ricci flow on M ,
compact. Let u, v ∈ C2(M × I). Recall that the heat equation is given by

�u := (∂t −∆gtu) = 0

We can define the conjugate heat equation by

�∗u = (−∂t −∆gt +Rgt)u = 0
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Note that if u, v ∈ C2
c (M × [t1, t2]) (i.e. u(·, t), v(·, t) vanish on ∂M), then

�
(�u) · vdgt −

�
u�∗vdgt =

�
(∂t −∆)u · v −

�
u(−∂t −∆ +R)v (21)

=

�
[∂t(uv)− (∆u)v + u(∆v)−Ruv] dgt

=

�
∂t(uv)−Ruv)

= ∂t

�
uvdgt

where the third line follows from integration by parts, and the fourth line follows because the derivative of
the volume form with respect to the metric is the scalar curvature. We phrase this as the following theorem

Theorem 16.1. For u, v ∈ Cc(M × I), we have

∂t

�
M

uvdgt =

�
(�u)vdgt −

�
u(�∗v)dgt

We can also integrate the above and get

�
uvdgt

∣∣∣t2
t1

=

� t2

t1

�
M

[(�u)vdgt − u(�∗v)dgt]

16.2 Heat Kernels

In order to understand the heat equation, we also want to understand its underlying kernel. Define

K(x, t; y, s) > 0, x, y ∈M, s < t

such that

�(x,t)K(x, t; y, s) = 0

lim
t↓s

k(·, t; y, s) = δ(y,s)

see 52

Figure 52

Proposition 3 (Reproduction Formula). If �u = 0, then for s < t, we have

u(x, t) =

�
M

K(x, t; y, s)u(y, s)dgs

One could view this as a defining property of the heat kernel.

Similarly, we can define a kernel for the conjugate heat equation, i.e. a function

K∗(x, t; y, s) > 0
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such that

�∗(y,s)K
∗(x, t; y, s) = 0

lim
s↑t

K∗(x, t; y, s) = δ(x,t)

see 53 Then the corresponding reproduction formula is

Figure 53

Proposition 4 (Reproduction Formula). If �∗v = 0, then for s < t

v(y, s) =

�
M

K∗(x, t; y, s)v(x, t)dx

Finally we have

Lemma 16.2.
K∗(x, t; y, s) = K(x, t; y, s)

Proof: Consider

F (τ) =

�
K∗(x, t; z, τ)K(z, τ ; y, s)dτz τ ∈ (s, t)

Then recall (21). Applying this to the two heat kernels, we see that F (τ) is constant in τ . Moreover

lim
τ↑t

F (τ) = K(x, t; y, s) lim
τ↓s

F (τ) = K∗(x, t; y, s)

which finishes the proof.

Corollary 16.2.1 (Reproduction Formula). If t1 < t2 < t3, then

K(x3, t3;x1, t1) =

�
M

K(x3, t3; ·, t2)K(·, t2;x1, t1)dgt2

Proof: Again by (21), the intergal on the RHS is independent of t2. Letting t2 ↓ t1 or t2 ↑ t3 along with
the defining properties of the heat kernel give the result. See 54

Figure 54

We will now discuss
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� F-functional, W-functional, monotonicity

� λ, µ-invariants

� No local collapsing theorem

16.3 F-functional

Let M a smooth manifold, closed. Define

F(g, f) =

�
M

(R+ |∇f |2)e−fdV, dV = dV olg

i.e. f ∈ C∞(M) and g is a riemannian metric on M . Let

h := Dg

(i.e. h = ġ - for a smooth variation of metrics {gt}). And similarly v = Df (Also an infinitesimal variation)
Then

Theorem 16.3. We have

DF(g,f)(h, v) =

�
M

[
−〈h,Ric +∇2f〉+

(
tr(h)

2
− v
)

(2∆f − |∇f |2 +R)

]
e−fdV

Proof: From hereon we’ll label the LHS DF . Recall that

D(−2Ric)(h)jk = ∆Lhjk +∇j∇ktr(h) +∇j(δh)k +∇k(δh)j

So that
DR = −∆(tr(h))− 〈Ric, h〉+ δ2h

where δ is the divergence. Similarly

D|∇f |2 = −h(∇f,∇f) + 2〈∇f,∇v〉

D(dV ) =
tr(h)

2
dV

D(e−fdV ) =

(
tr(h)

2
− v
)
e−fdV

=⇒ DF =

�
M

[
−∆tr(h)− 〈Ric, h〉+ δ2h− h(∇f,∇f) + 2〈∇f,∇v〉+ (R+ |∇f |2) ·

(
trh

2
− v
)]

e−fdV

where again (v = Df). Moving all the derivatives off of the variations h and v and integrating by parts, we
get

�
M

−∆tr(h)e−fdV =

�
M

−tr(h)∆e−fdV =

�
m

−tr(h)
(
|∇f |2 −∆f

)
e−fdV

�
M

δ2he−fdV = −
�
M

〈δh,∇e−f 〉 =

�
M

〈h, δ∗∇e−f 〉dV

=

�
M

〈h,∇2e−f 〉 =

�
M

〈h, df ⊗ df −∇2f〉e−fdV
�
M

2〈∇f,∇v〉e−fdV =

�
M

2〈−∇e−f ,∇v〉dV =

�
M

2∆e−fvdV

= 2

�
M

v(|∇f |2 −∆f)e−fdV
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This implies the theorem.

We can get rid of
(

tr(h)
2 − v

)
(2∆f − |∇f |2 +R) by requiring that

tr(h)

2
− v = 0

In this case, we also see that

D(e−fdV ) =

(
tr(h)

2
− v
)
dV = 0

i.e. its a constant measure, and hence

DF =

�
−〈h,Ric +∇2f〉e−fdV

Can now define an L2-product on the space of symmetric 2-tensors by

〈〈h1, h2〉〉g :=
1

2

�
M

〈h1, h2〉dm

for m a fixed measure. The gradient flow of F is then

∂tgt = −2(Ric +∇2f)

∂tft = −R−∆f

and hence
d

dt
F(gt, ft) =

�
−|Ric +∇2f |2e−fdV ≤ 0

Now let g̃t = φ∗t (gt) and f̃t = φ∗t ft for φt defined to be the flow of ∇f . Then

∂tg̃t = −2Ric(g̃t)

∂tf̃t = −R̃−∆f̃ + |∇f̃ |2 (22)

We then see that
F(g̃t, f̃t) = F (gt, ft)

and
e−f̃dṼ = φ∗t (e

−fdV )

is no longer constant, but the integral is!

d

dt

�
e−f̃dṼ =

d

dt

�
φ∗t (e

−fdV ) =
d

dt

�
e−fdV = 0

just by diffeomorphism invariance of integrals. This means that from (22), we get

∂tgt = −2Ric (23)

∂tf = −R−∆f + |∇f |2 (24)

=⇒ ∂te
−f = −∆e−f +Re−f (25)

where the last equation is the conjugate heat equation, and linear. Thus we can solve for f backwards in
time

Example. Consider (Rn, geucl) and gt = geucl for all t ∈ [0, t0). Let τ = t00t. Let

ft =
|x|2

4(t00t)
+
n

2
ln(4π(t0 − t))

=⇒ e−ft = (4π(t0 − t))−n/2e−|x|
2/4(t0−t)
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This is a conjugate heat kernal starting at (0 ∈ Rn, t0 ∈ (0,∞)). Moreover e−ft satisfies (25) and

�
Rn
e−ftdV = 1

Finally

F(gt, ft) =

�
(R+ |∇f |2)e−fdV = (4πτ)−n/2

�
|x|2

4τ2
e−|x|

2

4τdV =
n

2τ

16.4 λ-invariant

Given a manifold, we can define
λ(g) := inf

f∈C∞(M)�
e−fdV=1

F(g, f)

Letting φ = e−f/2, this is equivalent to

λ(g) =

�
φ∈C∞(M)�

φ2=1

�
4|∇φ|2 +Rφ2dV

16.4.1 Existence of minimizer and regularity

There exists a smooth φ > 0 a minimizer of

�
4|∇φ|2 +Rφ2

and
−4∆φ+Rφ = λφ

where λ is the smallest eignevalue of −4∆ +R. Moreover, this occurs if and only if

2∆f − |∇f |2 +R = λ

for λ a constant in M . Taking the gradient of the above and applying the 2nd Bianchi identity, we get

div
[
(Ric +∇2f)e−f

]
= div

[
−1

2
∇λ
]

= 0 (26)

Check:

δλg(h) =

�
M

−〈h,Ric +∇2f〉e−fdV

we define

〈〈h, h, 〉〉g =
1

2

�
M

〈h, h〉φ2dVg

then (26) gives
〈∇λ, div∗X〉 = 〈div(∇λ), X〉 = 〈0, X〉 = 0

So the gradient of λ is orthogonal to

Imdiv∗ = {LXg : X v.f.}

so our ricci flow is a “gradient flow” of λ when projected on M/Diff(M).

Remark In finite dimensional manifolds,a periodic gradient flow (called a steady breather) must be
a fixed point (i.e. evolves by diffeomorphisms)

Theorem 16.4. If {gt}t∈[0,T ] is a RF, the λ(gt) is non-decreasing in t
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Proof: WLOG, show that λ(g(τ)) ≥ λ(g(0)) for all τ . Let f(τ) be a smooth function such that φ = e−f(τ)/2

is a minimizer of λ(gτ ). Solve the conjugate heat equation

−∂tu−∆u+Ru = 0

u(τ) = e−f(τ)

Claim: u(t) > 0 everywhere.

Proof: It follows immediately from convolution with the conjugate heat kernal OR: take v to be a test
function such that v > 0 and supp(v) ⊆ B0(x, r) for r small. Solve

∂tv = ∆v

v(0) = v

to get v(t) > 0 everywhere. Then immediately, we have

0 <

�
u(τ)v(τ)dVτ =

�
u(0)v(0)dV0

I believe this follows from (21). Now taking v(0) arbitrary we see that u(x, 0) > 0 everywhere.

NOw our claim shows that there exists f(t) for t ∈ [0, T ] such that e−f(t) = u(t), and so F(gt, f(t)) is
non-decreasing i.e.

λ(g0) ≤ F(g0, f(0)) ≤ F(gτ , f(τ)) = λ(gτ )

ending the proof.

Corollary 16.4.1. A compact steady breather is a steady gradient soliton (and hence is Ricci Flat)

Recall that a steady breather means we have {gt} a RF and ∃t2 > t1 and φ a diffeo such that
g(t2) = φ∗g(t1). Hence the ricci flow is periodic after rescaling appropriately.

Proof: Tracing through the previous proof, we find F(gt, f(t)) ≡ c a constant. Thus

0 =
d

dt
F(gt, f(t)) = 2

�
M

|Ric +∇2f |2e−fdV =⇒ Ric +∇2f = 0

which is our criterion for a gradient soliton.

17 Lecture 17: 12-1-22

Today we discuss the W and µ functionals.

17.1 W-functional

Define

W : M × C∞(M)× R+ → R

W(g, f, τ) =

�
M

[τ(|∇f |2 +R) + f − n](4πτ)−n/2e−fdV

Then we see that it satisfies

W(λg, f, λτ) =W(g, f, τ) scaling invariance

W(φ∗g, φ∗f, τ) =W(g, f, τ) diffeo invariance
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Let Dg = h, Df , Dτ , all be infinitesimal variations in time. And assume that

trh

2
−Df − nDτ

2τ
= 0 (27)

Then we have that

DW(g,f,τ)(hDf,Dτ) =

�
M

[
Dτ(R+ |∇f |2 − τ〈h,Ric +∇2f〉+Df

]
(4πτ)−n/2e−fdV

Consider the coupled flow

∂tg = −2(Ric +∇2f)

∂tf = −∆f −R+
n

2τ
⇐⇒ (27)

∂tτ = −1

Then

dW
dt

(gt, ft, τ) =

�
M

[
−
(
R+ |∇f |2

)
+ 2τ |Ric +∇2f |2 −∆f −R+

n

2τ

]
(4πτ)−n/2e−fdV

=

�
M

[
−2(R+ ∆f) + 2τ |Ric +∇2f |2 +

n

2τ

]
(4πτ)−n/2e−fdV

=

�
M

2τ |Ric +∇2f − 1

2τ
f |2(4πτ)−n/2e−fdV

Replacing g, f with the pull backs φ∗t g, φ∗t f , for φt the flow of ∇f , we get

∂tg = −2Ric

∂tf = −∆f + |∇f |2 −R+
n

2τ
=⇒

�
M

(4πτ)−n/2e−fdV = 1

∂ττ = −1

17.2 µ-functional

We define

µ(g, τ) = inf
f
{W(g, f, τ) :

�
(4πτ)−n/2e−fdV = 1} > −∞

φ=e−f/2

= inf
φ
{
�
M

[
τ(4|∇φ|2 +Rφ2)− 2φ2 log φ2 − nφ2

]
dV :

�
(4πτ)−n/2φ2 = 1}

There exists a φ > 0, minimizer and smooth such that

τ(−4∆ +R)φ = 2φ log(φ) + (µ(g, τ) + n)φ

so there exists an f such that φ = e−f/2 and f smooth.

Theorem 17.1. Let (M, {gt}) a RF. M compact, let t0 arbitrary, then µ(gt, t0 − t) is non-increasing and
continuous in t, t ∈ (−∞, t0)

Proof: Let f(t2) be the minimizer of µ(gt2 , t0 − t2), then solve

�∗(4πτ)−n/2e−f = 0

to get ft. Then
W(gt, ft, t0 − τ)

is non-decreasing and

µ(gt1 , t0 − t1) ≤ W(gt1 , ft1 , t0 − t1) ≤ W(gt2 , ft2 , t0 − t2) = µ(gt2 , t0 − t2)

where the first inequality holds by definition of inf.
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Corollary 17.1.1. A shrinking breather (compact) is a shrinking gradient soliton.

Recall that a shrinking breather means ∃φ a diffeo with c ∈ (0, 1) such that

g(t2) = cφ∗(g(t1))

for some t2 > t1. This relation gives periodic ricci flow modulo rescalings (i.e. there exists ti for all i ≥ 3
such that a similar relation to the above holds).

Proof: WLOG assume t2 = ct1 < 0, i.e. perform a time shift, see 55 Let f(t2) be a minimizer of µ(gt2 ,−t2)

Figure 55

and solve
�∗(4πτ)−n/2e−f = 0

(i.e. heat equation, this is what �∗ represents) to get ft and

µ(gt1 , t1) ≤ W(gt1 , ft1 ,−t1) ≤ W(gt2 , ft2 ,−t2)

= µ(gt2 ,−t2) = µ(cφ∗gt1 ,−ct1)

= µ(φ∗gt1 ,−t1) = µ(gt1 ,−t1)

where the equalities in the third line follow since the µ-functional is rescaling invariant and also diffeomor-
phism invariant. This implies that

W(gt, ft,−t)

is constant, i.e.
d

dt
W = 0 =⇒

�
M

2τ |Ric +∇2f − 1

2τ
|2(4πτ)−n/2e−fdV = 0

This implies that

Ric +∇2f − 1

2τ
g = 0

which is exactly the equation for a gradient soliton.

17.3 Example: The gaussian shrinker

The gaussian shrinker on (Rn, geucl) with g(t) = geucl and t ∈ (−∞, 0). Then

gt = geucl

ft =
|x|2

4τ
⇐⇒ (4πτ)−n/2e−f is the conjugate heat kernal

τ = −t

see 56

Then

τ(|∇f |2 +R) + f − n = τ · |x|
2

4τ2
+
|x|2

4τ
− n =

|x|2

2τ
− n

Then

W(gt, ft,−t) =

�
Rn

(
|x|2

2τ
− n

)
(4πτ)−n/2e−fdV = 0
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Figure 56

Corollary 17.1.2 (Log-Sobolev inequality). Let

dm = (4πτ)−n/2e−|x|
2/(4τ)dV

be defined to be the gaussian measure. Then
�
Rn

2φ2 ln(φ)dm ≤
1

τ

�
Rn
|∇φ|2dm

for any τ > 0 and
�
Rn φ

2dm = 1

17.4 Example: R2/Zk

Let gt = geucl for t ∈ [0, t0) and τ = t0 − t and Zk acting by rotating by 2π/k around 0. This turns R2 into
a cone. Let

(4πτ)−n/2e−f = (4πτ)−n/2e−|x|
2/(4τ)k

then (4πτ)−n/2e−f a conjugate heat kernal, implies that

f =
|x|2

4τ
− ln(k)

This gives that
W(gt, ft, t0 − t) = − ln(k)

and the above tends to −∞ as k → ∞. Note that as k → ∞, the cone we have collapses since we quotient
out by Zk

17.5 No local collapsing theorem

Definition 17.2. Let (M, gt) for t ∈ [0, T ) be a Ricci flow. It is locally collapsing at T if ∃{tk} → T and
pk ∈M and rk > 0 with

sup
k

r2
k

tk
<∞

and
|Rm|(g(tk)) ≤ r−2

k on Btk(pk, rk)

but

lim
k→∞

vol(Btk(pk, rk))

rnk
= 0

Definition 17.3. We say that a manifold (M, g) is k-noncollapsed on the scale of ρ if ∀x ∈M, ∀r ≤ ρ, we
have

|Rm| ≤ r−2 in Bg(x, r) =⇒ Vol(Bg(x, r)) ≥ krn

Example. Consider the Cigar soliton, which we know asymptotically looks like R×S1. It is k-noncollapsed
on scale 1, but not k-noncollapsed on all scales. Then
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� It is k-non-collapsed on scale 1

� But not k-non-collapsed on all scales - This means there exists no k so that the cigar can be k-non-
collapsed at all scales

Intuitively, the second is because asymptotically the cigar looks like a cylinder, which converges to a ray at
larger scales and this contradicts the quadratic volume growth

Definition 17.4. We say (M, g) is non-collapsed if there exists a k > 0 such that (M, g) is k-non-collpased
at all scales. Otherwise (M, g) is collapsed.

Example. Using the above, the cigar soliton is collapsed. Note that |Rm| ≤ r−2 inB(x, r), but Vol(B(x, r)) =
O(r)� r3 when r � 1, so collapsed. See 57

Figure 57

Example. Consider R×S2. THis is actually non-collapsed because |Rm| ≡ 1 and so the curvature condition
|Rm| ≤ r−2 is not satisfied on for r > 1, so the implication is vacuously true. For r < 1, we have cubic
volume growth and can find a concrete κ > 0. See 58

Figure 58

Example. Bryant solution is non-collapsed. See 59

Figure 59

Example. Flying wings - is collapsed because of the geometry at the vertex. See 60
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Figure 60

Theorem 17.5. If M is a closed manifold and T <∞, then g(t) is not locally collapsing at T , i.e.

sup
k
r2
k <∞, lim

k→∞

Vol(B(pk, rk))

rnk
= 0

never happens.

The theorem means that (M, gt) is k-non-collapsed on some scale ρ - note that k, ρ may depend on g0

and T .

18 Lecture 18: 12-6-22

Theorem 18.1 (Perelman). If M is closed and T <∞, then g(t) is not locally collapsing at T

Proof: Let φ = e−f , then

W(g, f, τ) = (4πτ)−n/2
�
M

4τ |∇φ|2 + (τR− 2 ln(φ)−)φ2dV

Suppose theorem not true, then ∃ {pk} ∈M , rk > 0 such that supk rk <∞ such that

|Rm| ≤ r−2
k on B(pk, rk) but

Vol(B(pk, rk))

rnk
→ 0 as k →∞

We will find φk (and hence fk, φk = e−fk/2) such that W(gtk , fk, r
2
k)→ −∞ as k →∞ and

µ(g0, tk + r2
k) ≤ µ(gtk , r

2
k) ≤ W(gtk , fk, r

2
k)→ −∞

However µ(g0, tk + r2
k) → −∞ is impossible (this will be done in an independent exercise, but as long

as the metric is fixed, then µ(g0, r) is bounded). This will give a contradiction. We now verify that
W(gtk , fk, r

2
k)→ −∞

φk = eck/2ϕ

(
d(pk, ·)
rk

)
where ϕ is a cut off on the half line that is 1 on [0, 1/2] and decays to 0 on [1/2, 1] see 61
Choose ck so that �

M

(4πr2
k)−n/2φ2

k = 1

We now use Jensen’s inequality, which we recall as

Proposition 5. Let (Mn, g), ϕ : R→ R convex, µ ∈ L1(M,dV ), then

1

Vol(M)

�
M

ϕ(u)dV =

 
ϕ(u)dV ≥ ϕ

( 
udV

)
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Figure 61

Now assume that (4πr2
k)−n/2 = 1. Then omit “k” for a moment and let

B := B(pk, rk), B1/2 = B(pk, rk/2), τ = r2
k

apply Jensen’s inequality on M = B with ϕ = u2 ln(u2) (which is convex). This gives

1

Vol(B)

�
B

φ2 ln(φ2) ≥
(

1

Vol(B)

�
B

φ2dV

)
ln

(
1

Vol(B)

�
B

φ2dV

)
1

Vol(B)

�
B

φ2 ln(φ2) ≥ 1

Vol(B)
ln

(
1

ln(Vol(B))

)
=⇒ −

�
B

φ2 ln(φ2) ≤ ln(Vol(B))

This tells us that �
M

(τR− 2 ln(φ)− n)φ2dV ≤ c0 + ln(Vol(B))

so it suffices to estimate �
4τ |∇φ|2

in our initial integral. First we know that
|∇φ| ≤ c0e−c/2

this is a consequence of the definition of φk (remember we’re dropping the “k” subindex). This tells us that

�
M

4τ |∇φ|2dV ≤ c0Vol(B)e−c ≤ c0
Vol(B)

Vol(B1/2)

Volume Comparison

≤ c0

Note that φ = e−c/2 on B1/2 we have

e−cVol(B1/2) =

�
B1/2

φ2dV ≤
�
B

φ2dV = 1

restoring the subscript “k” and rescaling, this gives

W(gtk , fk, r
2
k) ≤ c0 + ln

(
Vol(B(pk, rk)

rnk

)
→ −∞

since
Vol(B(pk, rk)

rnk
→ 0

as k →∞.

18.1 Nash Entropy

Let (M, gt) a RF, compact. Fix (x0, t0) ∈M × I and τ = t0 − t. Define

dVτ = dVx0,t0;·,t = k(x0, t0; ·t)dgt = (4πτ)−n/2e−fdgt
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is a probability measure i.e. �
M

dVτ = 1

and
�∗k(x0, t0; ·, t) = 0 ⇐⇒ −∂tf = ∆f − |∇f |2 +R− n

2τ

Denote
W(τ) =Wx0,t0(τ) =W(gt0−τ , ft0−τ , τ)

then is called the pointed Nash entropy (often abbreviated N(τ))

Nx0,t0(τ) :=

�
M

(
ft0−τ −

n

2

)
dVτ

Theorem 18.2.

d

dτ
(τN(τ)) =W(τ) ≤ 0

d2

dτ2
(τN(τ)) ≤ 0

d

dτ
(N(τ)) ≤ 0

0 ≥ N(τ) ≥ W(τ)

Proof: Note that if we prove the first equality, the second inequality follows by monotonicity of W. We
compute

d

dτ
N(τ) = − d

dτ

(
f − n

2

)
dVτ = − d

dτ

�
M

fdVτ = −
�
M

�fdVτ

=

�
M

(
2∆f − |∇f |2 +R− n

2τ

)
dVτ =

�
M

(
(|∇f |2 +R)− n

2τ

)
dVτ

Note that the last equality in the first line follows from (21). Note this doesn’t give non-positivity, but we’ll
show that somehow else. Now the first equation comes from

d

dτ
(τN(τ)) = N(τ) + τ

d

dτ
N(τ) =

�
M

fdVτ −
n

2
+

�
M

τ(|∇f |2 +R)− n

2
dVτ

=W(τ)

This gives the first equation.

Its an exercise to show that
lim
τ→0

N(τ) = lim
τ→0
W(τ) = 0

see 62

The picture follows in part from the convexity of τN(τ). Now with this, we use the first equation to
get

0 ≥ N(τ) ≥ W(τ)

=⇒ d

dτ
N(τ) ≤ 0

A rigorous proof can be done but the picture suffices for the idea. This finishes our proof of all statements.

Theorem 18.3 (No-local collapsing, Bamler). Let (M, {gt}) a RF and [t− r2, t] ⊆ I, then

R(·, r) ≤ r−2 on Bt(x, r) =⇒ Vol(Bt(x, r))

rn
≥ cneNx0,t0 (r2)
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Figure 62

Remark R ≤ r−2 is indispensable: because N(x0,t0)(τ) ≥ −c0 holds for any τ on the shrinking sphere,

shrinking cylinder, and Bryant soliton. However Vol(Bt(x,r))
rn → 0 as opposed to being bounded. This is

precisely because the scalar curvature bound does not hold. see 63

Intuitively,

Figure 63

Nash entropy of RF
compare↔ Volume growth ration in (Mn, g), Ric ≥ 0

Nx0,t0(r2)↔ ln(V (x0, r))

Theorem↔ Vol(B(x0, r))

rn
= eln(V (x0,r))

Thm: gradient estimate on Nx0,t0(τ)↔ V (x2, r2) ≤ CV (x1, r1), C = C(d(x1, x2), r1, r2)

18.2 Hn-center

Definition 18.4. Let (X, d) a metric space, and P = {probability measure on (X, d)}. hen for all µ1, µ2 ∈
P , we define

Var(µ1, µ2) =

�
X

�
X

d2(x1, x2)dµ1(x1)dµ2(x2)

This is not exactly a distance function but√
Var(µ1, µ3) ≤

√
Var(µ1, µ2) +

√
Var(µ2, µ3)

Theorem 18.5 (Bamler, 2021). Let (M, {gt}) a RF, compact, and ν1, ν2 satisfy �∗νi = 0, νi ≥ 0, and�
νidgτ = 1. Set

dµi,τ = νi,τdgτ ∈ P

then
d

dt
Var(µ1,t, µ2,t) ≥ −Hn

for Hn some dimensional constant

We’ll omit the proof for now
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Corollary 18.5.1. (M, {gt}) a RF, compact, s < t ∈ I, x1, x2 ∈M . Then

Var(νx1,t;s, νx2,t;s) ≤ d2
t (x1, x2) +Hn(t− 2)

this is called the “distance distortion estimate” on a RF.

Let
Var(µ1, µ1) =: Var(µ1)

then we have

Hn(t− s) ≥ Var(νx1,t,s) =

�
M

Var(νx1,t;s, δz)dVx1,t;s(z)�
M

Var(νx1,t;s, δz)dVx1,t;s(z) ≤ Hn(t− s)

which forces equality everywhere.

Definition 18.6. (z, s) is called an Hn-center of (x, t) if s ≤ t and

Var(νx,t;s, δz) ≤ Hn(t− s)

Theorem 18.7. Let (M, {gt}) a RF. Then ∀x ∈ M , if R ≥ −r−2 on M × [t − r2, t] and (z, t − r2) is an
Hn-center of (x, t), then

Vol(Bt−r2(z,
√

2Hnr)

rn
≥ cneNx,t(r

2)

Intuitively

dt(x, zt) ∼= t

R(zt) ∼ t−1

19 Lecture 19: 12-8-22

Today is the last class. Yi is giving an overview of the modern theory of Ricci Flow, particularly pertaining
to the work of Bamler.

Conjecture 19.0.1 (Folklore). For a general RF, “Most” singularities are gradient shrinking solitons

Note that the bryant soliton is not a gradient shrinking soliton, but if we take a blow up sequence of
(M,R(pi)g, pi) which converges to R× S2, we see that even in the limit the blow up is a gradient shrinking
soliton.

Similarly, with the dumbbell, if we rescale about the pinched point we get R×S2, which is again a gradient
shrinking soliton.

Finally if we take M = S3 or something close to S3 with the standard metric, then if we run RF and
rescale appropriately we’ll get S3 round in the limit, which is also a gradient shrinking soliton since Ric = λg
on S3.

Example (Appleton). There exists a RF in n = 4 whose blow up limits are Eguchi-Hanson metric on TS2,
and Ric ≡ 0, and asymptotically equivalent to R4/Z2 (a cone on RP3), a shrinking soliton, see ??

Example (Stolaski). There exist ricci flows in n ≥ 13 whose gradient shrinking solitons blow up limits are
Ricci-flat cones.
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Figure 64

These examples tell us that we modify the folklore conjecture to

Conjecture 19.0.2 (Folklore, modified). “Most” singularities are gradient shrinking solitons (smooth) or
Ricci Flat cones

Recall: If (Mn
i , gi, xi) is a sequence of RM with Ric ≥ −λg, assume Bgi(xi, r) ≥ v > 0 (non-collapsin),

then passing to a subsequence, there exists (X, d, x∞) a complete length space such that

(Mn
i , dgi , xi)

PGH−−−→ (X, d, x∞)

Moreover, (Mn
i , gi, xi) are Einstein-manifolds with Ric = λigi, |λi| ≤ 1. Then (Cheeger, Colding, Tian,

Naber) there exists a decomposition X = R ∪ S such that

1. R is an open manifold and ∃g∞ a smooth Einstein metric,

(X, d) = completion of (R, dg∞)

2. (codimension 4 conjecture) dimM S ≤ n− 4 (Minkowski dimension!), where S is the singular set

3. Any tangent cone at any point of X is a metric cone

4. There is a filtration S0 ⊂ S1 ⊂ · · · ⊂ Sn−4 = S such that dimM Sk ≤ k and

Sk = {points in S whose tangent cone cannot split off a Rk+1-factor}

This impies that if a point has a tangent cone splitting off a Rn−3 factor then x ∈ R.

Theorem 19.1 (Bamler, 2020). Given (Mn
i , {gi,t}t∈(−Ti,0], (xi, 0)) a RF then by passing to a subsequence

assume
(Mi, {gi,t, νxi,0;t)

F,C., i→∞−−−−−−−→
(
χ, (νx;t)t∈[−T∞,0)

)
where

νxi,0;t = K(xi, 0, t)

where we have a conjugate heat kernel on the RHS. Also assume that

Nxi,0(τ0) ≥ −Y0 for some τ0, Y0 (non-collapsed)

then we have X = R ∪ S where

R = {p ∈ X | convergence is smooth}, S = X\R

and

1. ∃ a smooth Ricci flow spacetime structure on R

2. dimM S ≤ (n+ 2)− 4

3. Any “tangent flow” at any point of X is a gradient shrinking soliton or Ric-flat cone (this is an analogue
of the Einstein metric case)
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4. There is a filtrain S0 ⊂ S1 ⊂ · · · ⊂ Sn−2 = S such that dimM Sk ≤ k and

Sk = {points in S whose tangent flow cannot split off a Rk−1 factor}

Fix a metric space (X, d), complete separable, µ1, µ2 ∈ P (X)

Definition 19.2. We define the 1-Wasserstein distance to be

dw1
(µ1, µ2) = sup

f :X→R
f :1-lip

(�
X

fdµ1 −
�
fdµ2

)
= inf

q is any coupling of µ1 × µ2

�
X×X

d(x1, x2)dq(x1, x2)

where the equality holds by the Kantorovich-Rabinstein theorem. If (X1, d1), (X2, d2), µ1 ∈ P (X1), µ2 ∈
P (X2), q ∈ P (X1 ×X2 is a coupling if

(projxi)∗q = µi, i = 1, 2

(e.g. q = µ1 ⊗ µ2).

The root of this is in optimal transport - and we’ll now apply this to Ricci flow.

Example. � dw1
(δx1

, δx2
) = d(x1, x2)

� dw1(µ1, µ2) ≤
√

Var(µ1, µ2) ≤ dw1(µ1, µ2) +
√

Var(µ1) +
√

Var(µ2)

Theorem 19.3. (P (X), dw1
) is a complete metric space.

Definition 19.4. Let (X, d) a metric space and µ ∈ P (X). (X, d, µ) is a called a metric measure space if

(X1, d1, µ1)
iso∼= (X2, d2, µ2) if ∃φ : X1 → X2 is an isometry

We can also define

dGW1
((X1, d1, µ1), (X2, d2, µ2)) = inf

ϕi:(Xi,di)→(Z,d)
iso embedding

dw1
((ϕ1)∗(µ1), (ϕ2)∗(µ2))

Theorem 19.5. If
dGW1((X1, d1, µ1), (X2, d2, µ2)) = 0

then they are “isometric”, i.e.

(supp(µ1), d1

∣∣∣
supp(µ1)

, µ1) ∼= (supp(µ2), d2

∣∣∣
supp(µ2)

, µ2)

We also have

Theorem 19.6. Let M = {(X, d, µ) | supp(µ) = X}/ ∼ is a complete metric space (i.e. mod out by
isometry)

Definition 19.7. A metric flow (χ, t, {dt}t∈I , (νx;s)x∈X , s ∈ I, s ≤ t(x)) where

� t ∈ χ→ I ⊂ R

� dt is metric on χt = t−1(χ)

� νx;s ∈ P (Xs)

satisfying

1. (Xt, dt) is a complete and separable metric space

2. νx;t(x) = δx and ∀t1 < t2 < t3, x ∈ χt3 with

νx;t1(Z) =

�
Xt2

νy;t1(z)dνx;t2(y)

(Reproduction formula) see 65

3. All the heat flows satisfy certain “gradient estimates”
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Figure 65

19.1 Turn a RF to a metric flow

Now we can turn a RF into a metric flow. We have (M, {gt}t∈I) a RF, compact. Define

X = M × I, dt = dgt

an ν(x,t);s = K(x, t; ·, s) is the conjugate heat flow starting from (x, t) and

K(x, t3; z, t1) =

�
K(x, t3; y, t2)k(y, t2; z, t1)dt2y

where �∗K = 0. We now need to choose a base point to fully convert our Ricci flow to a metric flow.

A metric flow pair (X, {µt}t∈I) is a metric flow which is equipped with a conjugate heat flow.

Definition 19.8. Let
FI = {X, {µt}I}/isometry

where
(Xi, {µit}t∈I , i = 1, 2, two metric flow pairs

and
dF((χ1, {µ1

t}), (χ2, {µ2
t})) = inf

r>0
{r | ∃{qt}t∈I\E coupling µ1

t , µ
2
t such that

|E| ≤ r2 and

�
X1
t×X2

t

dZsw1
((ϕ1

s)∗(νx1;s), (ϕ
2
s)∗(νx2;s))dqt(x1, x2) ≤ r}

and define
C := {(Zt, dZt ), {ϕit}t∈I}

where ϕit is an isometric embedding from (Xi
t , d

i
t)→ (Zt, d

Z
t ). Moreover, all the heat flows satisfy a graident

estimate
dF((X1, µ

1
t ), (X2, µ

2
t )) = inf

e
deF ((X1, µ

1
t ), (X2, µ

2
t ))

Example. Let (Mn, {gt}t<0) Bryant soliton. χ is metric flow. Xλ is parabolic rescaling by λ. If λi
i→∞−−−→ 0,

then

1. (M,λidgt , x)
PGH,i→∞−−−−−−−→ R+

2. (Xλi , (νx;t)t≤0)
F−→ R× S2 in the metric flow sense

This is an example of getting our known results about ricci flows and blow ups, but in the language of metric
flows

(Unfortunately we ran out of class time)
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