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Introduction

These are notes from Professor Yi Lai’s Math 258 taught in Fall 2022 at Stanford. Thank you to her for a
great class! In addition, thank you to Yujie Wu and Shuli Chen for their comments and pictures incorporated
into these notes. These notes are not perfect, but may serve as an instructive reference for advanced ideas
in Ricci Flow. Professor Lai also has a hand written version of these notes on her website.

1 Lecture 1: 9-27-22

Schedule
o RF short time existence
e Basic RF identities
e Maximum principles
e Rlcci solitons
e Perelman’s F, W, functionals
e Perelman’s no-local collapsing theorem
e Bamler’s compactness theory of Ricci Flows

Today: Review Riemannian Geometry - ricci curvature and its linearization

1.1 Riemannian Geometry

e Riemannian curvature tensor

X = X"0,,
R(X,Y)Z =VxVyZ —VyVxZ - VixyZ
, 0]
_ pt I k
o 0
_ ls v k
= Rijkgg XYz 7(3.1‘8

We note that in the third line, Rm is a (1,3) tensor, while in the fourth line it is a (0,4) tensor.

o Identities
Rijri = —Rjikt = —Rijii = Rpij

Rijri + Riiji + Rjga = 0 (first bianchi identity)
ViRjkim + Vi Riiim + Vi Rijim =0 second bianchi identity

e Ricci curvature o
Ric(X,Y) = TrRm(-, X)Y = Ric;; XY’

Ricij = Ry;; = 6™ Raije
Ric;; = Ricji,  Ric € S*(T.M)
e Scalar Curvature
R = tI‘gRiC = ginicij = gingtRsijt

1
gStVSRicti = §V,»R second contracted Bianchi identity



1.2 Space of algebraic curvature tensors

Let (V, g) Euclidean vector space n = dimV < oo (e.g. T,M, g,,). Let {e;} an onb, S?(A2V) = {symmetric 2-forms onA,
V'}. Define
S%(AV) = {Rm = Rijri(ei Aej) @ (ex Aer) | Rijri satisfies *

(here * denotes the curvature symmetries and the first bianchi identity. In fact the B subscript stands for
Bianchi).

We have an algebraic curvature operator
Rm : /\Q(V) — /\Q(V)

1
eiNej — —iRijklek el

Example: Standard sphere, (S™, K = 1), then Vp € S, Rm € S%(A2T,S™), and
Rm=1d

because sphere has constant curvature
1
Rm(er Nea) = —§R12klek Ae

1
= —§R121261 Nea =e1 Neg

1
= —53122162 A er

1.3 Decomposition of Curvature Tensors

We have )
S%(A2V) = (Id) ® (Ric) @ (Weyl)

Note that if K is constant then Rm = KId, and hence Rm €< Id >
Rijii = k(0104 — 0ir0j1)
e.g. spacetime curvature (i.e. riemannian manifolds with K =k € R).
Now suppose that Rm € <Roic>, suppose Ric = (n — 2) A, then tr(A) = 0 and
Rijii = Audjr + Ajrda — Airdji — Ajidi
If Rm € (Weyl), we have Ric(Rm) = 0. (Would be good to get projection maps, presumably something like
Rm = Rg ® g+ g ® (Ric — Rg) + else
or something).

When n = 2, S%(A2V) = (Id), e.g. 2-dimensional riemann manifold.
When n =3 )
SZ(AV) = (Id) @ (Ric)

choose an onb {e;} such that

P1
Ric = P2
P3



So the curavture operator is also diagonal and

k1
Rm = kg
ks

where the rows and columns are ex A ez, e3 A ey, ea A ey, and py = ko + k3, po = k1 + k3, p3 = k1 + ko.

Also
ki = K(ea ANes), ko= K(e1Nes), ks=K(e1 Nea)

Corollary 1.0.1. (M3, g) Riemannian manifold. K >0 <= Rm >0

Note that Rm > 0 always gives K > 0 by definition of sectional curvature. The other direcion is only true
when n < 3

1.4 Einstein Equation + Ricci Flow

Let (M™, g) a riemannian manifold
Ric = A\g

A € R - can prove via Schur’s lemma that if A is a scalar function (not necessarily constant), then it has to

be constant everywhere.

We define Ricci Flow (Hamilton, 1982), (M™, (¢¢)ter) such that
5tgt = —2R1Cgt

Ex: If Ric = A\g, then
—2XMg, t>0, if A<0

gt =199 teR, ifA=0
—2Xtg t<0 ifA>0

As an example, Yi draws pictures corresponding to a 2-hold torus with K = —1 (expanding surface), a torus
with K = 0 (Constant), and a sphere with K = 1 (round, shrinking sphere) [l| Example: If (M;, (¢:.¢)ter)i=1,2

Figure 1
are ricci flows (RFs) then (M; x Ma, (g1 + go2.¢)ter) is a ricci flow.

Example:
S™ x R™, gt = —2(n — D)tgsn + grm, t<0

See here [2]
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Figure 2

1.5 Symmetries of Ricci FLow

o Time-shift
9 = Gt—to tel+tg

is also a ricci flow

e Parabolic rescaling
gi=Ngr-2p tE€NL

Check that Ricci flow equation is

atgzlt = 72RngA72t = —2Ric,2 = 72Ricg£

9r—2¢
e Diffeomorphism invariance: If ¢ : M — N diffeo, then

(N,g9¢) RF <= (M,¢"g;) RF
e Under rescaling g, = 72g,—2;, we say the scale of quantity is k if it changes by 7* under the rescaling.

Then for any function f, vector V, we have

k=2 k=1 k=0 |k=-1 k=-2
9ij V| Ric g¥
V|2 NG Ffj Rijm
t Réjk |Rm|, |Ric|, R
V2f, df [V2f]
VFh V= (df)}

1.6 Short time existence and uniqueness
Initial Value problem: Given (M, g), find T > 0, and (g¢)¢c[o,1) such that
0; = —2Ricy, (1)
go=49g
Theorem 1.1 (Hamilton). Suppose M compact
e Existence: The above system has solution for some 7' > 0
e Uniqueness: If (g;+)ief0,1;) With gio = g for i = 1,2 both RFs, then
91t = g2, vt € [0, min(Ty,T»))

This tells us that there exists a mazimal Ricci Flow on each (M, g) compact, which will be unique by the
above



2 Lecture 2: 9-29-22

Goal:
e Analytic Properties of Ricci Flow

e Ricci-DeTurk Flow, Harmonic map heat flow

2.1 Diffeomorphism Invariance
Ricg+g = ¢*Ricy

If we assume we have a flow ¢, associated to a vector field X, then

(D(Ricy))(£x9) = 5 (Ricyzy) = 5 (67Riey) = Lx(Ric

Note that on the left hand side, we have a priori 3 derivatives of X, since we have to differentiate the metric
twice to get the ricci curvature. On the right most side, we have 0 derivatives of X. In sum,

. d ..
D(Ricy)(h) = $Rlcg+sh

One can use these two equations to derive the second contracted bianchi identity!

2.2 Some Operators
Recall: A linear differential operator, L, is elliptic if the principal symbol, o(L)(§) is an isomorphism for
all ¢ e T* M.
Ex: L=A,:C>®(M)— C>®(M), (M™,g). Then in local coordinates we have
Ay = ¢"70,0;
olA)(€) = g7&&; = lelg # 0

We also have the Lie Derivative:
0* : C°(T*M) — C(S2T « M)

given by
1
where W* dual to W. In local coordinates, we have
1 1
(é*W)Jk = Q(VJWk + kaJ) = i(aJWk + 8ij)

(I guess in geodesic normal coordinates at least) so that

o157](€) = (& e + &)

The dual to §* is called the divergence,

0:C®(SeT*M) — C(T*M)
(6h)k = —g"V ;hjp,
Note that
(DRic)(Lxg) = LxRic
X =W* = (DRic)(Ly+g) = Ly:Ric

((DRic) o 6")(W) = %L‘WuRic
0 = o[(DRic) 0 67](§) = o[DRic](§) o o[07](£)



the last line follows since again it seems that DRic o §* is a 3rd order operator, but we showed that because
of the third line, this is actually first order, so o[DRic 0 §*] = g3[DRic 0 6*] = 0 since its actually first order.
In particular, this tells us that

Im(0[0°)(€)) € ker o[ DRic)(€)

the left hand side is dimension n, so this says that DRic is not elliptic. We now show

Lemma 2.1.
D(=2Ric)(h)jx = Aji, + g™ (V;Vihg — V¢ Vjihgp — V¢Vihj)

This follows by computing the formula for the first variation of the christoffel symbol. Rewrite this as
D(=2Ric)(h;r) = Ahji + g7 (Vi Vihep = ViV hip — ViVahip)
+ gpq(QR;jkhrp — Rjphiq — Riqhijq
= Aphjr + g*(V;jVihg — VjVehip — Vi Veh;p)
= Arhji + V;iVig?hgy — V9PV ghiy — Vi g?'V ghjp
= Aphjr — V,;Vitr(h) — V,;(0h)r, — Vi(oh);
= Aphjr — V,;Vitr(h) — 206%(0h)

where
Ap=Ag+ gpq(2Rijhrp — Rjphig — Righjq

is the Lichnerowicz laplacian, and in the fourth line we’ve used that the metric is compatible with the
connection (torsion free or something) to commute connection with metric coefficients. We also have

Proposition 1. Choose a background metric g, and let

=k
W; = gjkgm(rlzjq - qu)

then
D(—2Ric + V;W; + V;W;)(h) = Arh + first order terms in h

i.e. the operator on the left is strongly elliptic
Proof: We compute
D(W;)(h) = gjkgqu(l"];q)(h) + zero order terms in h

= gjrg"? - %gkl (Vghip + Vphig — Vihyg)
= 2 (Vghip + Vphsy — Vihyg) + 208
= (0h); — %Vjtr(h) + z.0.t

where z.0.t. denotes “zeroth order terms.” This tells us that

D(V,W; +V;W;)(h) = V;(6h); + V;(8h); — V;V;tr(h) + (first order terms)
2.3 Ricci DeTurk Flow
Choose a background metric g. Then a metric, g, satisfies Ricci-DeTurk Flow if
(0wdr)i; = —2(Ricg, )i; + ViW; + V,;W;

where the connections are taken w.r.t. g; and where

I =k
(W)t = gikg J(F?j - Fij)



where the t subindex denotes time. Note that the Ricci-DeTurk Flow equation is a strongly elliptic PDE,
so it should satisfy short time existence and uniqueness.

We now want to compare Ricci flow and Ricci-DeTurk flow. Recall for x : (M1, ¢1) — (Ma,g2) a map
between two riemannian manifolds, we have that

Dgrgax = D (Vi dxles) = dx(Viier))
i=1
where {e;} is an onb on M;. Now consider (M, g) and (M, g;), let

WHi= A, ,1d

then
0igr = —2Ricg, + L+ Gt

2.4 Harmonic Map Heat Flow
Let {x:} a family of diffeos such that xo = Id. Then we say that x; satisfies the harmonic map heat flow if

Oixt = Agt ,gXt

when {g:} is a Ricci Flow. We now connect the Harmonic Map Heat Flow to Ricci De Turk Flow

Xt
HMHF

Figure 3

Proposition 2. If (M, g:) is a Ricci Flow and {x:} a harmonic map heat flow w.r.t. {g:}, then (M, g =
(xt)«g¢) is a Ricci De Turk Flow, and vice versa, i.e. if §; a Ricci-De-Turk Flow and {x:} a harmonic map
heat flow (still w.r.t. {g+}) then g: = (x¢)*g: is a Ricci Flow

A natural question, if {y;} is always defined w.r.t {g;}, then how can we go from g;, a RDTF to {¢:} a RF
without having {g;} in the first place? To resolve this, we compute

g = 0e(Xi Gt) = Xt (0eGe) + Xi (Lo, 9t)
= X7 (0:gt) + xi (L, 51a9)Oe Xt
= Ay, gxt
dexeoxi = (Ag.gxe) oxy ' = A, gld

where the last line follows from the diffeomorphism invariance of the laplacian. But now plugging this
identity into the second line (and using the definition of RDTF flow), we get

Digi = X} (~2Ric(3)) = ~2Ric(x;gr) = ~2Ric,,



This tells us that given the correspondence between {g;:} <+ {g:}, the harmonic map heat flow, {x:} actually
satisfies both of

Oixt = Agt.thy g: a RF (2)
&,Xt = (Agtvgjd) O Xt, gt a RDTF (3)

i.e. {x:} satisfying either of the above is equivalent.

We now show existence of Ricci Flow: If we solve for g, a Ricci flow, then use the above to solve for
{x+} a harmonic map heat flow, we have via our proposition

gt =X e
is a Ricci Flow. This gives short time existence.

Uniqueness: Essentially the same idea, but we formulate it in full: given {g{} ricci flows for i = 1,2
and g}, g2, use to solve for xj. Then via our proposition,

Gt = (Xt)«9¢
are RDTF flows with g} = g2. But now uniqueness of RDTF flow tells us that
9 =3
for all ¢ in our maximal interval. But then by , we have that
Xt =X{
for all ¢ because the harmonic map heat flow is strongly parabolic. Finally, this gives
9 =9¢
for all ¢.

2.5 Solving non-linear strongly parabolic PDEs
We have a few non-linear strongly parabolic PDES: RDTF (Ricci De Turk Flow), HMHF (Harmonic Map
Heat Flow).

Let (M,g) compact Riemannian Manifold, (E,h) euclidean (real?) Vector Bundle over M with metric
connection (e.g. S*TyM). Moreover, let (Uy)sefo,r) smooth family of sections of E, (RDTF: g;). Want to
solve

Opuy = a¥ (uy, x, t)V?jut + f(ug, Vug, x,t)
ug = U

Assume
a” > Cg"
for some uniform C' > 0. We have short time existence and uniqueness

Theorem 2.2. The above system has a unique solution for some 7 > 0

3 Lecture 3: 10-4-22

Today’s goals:
e Non-linear parabolic PDE
e Evolution of length, distance

e Evolution of volume form

10



3.1 Solving non-linear strongly parabolic PDEs

We have
dyuy = a” (ug, , t)v?jut + f(ut, Vug, z, ) (4)
Uug = u
for @ given. We have ellipticity
a7 > cgid

for some ¢ > 0. Then
Theorem 3.1. System has a unique solution for some small 7 > 0.

Proof: Let
Uy = {u € CPmH226mtLe (M 5 [0,7]; E) | u(-,0) = 0}

where CF-B: 8" denotes regularity separately in spatial and time directions. Here, E is some bundle, e.g.
bundle of symmetric 2-forms. Similarly

V, = gFm2esma (V1o [0, 7], F)
for some 7 small and determined later. We now consider the differential map

F.:U =V,

u s O — aij(ut»mat)vzzjut — f(ug, Vug, 2, )

Our goal is to find a u such that F(u) = 0 and u € U,. Of course, we do this by some implicit function

t
—s

Figure 4

theorem or contraction map. Let
Ht = tf(O, 0, Z, t)

Then we see that
Ft(ﬂt)(',t - 0) == O

So
lim [|F-(@)|[ =0

7—0

we now want to show that F, is non-degenerate as 7 goes to 0 so we can truly find a zero. Consider the
linearization of F, at u = u = u,

L, = (DF,)g = 0y — a" (u,z,t)V}; = b'V; = C
L.:U, -V,
parabolic schauder estimate = ||4||y, < C(||L-4||v- + ||@]|co)

11



here C is independent of 7. But now we claim that
lallco < Cl[Lral|v-
Proof: Denote A = ||L,4l|y,. Then

Ot — ¥V i — bVt — cit < || Lydi[co < A
(0p —a"V,;; —b'V)a < A+cit < A+ C||d]|co
maximum principle = a(-,t) < (A+ C||d||co) -t

This last line follows by comparing 4 with the following function
u st. Ou=A+Clil|co =C
i.e. Qyu is a constant. This is a bit opaque, but I guess the idea is to

(O — a"V;; — V'V < A+ C|li| o
8tu = A —|— CH@HC{)

and to subtract the two or something. Now choose 7 very small such that ¢-7 < % — u; < C- A
We now do the same argument but with the reverse sign, i.e.

u; > —CA
to get that ||d:]| < C - A, which means that

\|il|v- < C||Lrallv.
= |IL7Y<C

Seems like the crux of this proof is the parabolic maximum principle. O

We also need to check
ID2F,|| < C

But Yi asks that we do it on our own. Once we have this, the Inverse function theorem implies that F’;

is invertible on
S = BU-,— (ﬂa TO) cU;

where r( is independent of 7. But now the invertibility of L, says that balls of a given radius in U, will
yield balls of comparable radius under L., i.e.

FT(BU-,— (U, 7"0)) 2 BV.,. (F‘r(ﬂ)7 CTO)

for some ¢ > 0 independent of 7. But now, note that for 7 sufficiently small, we have F.(u;) — 0 as 7 — 0,
so if we choose 7 small so that ||F;(u)|| < Scro, then we're done.

3.2 Evolution of Lengths
Let 7 : [a,b] = M, a C! curve then

i d g [P Ric(§(s),4(s))
G =5 [ 1ields=— S s

assuming that {g;} is a Ricci Flow

12



Figure 5

3.3 Distance Distortions

Let z,y € M compact, to € I. Let v be a minimizing geodesic (w.r.t. g;,) parameterized w.r.t. arclength
from z — y. Then

di(z,y) < Le(v)

The right hand side is an upper barrier of d;(z,y) at to, with equality holding at ¢t = tg.
Now by the same argument as in viscosity solutions, we have that

d d g d:dto (x,y)

- di(z,y) > 7‘ - _Ric(4,4)d
dt= lt=to «(7,y) 2 dt lt=t, +(7) /0 Ric(7,¥)ds
d d d . d=dy (z,y) ;

—_— < = _ hiala
dt+ t=to t(x’y) — dt t=tgo t(FY) /(; RIC(FYaFY) §

having used that the geodesics are unit speed parameterized w.r.t. g;,. Then
Theorem 3.2. If k1g; < Ric < kog; for all t € I, then for ¢; < ty we have
e_kZ(t2_t1)dt1 (.’ﬂ, y) < dtz (.’E, y) < e_kl(tz_tl)dh (LL', y)

Remark ki, ky € R arbitrary, i.e. not necessarily positive nor negative. But if ky > 0, then we essentially
have a shrinker and is ks < 0 we have an expander.
Proof: Integrate our left and right hand derivative bounds. O

We also have
Theorem 3.3 (Hamilton, distance shrinking estimate). If Ric,, < r~2g; on By(z,r) U Bi(y,r), then

d
dtf_dt(%y) > —cpr!

where ¢, is a dimensional constant but not dependent on the ambient manifold.

Corollary 3.3.1. If Ric < kg in Bi(x,r) U Bi(y, r) then for t; < to, we have
dt2 ({L‘7 y) > dt1 (.’)37 y) - Cn\/E(tQ - tl)
We now prove the Hamilton theorem

Proof: Choose v : [0,d] — M, a minimizing geodesic paramterized w.r.t. arclength between z,y, w.r.t. g:.
Case 1: di(z,y) < 2r. Then

13



Figure 6

d

d
=@ y) = - / Ric(¥,9)ds = —r~2dy(z,y) > —2r~"
0

by using our assumption of —Ric,, > —r2g;.

Case 2: di(x,y) > 2r, then define {v,(s)}, u € (—¢,¢€), a variation of v = 7y(s), such that 7,(0) = =
and v, (1) = y. We now look at the variational vector field

hﬁr__‘f—n\’_\
‘\—//’_)
X T= V‘U) \j

Figure 7

Vis)= % o), st V(0)=V(d) =0

because g is a minimizing geodesic, then we compute

d
B =5 [ hiPds

In particular

d2
0< —
~ du?
from the second variation formula. Now we use this to derive our result, in particular, choose a parallel
orthornormal frame {e1(s),...,e,(s)}, with e1(s) = ¥(s). Let ¢ : [0,d] — [0, 1], a bump function with ¢ =1
on [r,d —r] and |¢/| < 12
Now let V(s) = ¢(s)e;(s) for i = 2,...,n. Then

u=0

d
B(u) = / V()2 = R(V(s), 4,4, V)]ds

d
0< / |1 — @*R(ei, e1,e1,¢;)|ds
0

T Cl‘r

Figure 8

14



sum over ¢ = 2,...,n. Then we have that

d
0< / (n— 1)|¢/(5)[> — 9(5)*Ric(er, e1)ds

:>/ (s)Ric(%,4)ds < ( n—1/|g0 )|?ds

But also by construction of the bump function we have

d
/ (1 — *(s))Ric(4,4)ds = / (1 - @*(s)Ric(4, 3)ds
0 [0,r]U[d—7,d]

2
<22 ==
r
d
1 -1 2 n
= / Ric(¥,4)ds < 100(n — 1) L i 6
0 r rooor
d —Cn,
= —d > —
dt— t(may) = r
Ending the proof. O

We now show how volume changes under ricci flow:

Theorem 3.4. For a ricci flow dVolgf = —RdVoly,

) dt

Proof: Use the ricci flow equation
(9tgt = 72Ricgt

4 Lecture 4: 10-6-22

Today:
e Uhlenbeck’s trick
e Gradient of heat flows

e Evolution of curvature tensor

4.1 Uhlenbeck’s trick
Let {e;(t0)}}, onb of (T,M, (g4,),) such that

%ei (t) = Rice(e;(2)), ei(to) = ei(to)

where we make sense of Ric; : Vectors — Vectors by sharping it we note that

%gt(ei(t), ej(t)) = —2Ricy(ei(t), ¢;(t)) + Ricy(ei(t), ¢;(t)) + Ric(ei(t), e;(t)) = 0

so {e;(t)} is an onb of (T, M, (¢¢),) for some small interval in time about t.

This inspires us to look at the geometry of M in this time dependent but orthornormal frame. We de-
fine

projy, M x I — M
proj; M x I —=1T
T5Pet (M x I) = proj*(TM) = ker(dt) C T(M x I)
{time-dependent vector field on M, {X, }ie;} ‘& {X € T(T** (M x I)) : section of T*P*(M x I)}
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the idea is that X; just a vector field on M, so it cannot have 9; components but it still has time dependence
so we can lift it to 7'(M x I) with 0 component on T'I (see fig[9) For X € I'(T*P* (M x I)), define a connection
V by

= + _ spat
Vo X =VIX =V, X € TP (M xI)

VatX = 3tX - RlCt(X)
Va,ei(t) =0

Here, I believe 9; X means differentiate the coefficients of X at a fixed point p € M.

Theorem 4.1. V is a metric connection on (7% (M x I),proji;g:)

Proof: Let {X;}ier, {Yi}ter € D(TP4(M x I)). Then

d .
%gt(Xt,Yt) = —2Ric(X¢, Yy) + 9+(0: X, Vi) + g¢(X¢, 0:Y3)
= gt(@atXtv Yt) =+ gt(Xta @BtY})

Corollary 4.1.1. We have

Vo(X®Y)=(V,X)®Y + X ®(V,Y)
(Vo) = tildeV, (o)

where « is a 1-form

4.2 Applications of V: Gradients of heat flow

Let u € C?(M x I) and
8tut = Agtut

implicitly coupled with Ricci flow. Then
Btdut = d@tut = dAgt’LLt = Agtht + Rlc(dut)

where the last equality is by Bochner’s formula. Here d is the exterior derivative on just the spatial compo-
nent.
Note:

(@atoét)(v) = Oi(au(v)) — Oét(@atv)
= Oi(a(v)) — a(9e(v) — Ricy(v))
= (8,50475)(11) + RiC(Oét)

- @atat = atOét + Ric(at)

v
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Applying this for a = duy, we get

V@t dut = 8,5 (dut) + Rict(dut)
— @@dut = Agtdut

Next we reduce

Vo, (Vuy) = Vo, (duy)?
= (Vo,duy)*
= (Agtdut)ﬁ
= Ay Vgu
= AVu

where we’ve applied commutativity of the connection and sharping multiple times. Now we note

0| Vul|* = 2(@3tVu,Vu>gt
= 2(AVu, Vu),,
= A|Vul|* - 2|V?ul?

where the last line probably follows by a bochner formula. We also compute

0| Vu|* = 2|Vul|d,|Vul
AlVul? = 2(A|Vu|)|Vu| + 2|V|Vul|?
0| Vu| = A|Vu| + 2(|V|Vul|)? — [VZul?)

by Kato’s inequality, we have
[VIVul]* = [V2ul* < 0

which follows from |V|u|| < |Vu|. This implies that
0| Vu| < A|Vu|
as a consequence of the above, if [Vu|(-,0) < C, then by the maximum principle, we have

Vu(-,t)] < C

4.3 Application 2: Evolution of Riemann Curvature Tensor

First, choose XY, Z time independent vector fields on M that commute with each other and 0, i.e.
0=0X=0,Y =0,Z=[X,Y]|=[Y,Z] =[X,Z] = [0, X]| = [0, Y] = [0, Z]
(I think last three are superfluous requirements?) Moreover, at (pg, to), we want
VIt X = VY =V Z =0
We compute the curvature of V

(R(8:, X)Y, Z) = (Va,VxY —VxVy,Y, Z)
= (0(VxY) = Ric(VxY) — Vx(8;Y — Ricy(Y)), Z)

at (po, to, we know that VxY = 0, and also use time independence to get
(R(0y, X)Y, Z) = (0;VxY + Vx([Ric(Y)), Z)
1
= 5@ (XY, 2)+Y(X,Z)— Z(X,Y)) + VxRic(Y, Z)

17



Note that even though VxY = 0 and ;X = 9;Y = 0, 0;VxY may be non zero since V = V9 is a time
dependent connection. In the last line, we used the Koszul formula and also the fact that VxY =VxZ =0
and comptability of the connection to get (VxRic)(Y, Z) = Vx(Ric(Y, Z)).

Now we use the Ricci flow equation and get

1
(R(, X)Y,Z) = L0, (X{Y, Z) + Y (X, Z) — Z{X,Y)) + VxRic(Y, 2)
= —XRic(Y, Z) — YRic(X, Z) + ZRic(X,Y) + VxRic(Y, Z)
= —VxRic(Y, Z) — VyRic(X, Z) + VRic(X,Y) + VxRic(Y, Z)
= —VyRic(X, Z) + VzRic(X,Y)
now we take {e;} an orthonormal basis with Ve; = 0 at (po,to). Then

(R(8,, XY, Z) = —VyRic(X, Z) + VzRic(X,Y)

= Z —VYR(X7 6i,€i,Z) + VZR(Xa ei7€iaY)

=1
=Y -V, R(X,e,Y,Z)  2nd Bianchi Identity
i=1

2nd Bianchi identity is
ViRjkim + VjRiiim + Vi Rijim =0

In sum, this tells us that

8,5, Y Xn: X SZ)Y

i=1
Now we recall the definition of the covariant derivative of a tensor, still for X, Y, Z, nice time-independent
vectors with our initial assumption:

(Vo,R)(X,Y)Z = Vo,(R(X,Y)Z) = R(X,V5,Y)Z - R(X,Y)V,Z
=V, (VxVyZ — VyVxZ)+ R(Ric(X),Y)Z + R(X,Ric(Y))Z + R(X,Y)Ric(Z)
=VxVo,VyZ+ R0, X)VyZ —VyVs,VxZ—R(0,Y)VxZ
+ [R(Ric(X),Y)Z + R(X,Ric(Y))Z + R(X,Y)Ric(Z))
= Vx(VyVo,Z +R(8:,Y)Z) — Vy(VxVa,Z + R(3:, X)Z)
+ [R(Ric(X),Y)Z + R(X,Ric(Y))Z + R(X,Y)Ric(Z))
now we use @atZ = Ric(Z) for our time independent vector field, and we get
(Va,R)(X, Y)Z Vx(R(8;,Y)Z) — VyR(d;, X)Z + R(Ric(X),Y)Z + R(X,Ric(Y))Z
~Vx(Ve,R)(Y,€)Z + Vy(Ve,R)(X,e;)Z + R(Ric(X),Y) + R(X,Ric(Y))Z
But now
—Vx(Ve,R)(Y.€:)Z =V, (VxR)(Y,€;)Z — (R(X,e;)R)(Y,e;)Z
= V., (VxR)(Y,e:)Z — R(X,e;)(R(Y,e:)Z)

where we now interpret R(X, e;) as a curvature tensor acting on tensors, e.g. R itself in (R(X,e;)R). Finally,
we sum over 4, and do the same expansion for

Vy (Vo R)(X, )7 = Ve, (Vy R)(X, e)Z — R(Y, e)(R(X, €)Z) + R(R(Y, ) X, 1) Z
+ R(X,R(Y,ei)e))Z + R(X, e;)R(Y, e;)

18



subtracting these two, we get

“Vx(Ve,R)(Y,€:)Z + Vy (Ve R)(X, €)Z = Ve, (Ve R)(X,Y) Z) + 2[R(X, €:), R(Y, €3)]| 2

i

— R(R(X,e;)Y,e))Z — R(R(Y,e;)X,e;)Z
where we’ve noted that
—R(X,e;)(R(Y,e;)Z)+ R(Y,e;)R(X,e;)Z = [R(X,e;), R(Y, ;)| Z

This tells us that ~
(Vo,R)(X,Y)(2) = AR(X,Y)Z + Q(R)

where Q(R) denotes quadratic terms in R. In general

Va,R=AR+ Q(R)

5 Lecture 5: 10-11-22

Goal for today
e Evolution of Ric and R
e Scalar weak/strong maximum principle

Recall that

Vo, BRm = ARm + Q(Rm)
Q(Rm)ijr = —Rijst Rtk + 2RisuRjstn — 2R st Rist

Here, V is the special connection we constructed from last time using Uhlenbeck’s trick.

For general evolution of metrics {g;} (i.e. not necessarily Ricci flow), we have

OcRiji = Vi(atFé-k) — Vj((?tl“i»k) + (lower order terms)
d

dt
1
8,5Rijkl = g(vivkhﬂ + Vivj'hkl - Vivlhkl) + -+ (lower order terms)

9ij(t) :== hyj

=—2Ric) 1
(h :2R ) §VikaiCj[ + -

= ARm

in a loose sense. I guess the point is that we can see the evolution equation from the normal formula for
variation of curvature tensor under a family of metrics.

5.1 Evolution of Ric
We have that

Q(R?TL)”]CZ = 2RiC5tsttk = QRM(RIC)]k
= Vy,Ric = ARic + 2Rm(Ric)
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Another way to obtain this is recall that
D(*ZRiC)(h)jk = Athk + VJVkTI‘(h) + Vj((ih)k + Vk(éh)j
= Athk + Vj(5Eh)k + Vk(éEh)j
1
E(h)ij = hij = 5Te(h)gi;
0" : Lie derivative = Aphji + (6" (6ER)) i
1 1

=0 (second contracted Bianchi identity)

here, Ay, is the Lichnerowicz laplacian, FE(h) is the einstein operator. This tells us tbhat

D(—2Ric)(—2Ric) = Ar(—2Ric) + 0 = —2ARic
— 0O (RiC)ALRiC

because D(—2Ric)(—2Ric) = 9;(—2Ric). This follows from work we did on previous days for computing
D(Ric)

5.2 Evolution of R
We have
Rm(Ric);; = RipiRicy = RicyRicy = Ricg,
= V:R=0:R= AR+ 2Rm(Ric);;
— O0,R = AR + 2|Ric|?
Ric = {g 2}
for K the scalar curvature, so |Ric|?> = 2k% and R = 2k, which tells us that
R =AR+ R
=2AK + 4k

In two dimensions, we know that

For M closed
3t/Rdgt = /(8tR)d9t +/R(dtgt)

:/AR+R2—R-R
:/AR
=0

by closedness. This tells us that [ R;dg; is an invariant on 2D ricci flow - i.e. genus can’t change

5.3 Scalar Weak maximum principle

Theorem 5.1. Let M a compact, {g; }+e[o,7) any smooth family of Riemannian metrics. Moreover, suppose
we have

fiRx[0,T) =R
(Xt)tefo,ry : vector fields

u e C*(M x1[0,T))

ue C(0,T))
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Figure 10
If
Oy < Auy + Xy - Vuy + fuy, t) (5)
and uy <w  on O(M x[0,T))=0M x[0,T]UM x {0} (6)
and Oyu(t) > f(u(t),t), then (7)
u <u everywhere
Proof:

Case 1, Assume 7 @ have strict inequality. Let
t* =max{t € [0,T) | us <7 on [0,1]}

then by (??) and M compact, we have t* > 0, then there exists an «* € Int(M) such that u(z*,t*) = w(t*).
THis implies
= Owu(z*,t") > du(t™), Vu(z*,t*) =0, Au(z*,t")<0
so at (x*,t*), we have
Ou(t™) — f(u(t*),t*) < du(z*,t*) = flu(z*,t*),t*) + X; - Vu
< Ay,
<0

since Vu(z*,t*) = 0 and Au(x*,t*) = Aug(2*) < 0. Here, uy = u(-,1).

Case 2, here we handle non-strict inequality by creating a perturbation. Let
Te(t) = u(t) + et + €
then (??) and (??) will have strict inequality. For (??) its evident, for (??), we have
Ofie = Oyu + €
f(ac(t),t) — f(u(t), t) < Clue(t) —u(t)]
=C(et+ ) < %6 + Cé?

3
< 162

here C' is a bound on the gradient of f, and we choose 7 such that for ¢ < 7, we have
1

which allows the last line to hold, assuming e sufficiently small. So by case 1 ;we have u; < T.(t), now let
€ — 0, then we have
wp < u(t) on telo,r7]

now extend to [0, 7] for T maximal by an open-closed argument and potentially repeating this construction.
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5.4 Scalar Strong maximum principle

Lemma 5.2. Let M be a compact manifold with boundary, {g:}, {X:} as before, u € C*(M x [0,T]). If
u > 0 and
8tu Z Aut + Xt . Vut Vit € [O,T]

(Note this is a homogeneous inequality with no 0 order terms) and if Jz¢ € Int(M) such that u(zo,T) = 0,
then there exists a neighborhood of zg, U, and € > 0 such that u =0 on U x [T —¢,T].

Corollary 5.2.1. Same assumption and set up as the above but u = 0 on M x [0,7T], by an open closed
argument

“Proof: ” - WLOG, assume M is covered by a coordinate chart. Consider
Vi={(z,t) e M x[0,T] : u(z,t)}
then use the above lemma to show that
Vn(Mx{t}) =M

which makes sense if M is connected. For the time component, repeat the lemma but considering every-
thing on [0, T —¢], i.e. replace T — T —¢, should be a similar openness argument but in the time direction. [

Proof of Lemma: Suppose that no such neighborhood existed, then
I(z*,t*) mnear (xo,T), u(z*,t*)>0

Claim: Jp>°(M x [t*,t]) such that

>0 (8)

Upe 2 P (9)
=0 on OM x [t*,T)] (10)
¢(x0,T) >0 (11)
Orpr < Ay + Xy - Vo (12)

This ¢ is a barrier function. Assume the claim is true, then

Op(up — 1) > Alug — @1) + Xi - V(ug — )
then the weak maximum principle tells us that

w(zo, T) — (20, T) >0 = u(x,T) >0
a contradiction, since we've assumed that u(zg,T) = 0.

Now the point is to construct such a barrier function, ¢, which satisfies the claim. Note that , @D, (10),
and can be satisfied easily by constructing a bump function about x*, t* and scaling it by %u(:c*,t*).
Thus, the work is in showing .

Proof of claim: Let
o, 1) = A G((z — o] = s(t — 7))

where A, S € R, and ¢ : R — R is decreasing and ¢ is a smoothed heaviside function with ¢(¢) = 1, t<0
and ¢(t) =0, t > €|lxg — x*|. Moreover, on [0, €|zg — z*|], we require that

—¢"<C¢, (¢)*<C¢ <Co
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Yi says that we can do this by inserting quadratic transitions at ¢ = 0,¢ = 1 and then smooth appropriately.

Assume WLOG that B(zo, 2|xg — 2*|) € Int(M). Choose
1] |zo — z*| |zo — x|
1— | 07T g glo =2 ]
56([ 26} T —t* (29 T —t*

o(|Jzg — x*| — s(T —t*)) >0
d(lx —z*| —s(t —t)) =0, Vo € OM, Vt € [t*,T)
= =0 on OM x [t*,T]

Then

Now to enforce ug« > @4+, we take A to be very large and ¢ < 1. Now to verify , we have
aﬂp _ e_A(t+1)(—S¢/ . A¢)
Vil = e~ A0y
A(,O > e—A(t+1)¢//
(12) <= Orpr < Ay + Xy - Vy
— C¢' — Ap < ¢" — C|¢'|
= Cl¢'| —¢" < Ad
so taking A > 1, this is true, and we get finishing the proof of the lemma. O

We now state the Scalar Strong Maximum Principle

Theorem 5.3. Suppose M connected (not necessarily compact), {g:}, X, u, @, f, all as before. Suppose
that
u(z) < (k) vt € [0,T]
and
u(zo, T) = u(T), for some zg € Int(m)

then u; = u(t) everywhere on M.
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Proof: | let
Z ={(z,t) e M x [0,T] | u(z,t) =u(t)}

Let
Vg = Up — Uy Z 0
Opvy > Avy + X¢ - Vo + f(u(t), t) — flu, t)
Z Avt +Xt . Vvt - C’Ut

Now let

ﬁt = eCtvt

— at’Dt Z A'Dt + Xt . V@t
SX P, =0  on M x[0,T]
Ve = 0
Ur = Uy everywhere

6 Lecture 6: 10-13-22

Goal:
e Application of weak and strong maximum principles
e Curvature derivative estimates

e Maximal existence time

6.1 Application of WMP and SMP
Let (M, g¢) a ricci flow. Then we have

R = AR+ 2|Ric|*> > AR (13)

where R is the scalar curvature. If we assume that we can diagonalize the Ricci curvature (always true I
think?)
P1 . e
Ric = — R=pi+ - ~+pn
Pn
which implies that
2
2[Ric|? > = R?
n
by AM-GM or something. Then we have
Theorem 6.1. For t; <ty € [ and any T € R, we have

LIfR(t)>A = R(,t2)>A
Proof: (apply WMP to R(t) = A, O,R(t) =0

2. If R(,tl) Z ﬁ, then R(,tg) 2 ﬁ

Proof: (apply WMP to R(t) = 57—y SO that O R(t) = %§2(t), and use our statement about

bounding 2|Ric|?)
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Figure 12

3. T e, then R(-,t) > ﬁ forall t > T
Proof: Let {t;} | T, then we know that R(-,¢;) > —C just because I is compact, so we get uniform
lower bounds on scalar curvature. This tells us that

n
ty> 0> —
R(t) > =C 2 5

where ¢ is very large, i.e. when T'—t; — 0~. Now apply the previous statement

4. If g, is defined on (—o0, tg] (ancient flow), then R > 0.
Proof: Let T' | —oo in the previous statement

5. If R(-,tg) > 55 > 0, then to +T ¢ I (the solution cannot exist up to to + 7)
Proof: If the above holds, then our second statement tells us that

n
R(-t)) > -
¢ O>*2(T+t0—t)

ad the above tends to infinity as t — to + T from below
Now we do applications of the strong maximum principle
Theorem 6.2. Assume M is connected but possibly non-compact

1. Assume I = [0,7T], R > 0 everywhere. If R(xg,T) = 0 for some xy € M, then Ric =0 for all ¢ € [0,T]
Proof: The strong maximum principle plus ;R > AR = R = 0. But now come back to evolution
equation

OR = AR+ 2|Ric]> = Ric=0

since both R = AR =0

2. If M is compact, I = (—00,00) (eternal flow), then Ric =0 (and %gt = —2Ric =0 so g; = go)

ompact

Proof: First, eternal low = ancient CET R > 0.

Claim Elther R =0 or R > 0 everywhere. This should follow from the strong maximum principle.
Assuming the claim is true, then if R = 0, then by the previous computation, we have Ric = 0. If
R > 0 everywhere (M compact means a positive lower bound on R) then by a previous statement, it
can only exist for a finite time, contradicting that this is an eternal flow.
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Proof of claim: Suppose not, then IR(z1,%;) > 0 and R(x2,t2) = 0. By our first statement in
this theorem, if we have R(x2,t2) = 0, then

— Ric=0 Vit <ty
:>gt:gt2 vtth:RICZO

The second line follows since the Ricci flow equation will be constant on (—o0, t2)

6.2 In 2-dimension
6.2.1 Lower Bound

In two dimensions, we have

8:R = AR+ R?

in this case. We note that R < 0 is preserved by Ricci flow in this dimension. To see this, apply weak
maximum principle to the comparison function

R(t)=0, Rt =F(t)

so that 0 is an upper barrier. Note that this is not true in dimension n > 3, since R? # |Ric|? in general

6.2.2 Normalized Volume

For (M, g;), M compact, I = [0,00) (immortal flow), we define the normalized volume V(t) = t~"/2V ()
(The scaling is supposed to be intuitive since ¢ ~ 72 since we have a parabolic flow, i.e. t="/2 ~ =" and
V(t) ~ r™). Thus, normalized volume is a scaling invariant and

n

V(0 + V’(t))

_ 7rn/2/ (_% - R) dVol,

d—
atl _ —n/2
V() =t (

The second line follows since

and
g=—2Ric = tr(g) = —2R

Recall that R > —3- holds for ¢ € (0,00), so that
d—
—V(t) <0
Iy <

thus V() is non-increasing and positive, so it has a limit as t — oo

Ve = lim V(2)

t—o0

6.2.3 Solitons
Let (M, g), and Ricy = Lxg + Ag for A € R and X some smooth vector field. We have

(=2X)0*,(g) A >0, te(—00,0) (shrinking)
g(t) = 4 ¢%4(9) A=0, te(-00,00) (steady)
(=2X)0%,(g) A <0, te(0,00) (expanding)

Where ¢, is the flow corresponding to X and ¢g = Id. Then g; satisfies a ricci flow!! This is a soliton
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Theorem 6.3. A compact steady soliton must be Einstein (i.e. with A =0 = Ric =0)
Proof: g, is an eternal compact Ricci flow, so Ric =0
Theorem 6.4. A compact expanding solution must be Einstein.

Proof: V(g;) is a constant in the expanding case because

Vig:) = V((=2Xt)¢* 19) = V(¢ 19) = V(9g)

Thus J
= V(g =t~/ (737 )d l
we know that n
—— —-R<0
2t
so for the derivative to be exactly 0, we have
-n
R=—
2t

everywhere. Now plugging this into the evolution of scalar curvature, we have

. 2
R = AR + 2|Ric|* = 0 + 2|Ric|> + ERQ

but 5
n
HIR=—>="R?
i 22 n
so we see that )
Ric=0
which implies that
R
Ric = —g;
n

which is einstein. Now plugging in R, we have

1
Ric = —— vt
ic 57t

6.3 Evolution of Curvature tensor

We have

O:|Rm|* = 2(Vg:Rm, Rm) = 2(ARm + Q(Rm), Rm)
= A|Rm|? — 2|VRm/|? + 2(Q(Rm), Rm)
< A|Rm|? — 2|VRm/|* + C|Rm/|?
< A|Rm|* + C|Rm/?
Now we want to apply the weak maximum principle. Consider the comparison equation
ovu(t) = Cu(t)®/?
1

(S —1)°

= a(t) =

so if [Rm|?(-,0) < A, then the weak maximum principle gives




Exercise Study the equation of |Rm/|, then if
|Rm|(-,0) < A

we have that 1

|Rm|(-,t) < @
(this is a little different than just taking the square root of the previous bound)
Theorem 6.5. Let (M, g;) a Ricci flow, M compact, then either

® Sup,(o,7) [Bm| < 0o OR

e limyrp maxyy [Rm|(-,t) = co and

Ch
. >
m]\%x|Rm|( ) > T ¢

(exercise, which should be an application of previous exercises)
6.4 Curvature derivative estimates
Let (M, g¢)tejo,r) a ricci flow, M compact. Then
Va,VRm = VVys, Rm + R(8;,-)Rm = VV,Rm + VRm + Rm = V(ARm + Q(Rm)) + VRm * Rm

= AVRm + Rm*x VRm + VRm * Rm
= AVRm + Rm x VRm

here _
(A * B)jl = gzkAz’jBkl

so for example
Rm(Ric) = Rm x Rm

Moreover, we’ll use that
A B| < C|A||B]

where the norm is some tensor bound.

We also have

9|VRm|? = 2(V5,VRm,VRm) = 2(AVRm + VRm * Rm,VRm)
< A|VRm|? — 2|V?Rm| + VRm * VRm * Rm
< A|VRm|? + C|VRm|? - |Rm|

Now our goal is to derive bounds on |[VRm| in terms of bounds on |Rm/.
Suppose |Rm| < A on M x [0,T). Define

F = |Rm|* + t|VRm/|?
then we have

(0 — A)F < |[VRm|? + t(C|VRm|*|Rm|) + (—2|VRm/|?> + C|Rm/|?)
< |VRm|? + CtA|VRm|? — 2|VRm|? + C|Rm/|?
< C|Rm]* < CA3
F(-,0) = |Rm|? < A?
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having used our bounds on both |Rm|? and [VRm|?. In the second to third line, we chose ¢ small so that
CtA < 1 to cancel the first 3 terms (or rather, bound above by 0). Now the weak maximum princple on the
function F(-,t) gives

1
F(,t)<CA* Vte {0, A}
Now taking a square root, we get

Vrm < YA e [o, 1]

Vi A
so if the curvature norm has a bound, then |[VRm| also has some bound in a small interval. Here, we’ve

chosen o
F(t)=CA%t 4 A?

7 Lecture 7: 10-18-22

Today’s goals
e Curvature derivative estimates
e Maximal existence time

e Vector-valued maximum principle

7.1 Curvature derivative estimate

Theorem 7.1. Let (M, {gt}:e[o,r)) compact ricci flow. Suppose |[Rm| < A ont € [0,7), then

CreA
£ ok k.t
|V, VPRm| < k2

ont € [0,1/A]. Here V denotes the Uhlenbeck connection

Proof: Step 1: Assume ¢ = 0. Last time we did £ = 1. Prove by induction, so assume this is true for k.
Then

Vo, V*Rm = AVFRm+ Y V'Rm*V’/Rm
it+j=k

(this formula can also be proved by induction).
Vo, VEHIRm = V'V, VERm + (R(-,-) - VFRm)

=V(AV*Rm+ Y V'Rm*V/Rm)+ VRm+V*Rm
it+j=k
= AV* Rm + Rm + V""" Rm + > V'Rm + V’Rm
itji=k
= AV Rm+ Y V'Rm«VIRm
i+j=k+1

where in the second to third line we apply Bochner’s formula. Using this, we have

Oi|V*Rm* < A|V¥Rm|* — 2|V* " Rm|* + C Y |V'Rm]| - [V/Rm]| - |V*Rm|
i+j=k

Now using a similar trick to last time, we note the negative sign in front of 2|V**!Rm|?, and construct a
barrier of
F = |V Rm| + |VFRm)|
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This implies that the theorem is true for k£ + 1. Jere, we’ve used
Vo, VVERmM = V'V, VERm + R+ VERm
where R is the curvature for @at, but also equals VRm.

Now we induct on £. After rescaling, assume A = 1. Under this, we define

2
t

\ Soling IVafthRhI(‘,l)sC

.{7_0 vy

Figure 13

gt = Agt/A
Under this flow, we have |Rm| <1 and ¢ € (0, 1], so we want to show

Chre

¢ ok
Vo,V Rm| < k)2

t e (0,1]

By another rescaling, it suffices to prove it at ¢ = 1 - assume we want to show this at time ¢ € (0,1]. We
choose another rescaling of the form above but by 1/¢, which sends t — 1 and 1 — 1/¢. So that

[Rm|<t<1,  |VHV*Rm|(.1)<C
Now note that

Vo, V*Rm = AVFRm+ Y V'Rm*V’/Rm
i+j=k

so Vg, VFRm is the x-composition of VRm. So
[(Vo, V¥Rm)(-,1)] < C1
which shows it for (¢,%k) = (1, k) with K € N. By induction, we have
V5, VERm = V5, Vi 'V* Rm
now write Vgt_lkam as a x-composition of V*Rm. Thus
(V5 VFRm) (- 1)] < Cos

which finishes the theorem. O
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Corollary 7.1.1. Suppose |[Rm| < 72, on [0,72]; then

Cre
20tk 2

Proof: Take A = r~2 in theorem. O

V5, V5 R (1) <

Note that this corollary gives a scale invariant bound since |V V*Rm|(-,r?) is order r(26HR+2) - This
means that we’ll get such an inequality up to any order on the interval [0, r?]

7.2 Shi’s derivative estimates (local bounds on |V V*Rm|)

THe previous section worked for (M,{g;}) a ricci flow with M compact. In this setting, we assume
(M, {gt}ieo,)) a ricci flow, but not necessarily compact.

Theorem 7.2. For (M, g;) a Ricci flow (not necessarily compact). Choose g € M and r? < to < T so that
By, (z,7) CC M (i.e. relatively compact). Assume

|Rm| < r2 on By, (xo,7) X [to — 7’2,150]
Then o
0 k k4
Vo, Vi Rm| < oTET
Re ¥
t I .
T |R,_,\ <r
el - - —s
o M
Figure 14
Note that

By, (z,7) X [to — rz,t] =: P(xo,to; T, —7%)

is called the “backward parabolic neighborhood centered at xg of scale r”

7.3 Maximal Existence Time

Lemma 7.3 (Equivalence of Metrics). Suppose (M, {g:}), RF, not necessarily compact, |Ric| < k every-
where, then Vi; <ty € I, we have

—K(tz—tl)

K —
e gty < gi, < efl2mt)g,

i.e. this says that C~'g; < g2 < Cgy.
Proof: Exercise, should probably just use ricci flow equation and integrate and use bound.

RemarkThis gives us that
dp, (2, y)e M7 < dy, (2,y) < R4 (2, y)

We now show a theorem
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Theorem 7.4. If (M, {gi}:e0,r)) @ Rf, not necessarily compact, 7' < co. Assume sup ;o1 |[2m| < oo.
Then g; can be extended smoothly onto M x [0, T]

Figure 15

i.e. we can find gy such that g; — gr smoothly.

Proof: Shi’s estimate gives that for any compact subset U C Mj there exists a Cp (U) such that
V5, VERm| < Cy (V)
on U. Let p e M, (U,{x'}) a set of local coordinates about p, so
gt = g4 (z, t)da'da?
Lemma — C 'g, < g, < Cg, vt,sel

We also have
|8tgij| = 2|RIC”| S C

so there exists g;;(-,T") such that
CO
gij('? t) — gij('v T)
Note that the C~1g, < g; < Cgs comparison guarantees that 9ij(-,T) is a metric. Now we look at
k .
10,75 (-,t)| < C|VRic]|
<C

by our formula for the christoffel symbols, and then using the ricci flow equation. In the second line, we use
Shi’s estimates. This tells us that
Il < ¢

for all ¢ uniformily in ¢. We also compute
(ViRic); = Or(Ricy;) — I Ricie — I Ricy
But again VRic is bounded, so the above gives
[0(Ricy;)| < C
Now we note that

\8t8kgij| = 2|akRiCij‘ <C
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so we can integrate in time and get
|Okgij| < C

uniformily in time. Now by induction, we can show that
|0/ Ok, -+ - O, 9ij] < Cp.g.ij

which allows us to upgrade our convergence of g(-,t) — g(-,T) from C° convergence to smooth convergence.
Thus we have smooth convergence locally about any point, so we have global smooth convergence (though
not uniformily). O

Corollary 7.4.1. We have (M, {gt}:c[0,)) with M compact and T' < co maximal, then

mﬁX|Rm|(-,t) AKINNS

As an interesting application, we have the following example:

Example:
For (M?, {9t} tepo, 1)), compact, if Ky, <0, then T' = oo

Proof: Recall that our assumption gives

K, <0
by curvature bounds. Moreover,
|[Rm| < C|K|
but we know that
inf K <0

because scalar/gaussian curvature is non-decreasing in RF.

7.4 Vector valued maximum principle

For (M, {g¢}+ejo,r)) a family of smooth metrics. Let E be a vector bundle on M, rank k& < co. Then E x [0, T]
is a vector bundle on M x [0,T]. Let V a connection on E X [0,T] compatible with the induced horizontal
metric on E x [0,T].

Remark In the above, we note that the Uhlenbeck connection is a such a connection on E x [0,T]

Now let C C E x [0,T) closed such that

Cpy = CNr Yz, t) is convex V(x,t) € M x [0,T]

e For all t, Cy; are parallel (fixed t) (i.e. Vy(s) a curve in M x {t}, if e(0) € Cy o, and V;(se(s) =0
then e(s) € C,y(s) ¢

8 Lecture 8: 10-20-22

8.1 Vector valued maximum principle

Our set up is as follows: we have (M, {g:}ic[0,-)) smooth family of metrics, and E a vector bundle on
w:E — M. V is a connection on E x [0,T] compatible with the space time metric (i.e. just metric on M
plus dt?) induced by .

C C E x [0,T] closed, such that

1. Cpy:=CnNrt(z,t) is convex for all (z,t) € M x [0,T
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Figure 16

2. Vt, Cp ¢ are parallel

Now let ¢: a smooth vector field on E x [0, T], parallel to the fiber of E. Suppose C' is preserved by the flow
of Vo,u = ¢(u). This means that if u(t) € 7~ 1(x,t) for z fixed, if u(to) € Cyy, Vo,u(t) = d(u(t)), then
u(t) € Cy,y for all t > to.

Then for u € C*°(M x [0,T]; E x [0,T]), suppose we have
Vo, u = Au+ ¢(u)
The weak vector-valued maximum principle is

Theorem 8.1 (WMP). Suppose u(x,t) € Cy 4, for all (x,t) € Oper(M x [0,T]), then u(z,t) € Cy 4 for all
(x,t) € M x [0,T]

where 0, denotes the parabolic boundary, i.e.
Opar (M % [0,T]) = (0M) x [0,T] UM x {0}T
We also have the strong vector-valued maximum principle

Theorem 8.2 (SMP). Suppose u(z,t) € Cyy, for all (z,t) € M x [0,T], and u(zo,ty) € 0Cy, i, for some
x9 € M, tg > 0, then u(x,t) € 9Cy; 4 for all (z,t) € M x [0, to]

8.1.1 Application of Weak Maximum Principle

Suppose (M, {g:}jo,r] @ Ricci flow. Let M compact and E : Sp(A2R™) — M be the bundle of algebraic
curvature tensors over M. Let V be the uhlenbeck connection on E x [0,T]. Let

u= Rm

Then the relevant ODE is
Vo, F = Q(F)

and the relevant PDE which is satisfied by Rm itself, is
0:Rm = ARm + Q(Rm)

Now let C be given by C,; = C; C Sp(A2R™) some closed convex subset preserved by the ODE.

With this, we have the following:
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Theorem 8.3. If (M3, {9t} tepo, ) a Ricci Flow, M compact. Then
1. secg, >0 = secy, > 0,Vt >0
2. Ric,, > 0 = Ric,, >0, V£ > 0
Similarly

Theorem 8.4. If (M3, {g;}1c0,17) & Ricci flow with 9M = @, then
1. secy, > 0, secg, # 0 = secy, #0, Vt € [0,T]
2. Ricg, > 0, Ricg, # 0 = Ricy, # 0, Vt € [0,T]

Here, we write secy, > 0 if secy, > A(t)g; for some A(t) > 0. So secy, can be > 0 but not strictly greater
than 0 (i.e. ) if its 0 along one direction, but not the others (i.e. non-zero but lacks positive definiteness).
In this case, the tensor splits.

Proof: For (zg,tg) € M x [0,T] we can choose an o.n.b. {e;} in (T, M, g,) such that

ki 0 0 P1 0 0
Rm=|0 ky 0|, Ric=]0 ps O
0 0 ks 0 0 p3
using the fact that the dimension is 3. Here,
p1 = k2 + k3
p2 = k1 + ks
p3 = k1 + ko
We also compute
k? + koks 0 0
Q(Rm) =2 0 k3 + kiks 0
0 0 k3 + k1ko
Now extend {e;} to be an o.n.b. in a neighborhood of z( such that
Ve; =0 = Ae;

at xo and evolve e; by Vg, e; = 0. Thus, the ODE of V:Rm = ¢(Rm) becomes
di(Rm(ei, e5)) = (Vo,Rm)(ei, €5) = Q(Rm)(e;, €5)

SO we compute

Otk (t) = 2(k? + koks)
Oka(t) = 2(k2 + k1ks)
Orks(t) = 2(k3 + k1ks)

If k1(z0,0), k2(x0,0), k3(z0,0) > 0, then evolving by the above gives
kl (an t)a kg(.T(), t)7 k3(’l}0, t) Z 0

for all t. Choose
Cypt = Cy = {Rm € Sp(A2R"™), Rm > 0}

(here Rm is just denoting some arbitrary tensor, not the actual Riemann curvature tensor). Then Cj; is
preserved by the ODE, so Rm > 0 is preserved by Ricci Flow. This proves the sectional curvature statement.

For Ric > 0, choose C,; = C; = {Rm : Ric > 0}. Recall that
O¢Ric = ARic + 2Rm(Ric)

for our specific manifold and Ricci flow. Moreover, for every element F' € C}, we have that the following
ODE is satisfied
O F =2Rm(F)

where Rm is again the curvature tensor associated to our Ricci flow {g:}.
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8.2 Linear Support Functions

Definition 8.5. For C C R*. closed, convex, a linear support function for C is an affine linear function

a:RF SR

v ad-v+b

such that |d@| = |Va|=1and C C {a > 0} and C Nkera # {.
A20 horot

g 0

Figure 17

Now we have

Lemma 8.6. The signed distance is given by

dsigned(p, C) = a:iilgFa(p)

and the infinum can be achieved by a linear support function « such that if ¢ € 9C' is the closest point to p
then a(p)Va=p—q

here, LSF is“Linear Support Function” and

d(p,RF\C) peC

dsigned(p, C) := {—d(p ¢) pgcC

Note that when 0C smooth, dsigned is the signed distance to C' in the usual sense. With this we prove the

Figure 18

vector valued WMP and SMP’s:
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Proof: Let
s(z,t) = dsigned(u(z,t), Cy )

Here the WMP holds if and only if: s(-,0) > 0, then s(-,¢) >0 for allt >0

The SMP holds if and only if: s(x,t) > 0 for all (x,t) € M x [0,T] and s(zo,T) = 0, then s(z,t) =
0, V(z,t) € M x [0,T]

To show this, we want to prove the following lemma
Lemma 8.7. 3C > 0 such that (9, — A)s > —C - s
Note that if this is true, then the WMP and SMP hold by comparing s(z,t) to 0.

Proof of Lemma: Assume for simplicity that s(z,t) is smooth. Let « be an LSF such that ¢ € ker(a), ¢
is the closest point to p = u(xo, to). Let Q4 = {a > 0} C E, +,. Then

s(xo, to) = dsigned(u(zo, to), Cup,to) = (u(zo,0))
Let {Q:} be the flow of 4, by the ODE Vy,u = ¢(u). Then Cy, ¢+ C 2 for all ¢ < ¢y. Then

Gt &L =5 20)

Figure 19

s(xo,t) < dsigned(u(xo, t), Cyy.t) < dsigned(u(xo,t), Q)

and equality holds at t = ¢y. This tells us that

¢ dfgrad (e, Q)

|

Figure 20

d d
s > o, i = —
7 t:tos(xo,t) =z dt‘t:todagned(u(ggo,t),()t) a(Va,u— ¢(q))
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were the last equality is an exercise. Now we fix ¢y, and extend « to be a LSF on Cj;, by radially parallel
transport. Then
a(u(z,tg)) > dsigned(u(x, to), Cyty) = s(x, to)

with equality holding at * = 9. Then we have

Aa(u(z, tg) > As(x,tg) at =1
a(Au(x,tg)) > As(x,to) at x =
(01 — A)s(xo,t0) = Vo, u — d(q) — Au)(o, to)

¢(u) — ¢(q))(@o, to)
Clu(xo, to) — q| = —Cs(zg, to)

Y
|

which proves the lemma

9 Lecture 9: 10-25-22

Today
¢ Rigidity of the SMP (strong maximum principle)
Theorem 9.1. We have (M, {g; }+cjo,7)) and

Vo, u = Au+ ¢(u), u(z,t) € Cpy YVt €[0,T]

where Cy ¢ is convex, parallel, and preserved by the ODE. Suppose u(zo,t0) € 0Cy, t, for to > 0. Let a be
a linear support function for Cy, 4, and a(u(xg,tp)) = 0. Then

@y, = (pl20)
her

Ulk. 4,)

{23 0 be pocatied ransport
of St

Figure 21

Vi, V%’vu, Vo, u — ¢(u) € ker(a)
for any v € T,y M, when the above is evaluated at (xo, o).

Let Q;, = {a > 0}, and define {£2;} to be the paralell transport of {1, .
Proof: We have u(xg,to) € Cy,,t C Q4. Moreover

dsigned(u(x()v t)v Qt) Z 0
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and equality holds at ¢t = tg. Thus

a
dt lt=to

O 2 dsigned(u(x()a t)v Qt) a(vatu - ¢(Q))

(Vo,u — ¢(u))
(Au) at (zo, o)

(0%
«

here, ¢ € 0Cy, 4+, is the closest point of u(zg,to) and g = u(zo, o).

Now fix tg, extend « by parallel transport, then
u(zo,to0) € Cypty € {0 > 0}, a(u(z,tp)) >0
and equality in the right hand equation holds at * = zy. Now
0= 8u(a(u(7t0))) = a(vuu(l"oﬂfo)) - vvu € kera
0 <82, (a(ul-,t0))) = a(V2 u(zo, t0)) = 0 < a(Au(g, tg)) <0
= o(Au)=0

where a(Au) < 0 comes from the viscosity argument and differentiating with respect to ¢ from before. [

Theorem 9.2. With the same set up as in the previous theorem: Moreover if Cy, + is parallel in ¢ and if
one of the following conditions is satisfied

1. 0Cy, 1, is smooth at u(xo, o)

2. tg< T
Then Vyu, V2 u, Vo, u, ¢(u) € ker(a)

Proof: If 1 is true, then by SMP u(zg,t) € 9C,, + for all t < ¢y, so
Vat — u(l‘o,t) S Tu(moyto)acwo,t = ker
=tlo
use
Vo, u— ¢(u) € ker(a) = ¢(u) € ker(a)

If 2 is true, then a(u(zo,t)) > 0 in (to — J,tg + 6) for some & > 0 and equality holds at ¢ = ¢o, this implies
that
Oy a(u(zg,t)) = 0= a(Va,u(zo, o))

t=to

finishing the proof 0.

9.1 Application of theorem to RF
Let n =3, (M3, {gt}tepo,m)) RF, not necessarily compact. Let u = Rm and
Vo, Rm = ARm + Q(Rm)

and
Cpt=Cy = C = {Rm € Sp(AR?) : Ric(Rm) > 0}

Suppose Ricg, > 0 everywhere, but Ric > 0 fails at (xo,to), to (i.e. has null direction). Then (M, {g;}) is
either flat or locally splits off a line V¢ € [0, ¢] (we’ll prove this!). First note that by the SMP for Ric > 0,
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if Ric > 0 fails at (g, to) then it fails at all (z,t), t < to.

Proof: Let a be defined by ,
a: Rm € Sp(AoR?)  Ric(Rm)(e,e) € R

where 0 # e € T, M is a vector such that Ricy, 4 (e,e) = 0 (i.e. Ric(e,-) =0). Then « is a linear support
function on C' and a(Rm(zg,tg)) = 0. We have that

0 = Vy,Ric(e, e) = 2Rm * Ric(e, e)
This is because our theorem gives
Vau, Viyvu, o(u), Va,u € ker(a)
and we've set u = Rm. We also know that (just from Ricci flow properties)

Vs, Rm = ARm + Q(Rm)
U Vs, Ric = ARic 4+ 2Rm * Ric

Now at (zg, tp) choose an o.n.b. e = ey, ea, eg such that

pr 0 0 0 0 O
Ric={0 pa 0| =1(0 pa O
0 0 p3 0 0 p3
Moreover d
0= = p1(pa+ps) + (p2 = p3)* = p2=ps3
0
= Ric = P2

P2

The first equation comes from
Vs, Ric(e,e) = ARic(e, e) + 2Rm * Ric(e, €)

and then using Ric(e, e) = 0. This tells us that the nullity of Ric is either 1 or 3.

Case 1: If null(Ric) = 3, then R(xo,tp) = 0. The strong maximum principle applied to R gives that
R(x,t) = 0 for all x, t < ty. Moreover Ric = 0, and in three dimensions this means that Rm = 0. Thus
(M, gt) = (M, go) and go is flat.

Case 2: If null(Ric) = 1, we can assume that this is the case everywhere (i.e. V(z,t))

Proof: So there exists a smooth, unit vector field, e, such that Ric(e,e) = 0, Ric(e, -) = 0. Recall that
V%_’URic(e,e) =0 = V,Ric(e, €)
Goal: Ve =0 (e is a parallel vector field). Then
0 = 9,(V,Ric(e, €)) = V3 ,Ric(e, €) + 2V, Ric(Vye, €)

but we know that
V2 ,Ric(e,e) =0

which implies that
V,Ric(Vye,e) =0

but now we can compute

0 = 9y(Ric(e, Vye)) = VyRic(e, Vye) + Ric(Vye, Vye) + Ric(e, V3 e)
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but we know that the first and last term are 0, so

Ric(Vye,Vye) =0 = Vye = de
le] =1 = V,e=0, Yo e Ty M = Ve=0

Now as an exercise: If we have Vj,e = d.e = 0, then the splitting of our space is preserved by the flow. [

Corollary 9.2.1. If (M3, g) compact and Ricy > 0, but M? doesn’t admit any metric with Ric > 0, then
(M3, g) is isometric to one of the following:

1. Quotient of R3
2. Quotient of S? x R where (S?, h), kj, >0

Proof: Given (M3, g), we flow by Ricci flow and get {g;}. Then at some point we have nullity and use
the previous theorems to either get a splitting (e.g. S? x R) or show that the metric is flat (e.g. R3/I'). O

Note that the condition of finding a metric with Ric > 0 (or ruling it out) is partially dealt with by

Hamilton’s theorem.

Theorem 9.3. Let n = 3 and (M3, {9t}tefo,m)) a Ricci Flow. Suppose that secy, > 0 (i.e. Rm > 0), and
Rm > 0 fails at (xg,tg) for tg > 0, then one of the following is true

1. (M, g) is flat for all t < ¢y. OR
2. (M, g;) locally splits off a line

Note that in the latter case, the nullity of Rm is 2 because a basis for the domain of Rm is {e; A eg,e1 A
es,ea Aesz} and e = e; is the null direction for Ric.

Proof: In fact, this can be deduced from the last theorem (Ric splitting theorem). It suffices to show
that Ric > 0 also fails at (zg,tg). Note that Rm > 0 fails implies that there exists eq, es, e such that Rm is
diagonal under e; A e, e1 A ez, es A ez and

K1 0 0
Rm=[0 ko 0], k1 <k <EKkgs
0 0 K3
and p
0= —k = k% + kok
ai’ 1 T Kaks
where
k%+k2k3 0

Q(Rm) = 0

Note that k1 = 0 implies koks = 0 so ko = 0 or k3 = 0, i.e. the nullity of Rm is 2 or 3. In either case, this
implies that Ric > 0 fails at (zo, to). O

Theorem 9.4 (Cone Rigidity). Let n = 3, (M3, {9t}tepo,m)) a RF not necessarily compact. Suppose Ricy, >
0. If (M3, gr) is isometric to an open subset of a cone over a Riemannian manifold, then (M3, {g;}) is flat

Proof: Recall a cone is given by dr? + r2h where (N, k) is a 2D manifold. It’s an exercise to show that
Ric(dy,0;) = 0. Then the theorem tells us that we're either flat, or we split off a line. Suppose not flat.
Then we have

gr = dr® + hy: = dr® + r°hy
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where we think of (N’ hn) and (N, hy) as two separate 2D manifolds. Now we write

0
Ric = 02
P3

where ps <> e, p3 <> e3. Then py is constant in r if we split like a line, but also ps scale like »~2 in 7 if we
have a cone splitting. This is a contradiction since r is variable in the cone perspective. Thus we must have
p2 = 0. Same for p3. Thus Ric = 0 and we’re flat!

10 Lecture 10: 10-27-22

Today
e More preserved curvature condition in n = 3

e Hamilton’s Ric > 0 theorem

10.1 More preserved curvature condition in n =3

If C C E is defined as 1~1(]0,00)) for some concave function
Yv:FE—-R

then C'is a convex subset. Moreover, the preservation of C' under the ODE if and only if for all e € E with
P(e) =0, let e(t) satisty e(0) = e and the ODE

Vo, u = ¢(u)
Then,

4 t)) >0

g Vet =

Figure 22

Lemma 10.1. Assume that
K1
Rm = K9
K3

with k1 < ko < k3. Then
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1. K1 + K2 + K3 is both concave and convex (because its linear)

2. Kk is concave, k1 (Rm1) > C, k1(Rmg) > C = k1(aRmy +bRmy) > C, fora,b>0anda+b=1
3. K3 is convex

4. p1 = K1 + Ko is concave

5. K3 — K1 is convex

Remark Here, the underlying space is R3, so we interpret concave and convex on R3. Remember that our
bundle E = Sp(A2R3)

Theorem 10.2 (Pinching condition). For all e € [0,1/3), n = 3, (M?>,{g:}+c[0,7]) a Ricci Flow, M? compact,
then
Ric > (e- R)g

is preserved

Remark Note that we’ve already proved this when € = 0.
Remark

1. Note that
trRic > tr(eR-g), R>3¢cR = R>0

2. In S3, we have Ric = %R - g, i.e. sharpness for e = 1
3. In a manifold with Ric > 0, there exists an € > 0 such that Ric > eR - g
Proof: We have
K1+ Ko

Ric = K1 + K3
Ko + K3

for k1 < kg < kK.

Goal: Write Ric > eRg as the 0-sublevel set of a concave function 1 and check
d
— t)) >
S(e(®) 2 0

whenever ¢ (e(0)) = 0. Note that

Ric > €eRg <= K1+ ko > €(2(k1 + K2 + K3))

2
<:>I€1+I€221€ I€3é(5/€37 4 €10,2)

— €
<:>I€1+I‘€225H3
< K1+ Ky —0Kk3 >0

Note that the first line holds since k14 k5 is the lowest eigenvalue. And in the last line k1 +ko— k3 is concave.

When “4(e(0)) = 0”, then this corresponds to k1 + ks = §k3. Moreover “y(e(t)) corresponds to
=0

d
ﬁ(ﬂlﬁ’ﬁgf&ig)zo

Now we use the underlying ODE to compute this, i.e.

Vo, Rm = ¢(Rm)
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with Oik1 = k2 + Kak3 to get

d
% (Kl —+ Ko — (5/433) = Ii% + KRoR3 —+ Iig —+ R1R3 — 5(%% —+ Iﬁ)llfg)
Note that if k3 = 0, then we're done as Ric = 0, so WLOG assume k3 # 0 and let

K1+ Ko
K3

5=

Then with this choice of §, we have that
K1+ K3 > dK3

and also plugging § into the above we get
/i% + Koks + KJ% + K1Kk3 — 6(&5 + K1Kk3) >0

finishing the proof. O

Lemma 10.3. Ve € (0,1), 35(¢) > 0 such that

1

C:{&Zlfma p1 > €p3 > 0}
P3 Ps

and p1 < p2 < p3 eigenvalues of Ric are convex and preserved by Ricci Flow.

Remark The proof is similar but a bit more involved than the previous lemma, so we’ll skip this proof for
now.

Theorem 10.4 (Hamilton, Ric > 0). Let (M3, g) compact, Ric > 0, then M is diffeomorphic to S3/T"
Proof: Run Ricci flow for g as the initial condition. Assume T is the maximal existence time. Then

T<oo(Rg>0M>RTooinﬁnitetime)

By compactness of the manifold, there exists € > 0 such that

P
P3

at time ¢ = 0. After a rescaling, we can find J(e) > 0 such that

o Lom

<1
A

Now our lemma implies that these are also true for all g; in our RF, ¢t € [0,T). Now let

Qr = max py(-, 1)
This — oo as ¢t T T, since we now that scalar curvature blows up. R
Claim 1: There exists C' > 0 such that Vo > 0, there exists 6 > 0 such that for any x € M, t € [T —,T), if

Q¢ > 1 a
— Inax
"= 100 M x[0,t] p3

sl-

,03(.73,t) >

then
p(,t) € [(1 — a)ps(z,t), (1 + a)ps(z,1)]
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(- d)fs Gty s B < (heat) B ()
T e ————————————,

tT ECRTE

Figure 23

in By(x, cp;1/2(x, t)).

Remark Intuitively, this says that “(x,t) almost achieves the max of p3 in M x [0,¢]” Proof: Let t; < T,
tx T T. Let

9 = 3T, tr) g,
Then ps < 100 on g, (implies |[Rm| < C100). Now Shi’s derivative estimate gives that
V™ Rm| < C,

forall m € N for g;. Now let
9K = expy, o Gk

on Ty, M = R3, then via an exercise, we have
0™ (g1 )ij] < ¢y
on B(0, 3c) for some ¢ > 0 and g/ satisfies

1 < n(2)

1 _
(Ps(»’c)ﬂz‘a(xk,tk))é(e) ~ ps3(x)

<1

here, p1(x), ps(x) is with respect to g and ps(zk,tx) is with respect to the original setting and g;,. Thus

S ———
\ék _ ,—'j Metie) ~
blow W
?3 (“k;hd
Figure 24

lim gi = goo
k—o00
with convergence in C*> on B(0,2C) C R3. Moreover

L ps(0) =1
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2. Yz € B(0,20C) if ps(z) # 0

) <1 = pi(x) = p2(z) = p3(x)

But if p3(z) = 0, then py(z) = p2(x) = 0 by Ric > 0 (before we take the limit, we know Ric > 0, so in
the limit we have Ric > 0). This shows that in all cases p;(z) = p2(x) = p3(x), and we aim to show
that p; is a constant in x.

Thus
Ric = A\g
for X : B(0,2c) — R. By Schur’s lemma, X is a constant. Morever
p3(0) = 1
which implies that A # 0 and p; = p2 = p3 on B((_)'7 20). O

Claim 2: Yo/ > 0, we can find a point (z,¢) such that
p3(-, t) € [(1 - a')p;;(x, t)v (1 + O/)pg(.%‘, t)] inBt($7 107Tp3($, t)_l/Q)

Proof: Repeat Claim 1

Figure 25

ps(,1) € [(1 = a)pa(x,t), (1 + )ps(x,t) in By(w,Cp~ " (x,1))
for [12] + 1 times, and we can find (x,t), as long as (zx, t)) almost achieves the max ;o p3. Le.
1
100 2100
ps(@r,te) € [(1— ) ps(ar,t1), (1 — )" ps (1, t1)]
k< [1237} +1

If we choose a@ < 1 such that the first line holds for any k. Assume o/ < 1. Then Bonnet-Meyers theorem
tells us that

1
Vk7 p?)(xkatk) Z TOth Z

diam (M) < 47rp3_1/2(x,t) — By(x,107p3(z,t)"Y?)) = M

and we know that
p3(‘v t) € [(1 - Ol/)pg(x, t)a (]‘ + O/)pl’)(xv t)]
for any other point. Now the differential sphere theorem implies that M =2 S3/T. O

For posterity, we recall the differential sphere theorem
Theorem 10.5. Let (M3, g) compact and

k3 < (14 €)k1
(k1 < ko < K3), then

— M =S
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11 Lecture 11: 11-1-22

Today
e Curvature estimate of Hamilton’s Ric > 0 theorem
e Hamilton-Ivey pinching (3D)

e Preserved curvature condition in n > 3

11.1 Hamilton’s Ric > 0 theorem

Theorem 11.1 (Hamilton). For (M?®,g) compact with Ric, > 0, then the Ricci flow (M, {g¢}iejo,r)) with
T the maximal existence time and gy = ¢ satisfies

C
|[Rm(-,t)] < T4 (14)

for some C' > 0.

Remark Equation is called a “Type I singularity” and a “Type II singularity” is when fails to hold.

Proof: Let
Rias(t) = max R(-,t)

Claim: For all ¢t < T that is sufficiently close to T, we have

d

%:&ggwg—c C>0

Proof: Suppose not, then we can find a sequence t; T T, € — 0, € > 0 so that
d __
dti_i_Rm}zT(t) > —€g
Suppose R(zk,tr) = Rmaz(tr). Then we showed last time that
R_l (xka tk’)gtk — gs3

smoothly. Recall the ODE for R

%R:AR+mm#
and so p 5R )
-1 _ t _ <12
Note that

1
—7?(AR+QBEF):—C

on (83, ggs) with C' > 0. Thus

d__, C
— t < ——
SR (o) < -5

for C large, a contradiction. Here, we've noted that %R_l is a scale invariant, i.e.

d__, d.__,

dt” 9 dt B@kti)ge,
This tells us the claim is true, and now

d c-1
R T—t

dti maz(t) § -C = Rmam(t) S
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but now scalar curvature bounds norm of the Riemannian tensor up to a constant so

C
t) < ——
Rml(t) < =
O
Remark To be formal, we have to connect
d
—R ,t
gt (@)
to d
7Rmam t
dt (t)

which aren’t the same. But there’s a viscosity argument that gives the same bound (see since

7

/

Ryl e E‘%Qm(ﬂﬁ—c |

'R_(;(K .’()

te +

Figure 26

Rmax(t) > R(.Tk,t)
we can show that the appropriate bound on the derivative holds in the correct direction.

Remark We have .
(T — 1) g < ggo

11.2 Hamilton-Ivey Pinching
Lemma 11.2. The following subset C} is convex and preserved by
Vo, Rm = Q(Rm)

for any ¢t > 0. Let
C, = Rm € Sp(AR%) : R> -2
3X >0 s.t. sec > —C and 2X (log(2Xt) —3) > R

Remark We call C; the “¢t~!-positive curvature” subset, i.e. Rm, € C; means that it has “¢t~!-positive
curvature”

Corollary 11.2.1. If (M?, {g: }+c[0,1)) compact Ricci Flow, assume Rmyg, € Cy,, then Rmy, € C;

Lemma 11.3. Suppose (M3, g) is t~-positive for t > 0, then VA > 0, we have that (M3 \g) is A~1t~1-
positive, i.e.
Rmy € Cy = Rmyg € Oy

Lemma 11.4. (M3, g) is Tfl—positive for a sequence of T; — oo then sec, > 0.
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Proof: Fix a point 9 € M. The first condition of being in C'r, means that

R2—3

—0
2T;

The second condition means there exists an zg, (a constant) such that sec > —zr, and
2z, (log(221,T;) — 3) < R(xo)
(here g is a point, not T; = 0). Note that xr, — 0, else Ty — oo forces
2z, (log(2z7,T;) — 3) — 0
a contradiction to the fixed upper bound of R(zg). This implies that

sec(zg) > lim —z1, =0
K2

Theorem 11.5. (M3, {g:}+<0) an RF implies that sec > 0 for all z € M, for all t <0
Proof: Fixty <0, let T; =+ oo and gi+ = gt—7,, t < T;

fe0
.o
(j(u ,‘%o)

‘t‘:‘[’o < Q

Rh\g(,-t EE C‘t N vtz 0

Figure 27

Lemma 11.6. For a Ricci flow (M?,{g:}+eo,r)) we have Rmyg, € C; for all ¢ > 0 (i.e. ¢t '-positive using
our definition of C; as before)

Proof: Can find ¢; — 0 such that
Rmyg, € Ce,

This follows by compactness of M. Now use the strong maximum principle to preserve the properties defined
by C; for all ¢ > 0. This finishes the proof. O

Now apply the lemma to g; v then

ngi,t eCy, Vt>0
= Rmyg, ,, €C;, V>0
— ngto € Ct0+T7;7 (take t= to + E)

This implies that Rmy, is (fo + T;)~-positive. Now send T; — oo and get

sec(-,tg) >0

Corollary 11.6.1. A closed shrinking solution in 3D must be the shrinking sphere
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Proof: Recall that a shrinking soliton generates an ancient Ricci Flow

gt = (=2X\t)d; g

where ¢ is a diffeo and t € (—o00,0]. Our theorem then gives that secy, > 0. If Ric > 0, then Hamilton’s
Ric > 0 theorem tells us that g; is asymptotically round (i.e. R;. (t)g; — gss), which implies that g; itself
must be round. This is because we have for ¢ close to T’

max

(—=2Xt)"'gr — gs2
¢ig — gss, t1TT
g—gss, tTT

the last metric, g, is constant and g = ggs.

If Ric > 0 fails at a certain point, then

M= (S* h)xR/T or M=T3T

which implies that the diameter stays bounded away fro m0 as ¢ 7 0 (i.e. diamg, > C > 0 for all ¢). THis is
a contradiction by the definition of the flow

gr = (—2M\t)¢tg = diam(g,) = diam(g) - (—=2X)Y/2 =0

so we must be in the first case, i.e. the shrinking sphere. (Here we note that ¢; is an isometry so the diameter
with respect to g is the same as that with respect to ¢;(g))

11.3 Preserved curvature conditions for n > 3

Here we make a table

name
Rm >0
2-non-negative curvature
weakly PIC,
weakly PIC,
weakly PIC

definition
)\1(Rm) ZO, )\1 S A2 S
M x R? is weakly PIC
M x R is weakly PIC
V{e;} on.b a 4-frame
s.t. Ri331 + Risa1 + Razzo + Rogao + 2R1234 > 0

properties
= sec >0

= Ric >0 (n <3, equiv to Ric > 0)
— sec >0

where PIC = “Positive isotopic curvature”. Note that weakly PIC, = weakly PIC; = weakly PIC.
Note that every surface is weakly PIC, but not weakly PICs

12 Lecture 12: 11-3-22

Today

e Generalization of WMP

e Geometric Compactness theorem

12.1 Generalization of WMP
Theorem 12.1 (Shi, Short-time Existence). Let (M", g) complete, |[Rm| < C, then 3 a Ricci Flow, {g; }j0,1)

with go =g and T'=T(C)

Remark We won’t prove this but note that the maximal time can be bounded above by a function depen-
dent on the curvature bound.

We also have that “almost non-negative” curvature is preserved by Ricci Flow.
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Theorem 12.2 (Simon-Topping). For (M?3,g), Ricy, > —1 and vol(By,(z,1)) > vy > 0, Vo € M. Then
there exists a Ricci flow {g; }+cjo,77 such that Ricy, > —C where 7(vo)C(vo) > 0

here C' is the curvature bound and only depends on vg. Moreover, 7(vg) is some multiplicative constant.
Theorem 12.3 (Bamler, Cabezas-Rivas, Wilking). Let C be one of the following
Cy ={Rm : Rm >0}
Cy ={Rm : A (Rm)+ A2(Rm) > 0}

C3 = {Rm : weakly PIC,}
Cy = {Rm : weakly PIC,}

Let (M™, go) complete and Rmy, + Id € C and vol(B(z,1)) > vg, Vo. Assume moreover that (M3, go) is
compact (or complete with bounded curvature) if C'= Cy or C = C3, then 3{g: }+cjo,7) and Rm+C'-Id € C,
and 7(vg)C(vg) > 0.

Remark Here, we think of Rm : AoR™ — AoR™ and Id : A;R™ — A9R™ so that their sum makes sense.
Theorem 12.4 (L.). Theorem holds without assuming anything when C' = Cy, Cs

Remark In the above theorem, non-collapsing (i.e. volume bound) is important. Yi constructs a counter
example of a shrinking sphere bundle (see In this example, Ric > —e¢

Figure 28

Conjecture 12.4.1. For (M3,g) complete, Ric > 0, then {9t }efo,m a complete Ricci Flow such that
go=9

Theorem 12.5 (L.). The conjecture is true modulo completeness assertion

Remark Yi says he idea is to run Singular Ricci Flow and then use the Ric > 0 assumption to prevent the
formations of singularities. Once the flow exists, Ric > 0 is preserved.

Corollary 12.5.1 (A gap theorem). Let C = Cy, Cs, C3, Cy. For all D > 0, vg > 0, there exists
€(D,vg) > 0 such that if (M™,g) closed, diam(M) < D, vol(M) > vg, Rm + eId € C, then M admists a
metric § such that Rmg € C

Proof:  Suppose not, then there exists {(Mg, gx)} and € — 0 such that Rm, + exId € C, but M}, does
not have a metric such that Rm € C. The above theorems imply that 3gx+ a Ricci Flow for ¢ € [0,T7.

C(vo)
i

Moreover, |[Rm|,, , < (also obtained in out theorems), so that

Cheeger-Gromov-Hamilton

(Mkagk,t) (Mooagoo,t) te (Ovﬂ

Moreover
Rmyg, ,+Celde C = Rmy_,€C

so M, has a metric such that Rm € C. Because M is diffeomorphic to M, for large k& we see that we've
found such a metric in C' on My, a contradiction.
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12.2 Geometric Compactness Theorem

We define Gromov-Hausdorff distance. Let (Z,d,), metric space and X1, Xo C Z, then the hausdorff
distance between them is

dH<X17X2) = inf{r >0 | BT(Xl) 2 XQ, BT(XQ) 2 Xl}
There’s a remark that this can be thought of as a min-max characterization

dr (X1, X2) sup d(p, q)

= inf
peEX) qeXo
or something similar.

Now let (X1,d1), (X2,d2) be two metric spaces. Then
den (X1, Xz) = inf dr (1(X1), p2(X2)

@i:X;—Z isometric embedding
from X; to a metric space Z

Now let
M = isometry class of all compact separable metric spaces

Theorem 12.6. (M, dgpy) is a separable and complete metric space.
Proof: We go through the metric space requirements
1. We show that dgp(X,Y) =0 = (X,d;) = (Y, dy). To see this, we have that
d4(X,)Y)<it =0

for all . This means there exists I;(z) € Y such that d(z, I;(x)) < i~!, and there exists J;(y) € X
such that d(y, J;(y)) <i~!. This tells us that

d(Li(x1), Ii(2)) < d(@1,@2) + 207"
for all 1, x5 € X. Similar for J and Y (see In particular, d(z, J;(I;(x)) < 2i~!. By a diagonalization

Figure 29

argument, for a dense countable subset A C X (using separability of X) such that
I —-1:A=Y

How to do this? For each x; € A, consider I;(z;) € Y. Using compactness of Y (without thinking
about the ambient Y C Z;), we can take (along a subsequence) I;(z;) — I(x;) € Y. Thus I is defined
for A. Now if we extend I : X — Y, distance decreasing extension (and the same for J), we have that

d(x, J(I(z)) =0

i.e. I is an isometry with J = 1.
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2.
3.

Triangle inequality - exercise

Completeness - Let {X;} cauchy. We find metric spaces {Z; ;4+1} such that X;, X,y isometrically
embedd in Z; ;1. Now we glue together Z,_, ; and Z; ;11 along for all ¢ to get a limiting space Z that
isometrically contains all X;. In Z, we actually have hausdorff convergence, and completeness under
the hausdorff distance gives us a space in the limit.

. Separable - let

S={(X,d) e M| |X]| < o0, d,, takes rational values}

This is clearly countable, and to see density, we take any X compact, then approximate X by an e-net.
Using compactness we get a finite cover.

12.2.1 Examples of G-H convergence

Let (M, g) riemannian manifold. Let X; be an approximating e;-net of M (finite sets!). Then this
converges in the GH sense back to (M, g). Note that this works even when (M, g) is smooth, so
smoothness (or lack of it) not really preserved by GH (see

Ex

—
E—>0
X = €inets Xiai= Sip et
disorete sete M5 Smovth mvfo(,
Figure 30
Let CH
X; = S1(1) x §*(1/i) == 51(1)

This is collapsing (see
Consider S?/Zj, with the induced standard metric on S3. Then there exists
7:8%)7) — S?
1
—1 -
7~ (p) has length or 0
S3/7, S 82 ko

So the topology can totally change under GH convergence, because the first fundamental grouops are
all different

Ex g s
oo

2D -mefls, s 10 pefd Ciallapoig

Figure 31
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e Consider the berger sphere S3(¢) — S2. Then

§3(i~1) €1, g2

13 Lecture 13: 11-10-22
Today:
e Pointed Gromov-Hausdorff convergence

e Smooth Cheeger-Gromov Convergence

Recall for D >0, N : RT = N, set
M(D,N) = {(X,d) € M | diam(X,d) < D, N&D(r) <N(r), Vr}

where N (X4 is the minimal number of {r—net}. Formally, N(*:# - have {1, ...,z x} such that U; B(z;,7) D
X, then {z;} is an “r-net” and N9 (r) is the minimal such N for given

Theorem 13.1. M(D, N) is compact w.r.t dgg, i.e. closed and totally bounded

Corollary 13.1.1. Vn € N, D, k > 0. Then
{(M",dy) | diamg,(M) < D, Ric> —kg}
(where M is compact and g is riemannian metric) is precompact in M.

Note that we may not have a smooth object in the limit.
Proof: Choose {z1,...,2,} C M to be a maximal set such that B(z;,r/2) are pairwise disjoint. Then

M =UlB(x;,T)

Then Vol(M Vol(B 0
N Vi) | VOB 0) o p
min <;<n Vol(B(xi,r/2))  Vol(B(zj,7/2))
assuming that the minimum ball volume is achieved at j for some j. The last inequality follows by a volume
comparison theorem. Here, we note that the constant does not depend on the manifold itself, but rather the

lower bound for Ricci. Now our theorem gives precompactness. O

Definition 13.2. A metric space (X, d) is a “length space” if

d(z,y) =inf{l(7) [ v:[0,1] = X, ~r€C°  H0) =z, ~(1)=y}

where the length of a continuous curve is the sup of the partitions. Le.

() = sup > d(y(t:), y(tisn))

where P is the collection of all partitions of [0, 1].

Theorem 13.3. (X,d) is a length space if and only if Vz,y € X, Ve > 0, there exists z € X, z # z, such
that

1
d(l‘,Z) < id(wvy) +e
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voi Blx 1) = 1p]
DU(J N = YP»P\j

Figure 32

Examples: Let X be the unit circle of radius 1 union the origin (see This is because d(z,0) =1 and we
cannot find a continuous curve from the origin to the unit circle. On the other side of the theorem, let = be
the origin, then d(x,z) =1 for all z # 2 and so the above would give
1< 1 +
—+e
-2

which is false for € small.

Let X =R?\{(0,0)} - then this is a length space.

Lemma 13.4. If (X,d) is a length space, then

B(x,r) = D(z,r)
where

B(z,r) ={y € X, d(z,y) <r}
D(z,r)={y € X, d(z,y) <r}

Ex: B(z,1) = {0} = {0}, and D(z,1) = X for X = S*\{0}.

Definition 13.5. Let (X;,d;, x;) pointed complete, metric length space, i < co. Suppose all the bounded
closed subsets are compact. We write

G
(X’La dZaxZ) 2} (Xooa d007xoo)

ifVr >0 o
(D(z,7),di) 2L (D(200,7),dse), i — 00

RemarkHere, we assume that X, exists and is a length space.

RemarkSimilarly we can find a correspondence (Z,dz) such that ({¢;}$2,,7) and ¢; : X; — Z isometric
embedding such that for all r

0i(D(wi,7)) 5 o (D(woo, 7))
see

Theorem 13.6. Let (X;, d;, z;) be a pointed complete length space such that bounded subsets are compact.

Suppose 3{r} — oo such that
(D(xi, 1), ds) &h, (Xoo,ks doo,k)

then
isometric,embed

(Xoo,ka doo,k)
and there exists (X0, doo, o) such that

(Xoo,k’v doo,k/) vk S kl

G
(X’La dZaxZ) 2} (Xooa d007xoo)
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A

Q)

Xeo

Figure 33

Remark This gives a sufficient condition for getting PGH.

Example. Let X =\/;2[0,1];. Then X is bounded, closed, but not compact. Here
dx(A,B) =dx(A,0)+ dx(B,0)

if A, B are not on the same interval (see )

Figure 34

Corollary 13.6.1. Vk € R, Vn € N
{(M",dg,p) | (M,g) complete , Ric > —kg}
is precompact in the space of pointed, complete length space whose bounded closed subsets are all compact

Proof: Follows from the compact case of this theorem. O

RemarkThis corollary holds true when replacing k& by a function k(r), r = d(-, p).

Example. Let (M",g,p) and {\;} — oo. Let (M" \2g,p) — (M”,dAZgg,p) a complete length space
(bounded subsets are compact). And now

n PGH n
(M ad)\?gap) —_— (TpM a9€u07p)

Similarly, (35) if we have a manifold with a cone point and we consider the sequence

(M"™,dyz24,p) PCH, (C™, dr®* + cr?dgyn-1,p)

i.e. we get convergence to a cone. Note that the tangent cones at a point are not necessarily metric cones,
and not necessarily unique (i.e. may depend on {\;}).
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(X: f\id. P)T\% (X‘*"Jd‘”f\)“)

Figure 35

Example. Cigar soliton (call it (M, g)). If we choose {p;} arbitrary sequence of points

(M, g, p;) rcu_ | (M,g,p") {p:} bounded
. (Rxslangsl) {pi} =

see

C G b p o
] . P&H m.dg, p) i pe boloh
(W dy. p) =5 i( I
RXS' 'ISI' Pt'"—“)w-

Figure 36

13.1 Smooth Cheeger-Gromov Convergence

PGH,Z,i—0c0
—_—

Theorem 13.7. Let (M, d,,,p;) (X 05 Goo, Poo) Where each (M;,dg,) is a complete RM and

(X ooy goo) 1s a complete length space. Then we say convergence is smooth at ¢o, € X if 3{¢;} € X; with
z
i — 4o

where Z is the larger ambient space where this whole correspondence occures. Moreover, there exists 7, V' > 0,
C,, > 0 such that

1. Vol(B(gi,r)) > C >0
2. [V"Rm| < C,, in B(g;,r)

Furthermore, if we define
R* ={¢o € X : convergence g; Z, (oo 18 soOth at ¢oo }

Then R* is n-dimensional and has a smooth RM, (R*, g*) such that (R*, dy-) & (X oo, doo) s a local isometry

Remark Consider {M;} a sequence of tori getting progressively more pinched which converges in a PGH
sense to a sphere with two points touching (i.e. fully pinched torus at a point), . Then R* is everything

except the point where we pinch. But
(R*a dg*) - (Xooa dOO)

is not an isometry. Topologically
R* = (0,1) x S*

see 37
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Remark Without the first condition (volume preservation), we can construct the following perverse ex-
ample of

1 1 st
SH(1) x S'(e)
and R* = ().

Without the second condition (bounded curvature), we can let {M;} be a sequence of wedges smoothed
out at the vertex, converging to a wedge/cone. In this case

R* = X \{cone point}

also see [371

Note maynot be o %lp’oal, fsohw,t\:lj whon R % Xoo

o4

ta{plml isuvm:t:,] ‘7“\"1 local | n

Figure 37

14 Lecture 14: 11-15-22

14.1 Smooth Cheeger-Gromov Convergence
Recall from last time:

Theorem 14.1. Assume {(M,dg,,p:)} POILZ, ioe

(XOO7 dOO?pOO) and
R* = {smooth points} on By, (g;,)
then

1. R* C X is open, and there exists a riemannian metric g, such that (R*, gso) & (X0, dso) is a local
isometry.

2. There exists an open subset U; C --- C U, C R*, such that ﬂ;’il U; = R* and a diffeo
v Uy = Vi ©M;

such that

(a) »ig

(b) ¥y 22 id

Croesi—>00

Joo ON R*

Recall that g, € R* is smooth there exists {¢; € M;} such that

z
i — o
and
Vol(By, (¢i,7)) >V >0 (15)
V™ Rm| < Cyp, (16)
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Proof: First, for 1., note that the Gromov theorem (We haven’t proved this) and equation (15) and (16)
give that
inj(¢;) > ¢>0

i.e. the injectivity radius is bounded from below. Thus

GH,i—o0
_—

(D(qi, C/2), dy) (D(go0, ¢/2), dc))
—_———

topological ball

Then there exists local coordinates near ¢; € M and

fi : B(qi,’}/o) — R"

such that
1. B(0,71) C #(B(gi,r0))
2. gij = gijsdaida}

see

Recall the three types of coordinates

Figure 38

1. Exponential coordinates
Cl, =C (CoCh,...,Cn)

where {C;} are our curvature bounds

2. Distance coordinates give

C! = C" (Co,Chy..o,Cont)

(Here Yi draws a picture explaining this, essentially you have a base point ¢;, and then you fix n points
T1,...,T, in the ambient space, and we map

g~ (d(g,z1),...,d(q,x,))

)

3. Harmonic coordinates gives

||Cv/nHDt = Cvln(covcla cee 7Cm71)
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Arzela-Ascoli and our lemma give that

<

)

c= =
Yi,st — Joo,st O1 B(O,

|

Recall )
GH,i—oc0
e

(D(gi, C/2), ds)

then GH limit uniqueness implies that

(D (4o ¢/2), doo))

X

@
Q

m

I7¢

(D(qoo,T'Q),doo) (D(QOOaTQ)adgm)

O

we can find maps ¥; : D(¢oo,72) — M, diffeos onto the image such that (a) and (b) in our initial theorem

L
UJ

Figure 39

statement (see initial theorem conditions in 2.) are true on D(¢uo,72). This proves 1. (see in our theorem.

Figure 40

Proof: of 2. First, we can find {z1,29,...} € R* with {U’} neighborhoods of z;. Form a locally fi-

nite cover of R* and there exists , _ _
P U = V! CM;

such that (a) and (b) are true on U7. Now let X7 : V7 — U7 be the inverse of ¢/ (see

We now claim that

0o -
ZOC,ZA)OO

X720t id on U7 N U2

(X7 0 4]) goo 222 g
hint: 47", 47 are almost isometries. Same with X7*, X72. Then
W 2 1d
X% 1d

= XPoyl L 1d
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<

<

X

Figure 41

Proof: Next: “glue-up” the maps X7 : V/ — U’ for a fixed i. Let {n/}52; be a partition of unity surbor-

. j=1
dinate to {U’}32,;.

Claim: There exist smooth maps o : [0,1]F x A, — R*, where A} is a diagonal neighborhood of

(R*)* = R* x --- x R* and the diagonal is just {(x,...,7) | z € R*}, such that

k(8150 y Sk @y .o, T) =
0r(0,...,1,...,0,21,...,24,...,2k) = T
O-k)(sla"'7Sk—i705"'705m17-~-axk) :Uk—i(sla-“ask—hxla'--;xk—i)

Note that for &k = 2, 05 is the “mid point” of any two nearby points. Now let

Xi(2) = on(m(xi (@), - o (@] (), 21 (2), -, 27 (2))

where N is an integer such that
me(zf(z) =0 VE=N
can check that x; are diffeos and A
S

and 1; satisfy (a) and (b) from the theorem assumption.

Definition 14.2 (C*°-CG convergence). We say (M, g;) <, (M, goo) if there exists open Uy C ...

Mo, and
(Ui = M
i=1
and diffeos
open
v U = Vi © M
such that

«  Cloe
Vg — goo

T/Jfl(pi) — Poo
So 2. from the theorem: (M, gn,Pn) EEN (R*, goo, Poo
Corollary 14.2.1. Let (M}, g;, p;) complete RM and if 3r > 0 and for all D > 0 such that

1. [V™Rm| < Cp, (D) on B(pi, D)
2. Vol(B(p;,r)) >V > 0 (non-collapsing)

implies that there exists a subsequence such that

cG
(Mz;gupz) — (Mwyg(xnpoo)
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14.2 Compactness of RF/Smooth Cheeger-Gromov-Hamilton Convergence
Setup: (M;, (gm)te[_T;,Tﬂ,pi) pointed complete Ricci Flows, T;” < 0, T;" > 0 and assume
[T 1) = I
then let I, = I..\{left end point}, e.g. Io = [0,1], then I, = (0,1] and
(Mi, 9i0:pi) 7 (Xog, o, i) (20)
and R* C X, as the subset of smooth points of . Let
R = {qoo e R |34 S qoo sit. V[-T~, 7] C Lo, 3C, 7> 0
st. |Rm| < C on By, ,(qi,r) X [fT*,Tﬂ}
for large 1.
Claim: R** C R* (see[42))

Proof: Shi’s estimate gies that if |[Rm| < C for a small time interval locally at a point in X, then

A

o r——ﬁ Rﬂ*l ,
/R

Figure 42

IV Rm| < Cp,
Theorem 14.3. Let ¢; : R* D U; = V; C M; and U2, U; = R* be diffeos of

(Mi, gi,0, i) A

such that

VEgi0 S goo
and

v Lid i — oo

then after passing to a subsequence, we have

Vi Gt ﬁ oot
a smooth ricci flow on R** with ¢ € I, (where goo,0 = goo)
Proof: Take

Jit = w:(gi,t)
on R** NU;. And Shi’s derivative estimate tells us that g; ; has bounded derivative up to any order on any

compact subset of I,. The Arzela-Ascoli lemma now tells us that
. o> - .
Jit — Goo,t on R asi — oo

Moreover, g;+ satisfies Ricci Flow, so does goo - O
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15 Lecture 15: 11-17-22

Today
e Blow-up analysis

e Solitons

15.1 Application of compactness in blow-ups

Let (M, {gt}ef0,r)) compact RF, T' < oo maximal existence time. Choose (z;,t;) € M x [0,T], t; T T and

max |Rm| < C - |Rm|(z;,t;) = CQ; — o©
M x[0,t]

where C' is independent of i. Let

Git = Qng;ltthia te [7ta270]

‘{".:T___.,._,_______ —

0

—
£

Figure 43

Assume for some r > 0, v >0
Vol(By, +(xi,r)) > or®

(We will confirm this later using Perlman’s no-local collapsing theorem). So applying the convergence
theorem, we have

(M7 gi,taxi) CG_H} (Moovgoc,tyxoo) RF7 Completet S (_0070]

Example. Consider two separate sequences, one converging to the sphere, and one converging to the Bryant
soliton. These are called the “neck-pinch” and the “degenerate neck-pinch” (see

Theorem 15.1 (Perelman-Brendle). The only possible singularity models for 3D compact Ricci Flows are
S3/T, S? x R, S? x R/Zy, and the Bryant soliton.

15.2 Solitions (Revisit)

Definition 15.2. We say that a triple (M, g, X) is a soliton if

1 A
Ric+§£Xg—§g:0, AeR
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Exumglﬁ, ( heck- Pw:h)

+ a\.}lrmbc‘.cal o l”ﬁ
C><§ Bt soliton e
o o,
S

=

M\)\\r\d\/ ()[.cuamu&ie, MUF.?\\!\C)/\,

Figure 44

if X = Vf then this is a gradiaent solution and the above becomes

A
Rm+v%—§g:0
Moreover

shrinking A > 0
steady A =0
expanding A < 0

Now consider the diffeo

—)}t t <0, when A > 0
¢ = flow of ¢ X teR, A=0
1
54X, t>0, A<O0
Let
—Atgfg t<0, A>0
gt = { 0fg teR, A=0
—AMorg, t>0, A<O0
Theorem 15.3. {¢;} is a Ricci Flow.
Proof: Assume A\ > 0, then

d

%(—At)aﬁig = (=A)oig — Xopi g
= (=N)oig+ o7 (Lxg)
= ¢;(=Ag+ Lxg)
= ¢; (—2Ric)
= —2Ric(¢; )
= —2Ric(g¢)
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Example. All Einstein manifolds, i.e. Ric = %g and let X be a killing field, then
1 A
Ric + §£Xg = Ric = 59

Example. Gaussian gradient soliton: (R™, geye, f = %|x|2) euclidean coordinates. Note that

VQ‘QTF = 2geuc
Check
A A
Ric + VQf - §geuc = vgf - §geucl
A A
= -2 euc — 7 Yeuc
g “Jeue =59
=0
see
u
4 R"
/'7
A nf.)
YL ~
oy
Figure 45

Example. Hamilton-Cigar soliton - on R?, with g = dr? + h(r)?df?, and f. h and f have explicit formulae,
but not stated here. This is a steady gradient soliton with h(r) < oo as r — oo. Here k > 0, i.e. positive
gauss curvature everywhere. Moreover for {p;} a sequence with r — oo

(M7gvpz) % R x Sl
In 2D, steady solitons are either
o flat

e Cigar soliton

due to Hamilton, Seseum, ... see [46]

) Qﬂm solitom (R, 9= du's h’(&)dﬁifm)

(%md&) Sfmdj) hu) — wnek, AL T —> 00

Figure 46
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Example. In n > 3, the rotationally symmetric soliton is called the Bryant soliton (due to R. Bryant). We
work on R™ and

g =dr® 4+ h(r)’ggn—1

and an f. see [{7]
Both i and f unique. This is not like a cigar soliton and the graph of the Bryant soliton is like a polynomial

@,Brﬁamt solitep, (R g[:dtrthlujgsh.h ,gm>
(ﬁ‘ﬁdi""‘*fgm‘ﬂ‘j;%W) ) ~J7, s r—eo

i
[
\
Figure 47

of degree two. If you measure the diameter of the sphere at distance r, we have that h(r) ~ \/r. Moreover,
Rm > 0 everywhere, and also for {p;} a sequence tending to r = co

ca
(Ma gapl) — R"
we can also get nice convergence if we rescale
ca _
(M, R(pi)g,pi) — S"~* xR
Finally, if we take {\;} — 0 and take the distinguished parabolic point, p, on the Bryant soliton, we have

that .
(M, \ig,p) 225 R = [0, 00)

Example. In generalized cylinders
n— A
(S" xR"* g = ggn +9R’L*k7f:1|m‘2)

where T is just n — k coordinates on R"~* see

O Goural” afidors (S4B 9= g0 4 s 4. 1)

LG C C

Como&‘r\.od-e)s v } ﬁdﬁ

R

Figure 48

In 2D, shrinking soliton converges to S?/T', R? (Gaussian shrinking).

In 3D, shrinking soliton converges to S2/T', S? x R/T, and R? (Gauss).

We have yet to classify steady solitons, though Hamilton conjectured that there is at least one more besides
the 3D Bryant soliton and R x Cigar. see [49]

Recently Yi found a family of steady solitons called “flying wings”, the difference is that
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ln 3D, Shrlh;lo.ir\é solitong: SVE, SxR/T
S‘hmdhj solitons - Sﬁ.u, operu - Rnown Q;mmi)(u, are. -

2D BVHML‘
GH it 0{— blow-dlwn,

_‘—ﬁw

\Q\ VOe(om)
©=0

Figure 49

. , G
3D Bryant soliton Blow down, G, p+

. . Blow down, GH
Flying Wing Blow down, GH, (cone)

. Blow down, GH
R x cigar o 40 G o RF

Conjecture 15.3.1. Are these all the 3D steady gradient solitons?

We’ve shown the existence of at least one more with the flying wings. Moreover this example has Zs x O(2)
symmetry, but all 3D steady gradient solitons have O(2) symmetry. Uniqueness is still open

Example. Danielle: V(N"~1 h) with Rm > Id, 3(M™",g, f) expanding with Rm > 0 and R(p) = 1,
V f(p) = 0 such that (M, g) asymptotic to C(N), the metric cone over N, dr? + r?h, see
We have

(M, \ig,p) <5 C(N)

Moreover, let {g:} be a RF associated to g, i.e.
gt = (=At)oig

Then J—
Jt
(Magtvp) E— (C(N)vp)

As an aside: Metric comparison geometry say that for (M, g, p) with sec > 0, A\; — 0, then

GH
where P(X) is a cone. Here X is the class of geodesic rays on M, which admits a metric

Example. Due to Yi, in n > 4, there is a family of Zy x O(n — 1)-symmetric steady gradient solitons for
Rm > 0, see
Let

M=X= = 2> 1=\,

Let a = i—f Here, if we take p; — 0 then

(M, R(p;)g,p;) — R x Bry" ™! or R? x §"72
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CU\’UH'L{M the assocuated. Rr—
(-M*(é")1'70> ,.'HLML

(M. aH n—l
‘ WP s

Figure 50

(24 ,20x O ney- Speiic, grediont, Ry >0)

Figure 51

Question: What is (M, A\;g,p) as A\; — 0 and i — co? If a = 1, we get the bryant soliton. If o = 0, we get
the R x Bry” ™. What about other values of a?

16 Lecture 16: 11-29-22

Today we’ll discuss heat flows and conjugate heat flows

16.1 F-functional and )-invariants

We try to view the ricci flow as a gradient flow of some functional. Let {g:}ter be a Ricci flow on M,
compact. Let u,v € C?(M x I). Recall that the heat equation is given by

Ou = (0, — Ag,u) =0
We can define the conjugate heat equation by

O = (=0, — Ay, + Ry, )u=0
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Note that if u,v € C2(M x [t1,t2]) (i-e. u(:,t), v(-,t) vanish on M), then
/(Du) vdgy — /uD*vdgt _ /(at C Auv— /u(—@t ~ A+ Rw (21)
_ / [0 (uv) — (Au)o + u(Av) — Ruv] dg,
— / 8, (wv) — Ruv)

= 3t/uvdgt

where the third line follows from integration by parts, and the fourth line follows because the derivative of
the volume form with respect to the metric is the scalar curvature. We phrase this as the following theorem

Theorem 16.1. For u,v € C.(M x I), we have

6t/ uvdgy z/(Du)vdgt—/u(El*v)dgt
M

We can also integrate the above and get

/uvdgt
16.2 Heat Kernels

In order to understand the heat equation, we also want to understand its underlying kernel. Define

= 7] 0 - o

K(z,t;y,s) >0, x,y € M, s<t
such that

D(x,t)K(:E, t;y, 5) =0
lim k(- £y, $) =
tlJI'l;l k( ,7579’3) 6(y,s)

L
I

W)

see [o2)

Figure 52

Proposition 3 (Reproduction Formula). If Ou = 0, then for s < ¢, we have

u(z,t) = y K(z,t;y, s)u(y, s)dgs

One could view this as a defining property of the heat kernel.
Similarly, we can define a kernel for the conjugate heat equation, i.e. a function

K*(z,t;y,8) >0
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such that

0t

vl (2, ty,8) =0

ligl K*(x,t;y,5) = d(a,0)

see [53] Then the corresponding reproduction formula is

o L
sl SN

Figure 53

Proposition 4 (Reproduction Formula). If (0*v = 0, then for s < ¢

v(y,s) = /M K*(z,t;y, s)v(x, t)dx

Finally we have

Lemma 16.2.
K*(z,t;y,8) = K(z, 1y, 5)

Proof: Consider
F(r) = /K*(x,t; 2, T)K(z,7;y,8)d,2 T € (s,t)

Then recall . Applying this to the two heat kernels, we see that F(7) is constant in 7. Moreover

li%lF(T) = K(x,t;y,s) liir}F(T) = K*(x,t;y,s)

which finishes the proof. O

Corollary 16.2.1 (Reproduction Formula). If ¢; < t2 < t3, then

K(xs, t3;x1,t1) = [ K(w3,t3;-,t2) K (-, t2; 21, t1)dgy,
M
Proof: Again by , the intergal on the RHS is independent of t5. Letting t5 | t; or ¢t 1 t3 along with
the defining properties of the heat kernel give the result. See O

JiS
..t
:_ SN

Y JN

O{l',t:)

7

Figure 54

We will now discuss
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e F-functional, W-functional, monotonicity
e )\, p-invariants

e No local collapsing theorem

16.3 F-functional
Let M a smooth manifold, closed. Define

Flg, f) = /M(R+ IVf[)e fdv,  dV =dVol,

ie. f€C®(M) and g is a riemannian metric on M. Let
h:= Dg

(i.e. h =g - for a smooth variation of metrics {g;}). And similarly v = Df (Also an infinitesimal variation)
Then

Theorem 16.3. We have
_ _ - 2 tr(h) B 2 _5
DFg,5)(h,v) = (h,Ric+ Vo) + | —= —v | QAf = [V + R)| e /dV
M

Proof: From hereon we’ll label the LHS DF. Recall that
D(*QRIC)(h)Jk = Athk + Vjvktr(h) + Vj(éh)k + Vk(§h)J

So that
DR = —A(tr(h)) — (Ric, h) + 6%h

where § is the divergence. Similarly

DIVf]? = —h(Vf,Vf) +2(Vf, Vv)

DdV) = @dV

D(e1dV) = (“(;L) - v) e~ fav

— D]-":/ {—Atr(h)—(Ric,h>+52h—h(Vf,Vf)+2<Vf,Vv>+(R+VfQ)- (t;h —vﬂ e tav
M

where again (v = Df). Moving all the derivatives off of the variations h and v and integrating by parts, we
get

—Atr(h)e Tav = /

—tr(h)Ae~TdV = / —tr(h) (IVf]? = Af) e fav
M m

M
/ 62he_de=—/ <5h,ve—f>:/ (h,6*Ve yav
M M M
:/ <h,v26—f>=/ (h,df @ df —V*f)e~fav
M M
/2<Vf,vu>e—fdvz/ 2<—Ve—f,w>dvz/ 208e~TvdV
M M M

:2/ o(IVFP = Af)etdv
M
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This implies the theorem. O
We can get rid of (@ — v) (2Af — |[Vf]?> + R) by requiring that

tr(h)
2

—v=0

In this case, we also see that

D(e~Tav) = (tr(;‘) = 11) dV =0

i.e. its a constant measure, and hence
DF = / —(h,Ric + V2 f)e fav

Can now define an L2-product on the space of symmetric 2-tensors by
1
(s h)y =5 [ (b ha)dm
M

for m a fixed measure. The gradient flow of F is then

8tgt = —2(R1C + VQf)
Ofr=-R—-Af

and hence

d
%}-(gtvft) = /—lRic +V2f2e=Tdv <0

Now let g; = ¢ (g:) and fi = @5 fr for ¢4 defined to be the flow of Vf. Then
Ogr = —2Ric(ge)
Ofe=—R—AF+ |V (22)

We then see that ~
F(Ge, fr) = F(g¢, ft)

and I ,
e 1dvV = ¢r(e”1dV)

is no longer constant, but the integral is!

d P~ d d
—_ —f ‘/ = — *(e— T ‘/ = — —f ‘/ =
dt/ed dt/d)t(ed) dt/ed 0

just by diffeomorphism invariance of integrals. This means that from (22)), we get

(’9tgt = —2Ric (23)
Of =—R—Af+|Vf} (24)
— e =—-Ae/ + Re™f (25)

where the last equation is the conjugate heat equation, and linear. Thus we can solve for f backwards in
time

Example. Consider (R", geyer) and g; = gewer for all ¢ € [0,¢). Let 7 = to0t. Let

_ z2 m
fr = 1(t00) + 5 In(4m(to — t))

i eift = (47T(t0 — t))*’n/267|1}‘2/4(t07t)
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This is a conjugate heat kernal starting at (0 € R", ¢ € (0,00)). Moreover e/t satisfies and
/ e fidv =1
n

2 2
Flge, fr) = /(R+ IVf[)e fdV = (4m7) "/ / —ﬂe“x' 4rdV =
T

Finally
-

16.4 JA-invariant
Given a manifold, we can define

AMg) = _inf F(g,[)

= 1mn
fec™= (M)
J e fdv=1

Letting ¢ = e~//2, this is equivalent to
Ag) = AEC""(M) /4\V¢‘2 + Rp2dV
J =1

16.4.1 Existence of minimizer and regularity

There exists a smooth ¢ > 0 a minimizer of

/4|V<15|2 + Rg¢®

and
—4A¢p+ Rp = A\

where A is the smallest eignevalue of —4A 4+ R. Moreover, this occurs if and only if
2Af — |[VfP+R= A\

for A a constant in M. Taking the gradient of the above and applying the 2nd Bianchi identity, we get

div [(Ric + V2 f)e~ /] = div {—;w} =0 (26)
Check:
S () :/ —(h, Ric + V2 fyet dv
M
we define )
Wy = [ hmeay,
M
then gives

(VA div*X) = (div(VA), X) = (0,X) =0
So the gradient of A is orthogonal to

Imdiv' = {Lxg : X v.f.}
so our ricci flow is a “gradient flow” of A when projected on M /Diff(M).

Remark In finite dimensional manifolds,a periodic gradient flow (called a steady breather) must be
a fixed point (i.e. evolves by diffeomorphisms)

Theorem 16.4. If {g;};c[0,77 is a RF, the A(g;) is non-decreasing in ¢
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Proof: WLOG, show that A(g(7)) > A(g(0)) for all 7. Let f(7) be a smooth function such that ¢ = e=F(7)/2
is a minimizer of A(g;). Solve the conjugate heat equation

—O0u — Au+ Ru=0
u(r) = A

Claim: u(t) > 0 everywhere.

Proof: It follows immediately from convolution with the conjugate heat kernal OR: take v to be a test
function such that v > 0 and supp(v) C By(x,r) for r small. Solve

O = Av
v(0) =w

to get v(t) > 0 everywhere. Then immediately, we have

0< /U(T)’U(T)dv.,- = /u(O)v(O)dVO
I believe this follows from (21)). Now taking v(0) arbitrary we see that u(z,0) > 0 everywhere. O

NOw our claim shows that there exists f(t) for t € [0,T] such that e=f®) = w(t), and so F(gs, f(t)) is
non-decreasing i.e.
Ago) < F(g0, f(0)) < Flgr, f(7)) = Algr)

ending the proof. O

Corollary 16.4.1. A compact steady breather is a steady gradient soliton (and hence is Ricci Flat)

Recall that a steady breather means we have {¢;} a RF and 3ty > t; and ¢ a diffeo such that
g(ta) = ¢*g(t1). Hence the ricci flow is periodic after rescaling appropriately.

Proof: Tracing through the previous proof, we find F(g¢, f(t)) = ¢ a constant. Thus

d
0= a}"(gt,f(t)) :2/ [Ric + V2f|2e~/dV = Ric+ V3f =0
M

which is our criterion for a gradient soliton.

17 Lecture 17: 12-1-22

Today we discuss the W and p functionals.

17.1 W-functional
Define

W:MxC®M)xR" - R
Wig, f,7) = /M (IVF + R) + f — n)(dmr)"/2e~Tav

Then we see that it satisfies

W(Ag, f, A1) = W(g, f,7) scaling invariance
W(d*g, 0" f,7) = W(g, f,7) diffeo invariance
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Let Dg = h, Df, D7, all be infinitesimal variations in time. And assume that

Then we have that
DWig.5.r)(hDf, D7) = /M [DT(R+ |V f|* — 7(h,Ric + V*f) + Df] (477)""2e~TaV
Consider the coupled flow
dig = —2(Ric + V2f)
8tf:—Af—R+% —

8tT =-1
Then
aw 2 . 2212 n —n/2,—f
(g fum) = | |- (R+IVSP) +27[Ric+ V2fI2 = Af = R+ -] (4mr)/2efav
dt M 2T
- / [—2(R + Af) + 27|Ric + V2f|2 + ﬁ] (4r7) "2V
M 2T
1
= / 27|Ric + V2f — — f|?(4nr) /2T dV
M 2T
Replacing g, f with the pull backs ¢} g, ¢; f, for ¢; the flow of V f, we get

0yg = —2Ric
of=-Df+|VIP-R+ - = / (4rr)~"2eTdV =1
2T M

0.7 =-1

17.2 p-functional
We define

w(g,7) = iIflf{W(g,f, T) : /(47?7')_"/26_de =1} > -

¢:eff/2

= 12f{/ [T(4]Vo[* + Rp?) — 2¢° log ¢* — ng?| dV : /(4m)—"/2¢2 =1}
M
There exists a ¢ > 0, minimizer and smooth such that
T(—4A + R)¢ = 2¢log() + (u(g, 7) +1)o
so there exists an f such that ¢ = e~ //2 and f smooth.

Theorem 17.1. Let (M,{g¢:}) a RF. M compact, let toy arbitrary, then p(g:,to — t) is non-increasing and
continuous in ¢, t € (—o0,tg)

Proof: Let f(t2) be the minimizer of u(g:,,to — t2), then solve
0% (477) "™ 2e =0

to get f;. Then
W(gt7 ft7 tO - T)

is non-decreasing and

H(Qtuto - tl) < W(gtuftuto - tl) < W(gt2aft27t0 - tQ) = ,Ll‘(gt27t0 - t2)

where the first inequality holds by definition of inf. O
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Corollary 17.1.1. A shrinking breather (compact) is a shrinking gradient soliton.

Recall that a shrinking breather means 3¢ a diffeo with ¢ € (0,1) such that

g(t2) = co™(g(t1))

for some t5 > t1. This relation gives periodic ricci flow modulo rescalings (i.e. there exists ¢; for all ¢ > 3
such that a similar relation to the above holds).

Proof: WLOG assume t = ct; < 0, i.e. perform a time shift, see 55| Let f(t2) be a minimizer of yi(gy,, —t2)

o

Figure 55

and solve
O*(4n7) "™ 2e~ =0

(i.e. heat equation, this is what OJ* represents) to get f; and

:u’(gtl ’ tl) S W(gha ft17 _tl) S W(th, ftz» _t2)
= /L(gt'zv *tQ) = u(c¢*gt1a 7Ct1)
= (¢ gt,, —t1) = p(ge,, —t1)

where the equalities in the third line follow since the p-functional is rescaling invariant and also diffeomor-
phism invariant. This implies that

W(gta fe, —t)

is constant, i.e.

Tyw—o — / 2T|Ric+v2f—i|2(4m)—"/2e—fdvzo
dt M 2T

This implies that
1
Ric+ V?f - —g=0
2T

which is exactly the equation for a gradient soliton.

17.3 Example: The gaussian shrinker

The gaussian shrinker on (R", geyer) With g(t) = geyer and t € (—00,0). Then

9t = YGeucl
fi= % = (4#7)_"/26_f is the conjugate heat kernal
T=—1
see (0]
Then 1z2 |z |22
T(|Vf|2+R)+f—n:T-P+?_ -2 -
Then

2
W(gt, fr, —t) = / (|a:| - n) (4rr) "2 TdV =0
Rn 2T
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Figure 56

Corollary 17.1.2 (Log-Sobolev inequality). Let
dp = (4%7)7"/267“'2/(“)51‘/

be defined to be the gaussian measure. Then
1
[ 2w < [ [vopd,
for any 7 > 0 and [;, ¢?dy, =1

17.4 Example: R?/Z;

Let g; = geue for t € [0,t9) and 7 =ty — t and Zj, acting by rotating by 2w /k around 0. This turns R? into
a cone. Let )

(4#7)7”/267f = (47r7')7”/267|x‘ /47 g
then (477)~"/2¢~7 a conjugate heat kernal, implies that

_ P

f 4Tt

In(k)
This gives that
W(gt, fi,to —t) = —In(k)

and the above tends to —oo as kK — oo. Note that as k — 0o, the cone we have collapses since we quotient
out by Zy,

17.5 No local collapsing theorem

Definition 17.2. Let (M, g,) for t € [0,T) be a Ricci flow. It is locally collapsing at T' if 3{¢x,} — T and
pr € M and rp > 0 with

7"2
sup £ < 0o
E Uk
and
|Rm|(g(ty)) <r.2 on By (pr,7%)
but
lim vol(Be, Pk Tk)) 0
k—o0 T‘E

Definition 17.3. We say that a manifold (M, g) is k-noncollapsed on the scale of p if Vo € M, Vr < p, we
have
|IRm|<r~? in By(z,r) = Vol(By(z,r)) > kr"

Example. Consider the Cigar soliton, which we know asymptotically looks like R x S*. It is k-noncollapsed
on scale 1, but not k-noncollapsed on all scales. Then
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e It is k-non-collapsed on scale 1

e But not k-non-collapsed on all scales - This means there exists no k so that the cigar can be k-non-
collapsed at all scales

Intuitively, the second is because asymptotically the cigar looks like a cylinder, which converges to a ray at
larger scales and this contradicts the quadratic volume growth

Definition 17.4. We say (M, g) is non-collapsed if there exists a k > 0 such that (M, g) is k-non-collpased
at all scales. Otherwise (M, g) is collapsed.

Example. Using the above, the cigar soliton is collapsed. Note that |[Rm/| < r~2in B(z,r), but Vol(B(x,7)) =
O(r) < r® when 7 > 1, so collapsed. See

Figure 57

Example. Consider R x S2?. THis is actually non-collapsed because | Rm| = 1 and so the curvature condition
|[Rm| < r~2 is not satisfied on for 7 > 1, so the implication is vacuously true. For r < 1, we have cubic
volume growth and can find a concrete k > 0. See

h R xs* . Note IRelz C'>0, Itis ﬂon-co[[ai)maﬂ

RO

Figure 58

Example. Bryant solution is non-collapsed. See

Ex

_—

“gim"t“ 1o [Rx SL(IL' |h%|kﬂ-j
<) hcm-r_n[lapszi,

Figure 59

Example. Flying wings - is collapsed because of the geometry at the vertex. See [60]
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1R £ ¥ in Bux.r) but
Vol BLx, r)) =0 < ¢ ? when ¥y 1
o col[a/];g«za{

Figure 60

Theorem 17.5. If M is a closed manifold and T' < oo, then g(¢) is not locally collapsing at T, i.e.

Vol(B
supri < 00, lim 2Pk TE)) (B(pe, 7))
k

n
k—o0 T

=0

never happens.

The theorem means that (M, g;) is k-non-collapsed on some scale p - note that k, p may depend on gg
and T.

18 Lecture 18: 12-6-22

Theorem 18.1 (Perelman). If M is closed and T' < oo, then ¢(¢) is not locally collapsing at T’

Proof: Let ¢ = e~ 7, then
W(g. £.7) = (4mr) > [ 47|96 + (7R~ 21n(0)-)oPdv
M

Suppose theorem not true, then 3 {p} € M, ry > 0 such that sup, 7, < oo such that

Vol(B(px, 1))

n

Tk

|Rm| <r.? on B(pg,rx) but —0 ask— o0

We will find ¢ (and hence fi, ¢ = e~7+/2) such that W(gy,, fx,r?) — —00 as k — oo and

M(gmtk +TI%) < /‘L(gtk7r12€) < W(gtkvfkarl%) — —

However u(go, tx + ri) — —o0 is impossible (this will be done in an independent exercise, but as long
as the metric is fixed, then u(go,r) is bounded). This will give a contradiction. We now verify that

W(gtk>fk7rz) — —00
¢k — 60k/2(p (d(pk7 ))

Tk

where ¢ is a cut off on the half line that is 1 on [0,1/2] and decays to 0 on [1/2,1] see
Choose ¢, so that

| amty g =1
M
We now use Jensen’s inequality, which we recall as

Proposition 5. Let (M",g), ¢ : R — R convex, u € L*(M,dV), then

W /M p(u)dV = ][go(u)dV > <][ udV)
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bls1, P=lon(od]
¥lsio

Figure 61

Now assume that (4777)~"/2 = 1. Then omit “k” for a moment and let

B := B(pk, k), By /s = B(pr,m+/2), T=r]
apply Jensen’s inequality on M = B with ¢ = u?In(u?) (which is convex). This gives

s 2 sl 7)o )
1

o 1 1
Vol(B) /B¢ (@") = g5 <ln(Vol(B))>
— — [ ¢*1n(e?) < m(vol(B)

This tells us that
/ (TR — 21In(¢) — n)¢*dV < co + In(Vol(B))
M

[arivor

|[Vo| < coe /2

so it suffices to estimate

in our initial integral. First we know that

this is a consequence of the definition of ¢y (remember we’re dropping the “k” subindex). This tells us that

Vol(B Volume Comparison
/ VOV < coVol(B)e™® < cprhlD) ompaison
M

- OVOI(Bl/Q) -

Note that ¢ = e~/ on B/, we have
e “Vol(By 2) = H2dV < / H2dV =1
Bi/s B

restoring the subscript “k” and rescaling, this gives

VOl B , T
W(ge,. frn73) < co +In (W) o
k

since

Vol(B(pk, k)

—0
n
Tk

as k — oo.

18.1 Nash Entropy
Let (M, g:) a RF, compact. Fix (zo,tg) € M x I and 7 =ty — t. Define

dVy = dVig 1.4 = k(z0, to; t)dg, = (4n7) "2~ dg,
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is a probability measure i.e.
/ av, =1
M

O*k(wo, to; 1) =0 <= —0,f = Af — |Vf|2+R—%

and

Denote
W(T) = Wﬂfmto (T) = W(gto—7'7 fto—7'7 T)
then is called the pointed Nash entropy (often abbreviated N(7))

n
Nﬂﬂoyto (T) = /M (fto—‘l' - 5) dV‘F
Theorem 18.2.

0> N(1) > W(1)

Proof: Note that if we prove the first equality, the second inequality follows by monotonicity of WW. We
compute
d d n d
—Nr)=—+(f—=)dV, = —— dv, =— | OfdV,
dr (7) dr (f 2) Vr dT/Mf Vr /M fav,
_ _ 2 _n _ 2 _n
— [ (ear-1vsrer= )avi = [ (@9sP R - 2 av,

27
Note that the last equality in the first line follows from . Note this doesn’t give non-positivity, but we’ll
show that somehow else. Now the first equation comes from

Lom) = NE) ¢ i@ = [ gave D [ qesten - Lav,

dr
=W(7)

This gives the first equation.

Its an exercise to show that
limo N(r) = im W(7r) =0
T

T—0

see

The picture follows in part from the convexity of 7N(7). Now with this, we use the first equation to
get

0

v

N(r) = W(7)
= %N(T) <0

A rigorous proof can be done but the picture suffices for the idea. This finishes our proof of all statements. [J

Theorem 18.3 (No-local collapsing, Bamler). Let (M, {g;}) a RF and [t — r%,¢] C I, then
Vol(B:(z, 1))

2
> cneNmo,to ('r )
rn -

R(r)<r 2 on Bi(z,r) =
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Figure 62

Remark R < 72 is indispensable: because N(z,t)(T) = —co holds for any 7 on the shrinking sphere,
shrinking cylinder, and Bryant soliton. However W — 0 as opposed to being bounded. This is

precisely because the scalar curvature bound does not hold. see

Intuitively,

Figure 63

Nash entropy of RE “""&™ Volume growth ration in (M", g), Ric > 0
Ny 10 (1) ¢ In(V (20, 7))
Vol(B(zo, 7)) _ (v (zo.1))

/r-n
Thm: gradient estimate on Ny, ;. (7) <> V(xa,r2) < CV(x1,71), C =C(d(z1,22),71,72)

Theorem <«

18.2 H,-center

Definition 18.4. Let (X,d) a metric space, and P = {probability measure on (X, d)}. hen for all uy, us €
P, we define

Var(ui, p2) = / / d? (1, 2)dp (21)dps (2)
xJx
This is not exactly a distance function but

V/Var(u1, ps) < \/Var(uy, p2) + v/ Var(ua, pis)

Theorem 18.5 (Bamler, 2021). Let (M, {g:}) a RF, compact, and 4, vy satisfy (O*v; = 0, v; > 0, and
Jvidgr = 1. Set

dlufi,‘r = Vi,‘rdg‘r epr
then

d
%Var(m,t, po) > —Hy,

for H,, some dimensional constant

We’ll omit the proof for now
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Corollary 18.5.1. (M,{g:}) a RF, compact, s <t € I, 21,25 € M. Then
Var(l/xl,t;sv Va:g,t;s) < d?(l’l, 5172) + Hn<t - 2)

this is called the “distance distortion estimate” on a RF.

Let
Var(p1, 1) =: Var(p)

then we have
H,(t —s) > Var(vg, 1.s) = / Var(vg, t:s,02)dVa, 1:5(2)
M
/ Var(vg, t:s,02)dVa, 1:5(2) < Hp(t — )
M

which forces equality everywhere.

Definition 18.6. (z,s) is called an H,-center of (x,t) if s <t and
Var(vgi:s,0,) < Hp(t — )

Theorem 18.7. Let (M, {g;}) a RF. Then Vx € M, if R > —r~2 on M x [t — r?,t] and (z,t — r?) is an
H,-center of (x,t), then
Vol(By_,2(z,v/2H,T)

Tn’ﬂ

Z Cner,t(rz)

Intuitively

dt(l', Zt) =t
R(Zt) ~ t_l

19 Lecture 19: 12-8-22

Today is the last class. Yi is giving an overview of the modern theory of Ricci Flow, particularly pertaining
to the work of Bamler.

Conjecture 19.0.1 (Folklore). For a general RF, “Most” singularities are gradient shrinking solitons

Note that the bryant soliton is not a gradient shrinking soliton, but if we take a blow up sequence of
(M, R(p;)g, p;) which converges to R x S?, we see that even in the limit the blow up is a gradient shrinking
soliton.

Similarly, with the dumbbell, if we rescale about the pinched point we get R x S?, which is again a gradient
shrinking soliton.

Finally if we take M = S3 or something close to S® with the standard metric, then if we run RF and
rescale appropriately we’ll get S round in the limit, which is also a gradient shrinking soliton since Ric = Ag
on S3.

Example (Appleton). There exists a RF in n = 4 whose blow up limits are Eguchi-Hanson metric on T'S?,
and Ric = 0, and asymptotically equivalent to R*/Z, (a cone on RP?3), a shrinking soliton, see ??

Example (Stolaski). There exist ricci flows in n > 13 whose gradient shrinking solitons blow up limits are
Ricci-flat cones.
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Figure 64

These examples tell us that we modify the folklore conjecture to

Conjecture 19.0.2 (Folklore, modified). “Most” singularities are gradient shrinking solitons (smooth) or
Ricci Flat cones

Recall: If (M}, gi, x;) is a sequence of RM with Ric > —\g, assume By, (z;,7) > v > 0 (non-collapsin),
then passing to a subsequence, there exists (X, d, z+,) a complete length space such that

(MP,dy,, 2;) 25 (X, d, 200)

10

Moreover, (M, g;,z;) are Einstein-manifolds with Ric = A\;g;, |A\;| < 1. Then (Cheeger, Colding, Tian,

3

Naber) there exists a decomposition X = RU S such that

1. R is an open manifold and Jg., a smooth Einstein metric,

(X,d) = completion of (R, d,,,)

2. (codimension 4 conjecture) dimps S < n — 4 (Minkowski dimension!), where S is the singular set
3. Any tangent cone at any point of X is a metric cone
4. There is a filtration S° ¢ S' € --- C S"~* = § such that dim; S* < k and

S* = {points in S whose tangent cone cannot split off a R**!-factor}

This impies that if a point has a tangent cone splitting off a R™~3 factor then = € R.

Theorem 19.1 (Bamler, 2020). Given (M, {gi}te(-,,0), (%i,0)) a RF then by passing to a subsequence

assume S
,C., i—00
(M;,{Gi s Vi 0i8) ——— (% Wast)te[-Too,0))

where
Vg0t = K(xia 0; t)

where we have a conjugate heat kernel on the RHS. Also assume that
Nz, 0(10) > =Yy for some 79, Yy (non-collapsed)
then we have X = RU S where
R = {p € X | convergence is smooth}, S=X\R
and
1. 3 a smooth Ricci flow spacetime structure on R
2. dimy S < (n+2)—4

3. Any “tangent flow” at any point of X is a gradient shrinking soliton or Ric-flat cone (this is an analogue
of the Einstein metric case)
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4. There is a filtrain S° ¢ S* c --- € "2 = § such that dim; S* < k and
S* = {points in S whose tangent flow cannot split off a R¥~! factor}

Fix a metric space (X, d), complete separable, p1, us € P(X)
/ d(xlaxQ)dq(xlaxQ)
XxX

Definition 19.2. We define the 1-Wasserstein distance to be
inf

duw, (1, p2) = S (/X fdpn — /fduz>

f:1-lip
where the equality holds by the Kantorovich-Rabinstein theorem. If (X1,d;), (Xo,d2), u1 € P(X1), p2 €

q is any coupling of p1 X ps

P(X5), g € P(X; x X3 is a coupling if
(pI‘Ole)*q:M“ i=1,2

(e.g. ¢ = pu1 ® pa).

The root of this is in optimal transport - and we’ll now apply this to Ricci flow.

o dw1 (6117612) = d(mlaxQ)

Example.
o dy, (1, p2) < /Var(ua, pa) < du, (1, 2) + v/ Var(ur) + /Var(us)
Theorem 19.3. (P(X),d.,) is a complete metric space.
Definition 19.4. Let (X, d) a metric space and p € P(X). (X,d, ) is a called a metric measure space if
if 3¢ : X7 — X5 is an isometry

%

o
(X2, da, p2)

g

(X1,d1, 1)
w (1)« (1), (2)(12))

inf
pi(Xi,di)—(Z,d)

We can also define
iso embedding

dGWl((X1’ dlaul)v (X27d27 /142)) =

dGWl((X17dla ul)a (XZa d27,u2)) =0

Theorem 19.5. If
p2)

s 1) = (supp(ps), da ,
supp(p2)

then they are “isometric”, i.e.
mod out by

(supp(p1), da
supp(p1)

We also have
Theorem 19.6. Let M = {(X,d,u) | supp(p) = X}/ ~ is a complete metric space (i.e

isometry)
Definition 19.7. A metric flow (x,t, {d¢ }rer, (Vais)zex, s € I, s < t(x)) where
etex—+ICR
e d; is metric on x; =t~ 1(x)
o v, € P(Xy)
satisfying
1. (Xy,dy) is a complete and separable metric space

2. Vpy(a) = 02 and Viy <ty <t3, T € x4, with
Vs (Z) = /X Vs (2) s (1)

t2

(Reproduction formula) see

3. All the heat flows satisfy certain “gradient estimates”
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M
t = e

Figure 65

19.1 Turn a RF to a metric flow

Now we can turn a RF into a metric flow. We have (M, {g:}+csr) a RF, compact. Define
X=MxI, dy = dg,
an vy ¢),s = K(x,t;-,5) is the conjugate heat flow starting from (z,¢) and
K(aytaizvtr) = [ Koty )b, ta:2,0)dy
where J*K = 0. We now need to choose a base point to fully convert our Ricci flow to a metric flow.

A metric flow pair (X, {g}ier) is a metric flow which is equipped with a conjugate heat flow.

Definition 19.8. Let
Fr = {X,{ut}1}/isometry

where o
(X' {piter, i=1,2, two metric flow pairs
and g 2,2 . . 12
de (O {pe ), (s Ani})) = {7 | Haeher s coupling pug, g7 such that
|E‘ < r? and / dii((@i)*(”ﬁm)» (503)*(sz;5))th($1;372) < 1“}
X}xX?
and define

C:={(Z,d}),{¢i}ier}

where ! is an isometric embedding from (X, d}) — (Z;,d?). Moreover, all the heat flows satisfy a graident
estimate

dr (X1, 1), (Xo, 7)) = ifc}f A5 (X1, i), (X2, 7))

Example. Let (M",{g:}+<0) Bryant soliton. x is metric flow. X* is parabolic rescaling by \. If ); 170, 0,
then

1. (M, \dy, , z) ZE=e,

Ry
2. (XM, (Vg )i<0) Z, R x 52 in the metric flow sense

This is an example of getting our known results about ricci flows and blow ups, but in the language of metric
flows

(Unfortunately we ran out of class time)
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