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Question 1: This is easy: if A is a closed, convex set, and x € A°, then Hahn Banach
second geometric form tells us that there exists a hyperplane strictly separating x and A.
So A¢is weakly open. [

Question 2: Let K be our compact set. Let § € [—00,00), 5 = inf,ex f(x). Assume
towards a contradiction that 8 ¢ f(K)ie. f=—occor f € R\ f(K). Then take a sequence
z, such that f(x,) | 8. Let V,, = f~Y((f(x,),0)). Since 8 ¢ f(K), |, V. is an open cover
of f(K) which cannot have a finite subcover. This is clearly a contradiction. [

Question 3: We want to show that {f < a} is weakly closed for all a € R. Since f is
continuous, we know that {f < a} is closed. Thanks to the result of Question 1, all we have
left to show is that {f < a} is convex. But this comes immediately from the convexity of f:
if z,y € f~!((—o00,a]), t € (0,1), then

fllz+ (@ —t)y) <tf(x)+ (1 -1)f(y) <ta+(1—-tla=a [0
Question 4: Since f is coercive, we know that

inf f(z)= inf f(z)

TeX™ z€BR(0)

for some large enough R. Since f is weak-* lower semicontinuous, and Bg(0) is weak-* com-
pact (Banach-Alaoglu), Question 2 lets us conclude that f attains its minimum on Bg(0).

]

Question 5: We will prove a slightly more general result: let A C X be a closed, convex,
and unbounded set. Let f : A — R be continuous, convex, and coercive. Since f is coercive,
we know that

inf f(zr) = _inf f(x)

z€A z€BR(0)NA

for some large enough R. From Question 3 (it clearly applies to f defined on convex, closed
subsets of X given the subspace topology inherited from the weak topology in X), we know
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that f is lower semi continuous with respect to the weak topology. Since X is reflexive, we
know that Bg(0) is weakly compact (Kakutani’s Theorem). Since Bg(0)N A is weakly closed
(Question 1), we conclude that Bg(0) N A is weakly compact. Our result now follows from
Question 2. [

Question 6: For f € L'(R) let \,(f) = [ fdz+ [~ fdz. Note that for all n we have
A (D] < N1f|z,- Now define the function ¢ : L'(R) — R by:

51) = 1fller + 3 gy ) = 1)? 001)

We will verify that ¢ is (i) continuous, (ii) convex, (iii) coercive, and (iv) does not attain its
minimum.

(i) Continuity. It follows from the above that for all f,g,n we have |\,(f) — A\(9)] =

A (f =) < ||f —gllzr. Hence, when ||f —g||z1 < € < 1 we have |[(A\.(f) —1)? — (\.(9))?] <
A (f —9)| <3||f — gl and thus:

6(f) = o(9) < 4|[f — gl (0.0.2)

and thus ¢ is continuous.

(ii) Convexity. Let h =tf + (1 —t)g for t € [0,1] and f,g € L*. Clearly A\,(h) = t\,.(f) +
(1 — t)A\.(g) for all n. Thus, by the convexity of q(z) = (z — 1) we have (\,(h) — 1)?
tOn(f) — 12+ (1 —t)(Au(g) — 1)%. Combining this with the triangle inequality yields the
convexity of ¢:

¢(h) <to(f) + (1 = 1)¢(g) (0.0.3)
(iii) Coercivity. ¢ is bounded below by the norm so is trivially coercive.
(iv) ¢ doesn’t attain its minimum. I claim that infsezn ¢(f) = 2. First, the sequence of

functions f, = %X[mw” has ¢(f,) = %(1 + 2%) — %. Now, all that remains to show is that
¢(f) > 3 for all f € L*. We do this case-by case:

Case 1: ||f|| > 2. Since ¢(f) > ||f||11 for all f € L'(R) we clearly have the stated claim.
Case 2: ||f]] < 3. We clearly have X, (f) < ||f]| for all f. Note that this inequality is strict
for infinitely many n. Now since q(x) = (x — 1)? is decreasing on the interval (—oo, 1) we
have for || f]] < 3:

(0.0.4)

B~ o

=1
S(f) > | fllr + > vt U fllee = D2 =fIP=Ifll+1>
n=0

and thus the result is proved. [

Question 7: We will start this problem with a linear algebra result that I verified on
the internet.



Proposition: A quadratic form (A-,-) on R™ is convex if and only if A > 0.

Proof: Diagonalize A with an orthonormal eigenbasis ey, ...,e,. With respect to this
basis we have

(Az,x) = Z Na?
i=1

where \; are the corresponding eigenvalues. If A\; < 0 for some j, then for any ¢ € (0,1) we
get

(A(te; +0), (te; +0)) = t2X\; > tA; = t(Aej, e;) + (1 — t)(A0,0).

For the other direction, if should be sufficiently obvious that our quadratic form is convex
when all of the eigenvalues are greater than or equal to zero. [

In this problem, T : H*(Q) — L*(992) will denote the trace operator, which is a con-
tinuous, surjective linear operator whose kernel is H} () (since 2 is a bounded, Lipschitz
domain).

We know that the set

K={uec H Q) : Tu=Tf} = f+ H}Q)

is obviously a closed, convex set.
Claim: J : K — R is convex, continuous, and coercive.

We will first show that J is coercive. Let A(z) denote the symmetric matrix (a;;(x)).
We compute that for any u € K we have

I = [ (A)Vu(o). Va(@) do -+ (g0} = [ ATu@P do + (g,0)
Q Q
— (g ubzz + AVl
Letting v = u — f € H} (), we compute that
IVl = IVol3 +2 [ Vo Vs do+ 913

> Vol = 2Vl VEll + V£l = (IVoll = IV FID*.

Recall that €2 is a bounded domain. We know from Poincaré’s Inequality that there exists
C > 0 such that |Vh||y > C||h||g for all h € HY(Q). Tt follows that for all u € K with
[ullmr > ([l + GV fll2 we get



IVolly = Cllollm = Cllullar = ([ flla1) = [V £l
= IVully > (IVoll = IV F1)? = (Cllullm = [Cllla + [V FIl2) ).
It follows that for all u € K with |[ullg: > || f||m + §[|V f]l2 we have
J(w) = MCllullm = [Cll Al + 1V Fl121)? = llgllzllull2.

So J is coercive.

The continuity of J follows easily from the fact that || - ||z and the norm ||« |2 + |V - ||2
are equivalent. Just look at the expression.

To show convexity, note that J = (g,-)r2 + [,(A(z)V-,V-) dz, and (g, )2 is a convex
function. Since quadratic forms on R? are convex if and only the corresponding matrix is
positive semidefinite, and A(z) is positive definite for all z € Q, it follows that

/Q<A(1:)V~, V) dx

is a convex function on H'(f2). Therefore, J is the sum of two convex functions and is
itself convex.

Claim: J attains its minimum on K.
This follows directly from our result in Question 5.
Claim: Let u be a point in K where J attains its minimum. Then
V- AVu = % g
in the distributional sense.
We can rewrite K as u + H}(Q2). Then we know that for all v € HJ(Q2) we have

J(u+v) — J(u) = (g, )12 + 2 /

Q(A(x)Vu(x), Vo(x)) dx + /(A(x)Vv(ac), Vou(x)) dz > 0.

Q

We also know that the function ¢, : R — R, ¢,(t) = J(u + tv) always attains it global
minimum at ¢ = 0. Since we know that

bo(t) = 12 /Q <A(x)Vv(x),Vv(x)>dx—ktl(g,v)p 42 /Q (A(z)Vu(z), Vo)) dz |,



setting ¢/ (0) = 0 yields

(9, v)12 = —2/Q<A(:U)Vu(:v),Vv(x)> dz.

If we let (A(z)Vu(z)), denote the i column of A(z)Vu(z), then we compute that

/Qg( :—22/ lg—;dx

=2 Z: /Q 0; (A(:E)Vu($))lv($) dx = 2/Q (V- A(z)Vu(z))v(z) dz.

The integration by parts worked for arbitrary v € H} () because C2°(Q) is dense in
H;(©). O

Remark: The last observation in the previous proof gives a short proof that H'(Q) #
H}(Q): passing to the limits from functions v € C°(£2), we see that

87) 1
3@ dx = /axzvdx Vue HY(Q),v € Hy(Q),

but this obviously cannot hold for all v € H'(Q), so H}(Q) # H'(). An obvious coun-
terexample when 2 is bounded is to consider the constant functions on (2.

Question 8: We know that the intersection of two closed, convex sets is itself closed
and convex. We know that
{ue H'(Q) :u—f € Hy(Q) and u > dpa.e. in Q} = (f+Hy(Q)) N{u € Hy(Q) : u > ¢a.e.}.
[+ Hj(Q) is the translation of a closed linear subspace, so it is closed and convex.

{u e HYQ) : u > ¢a.e.} is closed and convex because L? convergence implies a pointwise
a.e. convergent subsequence. [

Question 9: Let us first introduce some notation:

S=f+H()

={u>0ae}ns

Note that since S and {u > 0 a.e.} are closed and convex, S’ C S is a closed, convex set.
Furthermore, define



J:S =R, J(u):/|Vu|2+u+dx
Q

J S =R, J(u /|Vu|2+udx.

Since T'f > 0, 5’

=J.
Claim: J is coercive.

Let D denote the Dirichlet energy. We know that J(u) > D(u) for all uw € S, and that
D is coercive on S (see Appendix). It follows that .J is coercive.

Claim: J is both continuous, and strictly convex, and therefore attains a unique mini-
mum on S.

The continuity of J is obvious.

To show strict convexity, we first note that *¥* L < T‘Jr% < % for any u, v measurable,
simply because uy > u everywhere. Second, we note that if x,y € R", x # y, then since

f(z) = 2? is a C? function whose derivative is positive everywhere, we have

2
R RS R e

i=1

Let u,v € f+ HLNQ), u # v. Since u —v € H&(Q), we know that v — v cannot be a
constant function. It follows that Vu # Vv on a set of positive measure. From this, and the
above facts, we compute that

u—+v Vu+VvQ u—+v
(" ):/Q y e

</ Vu+Vv2 U++U+d

~ Ja 2 2

1 1 Uy +v J(u) + J(v)
</Q§‘Vu’2+§|Vv‘2+%dx:T.

It follows (see Appendix) that J attains a unique minimum on S.
Claim J attains is minimum over S in S’

For allu € S, u; = min(u,0) € H'(Q) (this comes from the result of Question 10). Since
f >0, we know that Tu = f = Tu, for all u € S. Therefore, for all u € S, there exists



uy € 5" such that J(uy) < J(u).
Claim: J and J’ attain their minimums at the same function.

J attains its minimum in S’, and J‘S, =J. ©

Now all that remains is to compute the Euler-Lagrange equation for the minimizer. So, let u*
be the minimizer of J over A;. Let ¢ € C°(R), and define F': R — R by F(t) = J(u* +typ). Then

F(t) = /|V(u* + t<;;)|2 + max{u* + te,0}dx
Q

(1.0.30)
=J(u*)+ /ZtVu* - Vi + (max{u* + tp, 0} — u’ )dz + £ / |Ve|*dz.
Q Q
The most confusing term is (max{u* + tp,0} —u} ). By direct calculation, we have that
. oy o), (@) > —te()
(max{u® + tp,0} —ul)(z) = { Zut (), w(@) < —te(a) (1.0.31)
Thus since ¢ € L*°, dividing by ¢ and taking the limit as ¢ — 0 we get that
“ it ot . *
(max{u” +tp,0} —u})(@) [ ¢(2), u*(z) >0 (10.32)
t 0, u*(z) =0

pointwise almost everywhere. Thus using the fact that F' has a minimum at ¢ = 0 and dominated
convergence, it follows that
d F(t)—F(0
0=4pp| —imEO=FO _ / 2V - Vi + 9(2) X usoy - (1.0.33)
dt =g 10 t
Q

Since this holds for every ¢ € C2°(£2), we thus have that u* satisfies
. 1
Au* = 3 X{u>0}, (1.0.34)

in the sense of distributions.

Question 10: Let u,v € H'(Q).

Answer of exercise 10

Since min{u, v} =u — (u —v), it suffices to prove that u € H'(Q) = u; € H(Q).

We know that if G : R — R is C'! with bounded derivative, then G(u) € H'(Q) for allu € H'(Q2)
with V(G (u)) = G'(u)Vu (You should have seen this proof in graduate functional analysis. You
can find it in Brezis at least).

With that in mind, for each ¢ > 0 we define G¢ by

t—e/2, t>¢€
Ge(t)=1{ t*/2¢, 0<t<e . (1.0.35)

0, t<0
Thus G,(u) € HY(Q) for all € > 0 with ||G,(u)||g < [|ullg1-

It’s clear that Ge(u)(z) = uy(z) and V(Ge(u))(z) = GL(u)Vu(z) — X§"‘>°’(m)v"(m) pointwise.
Since both sequences {G¢(u)}eso and {GL(u)Vu(z)}eso are bounded in L*(2), we know that along
some subsequence ¢; — 0, we must have that G, (u) — ¢ € L*(Q), Gl (u)Vu = ¢ € L2 (;RY)
for some functions ¢, ®. But since we knew what these sequences already converged pointwise, we
thus have that G, (u) = uy and G, (u)Vu = x{us0;Vu.

So, all that remains to do is to prove that uy € H'() is to prove that V(uy) = X{us0y VU
in the sense of distributions. So, let ¢ € C°(Q;R?) be arbitrary. Then by definition of weak
convergence, we have that

/u+ divpdr = limU/G(t(u) divpdz = limo—/G;(u)Vuwpdz = —/X(u>0}Vu-L,adx. (1.0.36)
€ €
Q Q Q Q

Thus V(u+) = X{u>0y Vi, so we're done.



Question 11:

Answer of exercise 11
(a) Let p € C*(B1) be a smooth, symmetric mollifier. That is, p > 0, [ p = 1, and p(z) = p(~z).
4
For each € > 0, define pe(z) = € 9p(z/e), uc = u* pe, ve = v * pe, and Qe = {z € Q|B(z) C Q}.
We claim then that ue, v are superharmonic in €2.. To see this, note that for any ¢ € C2°() that

R[ gz = J (s p)Apdz = ! w(per Ag)dz = ! u(p. x )iz <0, (087

and similarly for ve.

Since ue, ve are smooth superharmonic functions, it follows that Auc(z), Ave(z) < 0 pointwise

everywhere in ©,. Now define U, = {u, < v} and V, = {v, < u}, and w, = min{u,, v.}.

IfU, = 0 (or V. = 0), then w, = v, (or u, resp.) and hence is a supersolution. So, assume U, V; # 0.

Since © is connected, it then follows that T', := {u, = v.} # 0 and that Q = U, UT, UV,.

Since u,, ve are smooth, by Sard’s theorem we have that generically I, is a smooth, hypersurface

with Q, N8U, = Q, N8V, =T, (Note that if 0 was a critical value of u, — v, we still have that & is

not for arbitrarily small § > 0. Thus we can repeat the same argument for any arbitrary sequence
ue — v (2

|V (ue —ve) ()|

On the set U,, we have that w, = u, is smooth with Aw,(z) <0, and similarly on V,. Thus using

Green’s identities, we have that for any ¢ € C2(€,) with ¢ > 0 that

of § —+0.) Orient I'c so that it’s “outward” unit normal is i =

JWAW =([u(A¢dz+/u(A¢dz

V.
= (//Au.«pdz + /uj;»V\o —npﬁ-deH"") + (/Av.vd.’t - /v(ﬁ-Vnp— «pv’medH"")
e Te \ Te

< /(u, —v)it- Vg — gt - (Vu, — Vo )dH ™!
Te

=- /«pIVm - Vo |dH <0.
f
(1.0.38)

Thus since this holds true for all ¢ € C2°(Q) with ¢ > 0, we have that w, is superharmonic.

8

As ue,ve = u,v in LL,.(Q) as € = 0, it follows that w, — min{u, v} in LL, as well. Thus

/ min{u, v} Agdz = lim / wApdz <0, (1.0.39)
Q Q

for any nonnegative ¢ € C2*(R), so min{u, v} is superharmonic.

Answer of exercise 11

(b) Let w = min{u,v} € H'() by exercise 10. Let A = {f € H'(Q)|f —w € H}(Q), f > w} and J be

the functional
J(f) = /Vf»a,](x)Vfd:L (1.0.40)
Q

By exercises 7 and 8, we have that there exists a minimizer f* of J over A. For any ¢ € H}(Q)
and t > 0, f* +tp € A and hence J(f* + tp) > J(f*). It thus follows that

JU+tp) - I(7) _
t

0< lim =
Q

Jim V- a;;(2)V f*dz, (1.0.41)

Biaij(z)0;f* < 0, (1.0.42)
in the sense of distributions. Thus it suffices to prove that f* = w.
Since f* > w by construction, we just need to show that f* <w <= f*<wuand f*<wv.
To start proving this,
Claim: If p € H}(Q) is such that ¢(z)x{s-=y}(z) =0, then

/th - aij(x)Vf*dz = 0. (1.0.43)
Q
Given the claim, consider the function f*—min{u, f*} € H}(Q). It’s clear that f*—min{u, f*} >0,
and that (f* — min{u, f*})Xx(s-=w) =0, since f* =w = u > f*. Thus using the claim and the
fact that u is a supersolution, we have that

0< [V~ minfu, 1) - a5(e) (Vu— V1) da
Q

= [ 9" = mingu, 1) - 04(e) (Vminfu, 1} - V1) (1o.44)
o

<AV — minfu, £)] By <O.

Thus we must have that f* — min{u, f*} =0, so f* < u. The same argument works for v, so we
thus have f* <w = w = f* is a supersolution.



Question 12: From the last pset, we were asked us to a superharmonic function in
L>=(By) function which is lower semi-continuous but not continuous in R? for d > 3. Define

1

~ o |- (d=2)
kelf )

up(z) = min(1, 2754z —
Then we have that
1 —k Lo d-2) — ok(d-2)
|ZE—E€1|22 = |:E—E€1| <2

e l€1|—(d—2) <27F
k

Now consider € R? with d > 3, I claim that there exists at most 1 value of & € N such
that

1
|z — —ey| < 27F

k
The proof is that given that there is at least 1 such k, then we show that 1/(k £ 1) is far
away enough so that |z —1/(k +7))| > 27% for all other values of j € N such that k+ j > 0.
Note that

= ser| = o — | = |2 — €1 + 21 — el
TR Rl T T T R T @
11 | 1|>|1 1 -
L e |
yet
1 1 1
- — 2*k+1 k>
‘k kil‘ KhE1) k2T
1 —k+1 -k _ o—k
— o - el >2 97k — 9
Note that
‘1 1 ‘_ J _Hkil 1 - 1
ko k+jl k(k+y) Etjk(kE1) " kkE1)
because for b1 b1
2 < il <k —2 ' P B
< |jl < =$LHk+j_.2k_2
k1 35

1>k—1 = |j = > _ >
1j| > Mk+j FT ]

for k — 1 > 3 which holds for £ > 7. Thus the distance to other values of 1/(k + j) does
increase.

So from the previous argument, if we consider integers k£ > 7, than any = can only be
within 27* of one such k. Now consider the function

ux) =) w(w)
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For x € R3, it is either the case that

or that

1 1
ko > 7 sit. W—Efﬂ<2*,Vk#&hkzz M—Efﬂz2*
0 0

= w(r) <1+ 27F =142
k=7

so the function is bounded. Note that the function is defined at 0, for

ux(0) = min (1,2—k {2%} d2> - {%} d-2

[e'e] ]{Z d+2
—= 0<u(0)=>) 27" [%} <1
k=7

but the function will not be continuous at 0, because any neighborhood of 0 will have z € R?
such that u(x) > 1. This function is lower semi-continuous though because it is continuous
everywhere except for z = 0, as it converges locally uniformly for every z # 0, and at
x = 0, we have that

z—0

liminf u(x) > llgl_}élf; ug(x) Vn e N

and because the right sum is finite, we have
. o Tk
llIgnglf kz:; ug(z) = kz:; 2 {Q—k}
which is less than «(0) but converges to u(0) as n — oo, thus

lim inf u(x) > u(0)

z—0

so we indeed have lower semicontinuity. To show that this function is weakly superharmonic,
we note the original definition as given in Caffarelli

Definition 0.1. v € L _ is super harmonic in D if, for any ¢ € C!(D) with 1) non-negative,

loc
we have
/ vAY <0

10



Note that as per our discussion with Silvestre, we use C*'(D) instead of Cy' (D). With
this, for each ¢ € CH'(D), we take an open cover of supp(v)\Bs(0) for § > 0 arbitrarily

small so that
) / vAw‘ <e
Bs(0)

which necessarily holds by the dominated convergence theorem because both v, ¢ € L' (1
being in L' is a product of it being bounded on its compact support), so that their product
is in L!.

The cover of supp(¢)\Bs(0) (which is still compact) consists of sets on which u(x)
converges locally uniformly. Then we extract a finite subcover, so that there is a global
rate of uniform convergence, which allows us to interchange integration and summation on

supp(¥)\B5(0), i.e

/supp(w)\Bg(m / > u(@)Ad(n) =) / up () A (x

= / z)dr = /Supp(w) u(z)AY(z) <e

because [ u(z)Ay(x) < 0 for each k individually. Repeat this for all € > 0, and then repeat
the process for all ¢. Therefore

Vi € CH(D) / ulp <0
D

so the sum is indeed weakly superharmonic, bounded in the unit ball, lower semicontinuous,
but not continuous.

Question 13: Define ¢ : R? — R?,

P(w1,...,2q) = (T1,. .., q-1, f(T1,. .., a—1) + 24).

We will use the ¢! norm on R? because it is equivalent. Let L be the Lipschitz constant
of f with respect to the ! norm on R¢"!. Then if we denote x = (', z4), 2" € R*!, we see

900) = 0] = 3 ol + a0~ 1)

IN

'M& ”M&

s
Il
—

|z — il + /(=) = F()

IA

‘ i_yi’+LZ‘wi_yi’
i1

11



d
<(I+L)) |w—uil.
i=1
Since the inverse of ¢ is

¢_1(x,7 C(]d) = (ZL‘—7ZL’d - f(x/))v
an analogous argument shows that ¢! is also Lipschitz with a constant less than or equal
to (14 L). Tt should be clear that ¢—!(S) = {z4 < 0}. O

Question 14: [Jared Solution| Note that R should instead be a bounded domain in
Q C R™. The norm for C**(Q) is

A llers = [ fllLoe@) + [V fllcor

. V(@) V)
r)— Y
|V f||coa = sup
TH#Y |JI - y'
Now take f to be the function which in (—1,1) looks like [ [#| and then outside of this
neighborhood becomes a C'*° such that it and its first two derivatives are bounded in norm
and tail off to 0. Then for any g € C*°(Q2), we have

|f'(z) = f'(y) = g'(x) + ¢'(v)]

@)= f'ly)  d(z)— gy

1f" = g'llcor = sup — sup
z#y |z =y a#y r—Yy r—=y
For y =0 and  — 0, we know that
g(x)—g©)
0
0 90
where as for f, we have that
/ o / o
b L@ O @) =0
z—0~ z—0 z—0+t z—0
/ ot / o
— e = mae{ tin | S =IO FEV 2Ny g0y 11 1011 21
z—0% x—y x—y

so no density can occur with respect to the C'*! norm.

Note that C>=(Q2) € C**(€) even for bounded domains. Take 1/x on (0, 1) which satisfies
the conditions of being C*(2), but doesn’t have a lipschitz derivative. Thus we should
probably consider C*°(Q) N C1-1(Q) C CH1(Q) under the given norm.

I claim that such a closure would be C?(Q)NCY1 (). Consider C?(Q)NCH1(Q) C CHH(Q),
then for functions in this space, we can approximate all elements of the Hessian by smooth
functions (say up to € tolerance) and then solve a system of equations to get a function with
that Hessian of smooth functions, up to some linear functions. Note that after adjusting

12



the constants of these linear functions, the smooth function, ¢, should differ in L*> norm by
en(Q)?, so that

16 = fllze < eu(Q)* = 6/2

which can be made arbitrarily small because p(€2) < co. Having two Hessians that are close
should also be able to make ||V[f — ¢]||cor quite small because

VI(z) =Vily) = Hy(z) - (y — x) + By(z,9)
where Ry(z,y)/|z —y|*> = 0 as y — 2 — 0, and thus

IV = Vé||cor = sup [Hf(x) — Hy(z)] - (y ‘—xx_) ;‘ [Ry(z,y) — Ry(x,y)]|

boundedness should allow us to conclude that

Re(z,y) — Ry
Sup| f(z,y) — Ry ,y>|<€

zFy |z — 9

and by close approximation of the Hessian, we have

|[Hy(z) — Hy(2)] - (y — )|
sup
Ty ly — x|

<sup |Hp(zr) — Hy(x)| <€

so that
I1f = ¢llers <€

overall. This shows that
C’Q(Q) N Cl’l(Q) C C>®(Q)NCHL(Q)

For the other direction, assume that there was a function f without a continuous Hessian
everywhere. Then for some (7, j) and x € Q, we have that

0 f
li DNE
yl—r>rﬂl7 6;1:1 T <y)
so that in particular
vy = lim sup filw + he;) = filz) # lim inf filw + he;) = filw) =vy st. helR
h—0 h h—0 h

from this, we can extract a sequence of {h,} — 0 and {h;} — 0 such that the limsup is
achieved when using the first sequence and the liminf is achieved when using the latter.
For our fixed aforementioned x, we have that

19 = Voljns = sup VL = 9l@) = VIf = 9](y)

> max[A, B
THY |[E - y|

13



o IV ) = V@) = Voo + hyey) = Vo(a)]

A=
B |7

B = lim IV f(x + hye;) — Vf(x) |; [|ng(x + hie;) — Vo(z)]]
—00 f

because we're using the norm |z| = Y7 | |2;|, we know that

A> lim fi(m+hqej>_fi<$) _ ¢i(x+hqej)_¢(x)’
g—00 hy, hyg

B> lim file + hiej) — fi(z)  ¢i(x + hyey) — () )
k—oo hk hk

However, we know that because ¢ is smooth, that

gi(z + hyej) — ¢i(x)] ¢i(z + hxej) — ¢i(z)]

li = 1i = ¢ij
i3 hy A, h Pl
where ¢;;(z) = 8{22";. Thus using our notation from before

A2 v = ¢y()], B = |va— ¢i(x)
because v, # vy, for all values of ¢;;(x), we have that

|U2 — Ul\
2

max[|v; — ¢ ()], [va — ¢5()|] >

and thus

Vo € C®(Q)NCHYQ), ||Vf — Vo||lcoa > max[A, B] > M #0

so any collection of {¢; } smooth with lipschitz first derivative won’t be dense. This establishes
that

C>(Q)NCH(Q) = C*(Q)nCH(Q)
O
Question 14:[Isaac Solution] Shout out to Jared for solving this problem. Let € be

bounded. We know that C*°(Q2) \ C**(Q) # (. For example, take Q = (0,1) and f(z) = 1.
feCc>=()\CcH(Q).

It should be clear that C?*(Q2) N CYY(Q) # CYYH(Q), and that C°°(Q) N CLYHQ) C
C?(Q) N CH(Q). The following claim will show show that C°°(2) N C1L1(Q) # CLH(Q).

Claim: C?*(Q) N CH1(Q) is closed.

14



Let f € C2(Q)NCH(Q). Fix z € Q and € > 0. Pick ¢ € C*(Q) N CH(Q) such that
| f — énllcrr < €. Then we know that for o € (—1,1) \ {0} and each i,j = 1,...,n we have
can choose points y/ = x + ae; such that

&-f(yi;) —0;f ()

lim sup - — 0jp(z)| <
a—0 |y, — x|
i sup | 2L 0A) — (@) _ Di00A) — 00l | | |00lud) —0i0)
a—0 |y%—x| Iyé—xl |yé_x|

<lf =@l <

If we have two functions ¢1, ¢ € C*(Q) N CH(Q) such that ||f — ¢rllcra < € for k= 1,2,
then we see that

i f () — 0if (x)

i — x|

i f(yl) — 0if (x)

\yh —

|0ji01(x) — 0jid2 ()| < limsup

a—0

O +

- 3ji¢2($)

< 2e.

Therefore, if we take a sequence ¢ € C?(Q) N CH(Q) such that ¢ LN f, then we see
that 0;;¢(x) is a Cauchy sequence for 4, j = 1,...,n and we deduce that

o DS W) = 0f ()
a0 yn — 7

Claim: If Q has a C' boundary, C=(Q) N CL1(Q) = C*(Q) N CH1(Q).

We must prove the density of C*°(Q)NC(Q2) in C%(Q)NCH(Q) to show that C°(2) N C1-1(Q)
is not a proper subset of C?(2) N C1(Q) .

Pick f € C?(Q)NCH(Q). Q is bounded, f is bounded, and the first and second deriva-
tives of f are also bounded, so take some bounded neighborhood V' of {2 and extend f to
a C? function f on R™ whose support lies inside V. Let ¢, be a family of mollifiers. We
know that (1) @, * f € C2(R™) € CVHR™), (2) 8i5(pe * f) = @c x 05, f, and (3) (. * f) and
(Pe * Oy f ) converge locally uniformly, and therefore, since there is a compact set containing
the support of all of these functions, they converge uniformly.

Let f. denote ¢, * f. It follows from applying the mean value theorem to the second
derivatives of the functions that

sup faz(f@?) - fe(m)) — al(f(w _ f€<x>>’ < max ||5ﬂ(f - fe)”oo — 0.

z,yEQuFy ’-75 - ?J’ T 1<i<n

15



It follows that f.| <5 f. O

o

Remark: This result probably holds for 2 with less well-behaved boundary. Try ex-
tending to f continuous instead of C?, and you can probably work the details out.

Question 15: f € L*(), and is therefore locally integrable. We know from the
Lebesgue Differentiation Theorem that the limit

. fBT(m) fy)dy
lim —%—+——
AT B @)

exists and is equal to f(z) almost everywhere. We will now prove something stronger.
Claim: The above limit exists everywhere in ).

For all » > 0 such that B,(z) C 2 we have

fBr(m) f(y) dy
| By ()]

We know from the inequality that we were given that

essinfp, () f < < esssupp, ()

rlir& essinfp, () = rlg(% essSupp, (y)-

Claim: If we let f (x) be equal to the above limit everywhere in €2, then f is a-Holder
continuous.

It is nontrivial to show that f is continuous: for example, if we had let = R and we
have made f the Heaviside step function, then f would have existed everywhere, but would
have still been discontinuous at z = 0. However, if we can show that f is continuous, then
since f = f a.e. we will know that

sup f— inf f<Cr®
QNB,(z) QNBr(x)
and conclude that f is a-Holder continuous.
Fix z,y € Q with |x — y| = R. Then for all » > 0 we have
1f(x) = fly)| < eSSSUDp,,  (ztu) — essinfBRM(%) < C(R+r)".

So f is continuous. [

16



Question 16: Let C' = oscf It follows that for all x € B; we have osC f<@a=otic
2n (z)
for all n > 0. Ple any x,y € By with © # y. Then there exists a unique n € N such that
= <l|lr—y| < and we have

@)~ F)]

|z =yl B_1 ()

21—

Qn on—1)
<2™ osc f<[2°(1-6)]"C VaeR'.

If a < —M then 2%(1 — J) < 1, and we conclude that

wp @10 _ (o

:U?yEBl ‘x - yla

Question 17: We will get our first inequality with case work:

o If sup f > 0 > inf f, then osc f > || f|lo-

e Ifinf f >0, then ||f]|cc = 0sc f +inf f < osc f + ‘|Bl|

e If sup f <0, then || f]lo < osc f+ |||]J;”T by an analogous argument.

So it follows that || f||. < osc f+ T};”T for all f € C*(B;). Furthermore, since |z —y| < 1
for all z,y € By, we compute that

osc f = sup |f(@) - f@)] < sup LD =TWI
z,y€EB1 T,y€B1 ’33 y’
It follows that
I fllx 5 |f(z) — f(y)]
Mle = 15,0 T 258 ok

so the constant C' = 2 works. [

Question 18: [NOT DONE] First, assume that the domain is convex (which Stephen
said is ok). Also note that the second norm should be

(@) = fly) = (. —y) - V()|

’l’ _ y’aJrl

| fllcres = [[fl[z= + sup
z,y€)

David’s proof of the first inequality is
f)=f@)=(y—=z)-Vf(z) = [Vf(z) =Vf@)]-(y—z) ze{te+{1-t)y}, st.t€[0,1]
_ @ = fly) —(a—y) - VIY| _ [Vf(z) = V@) ]y 2]

|z —y|ott B |z — y|tre

17



V@ V@l = _ V@) = V)

- |2 — x| Tagen Jr—yl®

which implies that
I llotes < [[flleren
For the other direction, let

K= sup LW = JW) —(@—y) Vi)

z,y€e) ‘x - y‘a+1

fix an x and a y, and choose z1, zo such that (z — z;) is parallel (and not antiparallel) to
V f(x) and that (z2 — y) is parallel to Vf(y), and that |22 — y| = |z — 21| = |z — y|. Then
we have that

V@) =Vl _ e—ylIVi@) -Vl _ [(z—=) Vfz)—(2—y) - Vi)

|z — yl |z — yite N |z — y|ite

Now note that the numerator can be written as
N=(x—2) Vf(xr) = (22—y) VI(y)

= [f(z1) = f ()= (21 =2) -V [ (@)]+[f (22) = () = (a=0) -V f )]+ [ (@) = f (20) |+ [f () = [ (z2)]
—a+btctd
clearly
NI < laf +[b] + |c] + |d|
ol + L _ o
|z —y[tte

because |x — z1| = |22 — y| = |z — y|, and when |z — y| > 1, we have

lc| + |d]
|z — y|*

< 4f[f]lo

so it suffices to handle the case when |z — y| < 1.

Ball Bound
We have

K = sup ‘Vf<l’> - Vf(y)| > lim |f1(w —+ (56]-) — fz(w)|

> jcR
zyeQ |z —y| 650 |6

and thus each partial derivative is Lipschitz, so that we know it is absolutely continuous and
thus Vf; exists a.e. in B, so each second partial exists and

D*f ={fs}

18



exists a.e. in B C R™. Moreover ||f;;|| < K, so that
1Dl < n2K

which gives
1[Iz + [[D*fllzee < 02| fllorn

For the other direction, note the following

Vi) = Vi)l _ i filz) = fity)] _ z": ly — 2| 220 | fijl [
|z —y |z —y T = ly — |

= ||D* |1

To show the above, let

n n
Jf—yzzflié;, ‘x—y‘:Z|ai|
i=1 i=1

we then get that

n i i—1
i) — )l < 3| ( - Zaj@) - i (sv - Zaj@) |
i=1 j=1 j=1
i i—1 ai i—1
‘fk (x#—Zaje}) — fr (m%—Zaje_j) ‘ = ‘/ ki (a:—FZaje_j +67;t> ‘
j=1 j=1 0 J=1

which follows by absolute continuity (which means that the second partials existing a.e.).
Then note

ai i1 |as
\/ fui |2+ Y 0,6+ it \3/

repeating this for all k yields

i—1
Jhi <JJ+ Zaj‘?j +€7t) ) < aif - [ frill oo
j=1

n

V(@) = Vil =Y @) = il < Y| <x+ Z%@-) L <x+ Z)) |

k=1 k=1 i=1

<Y ailll frillee < o —yll|D £l

k=1 =1
Vf(r)—Vf(y
[ =yl
And thus
Vf(x) -V .D2 oo | —
llons = 1l sup D=L < 1) sup Pty gy
T,y T,y

19



completing the equivalence. [J

Question 19: We will try and prove this for as large a class of domains 2 as we can.
Suppose that there exists r > 0 such that the set , = {z € Q : d(x,0Q) > r} has a
nonempty interior and for all y € Q\ €2, there exists x € Q,. such that the line going through
x and y connects z to 02 with a line segment of length at most gr where § > 1 is some
constant. Then our result will work on the domain €2, as we shall show shortly. This class
of domains that I have just described is rather broad, and contains all open star domains,
and therefore all open convex sets.

V@)=V iw)|

lz—yl>

For this problem, let L = sup, ,cq

Claim: For all z € Q, [Vf(2)] < 2[|fl + f:;L.

Let z € Qr and let 0 < r < R. If we let u = 7’|§§E §| we compute that

2 flleo > |f(z +u) — / Vf(ertu)-udt‘

> 1950 = | [ (V5o + ) = Vst 'udt\

> r|Vf(x |—/|fo+tu) Vf(z))-uldt

> 1|9 f(@)| — / (V£ + tu) — V()] de
> r[Vf(z)] — ot /OltaLdt

a+1

> 1V (@)] -

0%

1+«

= V@) < 2l + 7oL

Letting r T R, we get our result.

Claim: [ V]l < max(2, 22 52)]|f]|one
We deduce from the specified properties of our set €2 that for all y € Q\ Qg, we know

that there exists z € ) such that

2+«
1+

VI < VI @)+ R < 2 fllo+ e RO

This bound obviously holds for y € Qg as well. [
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Question 20: Note: the question must be rephrased to be every ball intersecting with
) not every ball contained in {2 or else there are counterexamples in domains like the slit
disk.
For a ball B,(z) denote the function described in the problem statement as £, ,.(y) = a,, -
y + by . We start by proving that f is differentiable and then bounding its derivative. I
claim that if B, (z1) D B,,(22) D B,,(z3)... is a decreasing sequence of open balls with
Np B, (x,) = x then we have:

Vf(x)= lim a,, ., (0.0.5)

n—oo

For this we need a lemma first:
Lemma: If {(x) = a -z + b is linear and [¢(z)] < K on a ball of radius r then |a| < £.

Proof. W.l.o.g. assume the ball B is centered at 0. Now choose y with absolute value
r(1 — €) oriented such that |y - a| = |y| - |a| (this can be done because in finite dimensions
the Cauchy-Schwarz inequality is never strict). Now we calculate:

[(y) — U(—y)| < 2K (0.0.6)
but also have:
1(y) — U(—y)| = 2a -y =2[alr(1 —¢) (0.0.7)
and hence we get:
< .0.
o< oo 008)
which gives the result when we let € go to 0. O

Now take any balls B, (x1) and B,,(z2) contined in the initial ball with 7, > %-. Then we
have for any y € B,,(x2):

(@ayry = Qo) - Y+ (bayry = borrd)| < oy (¥) = FW +1f(y) = Loy ()] (0.0.9)
but by our suppositions we have:
oY) = F@) + 1 () = Luara ()] < Or{™ + Cry ™ < 5Cr5 (0.0.10)
Hence by our lemma we thus have
|Gy — Cay | < BCTY (0.0.11)

Now by forming a sequence of balls with radii all 1/2 of the previous one we can get that
for any balls B, (z,) 2 B,,_,(x,_1) we have:

- < Krg (0.0.12)

T2«

(07
’amn»rn - a/xn—lvrn—l‘ S 5crn 1

Hence if we take a sequence of balls as described at the beginning of the problem the sequence
ag, r, wWill be Cauchy and thus have a limit, call this limit a. I claim that a = Vf(z). To
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prove this choose € > 0 and find 7 such that |a,, —a| < € whenever r < r;. Now for y such
that |x — y| = r; we have:

[f(@)=f(y)—a-(z=y)| < |f(@)=Loyy (2) = (f(y) = Lo (9)) |+ elo—y| < 2K +ery (0.0.13)

and hence we have:

i L@ =W ma- @yl ey (0.0.14)

|z—y|—0 |z — y r—0

but as this can be made arbitrarily small it must be 0 and hence a satisfies the definition of

V().
All that remains is to prove that f € C**. But we calculate for |z —y| = r find a ball of
radius r containing = and y. Call this B,(z). Now we have be construction that:

IVf(x) —a.,| < Kr® (0.0.15)
and the same is true for V f(y). Hence we calculate by the triangle inequality:
V(@) = VW] < IV(@) —az| + [V(y) — az| <2Kr° (0.0.16)

which is precisely the bound we needed. [

Question 21: Note that we assume u is non-constant everywhere, else the problem
wouldn’t be true. Now suppose that the global maximum, which occurs at zg, belongs
outside the support, then apply the mean value property to show that a higher local max
is attained in a neighborhood of ¢, so it cannot be a global max (because u is harmonic
outside the support of Au by definition), a contradiction.

Question 22 [Stephen’s solution] Pick a ball B = B(0, T) for some r > 0. Define the
distribution pu(¢ faB ¢dS and the function F: R* - R, F(z) = [, ® OB y) dS,.

Claim: F = & x pu.

i is a distribution with compact support, so we know that this convolution is well-defined.
We now compute that for any ¢ € C°(R"), z € R™ we have

B 0)() = [ @) d)(z — ) dy
00) [ oz —y—a)ds. dy

¢z — (y+2)) dydS,

v
-/, Lo
_ /a / B(u — )6z — ) duds,

B
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:/n (ABé(u—m)de>¢(Z—u)d“

= /n F(u)p(z —u) du
= (F'x ¢)(2).

Claim: F' is radially symmetric.

This is rather obvious, but we will compute it anyway. Let T' be an orthogonal transfor-
mation. Then

F(Tz) = / O(Tx —y)dS, = / d(z — T 'y) dS,
OB 0B
:/ CID(:U—y)dSy:/ O(x —y) dS, = F(x).
T-19B oB
Claim: I is constant on B.

We know that —AF = u, so F' is weakly harmonic in B, and therefore is harmonic in B.
Take any closed ball B(0,p) C B. From the maximum principle, F’ }W attains both its

maximum and its minimum on 9B(0, p). Since F is radially symmetric, the maximum and
minimum over B(0, p) must coincide and it must be constant on B(0, p).
Note that the constant must be

n=2 — u(O):/ log |y|dy = 0

2B,
>3 — u(0) / (y) 1 / J a(n)n 1
n u = e — — —
- 9B, Y n(n —2)a(n) Jsp, Y nn—2)a(n) n—2
and so if
u =P * piga—1(x)
0, 45 1
— ’LL(I) = ' n—2 |:L‘| <
. |z| > 1
Now solving
-1
el =r>1, Au(r)=0 = u"(r)+ n u'(r) =0
r

blogr+c¢ (n=2)
ez te  (n>3)

= u(r) :{

but we see that u(r) — 0 as r — oo (the integrand goes to zero and then apply dominated
convergence). In particular, for large values of |z|, we’d have that

1

1 =1
-~ log|| = —log|a]

n=2 —= @(x—y)%“/
331 831
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1 1 1 1
n>3 — @(:p—y)%/ dy =
9B, o, n(n — 2)a(n) |z|" n— 2z

and so we at least know

() = {[ﬁyo} 2] <1
[, —log(r)] 2] >1

1 Another solution to Question 22

We discussed a clever guess and check solution to Question 22. Here is a less clever but more
direct strategy using the divergence theorem.
Let

Ax,r) = 1/83 Oz —y) dS.

r

Claim: A(r) is a constant provided z € B,..
By the scaling x — rz, we can easily see that A(z,r) = A(z/r,1). In particular

Let us compute 0, A(z, 7). We get

O, A(z,r) = 0, (TH /a N O(z —ry) dS(y)) :

= (=2 Al + / B,z —y) dS,
T JoB,

(d =2 Aw,r) +1

r

= —(d—2)r Az, r) — E

r

/ Ad(z,y) dy = —
Thus, we are left with the ODE 0, A(x,r) = —(d — 2)A(z,r)/r + 1/r, with A(400) =
1/(d — 2), whose only solution is the constant function A = 1/(d — 2).
Question 23[NOT DONE] Apply problem 22 and modify it

Question 24
Let u : B, — R satisfy the equation

u <0 on 0B,
Au > —C in B,

Prove that



Proof. Let

_ Co, 12
v—u—|—2d\x|.

Note that
Av = Au + C() > 0.

Thus, v is subharmonic, and satisfies the maximum principle. On 0B,, we have

< ——
vE g dT ,
so inside B, we have the same result. It follow that in B,, we have
C C
002 — faf?) < S0

< =
=9 = 94"

]

Question 25
Prove the following generalization of Harnack’s inequality. Let v : By, — R be a nonnegative
function that satisfies

Au=f in By,.
Then
maxu < C (r%inu + Hf]|oor2>

B,

Proof. We define

Wl
2d

||*

o e
=u+ ¥ |z

Notice that

Av=f—|flle <0 a.e.
Aw=f+|[flla >0 ae.

so v is superharmonic and w is subharmonic.

We also define

s Td+1

2
K(s):/ ﬂdaU:|aBl| —— dr = Cs™2,
4 . d

where C' depends only on dimension, and note that

HfHooK(S)ﬂL/SU - /sw.
25



Now, fix z,y € B,. Note that B,(x) C Bs.(y) C By,. It follows that

Blu@< [ w< [ w=lfleK@)+ [ o< FIeKE) + Bl
Br(x) B3T(y) B3r(y)

The first and third inequalities are due to w and v being subharmonic and superharmonic,
respectively. The second inequality is due to w being nonnegative. Also, it is clear that
u(z) < w(z) and v(y) < u(y). It follows that

| Brlu(x) < | Bsrlu(y) + K (3r)[|flo-

We divide through by |B,|, and our above computation shows that K(3r)/|B,| = Cr?, so
some C which only depends on dimension. Also, |Bs.|/|B.| = 3¢, so we obtain

u(z) < C (uly) + (| fllr?)
for all x,y € B,, for some C' depending only on dimension. The result follows. m

Question 26 [NOT DONE]

Question 27 The solution to this problem is largely based on filling in details from
Caffereli. Let the function D : H'(Q2) — R denote the Dirichlet energy and let T’ denote the
trace operator. Finally, let K be the closed, convex set

K ={u>¢o}nT'(f).

We won’t worry about the uniqueness of the solution to the obstacle problem until after
we have done Question 28. Recall that we have already proven that there is a unique solution
ug to the minimization problem. We will prove that wug is a solution to the obstacle problem.

1
loc

Lemma: If v € L (£2) is superharmonic, then v has a pointwise representative

v(xg) = lim v(x) dz.
rl0 By (x0)

This representative of v is lower semicontinuous.

Proof: This result is Corollary 1 on page 9 of Caffarelli. We already know (Lebesgue
Differentiation) that given any representative of v, the above limit exists and is equal to v
almost everywhere. We wish to strengthen this fact by showing that the limit actually exists

everywhere.

We know (see the lemma on page 7 of Caffarelli) that the limit is monotone increasing
as 7} 0. All we have to show is that the limit never blows up to infinity. [INSERT]

Finally, we show that this representative of v is lower semicontinuous. [INSERT]
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Claim: wug is weakly super harmonic, and therefore has a pointwise defined lower semi-
continuous representative.

It is a theorem (see Caffarelli page 9) that any weakly superharmonic function has a
lower semicontinuous representative, so all that remains for this claim is to show that wug is
superharmonic. Indeed, pick ¢ € C?(£2),4 > 0. It is obvious that ¥ +wuy € K. For arbitrary
€ > 0 we see that

/]Vu0|2 de < /(Vuo + e)?

:/\Vu0|2+2e/Vuovw+62/|Vw|2

i—;/WM%MS/VmV¢M.
Let € | 0 we get

og/v%v¢w.

. 00 (DT L*(Q) L?( suppy))
We know from Bresiz 9.2 that u, € C2°(R") such that v, —> vy and Vu,, ———

1
Vug. We can also choose u,, € C*°(Q) N W2(Q) such that u, W7, up according to Remark
9.5 in Bresiz, but this is more powerful than we need. Anyway, letting n — oo we get

’/uo(—Aw) - /VUOV@D‘ < ‘/[uo —un](—ALb)‘ + ‘ /[Vuo - Vun]V@/J‘ — 0.
So
/ upAy dr < 0.
Claim: {ug > ¢} is open.
Let zg € {ug > ¢}. Then we know that ug(z) > ¢ (z0)+2€ for some € > 0. It follows from
the continuity of ¢ and the lower semi-continuity of uy that {uy > p(xo)+e}N{p < p(zo)+€}
is an open neighborhood of x contained in {ug > ¢}.

Claim: The support of the distribution Aug is contained in the set {uy = ¢}.

Let ¢ € C%*({ug > }). Since lower semicontinuous functions attain their minimums on
compact sets, we can choose

rninarEsupp P UO(x) — (p(l'))
0,
“ ( [l
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such that ug — ey € K. It follows that

[Vl e < [(Fu— ey

:/|Vu0|2—26/VuOV¢—|—62/|V¢|2

- /vuovw < %/\vw.
Letting € | 0, we get

/ VuyVip <0.
But we know from above that

0< / VuoyVip.
So

/ VuoVip = 0.

Repeating the bounding argument from before, we conclude that

/(Auo)w da = /quzp = 0.

Claim: ug is continuous.
This follows from Evans theorem on page 10 of Caffarelli.
To recap, ug not only is a solution to the obstacle problem but also is continuous. [

Question 28:

We know by Theorem 1 of the Caffarelli notes that u as described must be continuous

because it is a) superharmonic and b) continuous in the support of its Laplacian (namely
the contact set u = ¢. Hence, by continuity we have that {u = ¢} must be closed. Now on
this closed set we have that v > ¢ = u and thus v > u so we only need to look at the set
{u> ¢}
Consider the closure of this set C' = {u > ¢} and the function v — u on C. Because u is
harmonic on C' and v is superharmonic we must also have v —u is superharmonic on C. Now
by the minimum principle for superharmonic functions we thus know that v — u attains its
minimum on 0C. But 0C = 0Q U 0D where D = {u = ¢}. On 02 we know u = f and
v> fsov—wu>0andondD we know that u = ¢ and v > ¢ sov—u > 0. Hence v —u > 0
in C which implies that v > u everywhere.
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Question 29: [NOT DONE] (a) We know that there exists r > 0 such that u €
CY(B1\ Bi—,). Fix § € (0,%). We will let N denote max(||¢|lcr1(p,), [[ullcria,_,))- Let
h € B(0,0) C R%.

Claim: v, > v on 0B;_s.

If we fix x € OBj_s, then we know from the mean value theorem that there exists
x*y* € {x+th:t € (—1,1)} such that

uw(x + h) +u(z —h) u(z+h)—u(z) ulz)—ulz—nh)

_u@;)’ _

2 2 2
_ | Vula) -k Vu(y) bl [Vu(@®) = Vu(y)|[h]
2 2 - 2
< NI|h*.

where we use the fact that |z* — y*| < 2|h|. Tt follows that for any x € 9B;_s we have

u(x + h) +u(x — h) ~u(x) > 0.

n(z) - u(e) = NIbP + ; >

Claim: v, > ¢ in B;.

on(@)—pla) = N2+ L7 EH) - plath) ulz—h) = plw—h)  pla+h) : oz —h)
p(x+h)+ (@ —h)
2

The same computation as above (i.e. the mean value theorem) gives us our result again.

> N|h|* - — p(z)].

(b) vy, is the sum of three superharmonic functions, and is therefore itself superharmonic.
It follows from Question 28 and part (a) of this question that v, > u in By_s.

(c) In By_s, h € B(0,9), we get

0 <2(vp(x) — u(x))
w(x 4+ h) +u(z — h) — 2u(x)
|h|? '
Now if we let h be a small real scalar, e be a unit vector, and x be a point such that
Oect() exists, then we see that

= —2N <

ae he) — u(z+he)—u(x) . 8@ _ u(z+he)—u(z)
lim inf uz + he) h = lim inf Oeul + he) = deulw) + u(@) h
h—0 h h—0 h h
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Jeu(x + he) — Deu(x)

> lim inf

h—0 h ’
and
—0, — he) — Wa—he)—u(x) . _ py _ u(z—he)—u(x)
li inf —0 & = he) b _ i ing 02Uz = h0) + Oeulz) | —Oula) b
h—0 h h—0 h h
> liminf Oeu(x) — Jou(x — he)‘
h—0 h

It follows that

Ocu(x + he) — dou(x — he)

lim inf

h—0 2h
e fl@ cu(z + he) — w+l—&;u(x — he) — w+u(ﬂc +h) +u(x — h) — 2u(z)
it h 2 h 2[h2
> T inf Ocu(z + he) — dou(x)  Jim inf Oeu(x) — Dou(x — he)
h—0 h h—0 h
.. cu(x+h)Fulr—h) —2u(x)
+ llglnjglf Sk .

2 Hausdorff Measure

2.1 Problem 30

First, note that since the expression:
mf{z (Diam U;)™ UU D A, DiamU; < 0} (2.1.1)

is decreasing is ¢ the sup in the definition of Hausdorff measure can be replaced with a
lim sup. Now fix r and write:
A+ B, = B.(a) (2.1.2)
acA

By the Vitali covering lemma we can find a (possibly finite but at most countable) subset of
these balls {B;}ic; such that all the B; are disjoint and A + B, C U,;¢;5B;. Now we clearly
have:

A+ B,| > Z’BJ = Cy|I]r? (2.1.3)

iel

where C] is the volume of the unit ball in RY. Now set § > 10r. Clearly the set of {5B;}
form an admissible set for expression (1). Hence, we have:

_ 107]A+ B,
Cl rd—m

1nf{z (Diam U;)™ UU D A, DiamU; < 0} < Z (107)

el

(2.1.4)
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Hence, taking lim sup of both sides and noting that as » — 0 our choice of 6 — 0 we get the
desired result:
H™(A) < CM™(A) (2.1.5)

The converse does not hold. Set A = Q¢. For all r we have A + B, = R? by density of
the rationals. Hence, the Minkowski content of A is infinite for all m while the Hausdorff
measure of it is 0 for all m # 0.

2.2 Problem 31

Note: for this question we will be using the alternate definition found online of perimeter:

Per(A) = sup{| / divy|:p € CS(R”;R"), llol|pe < 1} (2.2.1)
A

It is possible that this is equivalent to the definition given.
Now we have by the divergence theorem that for any set A with C'' boundary:

/divgp :/ - vdS (2.2.2)
A oA

Clearly when ||¢||z~ < 1 we have that

/gp-vdSS/ ]<p|><|v|dS:/ ds (2.2.3)
0A 0A 0A

All we have to prove that this equality is attained is find a function ¢ € C!(R"; R") such that
@ is equal to the unit normal on JA. Doing this is a little complicated. What we want to do
is find a tubular neighborhood of OA, that is, a neighborhood U of 0A that is diffeomorphic
to A x (—e¢,€). We construct one of these as follows:

Using the fact that A is C! find a collection of open sets (in dA) U; such that there exists
0 < n; < d so that the projection of U; onto d — 1 coordinates is a C! map with C! inverse:

pi U = Vi CRTY (2, o, q) = (00, oy Ty 1, Ty 1 s T4) (2.2.4)

Now using problem 13 that has been assigned we know we can extend this to f;, a C' map
with C' inverse, from an open neighborhood of U; to R? such that the image of U; has d-th
coordinate equal to 0. Now consider the set D; = fi(U;) x (—¢,¢) € R? where € is chosen
sufficiently small. We have that U; C f;'(D;) = W;. Now let ¢ be a bump function on
(—1,1) that attains its maximum of 1 at 0. Now consider the functions

f@)a

@i Wi = R 2 w(a)a(
€

) (2.2.5)

where v(x) gives the unit normal on 0A corresponding to the first d — 1 coordinates of f;(x)
and f;(z)q represents the d-th coordinate of fi(x). For each 7 this is clearly a C! function
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that is equal to the unit normal on JA. Hence, take a partition of unity wu; for the W, and

define
p(x) = Zul(w)gol(x) (2.2.6)

and we clearly get the required function.
Now we have to prove that

/ dS = H"(0A) (2.2.7)
0A

but looking at the definition of the surface integral makes this obvious.

2.3 Problem 32

Take ¢ € CHR™;R"™) with ||| < 1 and let {U; }icr be a cover of dA Nsupp(p) = Q with
Diam(U;) < § for all 7. Note that Q is compact so we can assume [ is finite. Now for all
i € I take x; € U; and set B; = Bpjam(u;)(@;) O U;. This clearly still covers Q2 and we have:

C1 Y Diam(U;)*" > ) " Diam(B;)*" (2.3.1)
for some constant C depending only on the dimension. Now we seek prove some lemmas:

Lemma 2.1. For all x € Int A with B,(z) C Int A there exists a function o, € C! such that
01 =0 on B,s(x), o1 = ¢ outside of B,(x), ||¢1]|r~ < ||¢]|pe and:

/divgpz/divgol (2.3.2)
A A

Proof. Let h be a smooth bump function that is equal to 1 on B, 2(z) and 0 outside B, (x).

Now write:
/divgp=/div(1—h)<p+/divh<p (2.3.3)
A A A

Note that the second integral on the left hand side is just:

/ div hp = / div hy = / he-v=0 (2.3.4)
A Br(x) aBT(m)

Hence ¢ = (1 — h)y satisfies the conditions of the theorem. O

Lemma 2.2. For all e > 0 there exists @1 such that o1 = 0 when x € Int A and d(x,Q2) > ¢,

1]z < ||l|Loe, and:
/divg&-—/divgpl (2.3.5)
A A

Proof. Note that supp(p) N {zx € Int A : d(z,Q2) > €} is a compact set. Hence, for each
point x in this set put a ball of radius % around it such that B, () C Int A. Now take a
finite subcover of this and apply the above lemma finitely many times for each ball in this
subcover to get the result. O]

32



Lemma 2.3. If B=CUD then we have:
\/ div | < Per(C) + Per(D) (2.3.6)
B
and specifically:
Per(B) < Per(C) + Per(D) (2.3.7)

Proof. This is true in general but we only need it for finite unions of balls so we only prove
that case. Let C' and D be some finite union of balls. Note that 0B C 9C + 0D. Now we
use Stokes’ Theorem and the fact that 9B, OC, and 0D are piecwise C* to get:

\/ div ¢| < Per(B) :/ ds < / dS—l—/ dS = Per(C) + Per(D) (2.3.8)
B oB ac oD

O

Now we are ready to complete the proof of the result. Note that since R™ \ |J; B; is closed
we have:
inf  d(z,Q2)=€>0 (2.3.9)
x€A\U(B;)

Hence, apply Lemma 2 to find a ¢ such that ¢; = 0 when d(z,2) > £ and:

£
2

/divcp:/divgpl (2.3.10)
A A

Now cover A by the B; and a set A" € Int A defined by A’ = {x € A : d(z,Q) > %e. Let
B=A"UlJ,U; > A. We have:

/divgpz/divgplz/ div 1 (2.3.11)
B B Uier Bi

since by construction of ¢; we have that ¢p; = 0 on A’”. Now apply Lemma 3 finitely many
times to get:

|/ div | = \/ div | < ZPer(Bi) < C’ZDiam(Ui)d_l (2.3.12)
B Uier Bi i i

where the last equality is from the above problem applied to balls.
Now as & — 0 choose our selection of open sets U; for each ¢ such that: (i) we have

lim Y Diam(U;)*! = H™Y(Q) (2.3.13)

)

(we can do this just by the definition of the Hausdorff measure), and (ii) we have:

lim fo((A"U U U)\A) =0 (2.3.14)
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(this is also possible by definition of Hausdorff measure). Note that this last equality is the
same as the indicator functions of the sets B as defined above converging to the indicator
function on A in the L' norm. But this then gives:

/divwz/XBdivgoﬁ/XAdivgaz/divgp (2.3.15)
B A

(because dive € L. Hence, take limits as § — 0 in equation (23) above to get the final
result:

| / divp| < CHHQ) < CHYH0A) (2.3.16)
A

to get the required result.

2.4 Problem 33
If

[¥
A

is supposed to converge, which it does for any ¢ € C!}(R" R"), because of the compact
support, then we have that

U 2—i ql R, = U B27i(q@')

i=n+1

IN st. ¥n> N, )/ V-ga‘<6

/V'QO—/ V.-p+ce
A A'ﬂ

for ¢ € (—1,1). But note that A, has a local C' boundary except at a set of measure zero
(i.e. the “corners” created by the intersecting balls). And thus we can apply the divergence

theorem so that
[ Vel =] [ ord| < lellin [ a

<1-C) H"Y(Byi(q:)) <CZHdlBgz(qZ <CZ 1=K <o
=1

=1 =1

so that

which is a bound uniform in n. Repeat this for every such ¢ and corresponding n, to get
finite perimeter.
Now using the definition that

9A = A\A° = RN\ A
= u(04) = p(R?) — p(A) = +o0
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Note that H4(9A) = Cu(dA) = oo, because the d-dimensional hausdorff measure in R? is a
scaled multiple of the lebesgue measure. So because

dimy(A) =inf{d >0 : HYA) =0} =sup({d >0 : H(A) = oo} U{0})
where inf(()) = oo, then we see that dimgy(A) > d. Note that because
OACR?

if we show that dimy(R?) = d, then we're done because the Hausdorff measure is an outer
measure. Using the countable subadditivity property of outer measures, we note that

o0

R = | J(—i,4)*

— H™RY) < ZHm((i,i)d)

we show that (0,1)? has zero Hausdorff measure for any m = d + € with ¢ > 0, and by an
analagous argument, this will show H%"¢((—i,4)¢) = 0 for any ¢ > 0.

For fixed € > 0, take any d > 0, and canonically partition (0,1)¢ into 2"¢ boxes of side
length 27". Note that from a volumetric perspective, this works out because

V((0,1)%) =1 =2"(27™)

now cover each box (some of which may have parts of their boundaries, which is ok) with
boxes of side length 27! but centered at the same centers of the original boxes in our
partition. Note that

S (2o = Vg

=1

diam(Cy-n+1) =

which happens to be the length of the diagonal. Then, choosing N large so that
n>N = 27 V*/i<§

we take our cover of (0,1)¢ with these boxes (which overlap and cover all of (0,1)¢ because
they are twice the size of the boxes of side length 27" in our partition) and note that

Qnd

d+e
Z diam(027n+l7i)d+e — gnd <\/82—n+1> _ (2\/3)d+62—ne
=1

— Vn >N inf{Z(dmm(Ui))m : U U; D A, diam(U;) < 6} < (2V/d)?+27"
i=0

=1
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given our construction of the valid cover, we can repeat this process for any ¢ by choosing
a larger and larger n, and for fixed  any larger n works so that clearly, the inf is 0. From
this, it is clear that

6—0t

lim sup inf{Z(dmm(U,-))m : U U; 2 (0, 1), diam(U;) < 8} =0
=0 i=1

Now noting that any (—i,i)? can be covered by a finite union of cubes of the form {z+(0, 1)}
and noting that the hausdorff measure is translation invariant, we use subadditivity and
monotoncity to conclude

H(=i,))) =0 Vi>0
= H (R =0
thus dimg(R?) = d and so dimy(9A) = d.

2.5 Problem 34

Take ¢ € C}(R™;R") with ||¢||z~ < 1. Write D, = A + B,. Now use Lemma 2 from above
to find a function ¢; with norm less than or equal to that of ¢, ¢ = 0 on D, /; and:

/divgpl—/ div e (2.5.1)

Now cover D, \ D, , by balls of radius /2. Use Vitali covering lemma t find a disjoint subset
of these balls, call them B; for i € I, such that | J,5B; O (D, \ D,/2). We want to bound the
cardinality of our index set I. Note that:

U B; C (Dy \ A) (2.5.2)
Hence, we have by disjointness and our bounds from above:
> |Bi| = CilIlr* < 20 (2.5.3)
and hence for some universal constant Cy we have:
&
U< = (2.5.4)

Let £ =J,5B; U D, C Ds.Now note that by our construction of ¢; we have:

/divgo:/ div ¢y (2.5.5)
E U, 5B;

Hence, since this is a finite union we apply Lemma 3 to get:

| divy] <> Per(5B;) = [I|Cyr" ' < €y (2.5.6)
Ui 5Bi i
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For some universal constant C;. Hence, we have proven that the perimeter of £ is bounded.
Now we just let r go to 0 and note that E C Ds, while xp., — x4 in L' and hence we get:

|/div<p| R |/divg0| <c (2.5.7)
E A

It is not true that H?*(9A) is comparable with C. To see this consider R?\ (R x {0}).
Question 36: Prove that the symmetric bilinear form

/(AV-,V-> dx
Q
is an inner product on H}(Q) that induces a norm equivalent to || - || g1 -

We know from Poincaré’s inequality that since Q is bounded we have || - |[z1 ~ |V - |2
on Hj(9). Let A(z) = {a;;(x)}. Then Cauchy-Schwarz gives us

/ (A(2)Vu(z), Va(z)) de < / (AIVu(z), Vu(z)) d = Al Va2

Similarly, we also know that

/(A(x)Vu(x), Va(z)) dz > \|Vull%

Therefore, u, Mo, 4 if and only if [(AV|u, — ul],V|u, — u]) dv — 0. If follows that
€ (AV.,V-) dx is a positive definite form on H}(Q), and the norm it induces must be equiv-
alent to || - [|e. O

Question 37: Prove that the minimizer of

min { /(A(x)Vu(x), Vu(z))dr :u € H' (Q),u=f on OQ},
Q
1s attained by a function that solves the equation
u=f on 0,
V- A(z)Vu(z) =0 in .
This is a special case of Question 7 with ¢ =0. [

Question 38: Prove that if u € H'(Q) is a subsolution, then

/Q(A(x)Vu(x), Vo(r)) de <0 Ve HY(Q).
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Notice that for a fixed u € H'(Q) the map

f%/ 2), Vf(2)) d

is a linear functional on H'(£2). We get from Cauchy-Schwarz that

'/ 2)Vu(z), Vf(z))dz

/IIA IWIVu@) ||V f(2)lde < A[Vullo[V fll2 < Al[Vullo| £ a1

It follows that the linear functional f — [(A(z)Vu(x),V f(z)) dz is bounded. Since
convergence implies weak convergence, our result follows immediately from the fact that we
can approach ¢ in H'(Q) with nonnegative functions ¢, € C*(Q2). O

Question 39: Let f € CY(R) and let uw € WHP(Q) with p € [1,00). If one of the two
following holds

1. uw € L>®(Q) and Q is bounded.

2. f(0) =0 and ||f'||lo = L < o0
then fou € WP(Q), and V(f ou) = f'(u)Vu

In case (1), we know that f owu is bounded (by the continuity of f on R), and since € is

bounded we conclude that fou € LP(2). Notice that this does not follow if € is unbounded,
and that € being bounded is a necessary assumption in this case:

—z2

Counterexample: Let Q =R and let f =u=c¢

In case (2), since f is Lipschitz with f(0) = 0, we have |f o u| < L|u| everywhere, and
foue LP(Q). Since |||« = L, we know that (f o u)2“ € LP(Q) as well. Notice that we
really needed f(0) = 0 in order to get this to work:

2

Counterexample: Let @ =R and let f =u=¢e"

Using Fubini’s theorem and basic calculus, one can check that if f is differentiable we get

9o , N /
/(foun)g dx—/Rn_l/ /tEg}(foun)(x,t)a—gji(x,t)dtdm

8un ’ B /O 3un
/Rn 1/(x/t)eg} "o uy) (2, t)a (', t) (', t) dtda’ = /Q(f w) o

Since f is continuous, we know that (passing to a subsequence) f o w, — f o u point-
wise almost everywhere. In case (1), since we know (see appendix) that ||[u,llec < [|]/oo
everywhere, it follows that f o w, < M = maX,c[—|u|o,ulw] f(z) for all n. Since supp ¢
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is compact, the constant function M is in LP(supp ¢) and dominated convergence theorem
gives us

¢ Do

In case (2), since f is Lipschitz, we know that |(fou)(z) — (fou,)(z)| < Llu,(x) —u(x)|

everywhere, and therefore f o, e, f ou, and we get (%) again.

Since f’ is continuous, we know that (passing to a subsequence) (f’ o u,) — (f" o u)
pointwise almost everywhere. It follows that (passing to yet another subsequence) (f’ o

un)%i" — (f'o u)g—; pointwise almost everywhere. In case (1), we can use the continuity of

f' to replicate the argument in the above paragraph and conclude that f’ o u, M flou
for any w CC €, including some w O supp ¢ (here ¢ is the Holder conjugate of p). It follows

: LP(Q
that since %%(b ©) g_ai(b’ we get

) [ ou) G

In case (2), since || f'||c0c = L, we know that (f ow,) is uniformly bounded, and therefore

o u)?—igﬁ d.

(f' ouy) LAON flowu for any w CC €, including some w D supp ¢. This gives us (x*) once
again. [

Let uw € HY(S). Prove that u™ € H'(Q) and

Vg = Vux usoy-

Stephen already proved this for us in his handout:

We know that if G : R — R is C! with bounded derivative, then G(u) € H(Q) for allu € H!(Q)
with V(G(u)) = G'(u)Vu (You should have seen this proof in graduate functional analysis. You
can find it in Brezis at least).

With that in mind, for each € > 0 we define G, by

t—e/2, t>¢€
G.(t)=14 t?/2, 0<t<e . (1.0.35)
0, t<0

Thus Ge(u) € HY(Q) for all € > 0 with ||Ge(u)||m < ||ul|m-

It’s clear that Ge(u)(z) = u+(z) and V(Ge(u))(z) = GL(u)Vu(z) é">0} z) pointwise.
Since both sequences {Ge(u)}es0 and {GL(u)Vu(z)}eso are bounded in L#(£), we know that along
some subsequence ¢; — 0, we must have that Ge,(u) = ¢ € L*(Q), G., (u)Vu — & € L2(Q;R?)
for some functions ¢, ®. But since we knew what these sequences already converged pointwise, we
thus have that Ge,(u) — u+ and G¢, (v)Vu = X{u>0p V.

So, all that remains to do is to prove that uy € H() is to prove that V(uy) = X{u>0} VU

in the sense of distributions. So, let ¢ € C°(Q;R?) be arbitrary. Then by definition of weak
convergence, we have that

/u+ divipdz = lim /Gﬁ(u) divepdz = lim —/GQ,(u)Vuwpd:v = —/X{u>0}Vu~<pdm. (1.0.36)
€—0 €—0 *
Q Q Q Q

Thus V(u4) = X{u>03 Vu, s0 were done.
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Prove that Vu = 0 almost everywhere on {u = 0}.
u=u"—u". We know that Vut = Vu~ =0on {u=0}. O

Prove that if Q is connected and there is a measurable set A C ) and the function

() = {1 ifr €A,

0 otherwise,
belongs to H*(QY), then either |A| =0 or |Q\ A| = 0.

We can reduce the case where €2 is bounded and smooth, because if €2 is unbounded and
Xa € H'(Q), then x|, € H'(Q') for all bounded, smooth open subsets Q' of . Assume
that A is such that u € H'(Q2). We know that Vuyxga = 0 because u = u™. Since (2 is
bounded, 1 —u € H*(Q). Since 1 —u = (1 —u)*, we conclude that V(1 —u)x4 = 0. Since
V1 =0, we conclude that Vu = 0.Since (2 is connected, it follows that u is constant, and is
therefore 1 or 0. [

3 Problem 40

3.1 Part1l

Set v = F' o u. Note that d;v = F'(u)d;u and thus for any test function ¢ we have:

/aijaivajSDZ/F/(U)aijaiuaﬂp (3.1.1)
Q 0

Now let h = F'(u)p. This is an admissible test function because F' is monotone. Note that
Oih = F'(u)0;p + @ F"(u)O;u. But we have:

Q Q
Now note that:
/ F’(u)aij&uajgo = / aij(?iuﬁjh - / F"(u)aij&u@u (313)
Q Q Q
But the first term here is negative because u is a subsolution, and the second is negative

because a;; is a positive matrix and F' is convex so F” is negative. And thus the whole
expression is negative so we get:

Q

and thus v = F' o u is a subsolution.
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3.2 Part 2

This is just an application of problem 11a) to —u and —wv.

4 Problem 41

First, note that since we have by ellipticity that A = {a;;} < A then for any wu, v:
|u' Av| = [{u, Av)| < |u| |Av| < Clu| |v] (4.0.1)

for some constant C'. Now use ellipticity to write:

/ ©?|Vul*dr < C/ ©?a;;0udju dv (4.0.2)
Bis

Biys

Now let h = p?u. Note that h is positive and has 9;h = 2pudip + ¢*0;u. Now we have
because u is a subsolution that:

/ a;;0;ud;h dx = / a;;0u(2pud;p + ¢*0ju) dz < 0 (4.0.3)
Biys

Biis

From this we see that:

C/ ©2a;;0udju dx < C/ up|a;;0;u0;p| dr < C/ ulVol| - ¢|Vu| de  (4.0.4)
Biys Biys

Bits

However, by Young’s inequality with exponent 2 we have for any a,b that ab < # + g—i
Hence, we have:

C
/ ©*|Vul|?dr < C’/ u| V| - o|Vu| de < e/ O*|Vul? do + — u?|Vo|* do
Bits Bits

Bits Bits
(4.0.5)
and taking € = % proves the result.
To get the concluding inequality let ¢ be a function that is equal to 1 on By, is equal to 0
on 0B1s and has gradient bounded by % for some constant C. Then we get:

C
/ |Vu|? < / ©*|Vul* < C/ uw?|V|* < —2/ u? (4.0.6)
By Bits Biys 0 Bits

and thus taking squareroots gives the desired result.
Question 42

This is easy, just set

do
w=u——-" = ||w||r2B, <9
]| 12(55) (52)

1
= Ml <1 = [lulle=s) < lullzz,)
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Now note that the essential supremum coincides with the || - ||~ (p,) norm because u > 0
everywhere. ]
Question 43 Assume the statement. Note that Ay < dy means exactly that ||ug||z2(s,) < do.
Yet ug = (u — lo)+ = uy = u because v is non-negative. Thus in fact ||u||r2(p,) < d. Now
assume that ||u||g=(p,) > 1, then for

1
Sn:{xeBlHu(a:)]21+ﬁ}

AN st. u(Sy) >0

which is contradictory because then

Vn > N, Ai:/ g ? 2/ |uk]2:/ (u—1+2m) z/ 1N = u(S,) /N2 > 0
By, Sh Sh, Sn

— lim A4, >0

n—oo

a contradiction, so we must have that ||u||p~(p,) < 1, from which we apply the previous
problem to get the conclusion.

For the other direction, note that in the statement of 5.1, if we set o = 1/C', then we get
exactly the statement of question 42. Thus we can assume such a value of dy, which makes
question 42 true and thus makes question 43 sensical so that

esssupp,u = ||ul|(,) < Cllul|r2(p,) = Cdo =1

From this, we can apply the dominated convergence theorem because we know that u; < u?,
and u? is an integrable function over B,. From the form of wy, it is clear that pointwise
ug(x) — 0 as k — oo on By and the measure of the integral outside of Bj is negligible in the
sense that, thus we have that

A=l = [ bl s [ P [l [P
B Br, \B1 B By \B1

for any € > 0, the latter term is less than e for k sufficiently large, and the former term goes
to 0 by dominated convergence on B;. Thus

k—o0

O
Question 44
First extend the functions {uy41} from B, to R™ to use the sobolev inequalities. Note that
after extending, that

ks |lLeny < Cllusalles,, ), ukiall @y < Clluksallas,,, )
) < kg || ey

wksillee(s,, ) < llwwrrl|o@n), ukia|lm s,
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because B,, has a C'' boundary (see Brezis p.273). Then applying the sobolev inequality,
we get

Nwks1llLe(s,, ) < Nurslle@n) < ClVugnllrz@e < OV, )
Now from cacciopoli’s inequality applied with a bump function ¢ which satisfies

{1 2| < g
QO:

0 |z| >y

which decays almost linearly so that |[Vp| < 27 (note that r, — rp = 27%7!) everywhere
(such a bump function is always possible to construct, ask David), then we have that

C'lIVupilliz,,, ) < 202 Vugiall2s,,)

from which we finish the proof. m
Question 45

This is pretty trivial, but I assume that the first norm should be || - ||z» for 1/p =1/2—1/d
as before. Note that

1_2+2
=t
\|Uk+1||%2(3m1) = HUiHHLl(B%H) = |\U2+19|\L1(Brk+l)

g(x) = X{“k+1>0}nBrk+1

||Uk+1||%2(3%+1) < ||ui+1||Lp/2||g||Ld/2

Note that

2/p
HUiHHLP/Z(BTM) = (/B |Uk+1|p> = Huk+1\|%p(3%+1)
Tk+1

||g||Ld/2 = |{uk+1 > 0} N Brk+1|2/d

)HukJrl > 0} N Brk+1|/d

— Nurll2s,,, ) < lluallzes,,
< O2|fupia| g2,y H{unr > 03 N By, V7
O
Question 46
Consider
‘{Uk+1 > 0} N Brk+1’
Note that

g = (w—=14+27% N = (w—1427F =27 = (=l — 2757,

— [{wr > 0} = {u— b > 2757} = {ue > 277 < 22| o,
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< 22k+2||uk||i2(3%) = (2" A4

where we get this bound by consider u; as a function defined on B
apply chebyshev. From the previous problem, we get

s, nitially in order to

) < C2M w1 z2(s,,) [{una > 0} N By, |14

Huk+1”L2( ml\

Briya

now noting that 0 < ug,q < ug, we can replace

||Uk+1||L2(BTk) < ||Uk||L2(Brk) = A

H{urs1 >0} N B |1/d < 41/d22kz/dAZ/d

Tk+1

— Ak+1Huk+1HL2(BTk+1) < 02k+2k/dA11€+2/d

where we absorb 4'/? into the constant (its bounded above and below for all values of d).
Note that this bound is different from the problem statement, but makes sense given the
adjustment to the previous problem.
Now choose
6 = min(0.5, (20%)~%2)

and we’ll show that

o
A, <
- (0
by induction (we assume 2C' > 1, else we can always increase C).
Set
§ = a—d2cf—d o = 21+2/d

Again, taking C' large, this is always less than 1. Then we want to show that A, < 6.
For the base case, we have

A, < 02051+2/d < 05152/(1 < (5a—d201—d < 5t
Now assume that the inductive hypothesis holds for £ = n, then
Apyq < OV 4 A2/4
A, <6
A2/ = g2l s Cgntan/d A2/d _ ([o,62/d]n
§He = o MG = ContEI/d A2/ < ol (1=2dn Ol-2n+d, (1-2d)n+d? 5

— A < 5n+1[clf2n+da(1f2d)n+d2] _ 5"+1K(n,d)

Set Ny = max(d,2). This is a really ugly bound, but the point is, we can choose Ay < o,
which is even smaller, but small enough so that

AN < 02N0+2N0/d02N071+2(N071)/d 02050 < 5N0
0 S . <
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(i.e. apply the bound naively starting with Ay < dy), from which we can use the fact that
n > Ny yields K(n,d) < 1, so that the inductive hypothesis holds true. Thus we produce a
very small dg, so that the bound holds for finitely many n, but in fact a much sharper bound
holds. Once the finitely many n are handled, we can proceed with the induction. Thus

— lim A4, =0

n—oo

now we apply questions 43 and 42 to get theorem 5.1, having found such a dg. O

Question 47
Let u : Bs — R be a non-negative supersolution. Prove that there is a constant ¢y > 0 so
that if
{x € By :u(x) > 1} > (1 — €)|Bs]

then u(z) > 1/2 a.e. in By.

Proof. We define v = (1 — u);. Note that this is a non-negative subsolution and 0 < v < 1.
If
{z € By :u(z) 2 13 2 (1 = «)[ By

then we have
{z € By :v(x) > 0} < €| Bs.

We use this to estimate the L? norm of v:

1/2 1/2 1/2
||v||L2<BQ>=(/ ) =(/ ) s(/ 1) — {o > 0}]2 < (eo Ba])
B2 {v>0} {v>0}

Applying Theorem 5.1, we obtain

esssupg, v < C||v]|12(p,) < Cleo| Ba)'/.

Notice that if esssupg, v < 1/2, then a.e. in By, we have max(1 —u,0) <1/2,s0 1 —u < 1/2

1
and thus u > 1/2. Setting C(eo|Bs|)Y/? = 1/2, or taking ¢ = 1B,
essinfg u > 1/2. O

we guarantee

Question 48
Suppose for contradiction that no such e existed for fixed C, dg,d;. Then we have that

VneN, Ju, st. u,: By = [0,1], |jupllmsy <O, [{un =0} >0, [{u, =1} >

& [0 < un(x) <1} < %
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then via Rellich-Kondravich, we know that H'(B;) has compact injection into L? so that
given our bounded sequence of {u,} w.r.t. || -||x1(s,), We can extract a subsequence of the
{u,} which are cauchy in the L?*(B;) norm and converge to some u € L*(B).

We want to take d more subsequences so that {u,,} and {Vu,,} are all cauchy in the L
norm, but Rellich-Kondravich fails us here because the partials are not in H'(By). However,
note that by theorem 9.3 in Brezis, we have that

‘ / 8:751

which by our theorem implies that u € W1? = H'. Here we use the fact that

un
’ < limsup || 8; 2]l 2 < Cllel|r2

]*)OO

lim
]*}OO

Op I
U = lim Uy, ——
Or;  j—=oo Jp, ’8% j—=oo [ g, (9:10Z

Thus the limiting function u must satisfy
{f =0} =60 >0, {f=1}=0>0, {0<f<1}[=0

which means that f is equivalent to an indicator function a.e. Note that we showed in
problem 39 that indicator functions for sets of non-zero and non-full measure are not in
H'. Yet the subsequence must converge to such an f, which would lie in H'. This is a
contradiction, so such an € must exist. O
Question 49[Not done?|

Consider the functions vj, = (1 — 2Fu), restricted to Bs /2. Note that

{ve = 0} = |Bsjo| =0k, Huw >0} =6k, Hor > 1/2} = dp1a

we want to apply question 48. Note the v are subsolutions, so by Cacciopoli from question
41, we know that
[Vurl|L2(B,,0) < C2|vil|12(8,)

but of course |v| < 1 everywhere, so

Yk, ||Vurll 2, ,) < 4C

Bs/s)

where C' depends ellipticity constants, dimension, etc. Now assume that o, — ¢ > 0. Then
we apply problem 48 to the functions

gr = 2min(vg, 1/2)

from problem 10, we know that g, € H'(Bs2) is still uniformily bounded in the || - || g1z, ,)
norm because

min(u,v) = —max(u — v,0) + u
>
= V(min(u,v)) = {VU =y
Vu u<w
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by problem 39 and using the fact that max(u,0) = f(u) where f is the monotone convex

function
r x>0
/= {0 <0

so that the gy, still satisfy ||gx||n1(s,,,) < 4C. Moreover it is clear that

B3/
{gr =0} > |Bsja| —2¢, [{gp =1} > ¢
lim {gx = 0} = |[Bsj2| —¢, lim [{gx =1} =¢

k—o0 k—oo

for all k sufficiently large, applying problem 48 yields that all g5 for k sufficiently large must
satisfy
Ho<gr <1} >a>0

but this is a contradiction as for k increases implies that the measure of this set goes to 0.
Thus we must have 0, — 0 as k — oo.
We now want to apply problem 48 to the g; : Ba—, — [0,1] with o to be determined.
Note that because
{z € By : u(zx) >1}| >¢

— Hzx € By : u(x)>1}>06/2
0<2& |Bs| — |B,| =6/2

basically, we can’t have more than § of measure in an aribtrarily small region near 9By. Now
apply cacciopoli, so that

gkl 2820y < Co Mgkl r2(my) < Co™!

for C' dependent only on dimension and elliptical coefficients. We can now apply 48 in the
following manner.
Choose an a > 0 so that 6; > «. Then

INst. & >a Ve+1<N
then we have that
By s 2{ge=0y={(1-2"u), =0} NBy o ={u>2"}NBy , D{u>1}N By,

= [{gr =0} > {z € Boy : u>1}>4/2

and
{gp=1y={1-2"u>1/2} ={u<2" 1} D {u< 27}
= e =1} 2 0p1 >
Thus we get that
{0 < gr < 1} > €(6,, Co™ 1)
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Si={0<g<1}={0<1-2"u<1/2} ={27"" <u<27%}
= 1= {0 < gp <1} > €(6,,Co™)
but it is clear that the {Si} are disjoint for different values of k. And thus

u(Bz)=2>u<U sk> D IICAET O

2
— N-1< -
€

from this bound, we see that the maximal value of N is Ny =]2/¢[+1, and so we must have
Ing+1 < a, and in general

§p <min{a st. €(a,6/2,Co ) (n—1) <2}

we can write the o from 48 as a function of the {a;;}, dimension d, and the constants d,
and d,. But for the g;, we have
notdone

still not.

Question 50
Consider the ¢ in question 47. Apply question 49, but repeated in B,, with ry to be deter-

mined, so that
Vk > K, 0 <e

then we have that
{2 € By ¢ ulw) > 25| = |B,,| - 6 = 7|Ba
we want v > (1 — €p), which is possible if we first choose ry so that
Bl > (1= 0/2)| B
and then make K large so that ¢ can be chosen small enough so
| Bro| — 0k = 7|Ba| > (1 — €)| B
Now consider 2%u(z), which satisfies the conditions of problem 47, and we get that
ess-infp, 25U > 1/2 = ess-infp, u > 27150

finishing the proof. m

Question 51
Let u : By — [0,1] be a solution. Prove that

oscp, u = (ess-supp, u — ess-infp, u) < (1 —0)

for some 6 > 0 depending only on dimension and ellipticity constants.
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Proof. It |{x € By : u(x) > 1/2}| > |Bs|/2, we apply the result of question 50 to 2u and
obtain ess-infp, 2u > 6 for some 6y > 0. Thus, ess-infg, u > 0 for some 6 > 0 depending
only on dimension and ellipticity constants. It follows that since ess-supg, u < 1, we have
oscp,u <1—0.

Otherwise, [{z € By : u(z) < 1/2}| > |Bs|/2. Notice that v(x) := 1 — u(z) is then also
a solution and v satisfies the case above. It follows that oscp, v < 1 — 6. But ess-supv =
1 — ess-infu and ess-infv = 1 — ess-supwu, so oscp, v = oscp, u, and we have the desired
result. O]

Question 52
Via the hint, I'll prove

||u‘ |CQ(B1/2) < C| |UHL2(BZ)

because if it was meant to be proved with By, then simply adjust all of the previous questions
which make reference to B; to Bs/, and the constants will be adjusted, but we should be able
to do everything to get a bound on B;. The key idea is that we need to take B,(zo) C Bs/s
with xg € By and r bounded below uniformly in xy. This will come up in the proof later.

First note that WLOG we can assume u > 0 everywhere. First note that u has a
continuous representative by nature of it being in H'(B,). From problem 40 part 2, we
have that max(0,u) and max(0, —u) are both non-negative subsolutions so that theorem 5.1
applies to both and we get that

ess-supp, max(0,u) < C|lul|r2(p,), ess-supp, max(0, —u) < C||u||r2(s,)

= 0 <u(z) + Cllul[2(By) < 2C|[ul|r2(By)

everywhere in B, having chosen the continuous representative of u. Now we might as well
absorb the 2 into the C' and assume that u > 0 everywhere because subsolutions and holder
norms are not affected by constant shifts.

We'll need the following fact:

Lemma 4.1. Ifu: Q — R is a solution of the elliptic PDE, then u| for any Q' C €.
Q/

Proof Really we want that the solution condition as described in problem 37 holds.
Both
Ce (@) € Hy(?)

CU@) Nl ¢|, =0} C HI@)

hold, and because their closures in Hj (') are the same (i.e. all of Hj())), we can show
that  is a solution in the sense of problem 37 (i.e. for the second collection of C' functions)
by showing it for C!(€Y) and then noting that it will hold for all of H}(Q') by nature of

CHQY) = H}(QY) (see the proof of 38, basically this is because the operator given by the
elliptic PDE is a bounded linear functional on H'(€)). But clearly any ¢ € C}(Q') is also
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in C}(Q2) because we can just extend ¢ to be 0 outside of €' which will maintain the C*
property. Thus
31[alj(x)8]u] =01in Q,

will hold. =

With the lemma and the positivity assumption, define

U
Wy = ————
" Cllullizg,

so that w : By — [0,1]. Now for any x € B2, choose ry with
1/2>rog=(1—|x])/2>1/4

so that B,,(z9) C B; and so by the lemma, wy is a solution on both B, (x¢) and By, (x¢) C By
with the same range. Thus
08CB, (z) Wo < (1 —0)

— OSCBrO(IO) (% S (1 - 0)C|’u||L2(32)

now define
1 U
w, =
Cllul| 2z, (1 —0)"
To
Ty = —
2n

recall here that 6 only depends on the dimension and ellipticity constants, and not the
radius or location of the ball in question (it should only depend on the ratio of the balls, by
a scaling argument). Thus, we note that on B, (z¢) we have that w; : B, (zo) — [0, 1],
so applying 51 again we get

0SCB,, (z) W1 < (1 —0) = oscp,, wy < 1
in general, we’ll have

[0}

OSCB,, (z0) Wn < 1 <= 05CpB, (a0) U < (1-0)"C||ul|r2(p,) = 75(2%) .
0

< [ro27"]*4Cl|ul|L2(B,)

for
~ —log(1—-0)

log(2)

note that the 6 in problem 50 is always at most 1/2, so that 0 < o < 1. For |z —y| < 1/4,
we have that

>0

dn st rp <|lzr—y|<mr,

— Ju(e)—uly)] < oscs,, u < [ro2 " 4°Cllulliz(z < a8 Cllul g2 < le—yl* K lull 2z
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in this case K = 8*C which is only dependent on ellipticity constants, and so

[u(z) — u(y)]

< Kl|u|[z2
|z —yl* e

as desired. For |z — y| > 1/4, you can create a sequence of balls to get from z to y with
radius at least 1/4 as prescribed above in at most 4 balls, so

lu(z)—u(y)| < Ju(w)—u(e))|+|u(@)) (@) |+|u(ze) —u(y)| < Kl|ul|[r2sy) [|71 — 2| + |22 — 21|* + |y — 22"
< 3K||ul|r2my) < 3|lv — y|"4“ K|[ul|r2(,)

and so in fact 3K works for all x,y € By s. O]

Question 53’: Let Q C R? be a bounded open set, u, : @ — R, f, : Q@ — R and
a” : Q — R4 be sequences so that

e Foreachn=1,23,...,
dilaf;(x)0jun) = fr in ).
e The coefficients aj; are uniformly elliptic, with constants uniform in n. Moreover
a;; — aij almost everywhere in ).
o f,— fin H Q).
o u, — u in HY(Q).

Then,

Conversely, if we have a solution to (4.0.7), there are sequences u,, f, and a"™ of C* func-
tions as above.

Answer 1[Need to check other direction]
We only need a solution in the weak sense so because

/ [azajun]a—w = - / fap Vo e CX(Q) C HY(Q)

and that integration is a linear functional, i.e.

Ty, () = —/fnw

we know that T4, — T by the problem statement so that

/fnwé/fso Vo € C°(Q)
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and also from the H' convergence of the {u,} we have that

lim [ [af;05un] = 0 = lim [ [Vu,]TAVyp

n—oo | ox; n—oo [

/ ([Vun)" A4, — [Vu]"A) = (4, Vu, — AVu, V) = (Au, — Agu, ) + (Au — Au, @)
Q
note that

[(Antn = Anu, @) | < [An]| [[un = ul[mll@llan < Alfun = ullmn |l

which goes to 0 for fixed ¢ as n — oo by uniform ellipticity and {u,} convergence. The
second term is as follows

Agu— A _‘ @
Ao~ u0) = [ a1y - a0jug?

to show that

Oy
alﬂ)a

ol = s

, [105ull2

dp

H(CLZ —aij)a—xi ) —0

we can use Egorov’s theorem (because p(§2) < oo by nature of being bounded), to bound

the above on
ACQ st p(A° <e

and then on A¢, we use the fact that the {af;} are uniformly elliptic, which gives the following
bound on their L*> norms

leiAn(@)e;] = lais ()] < [[An]] les] [e;] < A

where || - || is the standard operator norm of a matrix on vectors in R%. Thus each af; is
bounded uniformily in n and 4, j in their L* norm on ). So

) ‘(a’; ;) g;i

<2AH

ox;

but we can make

I

by choosing A¢ sufficiently small because 9;p is L' and thus uniformily integrable. Thus as

n — 00, we get
n Iy O
/ fo = lm | laidulg,- = /Q i Oul 5 -

which implies that 0;[a;;0;u] = f.
For the other direction, take u, = @1/, * u, aj} () = @1/n * a;j(x), where we first extend
w and {a;;}, the former as a member of Hl(Q) to H'(R?), and the latter as a member of

L2(Ac)
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L'(Q2) and then use Lemma 9.1 of Brezis to get convergence of u and its weak derivatives,
l.e.

Hun — ’LL||L2(Q) S Hun — u||L2(Q) — 0, H@,un — azuHLQ(Q) S H@un — OluHLz(Q) — 0
The pointwise convergence of {ay;} is self-evident and we also have that

Now we can define
fn = @[a%@-un] 0 e C™(Q)

which will converge to f. By nature of the pointwise convergence of the {a};} and the con-
vergence of {u,} — w in H', we automatically get that f, — f as an element of H ()
from our above work of equating the two limits.

Question 54°:  Let u € HY(By) be a solution of the equation
3Z[a1j(x)8]u] =0 m Bf,

where {a;;} : Bf — R are uniformly elliptic measurable coefficients. Assume that the
trace of u on By N{x, = 0} is zero. Consider the reflection:

w(x', —x,) = —u(, x,) for (2',z,) € By,
aij(@', —xn) = a;; (2, ).
Prove that this extended function u : By — R (yes, I still call it u) satisfies the equation

8Z[azj(x)8ju} =0 m Bl.

We will start with the following general fact.

Fact: If w € H'(By), then the odd extension of u to By is in H'(B;) if and only if the
trace of uw on {z, =0} N By is 0.

Let T denote {x,, = 0} N B;. It is obvious that the odd extension @ of u is in H'(B; \T).
Let ¢ € CH(By). If we let T : HY(Bf) — L*T),T- : HY(B;) — L*(T") denote trace

operators and we let u denote u and the restriction of @ to appropriate portions of By, then
it follows from Green’s formula that

do . Op Iy
/Bluaxi d:zc—/Bruaxi d$+/13;u833i dx
ou ou
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= —/ (p@u dx + /(T — T u (e, - e;) do.
By Ox; r

Therefore, @ is in H'(By) if and only if T_a|Bl_ = T,u . Since u(z',z,) = —u(z', —z,),
it follows that @ € H'(B;) if and only if T,u = —Tu if and only if T, u = 0. ©
We now prove our result. Let ¢ € C}(By), let u be a solution of V - A(z)Vu(z) = 0 in
Bi", and let u denote the odd extension of u to H(B;). Let n € C°°(R) be an even function
such that
(—o0,—1/2]U[1/2,00) <1 < (—00,—1/4) U (1/4, 0).

Furthermore, define n.(t) = n(t/e) and () = n.(x,)V(2', x,). Since

Vee(w) = ne(wn) Veo(x) + ni(an)p(x)en,

we know that

/BI<A(x)Vu(x)7V¢€(x)>dm:/

B1

(A(2)Vu(a), Viro(aa)p(x))da+ / (A(2)Vu(a), o (2a)(x)en) da.

B1
We know from dominated convergence theorem that
/ (A(x)Vu(z), Vo(z)) de = lim (A(x)Vu(z),n(z,)Vo(x)) dz.
B e—0t B

Since suppp. N {x, = 0} = 0 for each € > 0, it follows that

/B {(A(@)Vu(z), Vo(z)) dr = —/B (Ax)Vu(z), n(zn)(z)en) du.

Using the fact that n'(—z,) = —n/(z,), if we let ¢(2', x,) = p(2’, —x,), we compute that

1

/Bl<A(x)Vu(m)7Uﬁ(wn)¢(m)en>dx:/

Bf

(A(@)Vu(z), n(zn)p(z)en)dr+ / (A(x)Vu(z), n(zn)(z)en)ds

_ / (@) (A@) Vu(@), [p(x) — ()]en) d

1

— /{0< o n' (2 /€) (A(2)Vu(z), [p(x) — ¥(z)]e,) d.

€

Using the mean value theorem, we know that there exists M = 2||0,,¢]|» such that

€

' /{0< <anB M<A<x>vu<x>7 [p(x)—1(z)]e,)d

</ [T/ | ) ) ()
{0<z,<e}NB; €

< / A oot ()] da
{0<zn<e}¥NBy €
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< / A7 |leoM |Vu(z)| de — 0. O
{0<zn<e}nNBi

Question 55: For any o > 0, prove that there exists a solution to a uniformly elliptic
equation in By which is not C* at the origin (of course, the uniform ellipticity constants will
depend on «).

Fix some « € (0, 7). We want to take the harmonic function

u(z) = Im[2™/?]
defined in the sector 0 < 6 < « of the unit disc (which we will call ) and precompose it
with a change of variables ¢ :  — B;" to get the function
wo ¢ L(r,0) = r™/“sin 6.
If we solve algebraically for ¢, we see that ¢ is the map

2

¢(r,0) = (r"

¢ is clearly a C*' map with a C! inverse, so we know that u o ¢! is a weak solution to
the equation

ja Ty
Zo).

V- B(y)V(uo ¢ ')(y) =0in Bf

where B(¢(z)) = D¢(2)Do(2)T.

d *
=)

Here D¢ is the derivative of ¢ with respect to Cartesian coordinates, namely

¢ O

0. 0
Do =15, o, |-

or oy

After lots of computation, we get

T 2y [Zxcos(Z0) 4+ ysin(Z0) Zycos(ZO) — xsin(Z6)
Txsin(Z0) — ycos(Z0) ZTysin(Z6) 4+ xcos(Z0)

where z = (z,y) = (r,0) in Cartesian and polar coordinates respectively.

It follows that

do*z, | T %_2 T
7 (z) =detDo¢(z) = (ar ) =1

Therefore

_ [Zcos?(Z6) + 2 sin’*(Z6) F(Z—a )
B =" 1= ayfiomgl  zsinf(z0] + @ co(29)

5 « ™
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Now we B explicitly as

[Ecos0) + 2sin(B)  A(Z - 2)sin(20)
B(z) = (T — 2)sin(20) gsin%(ﬁ) + £ cos®(0)

2\« ™

where z = (z,y) € Bf", and z = (r,0) in polar coordinates.

Note that this matrix B is meant to be applied to a gradient of partial derivatives with
respect to Cartesian coordinates; the use of r and 6 is just so that we have concise notation.
Since ¢ is not bi-Lipschitz, we need to explicitly check to see that B is still uniformly elliptic.
More computation yields that for all z € B the characteristic polynomial of B is

y T«
p(A) = A (a }))\—1—1.
Using the quadratic formula, we see that the eigenvalues are A = 2 and A = Z. So B is
uniformly elliptic. Therefore, the function v : B” — R, v(2) = ra sinf is the unique weak

solution to the differential equation

Q

V- B(z)Vu(z) =0 in Bf
v =sinf on OBy .

We now conclude that since v = 0 on {y = 0} we can create the odd reflection v = r sin §
which is the unique weak solution to the uniformly elliptic equation

V-B(2)Vu(z) =0 in By

u = sinf on 0B;.

Here B is reflected across {y = 0} with an even reflection just as in Question 54’. w is
2-Hoélder continuous, but not 3-Holder continuous for any 8 > 2 due to its behavior at the
origin. [J

Question 56: Let f € LP(By) for some p > d/2. Let u be a solution of

0Z[aw(m)8]u] = f m B17
uw=0 on 0B;.

Then
lullzoo By < Ol fllLr(By)-

Moreover, u is Holder continuous in By with a norm depending on ellipticity, dimension and
[fllze only.

First note that because u € H} we have that

1 1
Vu2§—/ai-8-uaiu:——/fu
[1wup <5 [ aso 5/
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applying absolute value signs, we get

1
SIvallz < (1 lllully

for 1 = 110 + %. Given that p > d/2, we have that

1 1 2
-—=1—-->1--=
q D d d
— q < d <3
q d_2 >
but u € H}(By), so that we can extend v € H}(R™) and then apply the sobolev inequality
(really a corollary, see Corollary 9.10 in Brezis) to get that

lullzesy) < Cllullmysy < ClIVulla - pe (2,27

where I have passed back to the case of ) at the expense of a constant, and also used
Poincare’s inequality in the last step. In this case,

d—2 2 d

i e S

1
d 2d d—2  d—2

1
2x 2
and so we have

1
SIValls < 1 llllully < ClNTVull2
= [[Vulla < ACIfl

which gives ||u||ls < K||f||, by Poincare again. From this, we want to mimic the proof of
theorem 5.1 from two weeks ago, because if we can prove that

ess-supp, u < C||ul|ramy)
then from our bound ||Vu||s < K||f]||, and the fact that

[lully < Clfu

2 < C||Vullz < CJ|fl],

we’ll have a bound on ess-sup u in terms of ||f||,, and we can then repeat the process for
ess-sup —u. Formally, we want

Lemma 4.2. For u the solution given in the statement, we have
ess-sup £u < Cl|ul|,

for C dependent on only ellipticity constants, dimension, and potentially ||f]|,.
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Proof: The setup will be as follows
=1-2"" w,=@w—1)s, Ap=lullrem)

The proofs of question 42 and 43 from last time still hold (with all of the L? references
replaced with L9 for our prescribed ¢), despite u being a solution with our given f. For our
analogy of 44, | we have that

lutallz ) < ClIVusinllzeny < /11l A Nagially = Kl 132

by sobolev inequality, and then pulling the same trick as in the beginning of this answer,
but replacing the

82’“ — al [uXuk+1 >0]

which is valid because derivatives are not affected by constant shifts and we know that for
u € H', we have u; = max(0,u) € H' with

With this, our analogy of 45 is

1—Z

3¢ [{uwer1 > 0}

g ]|2 = / e ? < [luees

L
*

1_
q 2

{uk > 0}

= ||uks1llg < ||tns1]]2r

for 46, we use the same chebyshev bound to get
e > 03] < 204D gl = (24 Ay

- (2k+1Ak)1—q/2*

= [|ugs1llg = Arr < |ur

but
__d L _d-2 1 _1
1~9=2 227~ 24 D)

and so now using the fact that 0 < wgy 1 < ug, we get that

1/2
2 < pllulll? = pAy/

[ung1] e < [lug
and so combining these inequalities, we get
Ay < p2(k+1)(1—q/2*)A]1€+(1/2—q/2*)
at this point, we have a similar enough recurrence relationship (because 1/2—¢/2* > 0) that
we can conclude that Ay — 0 for ||u||z = &y sufficiently small.
Repeat the theorem for —u and we get the lemma. And thus we conclude that

[lull 2o < Cllulle < C[| 1l

for constants depending only on ellipticity, dimension, and potentially || f|],.
To show Holder continuity, we want the following lemma
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Lemma 4.3.

Vu € I7(By), ][ lu(z) — uly)Pdz < Cro? = ue o
7‘( )mBl

Pf: Assume the latter, then

][|u(x) —u(y)Pdz < C’p][ |z —y|*? < C’p][ro‘p < Ore?

Now assume the former, then

Vie—z <r fulz) - u(z)| = ][ o ) )y +]f3 o ) )y

1/p 1/q
f () —u(y)|dy < V fu(z) - u<y>|pdy] [ / w] < CrPu(By) < Oy
Br(xz)NB; B, (z)NB1 B, (z)NBi

F oo a2 f )~ ey < O
B, (z)NB1 By, (z)NBy

because B,.(x) C Bs.(z) and increasing the ball of integration will dilate the volume by at
least 1 and at most 2¢. O
From this, we continue with the proof as follows

f uleo) — ()l < / wl(o) — uly)?
Br(xo)ﬂBl T -TO)mBl

which basically says that |B,.(z¢) N By|/|B,| < C for all choices of xy and r. Now

/ (o) — uly)P < Cr? / (o) — ulzo + ry)Pdy
By (z0)NB1 BlmBl/r(_xO)

/ i) — (e + ry)lPdy <
BlmBl/r( )

P v(0) — v Pd 9p v(0) — u(xg)| — v —u(zo + ry)] P
/BW( e /B l/r(mo)mBlH (0) = ulo)] = [v(y) — ulxo + ry)]]

where

Il
o

: BN Byy(—20) = R, Ofay Ojv] =1’
v 1 1/ ( 56'0) [CLJ(TJZ' + :Co)) jv] r f(T:E + :Co)) v (B1NBy /r(—0))

yet u(rax+xp) is also a solution to the above elliptic PDE, and so their difference is a solution.
From which we know that

9(y) = v(y) — ulzo +ry)
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is a solution on the relatively nice domain of B, (z¢) N By, and so we have a holder bound,
and immediately we get that

[ 0 o)) o) stz + ) < Cor
B/ (x0)NB1

Now using the first part, and choosing a representative of v such that |v(0)| < ||v||p=, we
get that

/ [0(0) — v(y)[Pdy < / 120721 ol Py
By /r(—z0)NB1 By /r(—z0)NB1
fr,xo(x) = f(T:E + 550)
— [0(0) — v(y)Pdy < Cr22|By| || w2 < Cor™ 4| £l
By (=m0)NB1

where we used a change of variables to get

| frzol o8y (—a0ynBr) < O™ fllLesy)

Combining these inequalities, we get

F ot~ uty)r < o) — u(ao + o) Py
Br(xo) BlmBl/r(—CCO)

< Pt 4 Cy| f]pr?

now let ap +d = p(a+d/p) and 2p —d = p(2 — d/p) and = min(a + d/p,2 — d/p), both
option of which are positive so that

F o futan) = () < Car”
BT(Z’O)

where we use the fact that » < 1 so that we can take the minimum. This implies that w is
holder continuous with that convoluted holder exponent, and the holder constant depending
on the dimension and || f|],. O

Question 57:Let Q C R? be a bounded Lipschitz domain. Here d > 3. Let us consider
the operator S : L*(Q)) — HJ(Q) defined as Sf := u where

O;laij(x)0ju] = f in Q,
u=>0 on 0N).

Here a;j are symmetric uniformly elliptic coefficients as usual. Prove that there exists a
function G : Q2 x Q — R such that

Sf(x) = / G, y)(y) dy.
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Needless to say, this function G is the Green function.

First define the analogous operators S, from LP(Q) — L*(12) for p > ¢ using Question 56.
We know that we can apply Question 56 here since the result still holds for €2 bounded with
Lipschitz boundary (our proof only uses these facts). Therefore, S,f is Hélder continuous
for all f € LP(Q),p > d/2. It follows that the functional f — S, f(z) is well-defined for any
fixed z € Q. In fact, this is a bounded linear functional, since Question 56 gives us C' such
that

1Spf ()] < SpSflloc < ClLS -
It follows that there exists G,(z,-) € L?(§2) such that

S,/ (x) = / Gyl ) fly) dy V[ e DM(Q).a € Q.

We know that the operators S,,p € (4,00) agree on C.(Q). Since C.(€2) is dense in
LP(Q) for p € [1,00), it follows that there exists G(x,-) such that G(z,-) = G,(z,-) for all
pE (%,oo). Since ¢ = ]%, we see that p > % if and only if ¢ € (1,%2). It follows that
G(z,-) € L9(Q) for all ¢ € (1,-%). Since € is bounded, we conclude that G(z,-) € L'()

)
as well.
We now turn our attention so the operator S : L*(2) — H}(Q). We know that

Sf(:)s):/QG(as,y)f(y)dy vielJIrnL’zeq

d
p>5

Since this equality holds on a dense set, we want to use some sort of continuity to extend
the equality to all of L?(Q2). If © is unbounded, then S will not be bounded and we will
need to use weaker notions of continuity. However, we are assuming for this part that € is
bounded, so S will be continuous. In fact, it will be compact.

Since Sf € H}(Q) and Q is bounded, Poincaré’s inequality gives us C' such that for all
f e L*9Q), we get

IVSFIE < § [ (A@VS @), V8 f@) de == [ S(@)f(w) dz < SISl

C
< SISl

C
= IVS£llz < SN/ le-

It follows (again from Poincaré’s inequality) that S € L(L*(Q2), Hj(2)). Since 99 is
Lipschitz, it follows from Rellich-Kondrachov that S : L?(Q) — L?*(2) is compact. Since S
is self-adjoint (see part (c) below, which is proven using only the existence of G as we have
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currently defined it), it follows that there exists an orthonormal eigenbasis v, of L?(Q2) such
that

SF=Y lfo sV f e LX)
Since Sv, = A\, each 1, either is Holder continuous and in H{(€2) or is in kerS. We

quickly see, however, that if Sf = 0, then f = V-0 = 0, so S is injective and all of its
eigenvalues are nonzero. In fact, we can quickly compute that

A / (A Viou(y), Tn(y) dy = — / 02 dy = 1.

= A= —(A(A(y)vwn(y),vwn(y)> dy) R <0Vn.

So all of the eigenvalues are negative. Since the above series has a pointwise a.e. convergent
series, we conclude that for any f € L?(Q) Sf has a pointwise a.e. representative

S1(a) = S Ml van(e) = oM lfn) [ Glacdinto) do = [ Glasio) i

This last bit lacks some details, but they can be filled in with relative ease. [
(a) For every fized x € Q, G(z,-) € LYQ) for every q € [1,d/(d —2)).

This was already shown above. [

(b) The map x — G(x,-) is continuous from € to L(S2).

It follows from Question 56 that there exists C'= C(A, A, d, Q, || f]|,) such that

|Gz, ) = G(z,-)]lg =~ max /Q[G(fcvy) -G ylfly)dy = max |S,f(x) =S5, f(2)]

£l @)=1 IfllLp(y=1
<Clz—=z* O
(c) We have G(z,y) = G(y,z) and G < 0.

Recall that Sf is the unique solution to

min{/(AVu,Vu} +2fudr:u€ H&(Q)}
Q

If f <0, then since |u] € H}(2) we have
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/(AV|u],V|u\>+2f\u| dxz/(AVu,Vu>+2f\u| dm§/|Vu|2+2fudx Vue HY(Q).
Q Q Q

It follows that Sf > 0 whenever f < 0. Therefore, Sf < 0 whenever f > 0. Another
quick proof of this fact comes from noticing that

5 1
IVSFIE < 5 [ (A@)VS (@), VSf@) da = =5 [ Sf

so it follows that f > 0= Sf < 0. We can conclude that

[ Gnd=sr) <0 vier@ st r20re0
Q

Therefore, G < 0.©
In order to show that G(z,y) = G(y, ), we want to show that

//m G(z,y)f(2)g(y) dedy = //m ) f(Y)g(x) dedy Y f,g € L*Q).

Indeed we see that

//QQ G(z,y)f(x)g(y) dzdy = /QSg(x)f(x) dz,

so it is equivalent to show that S is self-adjoint as on operator on L?*(f2). Since Sg €
H}(Q) we see that

[ sot)st) de =~ [ (Aw)vSs), V590 dr = [ S7@g() a0
0 0 Q
(d) The function G satisfies the equation

O [0y (0)0,, G2, 9)] =0 for (2,9) € Ax QN {z =y},

Fix yg € €. Define fs = wd_l(S*dXB&(yO) and ug = S f5.1t follows that

u(g(m):Sf(;(x):]i( )G(m,y) dy Vel
s\Yo

Since fs > 0 we know that us < 0. Let zo € Q\ {yo} and fix > 0 such that yo ¢ B,(x).
We know that V - AVus = 0 in B,(xg) for all § < d(xg,y0) — 7. Since —us is a nonnegative
solution in B,.(zg), we can conclude the following:

L ||Vus|| 2B ) < Cillus| 2B, (z0)) ¥ 0 small enough (Cacciopoli’s Inequality).

T/Z(mo)

2. [usloas, 5(x0)) < Collus|lr2(B,(zy)) V6 small enough (DeGiorgi-Nash).
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3. | Byyo|/Pming, ,(ze) —tts < [tsl| (B, (m0)) < Cs|Brya|'/P ming,
small enough (Harnack Inequality).

Ja(wo) —Us  V'p € [1,00),6

Additionally, we know that

lim us(z) = G(x,yo)  almost everywhere.
d—0+

Fix a point z¢y # yo where us(xg) — G(zo,y0). We know that {us(z¢)}s is bounded,
so Harnack tells us that |lus||re(s, y(z0)) is uniformly bounded by Cjsups —us(zo), with

r < min{d(zo, yo), d(xo,0Q)}. It follows that HuéHLQ(BT/Q(xo)) < |BT/2|1/2||u5HLoo(Br/2(IO)) <

| By ja|"? supy ||[usl| o (B, 5(x0)) for all § > 0 sufficiently small. Therefore, both [[Vus|| 12 (s, (o))
and [us]ce(s, Ja(zo)) are uniformly bounded in ¢ small enough. Since us is uniformly Holder
continuous on B, /4(xo), us is equicontinuous on B, 4(xo). It follows from Arzela-Ascoli that
us — G(x,yo) uniformly on B, 4(z). Picking any x, € B, /4(7o) and repeating this process,
or just picking another point where us converges pointwise and repeating this process, we see
that us(z) — G(z,y0) locally uniformly on Q\ {yo}. It follows that G(z,yo) is continuous
with respect to x for z € Q \ {yo}. In fact, for every B CC 2\ {yo} sufficiently far from y,
and =,z € B we have

|G (2, 90) — G2, 40)| < limsup [us(z) — us(2)] < supluglo«m |z — 2|
d—0+ 5

Therefore, G(x, 1) is also locally Holder continuous in x away from = = yq.

We also know that ||us| HY(B, 4(x0)) is uniformly bounded, so every subsequence of us has
an H'(B,4(x¢))-weakly convergent subsequence. But since us; — G(-,yp) uniformly, and
therefore in L?, on B, /4(o), we see that each H'(B,4(z¢))-weakly convergent subsequence
of us must be converging weakly to G(-,yo) in B,/4(20). So us — G(-,40) in H'(B,a(x0)).
This allows us to conclude that G(-,yo) € H'(B,/4(0)), which we did not previously know.

In fact, for any open set V CC Q\ {yo} we can cover V in an open cover of balls of the
form B, /4(x¢) and reduce to a finite subcover. Since the H*(V) norms of us are uniformly
bounded by the sum over the finite subcover of the uniform bounds, and us — G(-, o)
uniformly on V', we see that G(-,y9) € H' (V) and us — G(-,50) on V.

Let (U, ¢) be a Lipschitz patch of 99, i.e. ¢ : By — € is a bi Lipschitz map such that
UNQ = ¢(B;"). We are assuming that yo ¢ U because these are the patches we care about,
and these patches can cover 0f2. Then u;s o ¢ is a solution to a divergence form uniformly
elliptic pde in B;". Since us o ¢ vanishes on {z4 = 0}, we know from Question 54’ that the
odd reflection of us o ¢ is a solution on B;. Picking a point xy € B; close to 0 such that
us o ¢(x0) — G(d(0),%0), we can use Harnack again to uniformly bound [lus o @B, ,-
This gives us a uniform bound on ||“6||L°°(¢(Bl+/2)- Since ¢ is bi Lipschitz, we also can repeat

the above steps in B; to get uniform bounds on {u5]0“(¢(3f/4)) and ||V“HL2(¢(B§/4)) as well.

Now let V' C Q be any set such that yo ¢ V. Create the following open cover of V:
around every point of 9V N 0S2 assign an open set of the form gb(B;L/ +)- Now to every point =

of V' not covered by these neighborhoods, assign a ball of the form B, /4(x). Reduce this to a
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finite subcover. Using this finite subcover, we know that ||us|| g1(vy is uniformly bounded and

us — G(-,yo) uniformly on V. Repeating the arguments above, we see that us — G(-, 1) in
HY(V).
Let ¢ € H'(Q) with suppVy = w and 3 ¢ w, and consider the bounded linear functional

"o — / 2), Voo(z)) da

on HY(V) where w C V C Q\ {yo}. Since

-1AﬁM@VUWLV¢@»dx:—:é@ﬂmvuuhvw@»dx

for all u € H*(92), we know that

_/Q(A( 2)Vus(z), V() do — — / 2)VG(z, ), Vo)) da.

To summarize,

/(A( )Vus(x), Vo(x))dx —>/ z)VG(z,y0), Vo(z))dr Vo € H(Q) s.t. yo & suppVep.
Q
We also know from the definition of us that

—K}MWVW@%VﬂMW@:i;)¢@N@ Vo€ HQ).

It follows that

lim — /Q<A(y)Vu(s(y), Vo)) dy = o(ye) Ve e C(Q) N Hy(Q).

6—0t

Therefore, we see that

— /Q<A(x)VG(:U,?/0), Vo(r))de =0 Ve Cl2\ {y})-

By the symmetry of GG, we conclude that

—[}vaammw»vwwMM=o Ve CHQ\ {xp)). O

(x) Let ¢ € HY(Q) such that x ¢ supp V. Then

wm:—é%wmww%m%w@.
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This follows immediately from the previous proof. Notice that the statement of this re-
sult makes sense because ¢ is smooth on ©\supp Vi so there is a natural choice of p(z). O

Remark: The use of “support” in reference to Vi in the past two proofs is made in
reference to the distributional support of V. See Rudin’s functional analysis, chapter 6.

(*x) For every fized x € Q, G(x,-) vanishes on 0S).
us converges uniformly to G(-,40) on a neighborhood of the boundary. [
(e) For every fited x € Q, V,G(z,-) € L'(Q).

[Jared’s solution] We want the following lemma to start
Lemma 4.4.
u€ Hy(Q), Ofa;ou]=V-F Fel[lP(Q)" & V-FeLl(Q)st.p>d
= u e L>(Q)
with |Jul[ s < C||Fll
Once we have proven this lemma, then since G(z, -) vanishes on 92 we get
d

5.V F)a) = ule) = [ Glag)[V-Ply)] =Y

i=1 709

G(x,y)Fi(y) — /VyG(x,y) - F(y)

—— [ 9,6 Fw)
It follows that
wp [ V,Gl) - Fl) = 19,66, < €.

[1F]lp=1

but of course this means that
IVyG(z, )|l < o0

because the domain is bounded and ¢ > 1. Further, if we note that
[C=(@) C{F € [L(Q) | V- F € L'} C [L"(Q)),

[Co ()] = [LP(Q)),

where the closure is taken w.r.t. the || - ||, norm, then it suffices to take a supremum over

FeT={||Fll,=1|V-FeL}C[LP(Q)
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Begin Proof
Since u € H{(2) and € is bounded we know that u extends to H}(R?) when made identically
zero outside 2. It follows from the SGN inequality that

[lull2» < C[IVulfs.

Let g be dual to p > max(d/2,2). Since ¢ < min(2, d%‘l2> < % = 2* Holder’s inequality

now gives us
[ Juftdo < Ju
Q

() ull, < QY=

Q[

q
2*
Therefore

u

2 < C|Vulfa.
Since we are given V - F' € L? and u € Hj, Cauchy-Schwarz gives us

1 1 1 1
IVul} < oot =5 [(V-Fyu=5 [ F-Vu< {IFlaVala

1
= [[Vulla < S[1Fl2-

(Note that we're allowed to perform integration by parts via trace theory because u € Hj (£2).)
Since €2 is bounded and p > 2 Holder’s inequality gives us

d d
= Y 1Pl < QY)Y [ @ill, V@ € LA

i=1 i=1
Since S0 |- llr ~ || - |l» on [L7(Q)]? for # € [1,00], it follows that there exists C
independent of our initial choice of F' such that
(ex) [Vl < Ol Flp.

With this in mind, we can repeat question 56 with the set up of

@[aij&»u] =V.F u 20, =0

and then show that
|[ul[r < Cllully < Cl|F],

via the exact same procedure as before. The only other time ||f||, needs to be replaced is
in the analogy of 44, when

sl g2 () < ClIVuriallzzgany < /1A A iallg = K] [2
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but from the proceeding equations, we in fact have that

sl 25y < ClIVursillza,) < CVIIV - Fllllully < Kllull”

which is an analogous bound. [

(f) For any ¢ € CL(Q), the following identity holds

() = - / 055 (1)0s0(1)0,, Gz, y) dy.

For € > 0, define ¢, to be a smooth flattening of ¢ such that Vo, = 0 in B(x). It is not
hard to prove that ||V¢e||« is uniformly bounded by some C. We conclude that the function
AC|VG(z,y)| dominates A(y)VG(z,y) - Ve (y), and by dominated convergence theorem we
get

—/Q<A(y)VG(w,y),VsDe(y)> dy — —L(A(y)VG(:E,y)?VsO(y)) dy.
It follows that
- [ (AW VG .0 Vil dy = lim ) = pla).

(g) Prove that
/ IV,G(z,y)* dy > Cr*,
Bar(2)\Br(z)

Here C depends on A and d only.

We know that G(z,-) € H'(2\ B,.(z)). Therefore, for any ¢ € C!(Q) with B,(z) < ¢ <
By,(x) we have

1 = p(z) = / (A(y) VG y), Violy)) dy = / (A(y)VC(x.y). Voly)) dy

Bar(2)\Br(z)

= ( /BQT(x)\Brr-(ﬂ?) A)VGy), VG, y)>> : ( /1;2r(x)\Br(x) (Ay)Vely), Wﬂ(y)>) :

1/2 1/2
< f vowalar) (| vol)
By, (z)\Br(x) Bar(z)\Br ()

1 -1
— vownlarz ([ wer)
Ba,(z)\Br(x) Bor (z)\Br ()

Consider the continuous function
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1 Yy < BT+§(J})

@5(y) = 72«7;_22 - ﬁm: - yl y e BQT—5 \ Br+6(x)
0 elsewhere
1 y-z S ERY
— s ol Y € Bop—s \ Brys(x
Ves(y) = 20 lu=el 24 Brale)
0 elsewhere

We know that

1 (2r — §)4 — rd
Vs Yde = ——=|B r—5 \ Bris| = wg——Fc5—
/B%(x)\BT(x) | | (r — 25)2| 2r—5 \ B (r — 26)2

If p is a mollifier, then for all € € (0,7 — ¢) we have B,(x) < pe * p5s < Ba,(x). It follows
that

1 1 (r—26)2
VG(z,y 2dyZlim—(/ V(pe * ps 2) = .
/Bzr(m\BT(m) Vi) =07 A%\ B,y (2)\ B, (x) A ) wah? (2r — 0)T —rd

Letting 6 | 0 we see that

1
IVG(JJ, y)|2 dy Z —7’2id. D
/Bgr(x)\Br(x) walA (27— 1)

(h) There is a constant C' (depending on the uniform ellipticity assumption only) such
that for every r > 0,

sup{—G(2,y) : y € Bsj2(x) \ Byjo(x)} < Cinf{-G(w,y) : y € Bay(2) \ B, ()}
Provided that Bs,.(z) C €.

Let V, = Bs.(x) \ By/s(x) and equip V, with the adjacency metric p(-,-) (see Lawler’s
notes on harmonic functions). Bs,/2(z) \ By/2(x) is a bounded subset of V, with respect to
this metric. There clearly exists M € Z" such that

max r,y) =M Vrst V,.CQ.
x»yeBST/Z(x)\BT‘/Q(x) p( y)

V- A(y)VG(z,y) = 0 in V,, and —G(x,-) > 0, so Harnack tells us that there exists a
universal constant C' such that

sup{—G(z,y) : y € Bs,ja(z) \ Brjo(x)} < CMinf{—G(z,y) : y € Bor(2) \ By(2)}. O
(i) Let m = inf{—G(z,y) : y € By (x) \ B.(z)}. Assume Bs,(x) C Q. Prove that

/ |V, G(x, y)|2 dy < Cm?rd=2.
Bay(x)\Br(x)
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Here C' is a constant that depends only on the ellipticity constants and d.

Define V, as in the previous part. Since G(z,-) is a solution in V,, we know from Cac-
ciopoli’s inequality that

2

4\
| SVl < S [ GEaFTeFay e e m).

Let ¢ be the radially symmetric function such that

0 t e (0,7/2]
2(t—r/2) te(r/2,r)
o(te;) =<1 ter2r
1—2(t—2r) t € (2r,5r/2)
L0 t € [5r/2,+0)

Then since

Cacciopoli’s inequality gives us

/ VG (e, )| dy < / o)V, y)P dy
Bar(z)\Br(x)

Ve
A? 5
S5 () =2+ 1 =27 max |Gy
YEBs, /2(x)\ By 2(x)
A? 5
<16 )\;Ud [(§)d —od 1 oY RM =22
= Or?m? O

(3) Prove that if |x — y| < 3d(z,0Q) then
~G(z,y) > Clz —y|**.
Here C' is a constant that depends only on the ellipticity constants and d.

We know from parts (g) and (i) that there exist constants Cj,Cy (dependent only on
ellipticity and d, not on 7 or ) such that

1
Cir?2 i < / |VG(x,y)|2 dy < Cgrd’Qm(r)Q Vre (0,=d(z,00)).
Bar(#)\Br () 3

Here m(r) = min{—G(z,y) : y € By, (z) \ B.(x)}. It follows that
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Crzd <) i e (0, ~d(z, 09).
Cs 3

Inserting |x — y| = 2r we see that

\/g2d_2|x _ i< m(%\x ) < —Gla,y) Vyst z—y| < gd(x,aQ). 0
(k) Prove the other inequality
—G(z,y) S le—y*"
Again, we want this to hold with a constant that depends only on ellipticity and d.

[Silvestre’s solution| Recall that since d > 3, Sobolev embedding provides us with a
universal constant C' = C(d, 2) such that for any arbitrary open set 2 we have

See Remark 20 on page 290 of Bresiz if this isn’t perfectly clear. Let p = %, the Holder
conjugate of 2* = d2—f12. Let f = —XBu («)\Bo(x)» and let u = Sf. Since u is the unique

minimizer of

kHMD%Rﬂw=LM@WWAWM»+%@Mw@

we know that
0=J(0) > J(u) > X|Vull3 = 2| fll,llull2-.
= 20 f 1,V ullz = AVull3.

2C
= Il = IVl
Therefore,

202
() Nl < CIVulls < ==l

We compute that

d+2 d+2

171l = (wa(@? = 1)r?) 37 = [wy(2? — 1)]57 5

Since G and f are negative and f = 0in B,(z), u is a positive solution in B,(z) and Har-
nack’s inequality gives us a universal constant C’ depending only on ellipticity and dimension
such that
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C'u(z) <C" sup u < inf u.
B, /s (x) B,.2(x)

It follows that

d— d—2 d—2
2

d—2
2 2d -2
vz ([ )T 2 Cuolatr R = Cula e
Br/?(x)

lu

We now conclude from equation (x) that

2 45 4o 207
C'u(z)w > 27T T < T[wd(2 — 1)]%27‘¥
d a+2
wiCc?22(28 —1)% ,
— u(z) < el re=Cr.

Part (h) above now gives us M such that for all r < %d(:v, Q) we get

Cr? > u(x) = —/ G(x,y) dy
Bar(x)\Br(z)

> w24 — Drim(r) > wa(2¢ — DriC"™ (=G(2,y)) Yy € By (z)\ Bp(x).
2_1 d 2—d
wl 0?2229 —1)=
— —G(z,y) < )\C”(M“ ) >4 Yy & By (z)\ B.(x).

Inserting |x — y| = 2r we see that

2
2.1
d

C22% (21 — 1)
/\O/M-H

w

2
|G(z,y)] < lz —y[*%  when |z —y| < gd(x,ﬁﬁ). O

Question 58: Letw : B — R be a solution to the obstacle problem min(w, 1—Aw) = 0.
Assume that w(x) =0 for some v € By and R > 2. Prove that

HwHCI’l(BRn) <C,

for some universal constant C'.

Calffarelli proves this on page 18 of his notes on the obstacle problem. [
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