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1 Introduction

Over the course of the Summer Analysis REU the four of us studied the Obstacle Problem under
the supervision of Professor Luis Silvestre and Stephen Cameron, a graduate student studying
PDEs. Our work consisted of three parts: (i) reading a set of notes by Professor Caffarelli on
the theory of the obstacle problem focused on the study of the free boundary, (ii) solving weekly
problem sets given to us by Professor Silvestre with material to supplement our readings, and (iii)
discussing the readings and problem sets with Professor Silvestre in weekly meetings.

The reading by Professor Caffarelli was a set of lecture notes delivered in 1998. The main
purpose of the notes was to study the regularity of the solutions to the obstacle problem and the
regularity of the free boundary (the boundary of the contact set). The notes conclude with a novel
result proven by Professor Caffarelli on the set of singular points of the free boundary. Because the
lectures were given to people who studied PDEs many of the details are left out and familiarity
with the proof techniques used is assumed. Hence, we had to do a lot of work during the reading
filling in parts of proofs that Caffarelli omitted. He also used some larger results without proof
that we independently derived on problem sets given to us by Professor Silvestre (see the sections
on De Giorgi-Nash and LSW Theory below). In addition, our problem sets contained results to
give us background on several other topics discussed in the readings including Hölder spaces, the
Laplace equation, and variational analysis.

2 The Obstacle Problem

The Obstacle Problem is a variant of the Dirichlet problem for Laplace’s equation. In addition
to the boundary condition and minimizing the energy functional, there is a height condition that
all solutions to the obstacle problem must satisfy. Formally, in the obstacle problem we are given
(i) a domain Ω ⊆ Rn with Lipschitz boundary, (ii) a continuous function f on ∂Ω (in the most
generality it needs to at least be in the range of the trace operator from H1(Ω)→ L2(∂Ω) ), and
(iii) a function ϕ ∈ C(Ω) such that ϕ ≤ f on ∂Ω. The obstacle problem is to find a unique function
u that minimizes the Dirichlet energy functional:

J(u) =

∫
Ω

|∇u(x)|2dx (1)

subject to the conditions (i) u = f on ∂Ω and (ii) u ≥ ϕ in Ω. Since the Banach space H1(Ω) is
reflexive, K = {u

∣∣
∂Ω

= f}∩ {u ≥ f} is a closed convex set in H1(Ω), and J : K → R is a coercive,
continuous, and convex functional, we know that J attains its minimum. Since J is strictly convex,
we know that this minimum is unique.

By looking at the first variation of J at u we can deduce:
(i) u is harmonic in the set u > f
(ii) u is superharmonic on Ω

Here we are using the weak (i.e. distributional) definitions of harmonic and superharmonic func-
tions. For example, a function u ∈ L1

loc is weakly superharmonic if∫
Ω

u∆φ ≤ 0 ∀ φ ∈ C∞c (Ω) s.t. φ ≥ 0. (2)

1



We stopped to prove that all superharmonic (subharmonic) functions v ∈ L1
loc have classically

superharmonic (subharmonic) representatives, and went on to prove that the support of the distri-
butional Laplacian of u is contained in the contact set {u = ϕ}. Since ϕ is continuous, we deduced
that u is continuous everywhere as a consequence of a theorem of Evans:

Theorem 1. Any superharmonic function u that is continuous on the support of ∆u is continuous.

For supplementary material, we were given exercises that introduced us to (i) basic variational
analysis, (ii) the formulation of divergence form uniform elliptic PDEs as variational problems, (iii)
a variety of basic yet useful results about Sobolev spaces, and (iv) various results about harmonic
and subharmonic (superharmonic) functions. Those of us who had not already read chapters 1, 3,
and 9 of Bresiz’s Functional Analysis, Sobolev Spaces, and Partial Differential Equations or section
2.2 of Craig Evan’s Partial Differential Equations did so as supplementary reading.

2.1 Regularity of Solutions and the Free Boundary

Next we proved the following theorem:

Theorem 2. If ϕ ∈ C1(Ω), then u ∈ C1(Ω). If ϕ ∈ C1,1(Ω), then u ∈ C1,1(ω) for all ω ⊂⊂ Ω.

It is easy to see that this is the best possible result we could hope for. Consider the case where
ϕ has constant Laplacian ∆ϕ = −1. Then across the boundary of the contact set u = ϕ the
Laplacian of u “jumps” from 0 to −1. So no matter how smooth ϕ is, u is not necessarily C2 on
all of Ω.

For supplementary material, we proved several results about Hölder spaces and Lipschitz spaces
as exercises.

Problems like the obstacle problem are free boundary problems which means that the solution
has some implicitly defined boundary which we are investigating the structure of. In this case
the free boundary is the boundary of the contact set {u = ϕ}. It is not easy to immediately
deduce anything about this free boundary, which is why the regularity theory is so important.
To investigate this problem we used normalized solutions to the obstacle problem. A normalized
solution to the obstacle problem is a function w on the unit ball B1 ⊂ Rn such that:

(i) w ≥ 0 in B1 and w ∈ C1,1.
(ii) On the set Ω = {w > 0} we have ∆w = 1.
(iii) The point 0 ∈ ∂Ω.

Intuitively we have taken our solution u to an obstacle problem on B1 and have subtracted the
obstacle to get w = u− ϕ. The contact set is now the set {w = 0}, and we are given that this set
is nonempty by condition (iii). Of course, our second constraint on w translates to ∆ϕ = −1 on
{u > ϕ}, which is not true for any arbitrary obstacle ϕ, but this is a much simpler case that we
must start in.

The first thing we proved about the free boundary of normalized solutions is that they have
finite n− 1-dimensional Hasudorff measure. To do this we first proved that Ω has uniform positive
density along the free boundary. This implies that the contact set is a set of finite perimeter. This
shows that they roughly look like we would expect; that is, they do not have some bizarre fractal
structure. In fact, due to a theorem of De Giorgi we know:

Theorem 3. For every set A of finite perimeter there exists a set called the reduced boundary
∂?A ⊂ ∂A and a vector field ν : ∂?A→ ∂B1 such that for any vector field ϕ ∈ (C1(A))n we have:∫

A

divϕdx =

∫
∂?A

ϕ · νdHn−1 (3)

and almost every point in the boundary is in the reduced boundary with respect to the Hn−1 measure.

This shows that sets of finite perimeter look “almost” like C1 manifolds where the divergence
theorem can be applied: ∫

A

divϕdx =

∫
∂A

ϕ · ndS (4)
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To further our study of the free boundary we studied global solutions to the obstacle problem,
that is to say normalized solutions that are defined in the whole of Rn not just the unit ball.
These are important because given a point x in the free boundary we can define a blow-up solution
around x as:

w?x(y) = lim
t→0+

w(x+ ty)

t2
(5)

Although this limit is not always guaranteed to exist we would suspect it usually does because we
know that w separates approximately quadratically from the free boundary. Note that when this
limit exists it defines a global solution to the normalized obstacle problem. Hence, an analysis of
these solutions will help us understand the local geometry of the free boundary. For example, for
points in the reduced boundary x ∈ ∂?Ω we know that the blow-up indicator functions:

fR(y) = χR(Ω−x) (6)

converge to indicator functions on some half space in L1
loc as R → ∞. Hence, we would assume

that for these points the blow-up solutions to the obstacle problem converge to functions that are 0
on a half space and separate quadratically from 0. We proved the following about global solutions,
showing that they have a much more well-defined structure than local solutions:

Theorem 4. A global solution to the normalized obstacle problem is convex.

We used these results to study the structure of the free boundary and prove the following
theorem:

Theorem 5. If w is a normalized solution there is a universal modulus of continuity σ(r) such
that if for some r0 and x ∈ ∂Ω the set {w = 0}∩Br0(x) cannot be enclosed within a strip of width
r0σ(r0) then in a neighborhood of x the free boundary is a C1,α surface for some α.

The condition on enclosing the contact set within a strip is necessary to distinguish the regular
points (around which the free boundary is a C1,α manifold) from the singular points where this
fails. The set of singular points has Hn−1 measure 0 which can be deduced from the fact that
they must lie outside the reduced boundary (as we know the blow-up indicator functions for the
reduced boundary converge to a half strip). However, we went on to prove that the set of singular
points roughly look like a manifold of codimension 1 within the free boundary. This can be proven
by a close analysis of the global blow-up solutions near singular points.

3 Geometric Background

Our analysis of the free boundary used several results about sets of finite perimeter. Because none
of us had much experience with geometric measure theory our week 3 problem set focused on
proving basic results about Hausdorff dimension, Minkowski content, and sets of finite perimeter.
We were able to bound the perimeter of sets in terms of their n−1-dimensional Hausdorff dimension
and bound the m-dimensional Hausdorff dimension of Borel sets in terms of their m-dimensional
upper Minkowski content. Thus, proving that the n− 1 dimensional upper Minkowski content of
the free boundary is finite proves that the contact set has finite perimeter as required.

4 Theory of Divergence Form Uniformly Elliptic Equations

During weeks 6-8 of the analysis REU we studied the theory of divergence form uniformly elliptic
equations and proved several important results. This was divided into two parts: (i) De Giorgi-
Nash theory, which analyzes the regularity of solutions to uniformly elliptic PDEs and allows us to
prove a Harnack inequality for positive solutions, and (ii) Littman-Stampacchia-Weinberger theory,
which analyzes the behavior of Green’s functions and fundamental solutions for divergence form
uniformly elliptic operators. These results were entirely derived by the four of us using guidance
from exercises given by Professor Silvestre which walked us through the proofs.

A uniformly elliptic partial differential operator acting on functions on a bounded Lipschitz
domain Ω ⊆ Rn is given by a symmetric n × n coefficient matrix A(x) of measurable functions
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aij(x) such that there exist two constants Λ ≥ λ > 0 (called the ellipticity constants) such that
λI ≤ A(x) ≤ ΛI for all x ∈ Ω. Given such coefficients, we want to study solutions to the equation:

∂i(aij(x)∂ju) = 0 (7)

i.e.
∑
ij

∂i(aij(x)∂ju) = 0

i.e. ∇ ·A(x)∇u(x) = 0.

Since we have not placed any constraints on the smoothness of the coefficients, we primarily
concern ourselves with the weak solutions, i.e. functions u ∈ H1(Ω), such that∫

Ω

A(x)∇u(x) · ∇ϕ(x) dx = 0 ∀ ϕ ∈ C∞c (Ω).

The existence of such weak solutions is guaranteed by variational analysis: for f ∈ L2(Ω) and
F in the range of the trace operator on H1(Ω) the solution to{

∂i(aij(x)∂ju) = f in Ω,

u = F on ∂Ω

is also unique minimizer of the functional

J : {u ∈ H1(Ω) : u
∣∣
∂Ω

= F} → R, J(u) =

∫
Ω

A(x)∇u(x) · ∇u(x) + 2f(x)u(x) dx.

4.1 De Giorgi-Nash Theory

Our first important result is the following De Giorgi-Nash theorem:

Theorem 6. There exist constants C ≥ 0 and α ∈ (0, 1] depending only on the ellipticity constants
λ,Λ and dimension n such that if u is a solution to ∂i(aij(x)∂ju) = 0 in B2 then

||u||Cα(B1) ≤ C||u||L2(B2). (8)

Here ‖ · ‖Cα denotes the Hölder seminorm.

Given that we have placed no constraints on the regularity of the coefficients aij(x), this is the
best regularity result we can get. As an exercise, for any α > 0 our group constructed a solution
u to a uniformly elliptic equation ∂i(aij(x)∂ju) = 0 in B1 ⊂ R2 with continuous coefficients such
that u was not Cα at the origin.

The outline of our proof for these results was as follows. First, we proved Cacciopoli’s inequality
which says that for a nonnegative subsolution u in B2 and a function ϕ ∈ C∞c (B2) we have for
some constant C: ∫

B2

ϕ2|∇u|2dx ≤ C
∫
B2

u2|∇ϕ|2dx (9)

Using this result and some of the Sobolev inequalities we deduced that for any nonnegative subso-
lution there exists a constant C such that:

ess-sup
B1

u ≤ C||u||L2(B2) (10)

From here we deduced that for any solution u in a ball B2 there exists some universal θ > 0 such
that

osc
B1

u(x) ≤ (1− θ) osc
B2

u(x). (11)

We then iterated and scaled this result to show that u must be in Cα in B1 for some α.
Using this theorem, we derived the following form of the Harnack inequality:
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Theorem 7. If u is a nonnegative solution to ∂i(aij(x)∂ju) = 0 in B1 then there exists a constant
C depending only on the ellipticity constants and dimension such that

sup
B1/8

u(x) ≤ C inf
B1/8

u(x). (12)

As a result, there exists a constant C depending only on the ellipticity constants and dimension
such that for all nonnegative solutions u we have

sup
B1−δ

u(x) ≤ δ−C inf
B1−δ

u(x) ∀ δ ∈ (0, 1). (13)

To prove the Harnack inequality from the regularity result we used a construction by De-Giorgi
in which one assumes towards a contradiction that the ratio

supB1/8
u(x)

u(0)
(14)

is sufficiently large and proves from there that one can construct a sequence of points xn in the
ball B1/4 such that u(xn) goes to infinity, contradicting the boundedness of u in B1/2.

It follows from this Harnack inequality that for any domain Ω and any open set V ⊂⊂ Ω there
exists a constant C depending on V,Ω, λ, and Λ such that if ∂i(aij(x)∂ju) = 0 in Ω then

sup
V
u(x) ≤ C inf

V
u(x).

4.2 LSW Theory

Next we analyzed Green’s functions for uniformly elliptic PDEs. The theory here is based off the
theory of the Laplacian. Global solutions to Poisson’s equation

∆u = f (15)

are given by the form

u(x) =

∫
Rn
G(x, y)f(y)dy. (16)

Here we have G(x, y) = −Φ(x−y), where Φ is the fundamental solution of Laplace’s equation. It is
known that for n ≥ 3 we have G(x, y) = Cn

|x−y|n−2 where Cn is a normalization constant depending

only on dimension. Our goal in studying LSW theory was to show that Green’s functions for
divergence form uniformly elliptic equations existed and behaved similar to the Green’s function
for Laplace’s equation on Rn.

Green’s functions for uniformly elliptic equations are defined similarly to the function −Φ(x−y)
above. Let n ≥ 3 and let Ω ⊂ Rn be a bounded Lipschitz domain. If u is a solution to the equation{

∂i(aij(x)∂ju) = f(x) in Ω

u = 0 on ∂Ω
, (17)

then u has the form

u(x) =

∫
Ω

G(x, y)f(y)dy. (18)

Here G(x, y) is the Green’s function associated with the given uniformly elliptic PDE. The main
result that we proved in this section was a result cited in the appendix of Cafferelli’s notes without
proof:

Theorem 8. Let n ≥ 3, let Ω ⊂ Rn be a bounded Lipschitz domain, and let G(x, y) be the Green’s
function for some divergence form uniformly elliptic operator in Ω. Then there exist nonnegative
constants C1, C2 depending only on λ,Λ, and n such that for |x− y| < 1

2d(x, ∂Ω) we have

C1|x− y|2−n ≤ −G(x, y) ≤ C2|x− y|2−n (19)
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5 Conclusion

This summer we had three main accomplishments: (i) we gained a good understanding of the theory
of the Obstacle Problem, (ii) we had an introductory look at many of the techniques and methods
used in the study of PDEs and related free boundary problems, and (iii) we derived through
problem sets given to us by Professor Silvestre several important results in the theory of uniformly
elliptic equations. Because of the nature of the obstacle problem our group ended up studying
variational analysis, geometric measure theory, Sobolev space theory, and more. Many of the
techniques we studied can be applied to other standard free boundary problems that we discussed
on problem sets. The understanding we gained this summer will be invaluable in continuing our
studies of analysis and PDEs specifically.
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