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1 Introduction

Finding solutions to

z2=¢g mod p
is a well known problem, with a solution given by the Tonelli-Shanks algorithm.
Furthermore, for a prime p > 2, the solutions to

z2 =¢q mod p* k>1

are uniquely determined by an application of Hensel’s lemma to the function
f(z) = 22 — ¢, for which f’(z) = 2z # 0 assuming p* { z. However, in the case
that p = 2, hensel lifting from k = 1 to higher values fails as f'(z) = 22 = 0
mod 2. Thus another method is needed to determine the solutions to z?2
mod 2*. We provide such a method for odd values of ¢, as well as a simple
classification of these residues for each value of 2%.

2 Main Claims

Let @y, denote the collection of odd residues modulo 2¥. The following theorems

determine the structure of all residues modulo 2% in relation to residues modulo
2k=1 for k > 3.

Theorem 2.1 (Main Theorem 1). For k > 3, odd quadratic residues are of the
form q = 8c+ 1, and iterating through all values of ¢ = {0, ...,28=3 — 1} yields
all such odd quadratic residues.

Note that this implies that for 2%, there are 2°=3 odd quadratic residues, or
1/8 of all values in Z/2*Z.

Theorem 2.2 (Main Theorem 2). For each quadratic residue g and power k,
there are 4 distinct solutions to x> = ¢ mod 2%, {a;(q,k)}, such that

(S {al(Q7 k)’ aQ(Qa k)v as (Qa k)v a4(‘]7 k)} = {al(Q7 k)v az (Q7 k)’ 2k_a2 (Q7 k)’ 2k_d1(Qv k)}

with
a2(Q7 k) = 2k71 —ax (Qa k)



Here 1 assume that the roots are ordered from least to greatest (which
amounts to the convention that a1(g, k) < a2(q, k)).

Theorem 2.3 (Main Theorem 3). Given a quadratic residue ¢ mod 2%, then q
is a residue mod 21 with

al(‘]7k) = al(qak+ 1) or al(Qa k) = al(Q+2kak+ 1)

With these 3 theorem, all of the quadratic residues modulo powers of 2 and
the solutions to 2 = mod 2* can be determined inductively starting with
k=3.

3 Preliminary Lemmas

Lemma 3.1 (Residue Hierarchy). If qi is an odd quadratic residue of 2%, then
it is of the form
Gk = Q-1 +c- 2"

for qr_1 a quadratic residue of 2871 and ¢ =0, 1.

Proof: Note that

2

r?=¢q, mod 2" = 2

=q.+n-2¥, neN

2 21971 2k:71

= r“ mod =gqr mod

yet in that € Z is odd, we set qx_1 = ¢ mod 2F~!

oddness, so that

which will be non-zero by

r? = qx—1 mod

2k—1
= gpr=qe_1+c- 281 st c=0orl

because we always restrict 0 < g < 2* by convention. O

Taking the base case of k = 3, we have 1 quadratic residue of ¢ = 1, so from
the above lemma, we see that the number of quadratic residues can at most
double, i.e., the number of quadratic residues modulo 2F is at most, n = 2¢~3,
which provides the correct upper bound for our first lemma.

Lemma 3.2 (Residue symmetry). For k > 4, q;. is an odd residue modulo 2F,
then so is g + 28~ 1.

Proof: Given that
Ir st. 2 =¢q; mod 2F
(252 _ )2 = 924 _gk—lp 2 92k—d _ gh—l(n 4 1) 4 2 | oh-
Noting that r + 1 is even, and that for k > 4, 2F | 225~ 50 that

1
(2872 — )2 =22kt ok (r; ) +r? 4257 =g +2871 mod 2°



Lemma 3.3 (Residue solution sets). For k > 3 and qx odd, if v is a solution
to 22 = q, mod 2%, then so are {2F —r,2k=1 —p 2k _2k=1 4 1.

Proof: Note that
(2F —1)? =72 mod 2F = ¢, mod 2F

(281 — )2 =222 _9kp 102 = g mod 2F
@F =2t 2= (2" —n)? =g mod 2

Using the fact that ¢ (and thus r) is odd, it is clear that these four solutions
are distinct. O

4 Proof of Theorem 1

We prove theorem 3.1 by induction. The base case of k = 3 is true (see Appendix
for a table of the odd residues for the first few powers of 2¥). Assume that
the odd quadratic residues modulo 2* are given by the set Qp = {8c¢ + 1} for
0 < c < 2F3. Applying Lemma 4.1, we note that 8 | 2¥ for k > 3, so that

Qrr1 C {8e+1)e22 1

Vg€ Qr, q€ Qi1 or q+2k€Qk+1

but applying Lemma 4.2, we see that both ¢,q 4+ 2¥ € Qp41, for all ¢ € Q.
ok

This implies that Qg1 2 {8c + 1}¢=2 2_1, implying set equality. This verifies

the inductive hypothesis.

5 Proof of Theorem 2

Given that for each k, there are 283 residues of the form {8c + 1}. We now
partition the odd integers in Z/2*Z, or rather (Z/2¥Z)* by which residue their
square corresponds to. For each g € Qg, there are at least four distinct solutions
to 22 = ¢ mod 2*, which account for at least

|Qu| x4 =22 x4 =21

elements of (Z/2FZ)*. Yet |(Z/2*Z)*| = 2¥~! so that we’ve accounted for all
elements of this group, meaning that to each odd residue, there are exactly 4
solutions to 22 = ¢ mod 2*. Moreover, they have the form as stated in Theorem
3.2 by applying Lemma 4.3 O



6 Proof of Theorem 3

We have that

ar(q,k)> =¢q¢ mod 2¥ = ay(q,k)? =q+n- 2,

If n is even, then

If n is odd, then

al(q,k)2:q+2k+(’fl—1)2k2q+2k+62k+1,

ai(q, k)? = q+c- 281

ceN

— ai(q, k) =¢ mod 2F!

— a1(q,k)>=q+2" mod 2¢!

Note that both such cases do occur (see Appendix).

7 Appendix

Below is a table of residues for 1 < k < 6.

Table 1: Powers of 2 greater than or equal to 8 and Their Respective Residues

and Solutions

neN

ceN

P=8|P=16 P =32
qg=1 qg=1 q=9 qg=1 q=9 q¢g=17 g=25
x=1| x=1 x=3 x=1 x=3 x=7 x=25
x =3 x=7 x=5 | x=10 x=13 x=9 x=11
X=25 x=9 x=11|x=17 x=19 x=23 x=21
x=7|x=15 x=13|x=31 x=29 x=25 x=27
P =064
g=1 q=9 qgq=17 q=25 ¢q=33 q=41 ¢=49 ¢g=57
x =1 x =3 x=9 x=5 x=150 x=13 x=7 =x=11
x=31 x=29 x=23 x=27 x=17 x=19 x=25 x=21
x=33 x=35 x=41 x=37 x=47 x=45 x=39 x=43
x=63 x=61 x=55 x=59 x=49 x=51 x=57 x=053

With regards to theorem 3, we see that for ¢ = 1, and P = 32,64 (or rather
k = 5,6), that a1(1,5) = ay1(1,6). However, for ¢ = 17, we have a1(17,5) =

a1 (17 + 32,6) = a1(49,6), so both cases do occur.




