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I Interface in phase
separations/transitions

I Minimize configuration
energy ↔ transition
interface is small

I Allen–Cahn equation
models phase transitions
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Allen–Cahn Background

Let (M, g) closed manifold.

The Allen–Cahn equation is

ε2∆gu = u(u2 − 1) (1)

Solutions are critical points of

Eε(u) =

�
M
ε
|∇gu|2

2
+

W (u)

ε
(2)

W (u) = (1−u2)2
4 .

Well known results

I Γ-convergence (Modica-Mortola, ’77):

Eε
ε→0−−→ P({uε = 0})
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I Gluing (Pacard-Ritore, ’03): Near a minimal surface,
one can find a solution to (1)

Figure
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I Index and Nullity bounds:

Figure

I {uε} solutions with u−1ε (0)→ Y minimal (nicely) as
ε→ 0,

(Gaspar, Hiesmayr, Le)

IndAC,ε(uε) ≥ Ind(Y )

(Chodosh–Mantoulidis)

IndAC,ε(uε) + NullAC,ε(uε) ≤ Ind(Y ) + Null(Y )
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Motivation

I Eε(u) defined for all u ∈ H1, not just those with u−1ε (0)
“well behaved” hypersurface

I Only interested in Allen–Cahn in connection to minimal
surfaces

I only look at u ∈ H1 vanishing on hypersurfaces?
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BE Set up
I (Mn, g) closed manifold, Y n−1 ⊆ Mn separating, closed

hypersurface

I Exists unique solutions, u±ε , on M± vanishing on Y
I Define the “Balanced Energy”

BEε(Y ) := Eε(u
+
ε ,M

+) + Eε(u
−
ε ,M

−)

Figure
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1st Variation

Figure

Theorem (MK, Silva)

The first variation is given by

d

dt
BEε(Yt)

∣∣∣
t=0

=
ε

2

�
Y
f [(u+ε,ν)2 − (u−ε,ν)2]

I Critical points =⇒ u+ε,ν = u−ε,ν
I uε is an Allen–Cahn solutions

I Existence of critical points
(Pacard–Ritore)

I For Y satisfying mild geometric
assumptions

ε

2
(u+ε,ν)2 − (u−ε,ν)2 =

1

2
√

2
[HY + O(ε)]
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2nd Variation

Theorem (MK, Silva)

Let Y a critical point for BEε. The second variation is given
by

d2

dt2
BEε(Yt)

∣∣∣
t=0

= ε

�
Y
fuν [u̇+ε,ν − u̇−ε,ν ]

If Y satisfies mild geometric assumptions, then

d2

dt2
BEε(Yt)

∣∣∣
t=0

= D2A|Y (f ) + E (f )

|E (f )| ≤ Kε1/2||f ||2H1

Remarks

I u̇±ε satisfies linearized Allen–Cahn system on M±

I Error bound relies on invertibility of
ε2∆g −W ′′(u) : H1

0 (M+)→ H−10 (M−)
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Applications: Fischer-Colbrie-Schoen Mimic

Let M3 complete 3-manifold with R ≥ 0 and Y 2 ⊆ M3,
compact.

Theorem (Fischer-Colbrie-Schoen)

If Y is a stable minimal surface, then Y conformally
equivalent to (S2, ground) or a totally geodesic flat torus T 2.
If R > 0 on M then only S2 can occur

Theorem (MK, Silva)

If Y is a stable critical point for BEε (satisfying mild
geometric constraints) then Y is either conformally
equivalent to (S2, ground) or Y is topologically a torus and

||AY ||2L2(Y ) ≤ Kε1/2

for K independent of ε.
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2nd Variation, 2nd Perspective

Theorem
Let Y ↔ uε a critical point for BEε. Then

IndAC (uε) = IndBEε(Y )

NullAC (uε) = NullBEε(Y )

I Let Q(uε)(v) = d2

dt2
Eε(u + tv)

∣∣∣
t=0

. Recall

IndAC (u) := max{dimV | V ⊆ H1(M), Q(u)
∣∣∣
(V ,V )

< 0}

NullAC (u) := dim ker(ε2∆g −W ′′(u))

(kernel is in H1(M))
I Theorem says we can compute index/nullity on smaller

space of

W = {ẇ(f ) ∈ H1(M) | f ∈ H1(Y ), ε2∆g ẇ = W ′′(u)ẇ ,

ẇ
∣∣∣
Y

= −fuν}
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Proof Sketch

I Want to compute d2

dt2
Eε(u + tv)

I Let
Yt = (u + tv)−1(0)

and M±t accordingly

I Rewrite u + tv = ut + ψt , ut is a minimizer on M±t
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I Let ψ̇ = ∂tψ
∣∣∣
t=0

, then

d2

dt2
Eε(u + tv)

!
=

d2

dt2
BEε(Yt)

∣∣∣
t=0

+ Q(u)(ψ̇, ψ̇)

I ψ̇
∣∣∣
Y

= 0 and uε is a minimizer gives:

Q(ψ̇, ψ̇) ≥ 0

=⇒ d2

dt2
Eε(u + tv)

∣∣∣
t=0
− d2

dt2
BEε(Yt)

∣∣∣
t=0
≥ 0

=⇒ IndAC (uε)− IndBEε(Y ) ≥ 0
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Applications of 2nd Variation: Solutions on S1

Let uε,2p : S1 → R be the unique Allen–Cahn solution on S1

vanishing on D2p-symmetric points:

Theorem
Fix p > 0. There exists εp such that for all ε < εp, uε,2p has
Allen–Cahn Morse index 2p − 1 and nullity 1. The nullity is
realized by rotations and every other variation produces a
strictly negative variations.
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Proof Sketch

d2

dt2
BEε(Y + tf ) =

2p−1∑
i=0

f

(
i

2p

)
uν

(
i

2p

)[
u̇+i ,x − u̇−i ,x

]( i

2p

)

= εc

2p−1∑
i=0

f

(
i

2p

)
u̇i ,x

(
i

2p

)
+ f

(
i + 1

2p

)
u̇i ,x

(
i + 1

2p

)
!

= εc2v(ε)

2p−1∑
i=0

[
f

(
i

2p

)
− f

(
i + 1

2p

)]2
where v(ε) < 0 - relies on explicit computation of u̇i ,x
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Further Projects

I Constructing solutions near minimal surfaces with
singularities

I Applying framework to line bundle valued Allen–Cahn
for existence of minimizers

I Development of BEε-surface flow

∂tx = [u+ν (x)]2 − [u−ν (x)]2
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