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Bass Week 1

Bass 2.3

Proof. U2, A; is not necessarily a o-algebra. Let X = N. Then let A; be the collection of all the subsets
of X; = {1,2,...,i} C X and all of their subsets’ complements in X. Clearly A; is a o-algebra for each
i=1,2,... And we have A; C Ay C ---. Now consider U°, A;. Let S; = 2,4,...,2i. By the construction
of our A;s, we have S; € Ay; for all ¢ = 1,2,... Thus, we have S; € U2 | A; for each ¢ € N. However, the

union of all such S;, U2, S; = 2N is not contained in U2 ;. A; because no A; contains contains 2N. O
Bass 2.5
We have X = f~1(Y) € B. A set in B looks like f~1(A) for A € A. Then

FHA ={zeX  fa) ¢ A} ={r e X: f(x) € A% = [71(A). (1)

A countable family of sets in B looks like { f _1(An)}(1>o for A, € A. Then

Uf_l(An) ={xeX: f(x) € A,for somen} ={z € X : f(z) € UA”} = f_l(UAn).

n

Because A is a o-algebra, A%, J,, A, € A, so f71(A°),U,, [~ (A4,) € B, so B is a o-algebra.

Bass 3.1

Proof. By definition we have p(@) = 0. Now we need to prove countable additivity. Let A;,--- € A be
pair-wise disjoint subsets of X. Then define B; = Ay, By = A1 U A, ..., B, = U] A;,... Clearly, we have
By C By C ---. Thus, by finite additivity, we have

p(UZ1Bi) = p(UZ, 4q)
lim wu(B;)

1—00

= Zli}rgo (U1 Ay) = llggo Z:l 1(An)

= p(An).



Bass 3.3

Proof. First, (@) = 0 since @ has countable elements. Next let A; be a countable collection of pair-wise
disjoint subsets of X such that each A; has countable elements. Then we have U72; A; has countably many

elements as well. Thus, we have
oo

U A) = 0= p(Ay).
i=1

Now, I claim that .4 does not contain union of pair-wise disjoint subsets of A; for which two or more A; have
uncountably many elements. Suppose this is the case, then we will have two sets A; and As uncountable
with A1 N Ay = @. Since Ay, As € A, the collection of subsets of X such that either A C X is countable
or A° C X is countable, we know that A§, AS are countable subsets of X. Thus, taking the complement of
their intersection, we have A{ U AS = X. This cannot happen because X has uncountably many elements
whereas A§ U A$§ is only countably many. Thus, for any countable pair-wise disjoint collection of subsets of
X in A, we can only have at most one uncountable subset of X. And thus, we have if A; has uncountably
many elements, then

PUZAA) = 1= a(4) = 1= > u(A).

as desired. Thus, u is a measure on A. O
Bass 4.2
Write A = J,,c;, An, where A, = AN[n,n+1) are disjoint. By the convergence of > "~ m(A,) = m(A4) <

0o, choose N such that }3, .y m(A,) < e. Because each m(4,) < oo, choose open G, D A, and closed
F, C A, with m(G,, — A,),m(4, — F,) <e2™™.

Define G = |J,,c;, G and F = UIn\SN F. Notice FF C A C G, and as a finite union of closed sets, F' is
closed (and G is open). Because G — A C |J,,c; Gn — An, by monotonicity m(G —A) <>, m(G, —A,) <
€ nez2 " = 3e. Similarly A — F C U, oy An U U<y An — Fry so m(A = F) < 37, oy m(4,) +
Y oinj<n €271 < e+ 3e. Finally, m(G — F) < m(G — A) + m(A — F) < Te, so we're done.

Bass 4.4
) =a(z) — alz—).

m(z) = nh_)néom((x - %,x]) = nh_)néol((x - %,x]) = nh_)rrgo a(z) — alr — %

Bass 4.6
Part A

We claim B = (,cyU,,>p An, from which B is measurable because measurable sets form a o-algebra.
Indeed, if x is in finitely many A,,, then there exists N for which ¢ A, for n > N, and so z is not in
the set on the right. On the other hand,, if z € A,, for infinitely many n, then for each k& € N, there exists
ng > k with x € A, , so x is in the set on the right.

Part B

Write By for Un>k A, and notice that the By form a decreasing sequence with intersection B (and as
subsets of [0, 1] they are all of finite measure). By monotonicity, m(By) = m(U,,s An) > m(Ag) > 4, so by
continuity m(B) = limg_oc m(By) > 4. -

Part C

Fix € > 0. By the convergence of the series, choose N such that ZZO:N m(A,) < e. Then by monotonicity
and subadditivity, m(B) < m(By) < >0y m(A,) < e. Because € > 0 was arbitrary, m(B) = 0.



Part D
Let A, = [0, £]. Then B = {0} but Y07, m(A,) =Y " L = oc.

n=1n

Bass 4.10

First suppose m(A) < co. Fix 0 < € < 1 and choose U open with A C U and m(U) < m(A) + €. Open
subsets of R are unions of countably many disjoint open intervals, so write U = | J,, ,, for open intervals I,,.
Then

m(A) =m(ANU)
= Zm(A NI,

<(1-€> m(l)
=(1—-em(U) <(1—e)m(A)+¢€(l—e).

Rearrange to conclude that
em(A) <e(l—€) = m(A)<1-—e¢ (3)

for all € < 1, so m(A) = 0.
When m(A4) = oo, write A, = AN[n,n+ 1) for n € Z. By monotonicity, m(A, N I)

(1 —e)m(I) for all open intervals I, so by the previous part m(A,) =0, so m(A) = m(U, ¢z

Bass Week 2

Bass 5.1

Since Q is dense in R, for every a € R, there exists an decreasing sequence 1, with r, € Q for every n
converging to a. Therefore

{z: f(z)>a} = J{z: fla) >}

and thus f is measurable.

Bass 5.4

A is the inverse image of the Borel set {0} under the measurable function limsup,, f,, — liminf, f,.

Bass 5.9

For any a € R, (go f) *(a,+00) = f~ (g~ '((a,+0c0))). Since g is continuous, g~ ((a,+00)) is open, and
thus a countable union of open intervals. Now since f is Lebesgue measurable, the inverse image of countable
union of open intervals is Lebesgue measurable. Therefore g o f is Lebesgue measurable.

Suppose g is Borel measurable. The g~!(a, +00) is Borel measurable. Since f is Lebesgue measurable, the
inverse image under f of a Borel measurable set is Lebesgue measurable. Hence go f is Lebesgue measurable.

If B is Borel and g is Borel measurable (or in particular continuous), then g=!(B) is Borel and so
(go f)~Y(B) = f~1(g~'(B)) is Lebesgue measurable.!

It is not true if g is Lebesgue measurable. Let F and A be as in example 5.12. Then F is Borel measurable,
and X p(4) is Lebesgue measurable (because as a set F'(A) is), but their composition XF(a)©F is not, because
F’l(X;(lA)({l})) = F~Y(F(A)) = A, which is not Lebesgue measurable.

1Because open rays generate the Borel sets, a function is Borel measurable iff it pulls back every open ray to a Lebesgue
measurable set iff it pulls back every Borel set to a Lebesgue measurable set.



Bass 6.4

Proof. Without loss of generality, assume f non-negative (if not, then let [ fdé, = [ fTds, — [ f~dé, as
defined in the text). First assume f is a simple function such that f = Zf\il aixa, fora; > 0. If y € U2, A,
then we have d,(A;) =0 for alli=1,..., M. Thus,

M
/fd(sy = Zai‘sy(Ai) =0=f(y)
i=1

as desired. Now, suppose y € UiNzlAki for some N =1,..., M. Then we have

M N
= aixa(y) = a
i=1 j=1

1 ifi=kjj=1,...,N

: fori=1,...,M. Thus,
0 otherwise.

and §(4;) = {

M
[ 5, = 30,40 = S, = £

as desired.
Now, let f be a non-negative function mapping from X — R. Let € > 0. By definition of [ fdd,, there
exists a simple function s = Y7, a;xa, such that 0 < s < f and [ fdé, < [sdd, + €. Since s < f and

i=1

s(y) = [ 8y, we have [ fdd, < s(y) < f(y). It suffices to prove that f(y) > [ fdd,. Observe that

/fd6y §/sd§y+e:s(y)+e§f(y)+e
Since € > 0 is arbitrary, we have [ fdé, < f(y) as desired. O

Bass 6.5

Proof. First assume f is a simple function such that f = Zf\il a;xa, for some A; C X. Without loss
of generality, let us assume that each A; are pair-wise disjoint (if not, say A; N A; # &, then define

A=A — A ﬂAl,A’ =A;—-A;N4 andfzzgle’n#d CLnXA,L-F(ai)XA; +(aj)XA9 +(ai+aj)XAAmAj-
One can check that f = f and Aj, A%, A;N Aj are disjoint subsets of X). Since X is countable, we have each
A; at most countable. Thus, each A ={ai,ds,...} with aé € X. Thus, since A; are pair-wise disjoint, we

have f(k) = {

i if k=ad} fors Le A . . .
@t C.L] or some a; € for all £k € X. With this formulation, we have
0  otherwise

e} M N; M N; M
S0 =30 e =3 a1 =Y ant) = | sau

k=1 i=1 | j=1 i=1 j=1 i=1

with each N; denoting the number of elements in A;, N; € NU {co}. Thus we have what we want.
Now, let f be a non-negative function mapping from X — R. Let € > 0. By definition of ffdu, there
exists a simple function s = " | a;x, such that 0 < s < f and [ fdu < [sdp+e. Since s < f and

S orey s(k) = [ sdp, we have [ fdu <> 72, s(k) <> po, f(k). It suffices to prove that Y, , f(k) > [ fdé,.
Observe that

oo o

/fd,ug /sdu+e=25(k)—|—e§ Zf(k)—Fe
k=1 k=1
Since € > 0 is arbitrary, we have [ fdu < Y72 f(k) as desired. O



Bass 6.7
If0 < ¢ < fissimpleand ¢ = Y .| a;xg, with E; disjoint, then taking N = max;<;<, a; gives ¢ < (fAN).
Thus ¢ < (f AN),s0 [¢ < [(f AN). Because f A N is increasing in N, we have [¢ < limy [(f A N).

Taking supremum over 0 < ¢ < f simple gives [ f <limy [(f A N).
For the reverse inequality, (f A N) < f for all N, so [(f AN) < [ f for all N, so limy [(fAN) < [ f.

Bass 7.10

Let Fy, = |fu| — |fn — f|. By the triangle inequality, [F,,| < [|fn| = [fo — fIl < |[fn — fo + f| = |f], and |f]
is integrable. On the other hand, f, — f a.e., so F,, — |f| a.e.. By the dominated convergence theorem,
JFE,— [|f]. Butalso [F, = [|fu|— [|fn—f| = [|f| —lim, [|fn — f|. Because [|f| < oo, this implies
J1fn—=fl—0.

Bass 7.16
Integrate by parts and use dominated convergence theorem. Answer is 1.
Proof.
[eS) 2 1 o0
lim ne_"xfi—i_dx = lim ne ™ (1- — 2 Vg
n—oo Jq x4+ x+1 n—oo Jq 224+ x+1
[e%) jo%s) 2 1
= lim |—e (1o % + lim eme LT
n—oo 24+x+1)], n-oe ) (22 4+ +1)2
e 2 —1
Jrnlﬁrgo 0 € (x2—|—1;+1)2 .
Let fp(z) =™ m;_i;il Then
22 -1
Wl = e | < [2e7 (22— 1)| = 0
il = e e | < 276 - D)

as n — oo. This is because that |22 + x + 1| > % for all x € R and the fact that exponential growth
will dominate polynomial growth. Thus, we have f, — 0 for all z € (0,00). Moreover, we also have
| fn| < [2e7%(2* = 1) and [} |2¢77(2? — 1)| < co. Thus, by dominated convergence theorem, we have

lim [ f,(z)dz =0.

n—oo

nT

. e _ 2
Thus, lim,, s~ fo ne mdz =1. O

Bass 7.26

Part A

This is true for simple functions: if ¢ = Y1 | aixg,, then [odu, = Y0 aipn(E) = >y aip(E;) =

[edu

Because f = fT — f, it suffices to prove the result for f* and f~, so we may suppose f > 0. Because
a bounded non-negative measurable function is a uniform limit of simple functions, fix € and pick ¢ simple
such that |f — ¢| < € on X. Because ¢ is simple, | [ @du — [¢@du,| < € for n sufficiently large. Then for n

sufficiently large,
/fdu/wdu‘+’/<ﬁdu/sodun, +’/<pdun/fdun
)

‘/fdu/fdun
< eu(X) + €+ eun (X

= 3e.

<

(4)

Note this proof also works when p,,(X) are uniformly bounded.



Part B

This is true for non-negative simple functions by Part A. Because simple functions have finite range, they
are bounded, so non-negative simple functions satisfy (2) with equality (by the first part the right side is

lim [ fdun = [ fdp).

The general case now follows. Let 0 < ¢ < f be simple. Then

[t < [ 1am. (5)
Take liminf in n on both sides:

/(pdu = 1iminf/g0dun < liminf/fdun. (6)
n n

Now take supremum over ¢ < f simple to get

/fdy < 1iminf/fd,un. (7)
Alternatively, here is a direct proof for simple functions.

Direct proof for simplejunctz’ons. Let f = Zfil a;x a, for non-negative a; and A; € A. Then, define f=
M an(Ag)xx and fo = SN, @i (Ai)xx. Since p(X) = in(X) = 1, observe that

/fdu = ZaiM(Ai) = Zam(Ai)u(X) = Zai,u(Ai)Mn(X) = /fdu = /fdun~

Similarly, we have
M M M ~ ~
/fdﬂfn - Zal,un(Az) = Zai,un(Ai),u(X) = Zai,un(Ai)/J'n(X) = /fnd/l, - /fnd,un~
=1 =1 =1

Moreover, we also have fn~—> f for all z € X since i, (A) = p(A) for all A e Aand M < oo. Thus, we have

liminf, f,—o =lim, fn = f. Now, by Fatou’s Lemma, we have

/ fdu = / fdpn, = / lim inf f,du, < liminf / frdpin = liminf / fdpin,
n—oo n—oo n—oo
as desired.

Let € > 0. For general non-negative functions f, there exists simple function 0 < s < f such that
[ sdpn < [ fdpy, and [ fdu < [ sdp+ e. Thus,

/fduS/sdu—!—eglirginf/sdun—|—eglirginf/fd,un+e.

Since € > 0 is arbitrary, we have [ fdu <liminf, o [ fdpun. O

Bass 15.2

Let f € L? and choose a sequence of simple functions f,, such that f, — f, |fn] < |f]-

If p = oo, then the f,, can be chosen so that f, — f uniformly where f < | f||., (see the construction in
Proposition 5.14). Thus |f — f| can be made arbitrarily small a.e., so f, — f in L*°.

Now we prove for f € LP(R) with 1 < p < co. Since f measurable, we have a sequence of simple functions
$n — f point-wise. Thus, we have |f — s, [P < ||f|+|sn|[P < 2P| f]P which is integrable. Thus, by Dominated
Convergence Theorem, we have

lim /|f—sn|p:/ lim |f —s,|P =0

as desired.



Bass 15.4
Let ||f|loc = M. Then

= ([ stapas)’ < ([ o)t <

So ||f]]p is bounded above by || f||co. If 7 < p,

1 1 1
1117 = / flayrde < ( / f(x)Pda)t / 1dz = ||fI[L,
i.e.

Al < 11l
For any € > 0, the set F = {z|f(x) > M — €} is of positive measure. Therefore,

1

([ roran)} s ([t = - oo

Sl=

As p goes to infinity, m(E)% — 1. This shows that lim, , ||f||, > M — ¢ for any ¢, so || f]|, converges
t0 || floo-

Bass 15.6

We have z* € LP(0,1) for 1 <p < é and 7% € LP(1,00) for max(1, i) <p. Then1<p< é < q < oo,z
is in LP(0,1) but not L9(0,1) and =% is in L7(1, 0c0) but not LP(1, c0).

Bass 15.25
1. By definition

ITf]l = /X T f | d)
= [ | ] K@ swmtm|u
< /X /X 1K (2,9) || £ (9) () ()
= [ ([ st 5 @)lutan)

S/Xle(y)lu(dy)
= M||f[l

1,1 _
2. Let ;+5—1. Then

p

= [ \ [ K| a

</ < [ 1K) If(y)ldy)”dm-

Using Holder’s inequality (|K (z,y)| |f(y)] = |K(z, y)|7 (K (z,y)|7 |f(y)]) gives

sy < [ (o ([ isaliseran) F) ras 9)

9




Rearranging and applying Fubini’s theorem again gives
176 < 3% [ [ 1K@ @)l dys
ot [ [ 1K G.y)lasl @) ay

(10)
<2+ [ip ay
=M fIE,
and taking p-th roots gives
141
HTf”ngerq Hf”p:M”pr (]‘1)
Bass Week 3
Bass 16.1
We have
o ) b ) 6ibu _ eiau
Xab) (v) = /e““”X[a,b]x dr = / e dx = o (12)
When [a, b] = [—n,n], this is
1 nu __ ,—inu
=€ .e = 2 sin nu. (13)
U i U
Bass 16.4

Proof. By definition of Fourier transform and directional derivative,

fiw= [ e pie= [ o [+ hey) — f(z)

h—0 h dx.

Since |e?**| is bounded by 1, we can put it into the limit. Thus,

/ e im flat hej) = f(x)dm = / lim {ei“'wf(x +hej) — f(x)} dx.
n R

h—0 h n h—0 h

Furthermore, since ei“'ww is bounded in absolute value by |f;(z)|. Since f; is integrable by

assumption, the dominated convergence theorem applies. Thus, by DCT and proposition 16.1,

[ [ K0 0] g LT[ bl ) )

h pm 5 d

tim & [ () — )]

h—0
. e—ihuj _ 1 ~ . ~
= tim © ) = i )
as desired. O]

Bass 16.5

The product rule and closure of S under addition, scalar multiplication, and multiplication implies that
2" (M) (z) € S. Because 2 f — 0 (and f is bounded on [~1,1]), f € L*.

10



We then have d fu) = AT [eturf(z)dr = [el(iz)"f(z)dz = (z/x)”\f(u), where differentiation
under the integral sign can be Justlﬁed at each step by the dominated convergence theorem (because " f(x) €
S for all n).

Because f € S, induction on Exercise 16.4 gives f(™) () = (—iz)™ f(z).

One can check that S is closed under addition, scalar multiplication, multiplication, and differentiation,
by the product rule z" f(™)(z) € S, so by the above two paragraphs,

T () = (=) () = (=) i ). (14)

By Riemann- Lebesgue the left side goes to 0 as |u| — 00, so the left side does too. By the product rule,
f € S if and only if < (2™ f) — 0 for all n,m. Thus f € S.

dzn

Bass 16.8

When the right is infinite, we’re done.
It suffices to consider the case a = b = 0. Indeed, applying the inequality to g(z) = €% f(z + a) and
applying a change of variables and properties of the Fourier transform, we have

2 ([ireras) =3 ( [ls)? < [lea@ar [ et as
:/’xeibzf(x+a)|2dx/’xﬂ(z+b)‘2da:
:/\:cf(x+a)|2dz/‘ze’“‘“f(erb)‘de

2
- [le-af@P e [ |@-vfe]
So now it suffices to prove that

([isaras) ([irapa) = ( firea)

To prove this, since xf(z) and f/(x) are in L?(R), Az f(z) + f'(x) is in L?(R) for any A € $. Thus,

[ of@ + f@lde= [ Nlaf@Pde+ [2xef@f @ldo+ [ 1 @)

Using integration by parts on the second term of right hand side, we get

[ 2har@)s @ide = Wallf@P), =3 [ 15@)Pde = -2 [ 17()Pds

since x f(z) € L*(R). Thus, we have

[t + f@lde =3 [ faf@Pis - [ 15@)Pde+ [17@)Pd =0

Thus, viewing as a quadratic in A, we must have its discriminant smaller or equal to zero. Thus,

(/ If(x)l2)2 (it ([ 1) =0,
H([@r) = (frswra) ([irra),

11

which is equivalent of

as desired.



Bass 18.3
Let f, be a Cauchy sequence in C*([0,1]). Then for € > 0, there exists N such that for any n,m > N,
[fn = finllor <e ie.

1o = Finlloo + 1 = fralloo + -+ 11FF = £ lloo < €

Therefore fflj ) converges uniformly almost everywhere for all j. Let f () be the limit of f,gj ). We need to
show that the derivative of f() is fU+1D . Let g; be the derivative of £, Then

D (g4 R — FD(z
gj(m):}yi%ff( +]1 fP (@)

On the other hand, f,(Lj b converges uniformly to U1 so for any € > 0, there is some N such that for
alln > N,

17D (@) = 9D (@)oo < €.

Therefore, for any x and any h,

z+h z+h z+h ) )
/ SO (t)dt - / FUD (t)at| < / £ @) = UV @)ldt < eh,

since the converges is uniform almost everywhere. This means f;Jrh (1) (t)dt converges to f;Jrh fUTD(t)dt.
Therefore

FOw+h) = fO(2) = lim (f7 (@ +h) = 17 ()
x+h
= lim fir()at

x

x+h )
— / f(J+1)(t)dt
Now divided by h and let h go to zero, we see that g; = 7+ Hence C*([0,1]) is complete.

Bass 18.4

Let f, be a Cauchy sequence in C*([0,1]). Because ||-||,, < ||-[|ca, the f,, form a Cauchy sequence in C([0, 1]),
so fn — f for some f € C([0,1]). We first show f,, — f in C*. Because f, — f in C([0,1]), it suffices to
show we can take n big enough to control the second term. Fix € > 0. Because {f,} is Cauchy, there is N
big enough such that for n,m > N, we have

|fn(x) — fn(y) — (fm(x) — fm(y))|

P <€ (16)
for all z,y € [0,1]. Fix n and pass to the limit m — oo to get
|fu(@) = fuly) = (f(2) = FODI _ [(fo = F)@) = (fa = W] _ (17)
|z —y|* |z —y[* -

for all z,y € [0,1], so f,, = f in C*.
It remains to show f € C*. The reverse triangle inequality on eq. (17) gives

[fu(@) = Fu)| _ 1f(2) = F)I _ (18)

|z —y|* lz—y|*  ~

12



for n sufficiently large. Because {f,} is Cauchy in C?%, it is bounded, so there exists M > 0 such that
%ﬁyfﬁ(y)‘ < | fallge < M for all n. Rearranging and taking n — oo, we have

@) =Wl g (19)
|z =y~ ’

and because [0, 1] is compact and (f is continuous), supyy 1) |f| < oo, so f € C*. We conclude that C([0, 1])
is complete.

Bass 18.14

To see that A is closed, suppose f, — f in C([0,1]) with f,, € A. Fix € > 0 and take n sufficiently large so

that || f, — f||, < €. Then
/:f—/;f—l - /Oéf—/;f—/oéfwr/;fn
Z/j(f—fn)—/;(f—fn)

) , (20)
< /O (f - fu) +/é(f—fn)
1
0
< €.

Because € is arbitrary, we conclude that f € A.
To see that A is convex, let f,g € A and t € [0,1]. Then

/oétf+(1t)gﬁ(tf+(1t)g)t</o%f/;f> Y </oég/;g> D

2
=t+l-t=1,

sotf+(1—1t)ge A
We claim that infc 4 || f|] = 1. Indeed, if || f||] < 1, then

/jf_ /;f< /0%_ /;H):l, 22)

so 1 is a lower bound for ||f||. On the other hand, given ¢ > 0, the continuous (piecewise linear) function
with odd symmetry around =z = % given by

1+e 0<z<5-0
fl@)=q1tee@—§+0) j-d<a<} @)
—fl-=z ;<z<1,
where €
§=—_° (24)

(1+¢)
clearly has || f|| = 1+ ¢, and we will check (this is easier with a picture) that f € A. Thus infsca || f]| = 1.
1 1
By symmetry [? f — fi f =22 f, and the graph of f on [0, 3] is a rectangle with height 1 + ¢ missing a
2

triangle of width & and height 1+ ¢, and thus has total area (1+¢€) — 36(14€) = F(1+e— e (I1+e€) = 1
so f € A. Now, we need to show that there are no continuous function with norm 1 in set A. Suppose such

13



function, call it g exists. We first show that g must be a constant function, that is, for all z € [0,1], we
mush have |g(z)| = 1. Suppose not, since ||g||= 1, we know that |g(z)| < 1 for all € [0,1]. Suppose there
exists « € [0, 1] such that |g(z)| = ¢ < 1. Then by intermediate value theorem, there exists an open interval
around x , say (z — 0,z + §) such that for all y € (x — 0,z + ), |g(y)| < 1. Thus, if we evaluate the integral,

we get
/oé g(x)dx — /11 g(z)dx ﬁl g(z)dx

2 2

1

/05 g(x)dz| +
< [ lotwaz
<(f T / :Q"“ / j l9(@)ldz < 1,

Thus, this shows that g is not in A. Therefore, we must have |g(z)] = 1 for all z € [0,1]. And since g is
continuous, we must have g = 1 or — 1. But both of which does not satisfy the condition to be in set A, so
such g does not exists. This finishes our proof.

<

Bass 18.15

We claim A,, is closed. Suppose fr — f uniformly with fi € A,. For each fi, there is some z, € [0, 1] such
that % < n for all y € [0, 1]. Passing to a subsequence by Bolzano-Weierstrass and relabelling, we can

take 2 — xo for some z( € [0,1]. Fix € > 0. By (a weak version of the converse of) Arzela-Ascoli (I'm doing
this to say fr(zx) — f(x)), the fi are uniformly equicontinuous; that is, there exists ¢ such that |z — y| < §
implies |fx(z) — fr(y)| < € for all k. Let k be big enough so that ||f — fx|| < € (uniform convergence) and
|zo — x| < . Then for any fixed y,

|f(zo) — fF()] < [f(z0) — fiu(wo)| + | fr(xo) — frlzi)]
+ | fe(zr) = fu@)] + | fu(y) — f(y)]
< 3e+nl|rr — vyl (25)
<3e+n|ri — xo| +nlzo — Yl
<(n+3)e+nl|zo—y|.

Because € > 0 was arbitrary, we conclude that |f(zg) — f(y)| < n|zo —yl, so f € A,.

Because A, is closed, to show it is nowhere dense it suffices to show that it contains no open interval. We
will show that for any f € A, and € > 0, there exists g € C([0, 1]) with || f — g]|,, < €. The idea is to make a
spiky function that follows the curve of f. Let M be an integer to be specified shortly and g € C([0,1]) be
defined as g(4) = (—1)* for 0 < k < M and g be linear on each [+, £EL]. Then |leg|| = ||f — (f + €g)| <,
but f +eg ¢ A,: for any x, there exists yo close to x with |g(x) — (y0)| =2M |z — yol,

| (@) = f(yo) + €eg(x) — €g(yo)| = €lg(x) — g(y)| — | f(x) — f(yo)]

> (2Me —n) |z — yol - (26)

Taking M > 2% makes the right side strictly greater than n |z — yo|. Thus 4, is nowhere dense.
By the Baire category theorem, C([0,1]) \ |, A» is non-empty, so there exists f € C([0,1]) such that

for all x, there exists {y,} such that W > n. Fix z and suppose the corresponding sequence {y,}

is bounded away from x. Then h’(lﬂf)ig(illn)\ < M for some M (because the denominator is bounded away
from 0), which yields a contradiction with the left side being greater than n as n — oo. Thus we have some
subsequence y,, — ¥, so we cannot have lim,_,, %f;y’) < 0o. That is, f is not differentiable at x.
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Evans Chapter 5

Evans 5.1

It is clear that this is a vector space. Homogeneity and the triangle inequality of ||-|| k., follow from the
respective properties for |-| and ||-[|¢@)- If lullor., = 0, then ||ullo@) =0, so u = 0.

The proof of completeness is essentially the same as for the completeness of C%7(U) (done as a Bass
exercise). Let {u,} be Cauchy in C*7(U). Because [D%ullo@) < lullorn @ for all |af < k and u €
Ck7 | each D%u,, is Cauchy in C(U) for |a| < k, so because this space is complete, each D%u,, converges
uniformly. In particular, let u, — wu uniformly. Induction (apply to each component) on the fact from
single variable analysis that if f, € C', f, — f uniformly, and f; — g uniformly, then f’ = g allows us
to conclude that D%*u, — D%u in C(U) for each |a|] < k. This allows us to take N large enough so that
[D%u — D%up|| @y < € for all |a| < k and n > N. Take N possibly larger so that for n,m > N, we also

have [D%un — D)oo @) < [un = tmllor @) < € for || = k. Then for n,m > N,

[ D%t (2) = D% (x) = (D%un(x) = Dun(y))|

<e€ 27
EET 27
for all x # y € U. Passing to the limit m — oo gives
D%y — D@ n — (D% — D~ n
(D% = D) (@) ~ (D0 = Doun)(y)] _ o8)

lz —yl”
for all x #y € U, so [D%u — Daun}cm(m < eforn > N. Thus for n > N,

lu—unllony = Y2 1D = D*unlleq + D D% = Dunleon
la|<k la|=Fk

< Ze+ Ze:Ce.

lal<k  lal=k

(29)

That is, u, — u in C¥7. It remains to check that u € C*7. Because each D%u € C(U), we just need to
show that [D*u] co (@) < for || = k. Applying the reverse triangle inequality to eq. (28) gives
|D%u(z) — Du(y)|  |[Dun(x) — D%un(y)|
|z —y|" |z —yl"

<€ (30)

for all x # y € U for n large enough, so taking a supremum over x # y € U gives

[DYu) o~ < [D%up]con + € < 00. (31)

Evans 5.4

The same proof should work for p = oo, but the book proves that W1:°°(U) is Lipschitz functions on U when
U is C1.

Part A

By problem set 0, L?(0,1) c L'(0,1). If u € W'P(0,1) for 1 < p < oo, then u has a weak derivative
v € LP C L'. By a classic theorem, because v € L*([0,1]), F(z) := [; v is absolutely continuous.
For any ¢ € C2°(0,1), we have

1 1 1 1 1
/(F*U)w':/ﬂp’*/w’:*/ w+/ vp =0, (32)
0 0 0 0 0

where the second last equality holds by integration by parts (F is absolutely continuous) and the definition
of a weak derivative.
We claimf’ = 0 a.e. implies f = C a.e. From this we are done, because (F — u)" a.e., so we have
u = F + C a.e. for some constant C'. Thus u agrees a.e. with the absolutely continuous function F + C.
Now we prove the claim.
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Proof 1, on (0,1). Fix £ € C2°(0,1) and n € C£°(0,1) with fol n = 1. Define

ow)= [ (000 [ e6)as) . ()

It is clear that ¢ € C*°(0,1) (because ¢’ is a linear combination of things in C2°), and also ¢(0) = 0, and

o) = [ ewar= [ nwar [ eas=0 (34)

because fol n = 1. Thus ¢ € C°(0,1). Because f' =0 a.e.,
1 1 1 1
0=~ [ 1o= [ 1¢'= [ 1) (st -0 [ st0ar) an (3)

Af@ﬂ@w=4f@W@MA£@% (36)

which gives

so we conclude that fol (f —C)¢ =0, with C := fol fn. Because £ € C2°(0,1) was arbitrary, it must be that
f=C ae. O

Proof 2, on connected domain. For another proof, suppose U is connected with f € W1P(U) and Df = 0
a.e. Then f *n. is smooth, so D(f *xn.) = Df *xn. = 0, which implies f *xn. = C.. For any V CC U,
C. = fxn. — fin LY(V). Then C. — C in R for some C, because C, converges and is thus Cauchy
in L', and the domain is compact, so it is also Cauchy in R. Pick a subsequence C,, — f a.e. Because
|Ce,. — f| < |Ce,.| +|f|, which is integrable because the first term is bounded and the domain is compact, by
the dominated convergence theorem, fv |f —C| =0. Thus f = C a.e. on V, and because this holds for all
V cc U, we conclude f = C a.e. on U. O

Part B

Suppose = < y. Using the previous part we have that

) = ut)l = | [ o] < [ oo

Using the Holder’s Inequality,

y y 1/p .
[ i <ttt = ([ orar) e -y

Since |v(t)| is non-negative,
Yy 1
/ lo(t)|Pdt < / ()Pt
T 0

This concludes the proof.

Evans 5.5

Take W such that V' CcC W cC U. Consider xj;, = 7. * xw, which are smooth on W.. We can choose €
small enough such that V' C W, then xj, is 1 on V and 0 near oU.
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Evans 5.7

When 1 < p < oo, [ulf € CH(U), so by Gauss-Green, we have

/ \u|pd5§/ |u|pa-ud5§/div(\u|pa)dx. (37)
oU ou U

By the product rule, this is

/ lufP dS < / Dl - o + [uf? div v dz. (38)
U U
The first term can be controlled by Young’s inequality ab < %p + % for a,b > 0 and % + % =1
_ -1 Dul?

DIl =pla 1Dal < p (P2 ) + P2 = cup + Dup), (39)

SO
/ Dlulf - adr < / la| | D |ul?| < C’/ lul’ + |Dul? dz, (40)
U U U

because |a| is bounded on U (e is a smooth vector field on U defined on dU, and U is bounded and thus
compact). The second term is bounded by C [, [u[” dz because |div | is bounded (as |diva| < C'|Dal).
Thus

/ lu|” dS < C/ |Dul? + |ul? dz. (41)
U U
When p = 1, |u| is not C!, but we can approximate it as v/u2 + €2, which is C*(U) because D*u? + €2 =

uDu 77

Jogea €0 (U) for || = 1. Then by Gauss-Green and the product rule (same inequalities as above),

/ \/u2+62dSS/D u?+ €2 a+Vu?+ edivads. (42)
au U
Because a is smooth up to U (same compactness arguments as above), we have

/ \/u2+62d5§0/ ’D\/u2+e2
ouU U

As e — 0, |D*Vu? + 2| = ‘ﬁ | D%u| increases to |[D%u|, and vu? 4 €2 decreases to |u|. Because U is

bounded (so that v/u? + €2 is L(U) for € > 0), the monotone convergence theorem allows us to pass to the
limit as € = 0 and conclude that

+’\/u2+62

dz. (43)

/ lu|dS < C’/ |Du| + |u| dz. (44)
U U

Evans 5.15

Not done.
First

(w) 1/w ! [
o [l L
Ul Ju Ul Ju—{u=0y

U — fu=0}* (U] - ' )
— U = — (X)2
< - < - .
< Wl moy < gl
By the reverse triangle inequality in Poincare’s inequality,
ClDully = [lu = (Wully = lJully = [(w)ully
1 (U] —a)?
> |ully — U2 ——=——||u
> full U1} Sl (46)

«
> (1 /1= 2 Jul,,
( o)
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with C' depending only on n (because the domain U is fixed). We conclude that
lully < Cl[Dull,, (47)

with the constant depending only on n and «.

Evans 5.17

Throughout, let M = sup |F’| be the Lipschitz constant of F' and ¢ € C*°(U).
First we verify that F'(u) and F'(u)u,, are in LP. First suppose 1 < p < oco. We have F(z) <
F(0) + M |z| < 2max(F(0), M |z|) on R, so

/ Fu)f’ <2 / (max([F(0)[, M? [u]")) < oo, (48)
U U

because U is finite measure (so the constant function F'(0) is LP(U)) and u € LP(U). Thus v = F(u) € L.
Also,

[ 1P <0 [ jul <o (49)
U U

because F’ is bounded and u,, € LP(U). When p = oo, we have |F(u)| < max(F(0), M |u]) (again for M
the Lipschitz constant of F') and |F'(u)us,| < M |ug,]|, so both are in L>°(U).

Now we verify that v,, = F'(u)u,, (in the weak sense). For 1 < p < 0o, choose a sequence {u"} C C*(U)
with u" — u in WP(U) (possible because U is bounded). Because F is C* and u™ are smooth, then we can
integrate by parts to get

| Paryen == [ P (50)

We are done if we can pass to the limit as n — oco. On the left side,

/U [(F(u") = F(u)pw | < [F ") = Fu)ll, lea:lly <M lleall, [u" = ull, =0, (51)

SO

/U F(u")pa, — /U F(u)pa,. (52)

Now we analyze the right side fU F'(u™)u} . Choose some subsequence of u" and refine it to a sub-
sequence converging a.e. to u. Refine to a further subsequence of uj. converging a.e. to ug,. Then
F'(u )uls — F'(u)ug, a.e. Now |F/(u™ )ulls — F'(u)ug,| < C(|ull*|+ |ug,|) € L (U) (constant comes from
F’ bounded), so by the dominated convergence theorem, F’(u™*)u* — F'(u)uy, in L*(U). But because
every subsequence of F'(u")u} has a subsequence converging in Li(U ) to F'(u)uy,, the whole sequence
F'(u™)u — F'(u)u,, in L'. We conclude that

/U F/u)ul o — /U P (w)us, . (53)

WARNING: not sure if this works.

When p = oo, we can’t approximate by smooth functions. But the book says that W1°°(U) is the space
of Lipschitz functions on U (if U is C'), and these functions are differentiable a.e. (and the weak derivative
coincides with the classical derivative) so we can integrate by parts (on the set where w is differentiable) to
get

| Fpn == [ Pl (54)

This proof could probably be extended to the case where U is unbounded, as long as F'(0) = 0, because
the boundedness of U was only used to argue that F(0) is L and approximate elements of W?(U) by
smooth functions, but we can just do that locally (because we are always integrating on supp ¢).
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Evans 5.18

Let F.(t) = Vt2 + €2 —e. Then F./(t) = ﬁ which is continuous and bounded by 1, so by the chain rule

(previous exercise, applies because U is bounded),
/ Fe(u)pe, = _/ F (u)ug, p. (55)
U U
We have F.(t) — [t| as € — 0, and F.(t) < [t| (start with 22 4+ €2 < 22 + €2 + 2¢ and take square Toots).

Moreover, F.'(u) — sgnu pointwise as € — 0, and F.'(u)uy, < |uy,|. Because ¢ is C2°(U), we can use the
dominated convergence theorem to pass to the limit as ¢ — 0 and obtain

[ s = [ senusg. (56)
U U

so we conclude that [u| € WHP(U) with |u], = u,, sgnu (a.e.).
1. By part(b), |u| = u* —u~, a linear combination of functions in W1>.

2. Consider F, as given. Then by the chain rule,

‘o ifu<0

This converges to the proposed Du™ as € goes to 0. Also, for any ¢ € C(U),

LEWZ—AD3¢

Letting € goes to 0 (to see justification for this, see above), we have

LMW:—LDW¢

3. Now Du = Du* — Du~, and for u =0, Du™ = Du~ = 0 a.e.. Hence Du = 0 a.e. on the set {u = 0}.

Same can be done for u~.

Evans 5.19

Note: it seems like we only need Du¢ — 0 in L%, and not u¢ — 0 in L2, but everything is proved here.
First we show ||uf|| ;. is bounded uniformly in e. Because ¢(0) = 0 and ¢’ is bounded, |p(z)| < C'z|.

Then )
€ € u
w3 = [ W= [ Jeel) < [ 1l =cui. (57)
U U € U

€2 €12 _ 2 2 2
| Duc|2 = /U Du[? = /U ¢ (ue)* |Duf? < C | Dul2, (58)

so [[ucl| g < Cllulln < C.
By the Riesz representation theorem for Hilbert spaces, we want to show that

Also,

<u€vU>H1(U) —0 (59)

for each v € HY(U). That is,
/ u“v + Duf - Dv — 0. (60)
U
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First suppose v € C2°(U). For the first term,

[ o= [ eolwe v <elel ol o (61)

U U
because ¢ is bounded and v € C2°(U). For the second term, integrating by parts and applying the above
gives
/u;% :/ UV, — 0 (62)
U U

for each x;, so [, Du - Dv — 0.

Now let v € H'(U). Fix § > 0 and choose ¢ € C>°(U) with |[v —||;1 < 6. Then take e sufficiently
small so that | [;; u“e)| < 6. Then

/uev
U
‘/DuE-Dv

Because § was arbitrary, we conclude that u® — 0 as € — 0.
Finally,

</ |u€<v—w>|+|/ uw\ <54 uclly o — wll, < 5+ € (63)
U U

Also
< / |Du - D(v — )| + ’/ Du - Dw’ <0+ ||Duf|, [[Dv — Dy||, < C9, (64)
U U

/ ¢ (ue ) Du - Du
U

- / o (ue™1) | Duf?, (65)
U

where we remove the absolute value bars because ¢’ is non-negative. Near = 0, ¢(z) = z, so ¢’'(0) = 1.
Then because the integrand is non-negative,

/ |Du\2:/ go’(ue_l)|Du|2§/w’(ue_1)|Du|2—>O (66)
{u=0} {u=0} U

as € — 0, but the left side is independent of €, so the left side is equal to 0. Thus Du =0 a.e. on {u = 0}.

Evans 5.21
We start with
L+ fy)” <1+ (Jo[ + ]y —2))° <1+ C(ja]” + |y —2*) < CA+[2]°) + CO(1 + |y — z[*), (67)

where we used the inequality a + b < C(a® + b*)= for a,b > 0(this is the statement that I, < Cll, in
dimension 2 (Holder’s) for s > 1, and for 0 < s < 1 we can show ||-[|; < ||-||,). The constant depends only
on s.

We want to show (1 4+ |y|*)uv = (1 + |y|*)a* o € L?. We have

1+ [yl d(y) = /(1 +lyi(z)o(y — z) da

< C’/(l + |z|M)a(z)o(y — z) do + C/(l + |y — x*)a(z)o(y — z) dz (68)

=C((1 4 |z])%a) * 0 — C/(l + [t*)a(y — ) (t) de
= C((L+[zl)*a) « o — C((L + |z]*)0) = 4,
where we made the substitution ¢ = y — z. Then

11+ Jy[)uvlly < CI(A+ [2]7)a) * olly + C (1 + |2[7)0) « all,
S CONA A+ [2)ally 1ol + C N+ [2)oll, (69)
< Cllullg lvlly + Cllvllga flully
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and we are done because
111, =/|f| < /(1 L) ) | ()| da < (/(1 + |x|8>-2) )l (70)

and the integral converges because s > 4. Thus

[uv]| g < Cllull g 0] g1, (71)
with the constant depending on n and s.
Evans Chapter 6
Evans 6.1
We compute
u " u
div(w?D(—=)) =Y  0;(w*0;(—
iv(wD(-)) ; (w*0i(—))
" U W — UW
_ 9 U — i
- Z; 81(11) w2 )
i (72)
= Zun‘w + UW; — UW; — WU
i=1
= wAu — uAw
= weu — ucw
=0

Using the product rule, the divergence structure condition says aAv+ Dv-Da = 0. Substituting v := vaz
into Laplace’s equation with potential and using the product rule Afg = fAg+gAf+2Df-Dg, we compute

A(va%) =vAa? +a?Av + 2Da? - Dv
=vAa? +a?Av+a"?Da- Dv
= vAa? +a”*(aAv + Da - Dv)
=vAaz.

(73)

Nl

If we take ¢ := a_%Aa%, then we have Au = cu for u = vaZ.

Evans 6.2

Define the bilinear operator

Blu,v] = / Z a” g, vy, + cuv da.
U

i,j=1

We check it satisfies the requirements for Lax-Milgram. First, for u,v € Hg(U),

Blu.oll < 3 a9 mw) [ 1DulIDeldetlellmn [ el de < (3 o +lellomw)lellagon Iolmgco

ij=1 ij=1

Moreover, we have by Poincare’s inequality and since L is uniformly elliptic, for all u € HJ (U)
0/ |Du|? dz < Blu, u] 7/ cu® dz < Blu, u] +u/ u|? da.
U U U
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And by Poincare’s inequality,

0+ p

50 ||u||H1(U)< Ol Dul| 2oy —pllull 2 0y -

with C being the constant for Poincare’s inequality. Thus, since

0
bl < Blusul
as long as
0+
>0 = pu>—0
1+C K

then L satisfies Lax Milgram.

Evans 6.3
First suppose u € C°(U). Then

Jaul: = | (Zu) = [ 3 vt

,j=1
74
= /Z Ug;z;0;Uz; = /Z Ug,z;Uz;z; ( )
4,j=1 1,7=1
= [|D?ul -

To extend this result to u € H3(U), choose u,, € C°(U) with u,, — u in H3(U) and then approximate:

[1D%u]l 2 = IAulle] < ([ D] 2 = [|D%unl] 2|
+{[[D%unl| 2 = [Aunll o] + [ Avnll 2 — [|Au]] ] (75)
< ||D*u = D?up|| o + [ Au — Aug |- -

The first term is controlled because u,, — u in HZ. To control the second term, note that for any v € H2(U),
n

/ / Z Va; mlv%% - 2/ Z Yz wjfrj < C/Z’Uiﬂh S CHDQUHLZ" (76)
4,j=1 4,5=1 i=1

Returning to eq. (75), we have

||| D?ul| ., — [Aull,2| < C||D*u — D?uyl| ., — 0, (77)
SO ||D2u||L2 = ||Aul| ;2 for all u € HZ. Two applications of Poincare’s inequality give ||u||H§ <C ||D2u||L2
(because both u and u,, for 1 < i < n are in H}). Because [|Aul7, = HD%HQL2 < ||u|\fqg, we conclude

that ||uHH3 and [|Aul|;2 (induced by the inner product (u,v) = [ AuAv) are equivalent norms on Hg. In

particular, this inner product makes Hg a Hilbert space.
We have |[ fo| < |Ifllp2llvlle < Il [0llgz < ClIfllge [Av]lL2, so v — [ fv is a bounded linear
functional on the Hilbert space HZ with the inner product (A-; A-)pz.

We are done by the Riesz representation theorem.
Evans 6.4

If u € H'(U) is a weak solution to [,; Du - Dvdx = [, fvdzx for all v € H'(U), take v = 1, then we get
Jiy fdz = 0. Conversely, assume [;; fdz = 0. Then consider the subspace of H'(U), denoting A = {f €
HYU) : Jiy fdz = 0}. We claim that A is a real Hilbert space with respect to the inner product (f,g) =
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Jy Df - Dgda. First of all, A is closed because the integral operator I(f) = [, fdx where [ : H*(U) = R is
continuous. Thus, A = [71({0}) is closed. Since H*(U) is complete, we have as A a complete subspace. We
next prove that (f,¢g) is an inner product. Linearity and symmetry are easy to see. For positive-definitness,
we have for all f € A with f # 0, (f,f) = [[Dfl|z2@w)> 0. Moreover, if (f, f) = 0, then by Poincare’s
Inequality, we have

I fllzzqy= IIf = (Hoflleza)< I1DfllL2@)y=0

. Thus, we have f |f|2dx = 0 :> f =0 a.e.. These prove that (f,g) is an inner product. Next, for all
v € H'(U), the linear operator I;(v) = [;; fvdz is bounded since f € L*(U):

15(0)| = \ /U fods

Thus, by Rietz Representation Theorem, there exists an unique u € A such that

< ||fHL2(U)||”||L2(U)§ Hf”L?(U)HU”Hl(U)'

(u,v) /Du Dudz = Iy (v /fvdx

for all v € A. With this, observe that for arbitrary v € H(U), let o = v — (v)py. Then we have o € A. Thus,

(u,@):/DwD(v— (v)v) dm—/Du Dudx = 14(v /fv— Ud:r:/fvdx
U U
since [, fdx = 0. This completes the proof.

U

Evans 6.5

Multiplying the PDE by v € C*°(U) and using Green’s formula and the boundary condition shows that

/va:/U—vAu:/UDva—/aU " /Du Dv—i—/aqu (78)

holds for all v € C*°(U) if and only if u € C°°(U) is a solution. An approximation (valid because U is
smooth) shows that the identity holds for v € H(U). We thus say u € H*(U) is a weak solution to Poisson’s
equation with Robin boundary conditions if

/Du-Dv+/ uv:/fv (79)
U U U
for all v € HY(U).

We now verify the conditions of Lax-Milgram; because the bilinear form we have is symmetric, this is the
same as checking that the norm induced by the inner product that is the left side of the weak formulation
is equivalent to the usual one in H'. We have

/U Du- Do+ /8 w0 < Dl Dl + 1Tl oy 1Tl 0

< Cllull g ol g

(80)

using the boundedness of the trace operator.
Coercivity is harder. Suppose that for each k, there exists u, € H! with ||uk||§{1 > k(||Duk||2LQ +

2 ..

[ Tukl|72(50r))- By normalizing, we may suppose that |lug|| ;=1 for all k. Then || Dug |12 , [|[Tuk | 12517y = O
as k — oco. Because the u; form a bounded sequence in H', which is compactly embedded in L2, we may
extract a subsequence

up, ~u inH' (&1)
U, —> U in L2,
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By strong convergence in L2,
ez = Jim g, |72 = i (s, [0~ D, [[22) =1 (82)

because ||ug|| ;1 = 1 for all k and ||Dug|| — 0 as k — oco. By weak convergence,

| Dulf3, :jlggo/[)ukj +Du < Jim || Dul| | Dus, ||, » (83)

and similarly
ITul72 o0, :jlingo/é}UTuiju < Jim |Tul o0 1Tk | 2 o0 (84)
which implies that [[Duf ;. = |Tullj25y) = 0. Thus u € H§, so by Poincare’s inequality, |lull;. <
C||Dul| 2= = 0, a contradiction with ||ul/;. = 1. We conclude that there exists C > 0 with C ||u||§{1 <

2 2
[1Dullz + [ Tull 2 o0,y
These two estimates show that ((u,v)) := [;; Du-Dv+ [, uv is an inner product on H*(U), and moreover
the induced norm is equivalent to [|-|| ;1 (¢;). The linear functional v — Ji fv is bounded in ||| ;2. Thus by

the Riesz representation theorem, there exists a unique u such that ((u,v)) = [;; Du- Dv+ [y, uv = [, fv
for all v € H.

Evans 6.6

If we assume wu is a classical solution and use Green’s formula, then

ou ou
/fv——/vAu_/Du-Dv—/aUvay—/DU~DU—/F1U8V7 (85)

where we used the boundary condition on I's.

WARNING: There is an attempted proof of the Poincare inequality when u vanishes on only a subset of
the boundary. It seems to work.

To get rid of the second term, define the space of test functions H = {v € H'(U) :v=0o0nT1}. Put
an inner product on this space (u,v) = fU Du - Dv. To prove coercivity, we want to claim that a Poincare
inequality holds, but we don’t have © = 0 on all of QU for u € H, just u = 0 on I';. Suppose that there
is no constant such that ||ul|,. < C|Dul|;.. Then there exists {uy} C H, which we can take satisfying
lug|l 2 =1, with ||ug|| 2 > k| Dugl||; 2. Then uy is bounded in H' CC L?, so we can extract a subsequence

U, — U in H!
J

86
Up; —> U in L2 (86)
By strong convergence in L?, ||lul|;. = 1 and by weak convergence,
2 . .

| Dull% :g&/pukj Du <l |Dulls | D, (87)

so ||Du|| ;> = 0. Because U is connected, Du = 0 implies u is constant on U. We also have

2 . .
Tl = i [ T o< B Tl [T, )
1

and so HTu||L2(F1) = 0, because ug;, = 0 on I'y, and so u = 0 on I';. Because u is constant a.e, its trace is the
same constant a.e. on the boundary Because I'1 has positive measure inside QU (for example it is relatively
open in OU), we conclude that u = 0 on OU. This means u = 0 on U, a contradiction with |lul/;. = 1.

We conclude that [[ul[g1 ¢y < C|Dul| 2, and so Jiy Du - Dv is an inner product inducing a norm

equivalent to the usual one on H'. We conclude by the Riesz representation theorem that for every f € L2,

there is a unique u € H for which
ou
= | Du-Dv — — 89
/fv / Y v r Ual/ ( )

for all v € H (in particular the second integral on the right vanishes).
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Evans 6.7

WARNING: in general u is not bounded.
Since u is a weak solution, we have that for any v € H}(R™),

/ Zumivzi + c(u)vdz :/ fudz.
R n

"i=1
Let .
A= Z/ Uz, Vo, AT B= / (f = c(u))vdz.
i=1 YR "
Let v = —D; "(D}(u)). Then
A= Z/ Ug, Vg, AT
i=1 /R"
= Z Dg(u)zz(DZ(u))xld‘m
=1 R
= / | D} Du|?d.
Rn
On the other hand,
BI< [ (61 letw)Dlolds
1
<e [ oPdot o [ (1% w]2ds
Rn 4.6 Rn

[ wkar<c [ piowp
R R

We know that

Now choose € so that we obtain
1
/ |DFDu|?de = A < 5/ |D,’;Du|2dx+c/ (|f] + |c(u)|)?*dz.
Rn Rn Rn

The righthand side is bounded since u has compact support and ¢(0) = 0. Therefore outside of the
support of u, ¢(u) = 0. Also, u is bounded, and ¢’ > 0, so ¢ is bounded above by ¢(sup u).

Evans 6.8

We compute

Lv=— Z a’ (|Du|2 + )\uz) i

ij=1

(90)
n n
= — Z atd <Z (2kawiu;pkxj + QUmkUzkzwj) + 2Xug Uy, + 2)\uumiwj> .
ij=1 k=1
Now the uniform ellipticity condition implies that
n n 9
_ Z a7 Uy Uy, < — ZG |Duk\2 =—0 |D2u| (91)
i,j,k=1 k=1



and

n
- Z augug, < —0 |Dul?. (92)
ij=1

Differentiating Lu = 0 in the zj direction gives

n n
_ E ij — E ij
a urlrgrk - aﬂk_u.’tj.'lfj

i=1 ig=1
< C'|Dul ‘D2u|
<4 |D2u|2 +C|Du)?,

(93)

where we used Cauchy’s inequality with € = #. The constant C' depends only on the coefficients @/, whose
derivatives are bounded. Substituting all of these gives

Lo < ~6|D?uf* + 2\uLu — 220 [Duf* + C | Duf* (94)
< (C —2X0) |Dul?,

which can be made negative independent of u for A sufficiently large.
Thus Lv < 0 for A sufficiently large. Let A > 1. Because u is smooth up to the boundary (elliptic
regularity), so is v, so by the weak maximum principle, maxg v = maxgy v. Then

1Dull oy < 0l
= 1[0} o0
< (HDUH%w(aU) +A Hu||2L°°(8U)) :
< MIDull g ouy + 1wl Lo o0))

where we used || f(u)|; = f(||u|l; ) for u smooth and f increasing and va? + b < a+b for a,b > 0.

Evans 6.9

Proof. Since f is bounded, there exists M > 0 such that | f(z)] < M for all z € U. Now, consider L(u+ Mw).
Since Lw > 1, we have L(u+ Mw) = f+ M > 0. Thus, we can apply weak maximum principle to show that

: u s u _
gg[r]lu(x)—l— w(x) Zne%rllju(m)—&— w(z) =0

since w(z?) = 0,w > 0 on AU, and u = 0 on OU. Thus, we have
u(z) + Mw(z) >0 on U
and
u(z%) + Mw(z®) = 0.

Thus, we have
ou(x®) + Mw(z®)r <0 = Ju(2®)v < —Mow(2")v.

On the other hand, do the same thing with L(u — Mw), we get that L(u — Mw) < 0. Thus,

min u(z) — Mw(z) = nin u(z) — Mw(z) =0

. Thus,
u(z) — Mw(z) <0 on U

and
u(z?) — Mw(z®) = 0.
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The above two implies that
ou(z®) — Mw(z")w >0 = ou(z®)v > Mow(a")v.

Moreover, we have
pdw(x°)v <0

because Lw > 1 > 0. Thus,
|u(2”)v| < M |dw(z®)v|.

Now, given the tangent space of QU at 2°, we know it is n —2 dimension. Let {v1,...,v,_2} be a basis of the
tangent space, then {v1,...,v,_2,v} spans OU. However, since u = 0 on OU, duv; =0 foralli =1,...,n—2.
Thus,

|Du(z0)| = v/ (Ouv;)? + (Qu(x0)v)2 = |Ou(2”)v] .

Thus, the ineuality follows.
| Du.

Evans 6.10

If w is a smooth solution, it is in particular a weak solution, so by Exercise 6.4, we have fU Du - Dv =0 for

all v € HY(U). Taking v = u gives ||Du||2Lg = 0, so because U is connected and u is smooth, we conclude u
is a constant.
Using maximum principle, apply Hopf and SMP.

Evans 6.11

Because u is bounded and ¢ is smooth, ¢ has bounded derivatives in the range of u, so p(u) € H'(U) with
the expected derivative. We then have

’U.) U / Z a’ SD r,vz]

1]1

7
:/ E aly (u U Uz, Ve,

zgl

- / > e (96)

131

_ i //
= / E ajgp U) Uz U,

i,j=1

—/ 00" (u)v | Dul?
U

<0

IN

There is no boundary term when we integrate by parts because v € Hg. The final inequality holds because
the integrand is positive (¢ > 0 because ¢ is convex, and v > 0 by assumption).

Evans 6.12
Suppose u € C*(U) N C(U) and let w = “. Let Mw be defined by

Mw = E a7 vwx E v2bzw$1
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We have that

i 02
and
(VP Wy, oy = (Vg — Ug, V), = — VU, + Vi U, — Vg U, + Vo, U
Therefore
n n n
Z a” (vwy,)s, = —v( Z a g, q,) + ( Z a" g, u.
i,j=1 ij=1 ij=1
Furthermore,
n n n n
szbiwm = Z b (Vg U — Uy, V) = fv(z blug,) + (Z blvg, u.
i=1 i=1 i=1 i=1
Hence

n n n n
Mw = —’U( Z a”uzﬂj - Zblum) + ( Z az)jvximy‘ - Z blvzi)u
i=1 1=1

,j=1 5,j=1
Since Lv > 0, v > 0 and Lu < 0, we see that
Mw < —cuv + cou =0

on the set {u > 0}. Therefore M is a operator with no zeroth-order order term, and Mw < 0 on the set
{u > 0}. By the weak maximum principle, w = ¥ must attain its maximum on the boundary of {u > 0}, or
on the boundary of U. In the first case, max% =0, and in the second case max% < 0. Hence % < 0 on all
of U. Since v > 0 it follows that u < 0 on all of U.

Evans 6.16
* (a)

Proof. By calculation,

n

—Aw = — Z(iawi)wxj = o%w Zw? = \w
i=1 i=1

as desired. O
e (b)

Proof. By calculation,

3 "‘Tmiew‘”‘élﬂﬂ — e"‘"”‘% 3 oz, z;
B Yl e i ] -3 [otie - )], =
Note: The problem is —A® = AP + g, not sure where aoes the dg come from. O
* (c)
Proof. We have w, = Dw - 177 = iow(w - %) Thus,
lim r(w, —iow) = lim irow(w - - 1)#0

7—>00 T—00 |l’|

as (w- % — 1) # 0. On the other hand,

. 1
¢T == (P(ZO- - W).
Thus,
. . . o
lim r(®, —ic®) = lim —— =0
r—00 r—oo T
because |®| — 0 as |z| — . O

28



Evans Chapter 8

Evans 8.1
1. (a)

Proof. Since sin(kx) = %, by Riemann Lebesgue Lemma, we have since for any v € L?(0,1),
vX[0,1] € L*(R), we have

eik:z _ efik:z
len;o - sin(kz)vdx = klirgo A 5 vXJo,1) dx = 0.
Thus, ux — 0 in L2(0,1). O

2. (b)
First suppose ¢ € C2°(0, 1). For k large enough, ¢ is uniformly continuous, so given € > 0, there exists

C; such that |¢ — C;| < € on [£, ZE1] for each 0 < j < k — 1. Now

j+1 i+l jt+1

/Ol(uk(x)—()\a—k(l—)\)b))go‘: §/+aap+/+ b@—/JT)\aga—/lT(l—A)b. (97)

K k k k

Estimating each summand,

QA FE= FEDY JHA JHA 1
k k k k k k
‘/ aga—/ /\acpg/ agp—/ aCj+/ aCj — [ Dayp
% % * % % ®
o o e o8
<lal [ lo-cil+| [T xac- [ e .
% % 3
< 2la| A+
and similarly
e “p )
/ b(p—/ (L=X)b| <2]a| (1 —A)-. (99)
o k
Recalling 0 < A < 1 and summing over 0 < j < k — 1, we have
1
] o) = a1 = 0] < 2l + e (100)
0

Now let ¢ € L?(0,1) and choose ¢,, € C°(0,1) with ¢,, — ¢ in L? (and thus in L' because the domain
is bounded). Also notice that |ux|, | a + (1 — A)b| < C. Define vg, := up, — (Aa+ (1 —A)b). Given € > 0,
choose ¢, with ||¢, — ¢||; < €. Then

’/Uk@‘g‘/vk(wsan) +‘/vk90n §C€+‘/Uk@n < Ce (101)
for k sufficiently large.
Take any function v € L?(0,1). Then
1 k—1 % k—1 Jl‘i
/ up(x)v(z)de = Za/ v(x)dz + bZ/ v(x)de.
0 =0 ‘% =0/
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On the other hand, let ©w = Aa + (1 — X\)b. We have

k—1

1
(Aa+(1f)\)b)/0 v(@)de = (\a + (1 - \) (

=0

k—1 L]yl
/ (:E)dxqtz:o/jtA v(z)dx
s

.

Taking the difference,

k=1 it
(u,v) — (up,v) = (Aa+b—Ab—aZ/ z)dz + (a4 b — \b—b) Z/
j=1
k—1 J:)\ J+1
:(A—l)(a—b)Z/ v(z)dz + Ma — b) Z/
j=17%
k—1 JtA it k—1
k
:(a—b)</\2/l_ am;+AZ/+ / )
j=0"% J
%
=(a—0) </\/ v(z)dx — Z/ v(x)dm)
0 j=0"%
Now for any € > 0, for sufficiently large k& we have
/ @)z € Co(d) ~ 0, 2 (w(2) + )
x v(=) —¢€),—(v
: R T
Hence,
k—1 = j = j
>, v(z)dz € (E 4 U(E) = e, 7 - U(%) + Xe)
Jj=0"k j=0 7=0
Hence the convergence holds.
Evans 8.4
e (a) By calculation,
L,x(Du,u,z) = n(u)(cof(Du))* kii=1,...,n.
by divergence-free rows, we furthermore have
Z(L +(Du,u,z) ZZ (023 (0))ul, (cof(Du)) 27727 d;k det(Du).
i=1 =1 j=1

since det Pd;; = S1_, pi(cofP)], by det PT = P(cofP)T. On the other hand,
L, (Du,u,z) = n,.(u)det Du.
So — Y i (Lyr(Du,u,z))y, + Lok (Du,u,z) = 0 as desired.

e (b)

Proof. This is just theorem 1 in 8.1.b
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Evans 8.5

WARNING: First claim does not work.

First, the integral expression is independent of n satisfying the constraints of the problem. To see this,
let 11,12 be two such functions. The support of 1o u is contained in the closed set W := u~!(B(z¢, 7)), and
applying u=! to B(xq,7) Nu(0U) = & gives W N OU = @. Thus we may choose a smooth cutoff function
0 < ¢ <1with ¢ =1 on 9U and supp(. C {z: d(z,0U) < ed(W,0U)}. We can moreover arrange that
|D¢.| < Ce~t. Then (.u = u on 9U, so by 8.4b,

/ (1 — 172) () det Du = / (1 — 1) (Cew) det D(Ceu) (102)
U U

I want to do something like pass to the limit with [, (71 — 72)(xouu) = 0 because of where 7,7, are
supported, but it seems |det D{| grows too quickly for the limit of the right side to be 0. But assuming the
degree is well-defined (independent of 7)), the rest of the proof works.

The degree is locally constant in g (it is constant on, say, B(xo, 5), because suppn C B(z, 5) for each
x € B(xg, 5)).

Suppose z is a regular value of u; namely, det Du(z) # 0 for each z € S := u=!({zo}). The inverse
function theorem implies that u is injective on a neighbourhood of each x € S, and thus S is discrete.
Moreover, S is closed because u is continuous. Thus S C U is closed and bounded and thus finite (as a
discrete compact set). By the inverse function theorem, choose for each x; € S (1 < i < m) neighbourhoods
V; such that u maps V; diffeomorphically onto u(V;), which is a neighbourhood of z¢. If needed, shrink each
V; so that they are pairwise disjoint and det Du has constant sign on V;. Then let V := (", u(V;) and
choose 1 so that fRn n =1 and suppn C V N B(xg,r), with r as in the problem statement. By the change
of variables formula,

/ n(u) det Dudz = sgndet Du(x;) / n(x) de = sgndet Du(z;), (103)
Vi u(Vi)

where the last equality holds because suppn C u(V;) and fRn n = 1. Then

m

/Un(u) det Du = ZZ:; /V n(u) det Du = Z sgndet Du(z;), (104)

i=1
where the first equality holds because 1 o u is supported in {u(z) € Nu(V;)} c V.
If 2 is not a regular value, pick a sequence of regular values x,, — z¢ by Sard’s theorem (regular values

are dense). Because the degree is locally constant in zp, for n large enough, deg(u, z¢) = deg(u, z,), and
the right side is an integer by above.

(Guaraco Problems

Problem 3
Integrate by parts in the Allen-Cahn energy functional:

62 2
eEc(u) = /M 5 [Vu|” + W (u)

= / ~LeAu+ W (u)
M

f (105)
= / ——u(u® —u) + = (1 —u?)?
M 2
1, 1
= —U + —_
/M i

If u # 0 anywhere, then ¢E.(u) < [,, 1 = [W(0) = €E(0). That is, 0 maximizes E..
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Problem 6 (Jared)

I think this requires a fair bit of comfort with geometry (some of which I forgot this morning), so I'll try to
go through explicitly.

Guaraco asks you to rescale the metric ¢ — ¢ 2g - what effect does this have? Well first, this changes
the volume

oc

dvoly — dvoly, o

Vl]det geldey A+ Adxy, = /| det e 2gldzy A+ Adxy,
=+/|le 2 detg|dzy A+ Adx, = € "/ |det g|ldxy A -+ Ada,

the initial expression for dvol,, is standard and can be found here for instance. Intuitively, metrics are
measuring length, so rescaling by €2 is like changing the scale by e for vectors. This is seen in that
our euclidean notion of length is ||v|| = 1/(v,v) so we replace the inner product with our metric to get
l[v]] = v/g(v,v) so that ||[v]|. = /e 2g(v,v) = e |||, i.e. we've rescaled by a factor of e~!. This also
manifests in the volume integral, where it’s like we’ve gone from the volume form at scale r =1 — r = ¢
(think of integrating over a ball of » = 1 vs. r = ¢ and trying to connect the two by the diffeomorphism
fe(z) = ex.
With this, we have that

B B.(p) = |

{z | dg(z,p)<e}

= / <e3ge(Vu, Vu) + VV(U)) €"dvol g,
{z | dg. (z,p)<1} €

Note the labelling of the domain of integration has changed from “points less than € away” (under g) to
“points less than 1 away” (under g.), reflecting the change in metric. However, we're still integrating over
the same points on the manifold - just calling them by different names.

As you’ve shown in problem 1 (or maybe “will show”), we have that

(0w + 7

Agu=u(u® —1)

in what sense does this hold true? Well if initially, we’re investigating this problem on B.(p), then we
compose u with a chart, call it ¢ so that ¢ : B1(0) 5 B. (p) - Thus, on B1(0) we have

(Ag.u) 0 p(z) = (u(u? — 1)) 0 p(x)

where I've composed both sides of the equation with our chart map.

In particular, if you write the above out as equations on Bj(0), then you’ll get an elliptic PDE (here, use
that ¢ is a Riemannian metric), and so Schauder estimates apply. Because this argument is local, we can
exchange the distance weighting in the Schauder estimates for a constant and get

lwo ellia < K ([[uollco + [Ju(u® — 1) 0 ¢llco)

The point is that there is no chain rule happening in the above because all we’ve done is composed with a
chart map, and so whenever we talk about a derivative, we calculate it with the function w o ¢ which is a
bonafide function from Euclidean space to R. With this, we get that

sup  sup [(uop)i(z)| < 2K(e)
i=1,...,n z€B1(0)

by definition/conventions of geometry, we have (u o ¢); = u; o ¢, i.e. we can only get values from a function
and its derivatives after moving to charts. Note: there is € dependency in the coefficients {a;;} because
we’ve changed to the metric g.. From here, I'll suppress composition with ¢. If we do an FTC computation
in coordinates, we get that

Vze Bi(p),  |u(z) —ulp)| = |u(z)] < 2K]||z = plly
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the distance ||z — p|| is calculated with respect to the scaled metric, g.. Now we write [, (p) 35 an integral

over B;(0) in “radial coordinates”, where r represents the distance from p (our fixed point) to z € B1(0) via
a geodesic. We then have that

E.(u; B(p)) > / M €"dvolg,

Brin(1, (25 (e ))_1(1)) €

R(e)
:"7/ / 1—u (2)%)2dvol,,
d(z,p)=

where R(€) = min(1, (2K (¢))~1). Now we can bound this below by a radial integral, i.e.
R(e)
B(uiBp) = [ d(zip) = r)1 - QKO e
0

R(e)
> " le(M, ge)/ (L= r®)2dr = e(€) f(R(€) > 0
0

Here, ¢(M, g.) is a constant, universal in p and r and only dependent on the ambient manifold and metric
ge, which acts as a lower bound for % > ¢(M, g.) - under the euclidean metric, this constant is just
the prefactor which occurs for the area of an n — 1-sphere. In R", this is independent of the point that the
sphere is based at. Because our metric is Riemannian, and so uniformily elliptic (because we're on a closed
and hence compact manifold), a similar lower bound on the constant of proportionality should hold.

Note that our lower bound is independent of p and u, but not independent of e. This is okay because in
dimensions > 2 we have the trivial upper bound of (under the euclidean metric for simplicity)

W (u)

Be(p) €

1
< Ce"= =0t
€

Here, C is the constnat of proportionality which is some combination of Gamma function and 7’s (see here)
and we’ve bounded W (u) < 1. The above might be why Gautam got a constant independent of ¢ when doing
the computation for the heteroclinic solution on R - the above bound would just be constant, independent
of € for n = 1. But when n > 2, our lower bound must be less than a constant times €”~!, implying some e
dependency on ¢y in the problem statement.

Guaraco 6

In & E(u+ ty)|i—o = 0, substitute ¢ = 1 (valid because we are on a closed manifold), and get [ W’(u) =0,
a contradiction because 0 < |u] < 1 (so W’(u) is constant sign and non-zero).

Guaraco 7

Guaraco 8

Remark. Doesn’t conclude that it suffices to take €2\, < %

The argument in the hint (minimizer either 0 or constant sign in interior) was done in full in Otis 2.5a.
Compute

1

€

&2 ot 2 1 1

A P N T z
/2“’ LA 2+4</4 (106)

33


https://en.wikipedia.org/wiki/Volume_of_an_n-ball

Thus for € or A\ sufficiently small, the minimizer is non-zero in €.

Guaraco 9

Let uy, us be positive solutions on U to Allen-Cahn with Dirichlet boundary data. Then —Au; = —u} +u; <
u;, 80 Au; +u; > 0. Write

A A 2 2
/ (u1 — UQ> (ul —u?) = /—ulAul + AuQﬂ + Aulﬂ — usAus. (107)
U1 U2 U2 U
Compute the derivative
2 2
D (“1) =22 Duy — 2L Duy, (108)
u9 u9 Uy

2
where the right side is L2, assuming Z—; € L*° (and the same for uj, us swapped), so Z—; € H}. Integrating
by parts gives

ui 2 Uy u?
—uyAuy + Auzu* = [ |Du|® = Dusy - 2u—Du1 - ?Duz
2 2 2

2
109
:/P”‘UHMZ (109)
U2
>0

and the same bound holds with uy, us swapped. Thus

Aup  Ausg 9 9 _/ u‘;’—ul u%—uQ 9 9
/( U U )(u2 uy) = u Uy (ug — uy)

= [ =) 3~ (110

and thus

-2 =0, (111)
from which we conclude using w1, us > 0 in U that u; = us.

Lemma. % %2 ¢ [>°(U).

u2’u1

First, there exist positive constants 0 < ¢ < C such that d,u; < —c¢ (by Hopf’s lemma), and —C < 9, u;
(because U is smooth and u; are smooth on QU compact).

Remark. The idea for the first proof is O,u; < —c means going from the boundary into the domain strictly
increases by at least a fixred amount. Then something like w;(x — tv) > ct for t sufficiently small. Some
compactness of the boundary should make t uniform in x. Same thing for the upper bound Ct > u;(x — tv).

First Proof. By a tubular neighbourhood theorem, choose ¢ so small such that eachy € V :={z —tv : € 9U,0 < t < tp}
satisfies V' C U and y = z—tv(z) for a unique z € OU. Then let M be the maximum second normal derivative

in this tubular neighbourhood; namely, M := sup,, ‘%ul (x — sz/(:v))|szt’, where the derivative is one-sided

(s — 0%). M exists by compactness of V and smoothness of u; and is well-defined because of how V was
constructed. Now possibly lower ¢ so that to < min(5%;, <). Now for (z,t) € U x [0,t], the inward
normal derivative is bounded above and below by § and 2C respectively, so §t < u;(x — tv(x)) < 2Ct by
the mean value theorem. Thus ;& < %7 Z—f < % in V. In the compact set U — V', uj,us are smooth and

positive, and thus their quotients are bounded. Thus %, %2 ¢ L>°(U). O

uQ7u1

This possibly simpler proof works by straightening the boundary.
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Second Proof. For any x € 9U, there exist smooth local coordinates (y1,...,yn) and a neighbourhood V
of y(x) such that VNU = {z € V : y1(x) > 0}. In these coordinates, the condition Du -v # 0 on 9U is
Oy, u; # 0 on U, because v(y) = sy; for some constant s. Because u; = 0 on U, u; = 0 in V where y; = 0,
so by the fundamental theorem of calculus,

1 1
WiYts e syn) = | o (tyr, .. yn) dE = Sty yn) dE. 112
e = [ )t = [ ) (112

Define f; : VNU — R to be the integral expression on the right. Then u; = y1 f;, where f; is nonzero on
OU (because 0y, u; # 0 on OU). Because u; are smooth, differentiating under the integral sign shows that f;

are smooth. Thus in V| Z—f = f—f, which is smooth on QU. Same thing for Z—; Thus Z—;, Z—f are smooth in a
neighbourhood of each point of OU, and also smooth in the interior because uj,us are non-zero in U. We
conclude that %7 Z—f are smooth and thus bounded on U. O

Guaraco 10

Guaraco 11

If it were not rotationally symmetric, then there would be some hyperplane dividing the ball into two half
balls such that u on one half ball is not the reflection of w on the other half ball. Notice even reflection
(of either side) produces a new continuous function in H}(Bg(0)) positive in the interior of Br(0). If the
energy on one half ball is less than the energy on the other, then reflecting this half creates a function with
less energy than u, contradicting the minimality of u. Thus the reflected function has the same energy as u
but is distinct from u, contradicting the uniqueness of u.

Thus u(z) depends only on |x|. From Exercise 10, 1 — u(z) < Ce=o"2* . Now fix K compact and take
Ry large enough so that K C Bpg,(0). By Schauder estimates, u all its derivatives are uniformly bounded and

uniformly equicontinuous, so by Arzela-Ascoli the solutions on Br(0) converge uniformly along a subsequence
R—Rg

to a limit function 4. For x € K, we have 1 — u(z) < Ce ?~ < , so u — 1 uniformly on K as R — co.

Guaraco 14

Any f : S® — R can be extended to f : R*™ — {0} — R by f(z) = f(x|z|™"). Then (in spherical
coordinates) Vgn f = (0, Vf|sn), ordering r first. To see this, recall that the gradient of a function in R"
along a point of a submanifold in R™ is the projection of the gradient at that point to the tangent space of
that point; in this case, f has no radial component.

Remark. This "tangential gradient” thing is not really necessary; one could also notice directly that spherical
coordinates odd wrt reflection across an equator (i.e. negation of an angle).

For e sufficiently small (because the domain is fixed), there exists u; positive minimizing energy with
Dirichlet boundary conditions on the half-sphere S? := S™ N {x,+1 > 0}. Define S™ and u_ analogously.

We show w4 is rotationally symmetric. Fix a hyperplane through a half-great circle orthogonal to the
equator of S. Even reflection across this hyperplane (from either side) produces a new continuous function
in H}(S%) positive in the interior. The energy of uy on either half must be the same (otherwise even
reflection would strictly lower energy on the whole of S%), so reflecting across the hyperplane produces
a function with the same energy as uy on all of S} (with the same sign and boundary conditions). By
uniqueness, this reflected function must be the original w4 ; because the hyperplane was arbitrary, u4 is
rotationally symmetric.

Define @— on S™ by odd reflection as u_(z', xp+1) = —uq (', —xpy1), where 2’ = (21,...,2,-1). Then
U_ is negative on S™ and satisfies Dirichlet boundary conditions. We claim @_ = u_. Indeed, E(a_,S™) =
E(uy,St) = Ey. We know Ey > E(u—,S™) because u_ minimizes energy on S™. If the inequality were
strict then the odd reflection of u_ to a (positive with DBC) function on S% would have strictly lower energy
than u*. Thus Ey = E(a_,S") = E(u—,S™), and by uniqueness of u_, we have u_ = t_.

Now let z € S™ N {zp+1 =0}. Then Vgnu~(x) = Vut(2',—zp41) = Vgnut(z). Thus uy and their
gradients agree on the equator {z,1 = 0}, so the glued solution u which is uy on ST and 0 on the equator
weakly solves Allen-Cahn on the equator and thus on S™.
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Guaraco 15
Guaraco 16

Guaraco 19

An argument like the one in Exercise 14 that the solutions of constant sign in A; and DEJE are rotationally
symmetric (this is a product of the rotational symmetry of the domains themselves). Their gradients are
thus also rotationally symmetric, and in particular they satisfy homogeneous Neumann boundary conditions.
Moreover, the same argument (appeal to uniqueness) shows the solution on A; is symmetric with respect to
even reflection about the equator {z,4+1 = 0}; because it is smooth, this solution therefore satisfies a zero
Neumann condition on the equator. Of course, these symmetry properties hold if the minimizer is 0.

Fix € > 0 and let ¢t € (0,1). We now counsider a non-positive Dirichlet solution u; on A;; the argument for
non-negative solutions on DtjE is similar. Let A; = A" U A, , with the sign being the sign of z,,,1. Because
uy is symmetric about the equator, we can focus on A;r. Let Du; - v = Cy on 0A;. For tg fixed, we want to
show C; — Ci,. Using Du; - v = 0 on the equator,

2
€
W' (uy) = / Au; = €2 Duy-v=1——C;. (113)
A7 At oa7 |04/ ]
and evidently |9A; | — [0Af | (in (n— 1)-measure). Extend u; by 0 (thus continuously) to S™ N {z,11 > 0}.
By Schauder estimates, u; are uniformly bounded and uniformly equicontinuous, so by Arzela-Ascoli they
converge uniformly along a subsequence on Azg to u¢,. Then

W) [ W) < [ ) = W)

+
Ato to

W) = W) (114)
Aij%
< [ W) = W)+ 247 - AL,
Al
where the first term goes to 0 by the uniform convergence of u;, — u; and the second term goes to 0 by the
geometry of the domains. In light of eq. (113), we conclude that C is continuous in ¢.

Remark. What follows assumes that A1(Ay), Al(Dlift) — 00 ast — 0 (small domain, big eigenvalues). Not
sure how to prove this (probably need to get into the geometry), but some scaling argument (for example Dy
are geodesic disks) might help.

Fix € > 0 small enough so that the minimizer is non-zero on both A% and DT (this is possible by Exercise
2

8). Define u, € C(S™) by gluing the minimizers on A; and Di. By Exercise 8 and the remark, the minimizer
in A; is 0 for ¢ small—say for 0 < ¢ < ¢;—and the minimizer in Dti is 0 for t large, say for to <t < 1. Take
t, as large as possible and t; as small as possible. Then the minimizer is non-zero on both A; and DtjE if and
only if t; < t < to. By our choice of €, t; < % < tg, s0 t1 < to.

We claim Cy,(A:,) > 0, as otherwise eq. (113) would say fAtz W' (us,) < 0, a contradiction with uz, <0

in Aq,. Similarly Cy, (Di) < 0. By continuity there is some tg € (t1,t2) with

Duto ' VAtD|3AtO = CtO(AtO) = 7Cto(D?(:,) = 7Duto ' VD;E |6Dti0' (115)

In particular, because Dtj[0 and Ay, share boundary (with opposite orientation), we conclude that the gradients
of the minimizers coincide on 0A;,. Thus uy, solves Allen-Cahn weakly on S™, and by construction its nodal
set is S™ N {xy 1 = Hto}-
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Otis Chapter 2
Otis 2.1

Part A, Assumed Schauder’s estimate works for H' functions

Proof. 1t suffices to show that for any compact set V € R? a critical point is smooth. Let u be a critical
point. Then by definition u € H'(V) N L>(V). We first prove that u is in fact Holder’s continuous with
some coeflicient o € (0,1). We use theorem 8.24 in GT’s Chapter 8. Since u € L, let g(z) = W'(u), then
—Au = g(z) with
3
52‘13 l9(@)| < Cllullpoe vy + l[ull Lo 1)) < C-.

Thus, g € L*°. Thus, the theorem applies and we get that
el vy < Cllulla) +8) < € < oo.

Thus, u is holder continuous with respect to a > 0.
Since u € C*(V), and products and sum of holder continuous functions on a bounded domain is also
hélder continuous, g € C*(V) as well. Next, we differentiate the Allen-Cahn to obtain that

Aug, — W (u)ug, =0 (116)

for each i = 1,...,n. Thus, Du solves this system of Allen-Cahn. We can again apply theorem 8.24 in GT
to 116 with Luy, = dug, + W (u)ug, = 0. Since W/ (u) € L, the theorem applies and we get that for each
U,

i

lua,llcaqy < Cllluallp2n + k) < oo

Thus, we have
[Dullgayy <00 = u€ che.

Since Du,u € L*°, we thus have
lg" (@)l Lo = IW" (u) Dul| oo < [[W" ()] poc | D] oo < 00

Thus, in particular, we have the hélder’s norm of [g]la;v < ||¢'(2)|| ~ is bounded. With this, apply the
interior Schauder’s estimate and get that

ul2,0;v < CJulo;v + |9lo,0;v) < 0.

Thus, u € C*%(V). Now, we do induction on k = 0,1,.... i.e. we will show that if u € C**(V), then
u € C**12(V). We have already proved the base case with k = 0. Know, assume C*%(V'). Then we have
|Diu| bounded for all i = 0, ..., k. Thus, we would have

k
gP@) < Zci HDiuHLm < 0.
i=0

Thus, |g|k—1.;v is bounded and we can apply Exercise 6.1 in GT and get that

ulkt1,0:v < Clufo,v +19lk—1,0:v) < 0.

Thus, u € C**+1%(V). Since k =0,1,2,..., u € C=(V), for any compact sets V C M. O

Part A, Alternate Solution (not assuming anything)

Remark. This shows u € C* = wu € C*>°. The idea is to bypass the issue about applying Schauder
estimates to functions we don’t yet know are in the space by mollifying them first. Technical issues arise
because C functions cannot be approzimated by smooth functions in C“ norm, but this approzimation holds
in C*~¢, which is enough.

Now if only we could get uw € C* without using G-T Chapter §...
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Definition. Let the “little Holder space” c®*(U) be the set of functions f € C**(U) such that

D f(x) = DV f(y)]

lim  sup =0 117
R S Tk o
0<|z—y|<s

for each |y| = k and compact K C U.
Lemma. If0 < 3 < a < 1, then C**(U) C *A(U).
Just k = 0 is proved, but the same argument works for k # 0.

Proof. Suppose 0 < B < a <1, fe C»*(U), and K C U is compact. Then

flz) = fly a-p (@) = fly
wp HDIWL e ) = 1)
z,yeK |z — y| z,yeK |z — y|
0<]z—y|<o 0<]z—y|<o (118)
§5a76|f‘07a
— 0asd — 0.

O

Now we show that the little Holder space is the “closure of smooth functions in the topology of Holder
convergence on compact sets.”

Lemma. Given f € C**(U), we have f € c**(U) if and only if for each compact K C U there exists
fn € C®°(K) with f, — f in C**(K).

Notice that because compact sets can be covered by finitely many balls, it suffices to replace “for each
compact K C U” with “for each ball B CcC U”.

Proof. Suppose f € C**(U) and f, — f in C**(U) with f, € C*(U). Fix a ball B CC U and € > 0. For
some n large enough,

(D" fn — DY f)(2) = (D" fo = DY f)(y)| < €]z —y[* (119)
for all |y[ =k and all z,y € B C U. Let M := sup|/|=|,+1 ‘D'Vlfn

and the mean value theorem (B is convex) gives

. Then the reverse triangle inequality

D f(z) = D f(y)] < M|z —y| + €|z —y|*

o —a (120)
D" f(z) = D" f(y)| <[z —y[" (e+ Mz —y| "),
so [DYf(z) — DV f(y)] < 2e|z —y|* for [z —y| < (erl)ﬁ. That is, f € cP(U).
Now suppose f € c**(U). Fix € > 0, fix |y| = k a multi-index, and fix a ball Bg CC U. By the definition
of the little Holder space, there exists § < R such that if |z — y| < §, then | D7 f(z) — D7 f(y)| < €|z — y|*
for all x # y € Bg. Let f; be the mollification of f. We know f, — f in C*, so we just need to control
the Holder term. Let to be small enough so that ||f; — f[|ox < €0® (possible because f is continuous) and
Bpryt CC U (ball with same center, different radius) for all ¢ < ¢y. Then f; is defined for ¢ < to. For ¢ < tg
and |z —y| < 0,

D) = D)l =| [ o)D" 1o ) = D - )

<elo=yl” [ a2 (20
=€ |J3 - y|0¢ ’
and so
(DY fy = DY f)(x) = (D7 fe = DY f)(y)| < ez —y[™. (122)
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If on the other hand |z —y| > ¢ (and still ¢ < ¢),
(D7 fi = DV f)(x) = (D7 fy = D f)(y)| < 2[[D7fe = D" flc, < ed” <elz—y|*. (123)

Thus for ¢ < tg, we have |(D" f; — D7 f)(x) — (D7 ft — D7 f)(y)| < €|z — y|* for all z,y € Bg. Thus f is the
limit of smooth functions in C*(Bg). O

Combining the above two lemmas give the following.

Corollary. If f € C**(U) and 8 < «, then for each compact K C U, there exist f, € C=(K) with f, — f
in C*P(K).

Proof. Use C*<(U) C ¢*#(U) and the characterization of c*?. O

Lemma. Let U be a bounded smooth domain, let V. CC U, and suppose f € C**(U). If v solves Av = f
with v =0 on U, then v € C*+2:(V).

Proof. By the above, there exist f, € C*(V) with f,, — f in C*#(V) for f < a < 1. Let v, be the smooth
solution of Awv,, = f,, with Dirichlet boundary conditions. By Schauder estimates,

|Un|k+2,a,v < C(‘Unlo,U + |fn|k,a,U)v (124)

with C not depending on n. By G-T Theorem 3.7 (proof based on maximum principle, genuinely not cryptic),
we have |v,|, ; < C(diamU)|faly . (because v, = 0 on OU). Then the above becomes |v,|, 5, <
Cfnly.o- We can choose the f, so that |fuly . <2 |f|k’(Mj,2 so that |vnly 00 v < Clfly a0

Because Ckt28(V) cc CF2%(V) (Arzela-Ascoli), the v, converge along a subsequence in Ck+28(V)
to some v. Then in V,

|AU - f‘o < |AU - AUn|0 + |Avn - fn|0 + |fn - f|0
SN|’U_'Un‘2+|fn_f|0 (125)
— 0,

so A? = f in V. Moreover, because the v,, are uniformly bounded in C**2:%(V') and they converge uniformly
along with their derivatives, we can actually conclude that & € C**2< (although the convergence is in
Ck+2’ﬁ).

Now A(v—19) =01in V, so v—15 € C>(V). But because & € C**%%(V), we conclude v € Ck¥*2%(V). O

Now if Au = W/(u), take f := W’ o w and notice f has the same Holder regularity as u on compact
sets. Thus on V precompact, u € C**(V) for all k (induction on the above lemma), and so if u € C®, the
induction above begins with £ = 0, and we can conclude v is smooth.

Part B

Assuming the elliptic regularity of 2.1a, suppose u is a solution to Allen-Cahn (thus it is smooth). The
truncation ux {ju|<1} + X{u>1} — X{u<—1} i continuous, in H', and weakly solves Allen-Cahn, so it is smooth.
The smoothness is only possible if |u| < 1.

Otis 2.2

Part A

Let u be a smooth solution to Allen-Cahn. To rule out an infinite-energy solution, it suffices to show that if
u’ = 0 somewhere, then either the solution is finite energy or does not exist for all time, so that by continuity
the sign of v’ is constrained to be that of u/(0). Then we are done by Part B, because if v/ < 0, then

2The Holder term is the same, as seen in eq. (121), and for |y| < k, D7 f; — D7 f uniformly on U (because D f is bounded on
U and thus uniformly continuous—see Evans Appendix C.5.7 for details), and so |D7 fi|, < |D7Y ft — D7 f|o+|D7 f|, < 2|D7 f|,
for t small enough.
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(—u)" = —u® +u = (—u)® — (—u), so —u is a solution with strictly positive derivative and thus has finite
energy. By Lemma 2.3, we just need to find a new solution to Allen-Cahn. Recall u? = %(1 —u?)?2 + A\

Suppose A = 0. If v’ = 0 somewhere, then v’ = 0 everywhere and v = +1, which is finite energy.
Otherwise (by IVT) we are in the case of Part B.

Suppose A > 0. Then v’ = +,/1(1 —u?)2 4+ X. Because |u/| = ’

have ' = 0, and so we are in the case of Part B.
Suppose A < 0. Then

11—u?)?+ )\‘ > VA > 0, we cannot

1
u’2:§(1—u2)2+)\20
1—u? > V=2 (126)

lu] <4/1—+v—-2\ and -

We can rule out A = —1 (it is u = 0). Define C':= /1 — /=2X (we have 0 < C < 1 for = < A < 0). Say
u(0) = —C. Then u/(0) = 0 and u”(0) = —C? + C > 0 (u” has the opposite sign as u in [—1,1]). Because

u' = £1/3(1 —u2)2 + X and u” > 0 for positive time near 0, u’ > 0 locally, so locally ' is on the positive

branch u' = +4/%(1 — u?)?2 + A. By the argument in Part B, a strictly increasing (local) solution to this

IVP exists and gets arbitrarily close to C' in finite time, say for ¢ < % By the same argument, and because
|u”] is even in u and u”(C) < 0 (so the negative branch of «’ is taken), solve the IVP with u(0) = C to get
a strictly decreasing solution from C' to —C' on [%, T). Concatenating these gives a T-periodic function.

Is it a solution to Allen-Cahn? Certainly u is continuous. As u — C, v/ — 0, so u’ is also continuous

as it switches from the positive branch to the negative branch. Also, v’ = (u') = #/)hr)\u(u2 -1
s(1—u

<A <O0.

DN =

[V

(where = is the sign of «’) in this formulation is not defined at +£C', but =1on (0,%),sou”

W
+4/3(1—u)24A
is continuous at C. Because u”" and u® — u are continuous functions that agree except possibly at +£C' (a set
of measure zero), they are in fact equal, and this is a global solution to Allen-Cahn.

Part B
Throughout take |u(0)] < 1.
Recall w? = 1(1 —u?)? + X for some A € R. If we suppose u is a smooth solution with v’ > 0 for

all time, then v = ,/% 1—u2)24+ X. We show A = 0. This suffices because we can separate variables in

u = %(1 —u?) to see that the heteroclinic solution is the unique one (given an initial condition).

Suppose A > 0. Then u’ > v/X > 0, so by a comparison principle (which applies because %(1 —u2)2+ A

is locally Lipschitz), u(t) > v/At for t > 0, contradicting u € [—1,1].
If A <0, then we must have

1
u’2:§(1—u2)2+)\>0
1—u? > V=2 (127)

1
V1-v—2 - .
lul < A and 2<)\<0

Define as in Part A C = /1 —+/—2)\ < 1. Because v’ > 0, u increases to C as t — oo. We claim that
u” — 0 as t — oo (a contradiction because u” # 0 near v = C). By Exercise 2.1 (Ju| < 1), u"” = v/ (3u? — 1)
is bounded, because |v/| < & |(1 —u?)?|+|A| < 1 and |3u? — 1| < 2. Because v is bounded, u” is uniformly
continuous, so v’ — 0 by the following lemma (taking f = v’ and a = C): if f € C! and f — a < co as
t — oo and f’ is uniformly continuous, then f' — 0 as t — 0.3

3Thinking of f as J [/, this is basically the intuitive statement that a uniformly continuous function whose integral to infinity
converges must vanish at infinity.
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We now prove the lemma. Suppose [’ /4 0 as t — co. Then choose € > 0 and {t,} increasing to infinity
such that |f(t,)| > € for all n. By uniform continuity of f’, choose § > 0 such that |f'(¢) — f'(¢,)| < € for

|t —tn| < 8. If ¢ € [tn,tn + I], then
€ €

/@O =11 (tn) = f/(tn) + f O 2 [f ) = 1 (tn) = 'O 2 €= 5 =3

2 2
tn+§ tn tn+5
F o / I / I
A 0 tn

But taking limits and applying the fundamental theorem of calculus gives

Because f is C', we have

tn+0 6
z/ If1> 2 0.
" 2

n

tn—+0 tn
o | [ [T = i 1 +8) = 0] = o=l =0,
a contradiction.
Otis 2.3
Since H(¢) is a solution, H'(¢) = %(1 — H?), and so H'(t)? = 1(1 — H(t)?)? = 2W (H(t)). Therefore,
/m (%H’(t)Q £ W(H(D) ) dt = /m (%H’(t)Q 4 %H’(t)Q)dt
= /OO H (t)%dt
_ /_OO 5 (1~ H(1)?)%dr
> 1 2 1 2
= | 50— H0) S0 - Ha
Now let s = H(¢), then % = H'(t) = %(1 —H?). So
/jo <%H’(t)2 WD) )dt = /jo %(1 - H(t)?)izu H(E)2)dt
1 1 )
= [1 —2(1 —s%)ds
1 L
R
2
==
Otis 2.4

Recalling that (f—z tanh z = sech? z, we compute

iue(z) = H (e Ha,x))e ta; = |Vue\2 =H?(e a,z))e 2 (a? + a3)
€

using |a|® = a? + a2 = 1 and H(z) = tanh - Furthermore,

W, (z)) = ia S - isech‘* (6_1 (a,x>> .
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(128)

(129)

(130)

(131)

(132)



Thus

1 e ! 1 el
FE(ue, B1(0 :/ —e 'sech? < a,x ) + Ze¢ tsech? ( a,x )
B0 = [ )+ )
1 4 (6_1 )
=— sech™ [ —(a, ) | .
2¢ /B, (0) V2

Evidently this integral (over the circle) is rotationally symmetric in a € 9B1(0), so we may as well take
= (17 0) so that (a,z) = z;. We approximate this integral (after fixing a) by the energy over the square
[—1,1]2 (which is not rotationally symmetric in a)

4
E (ue, [— 26/ / sech \fe )dxdy

(133)

(134)
=t / sech? ((\fe) )
-1
Because an anti-derivative of sech® z is %tanh (2 + sech? z) and tanh is odd, this is
2
B(uc, [-1,1]?) = 671[% tanh 2(2 + sech? z)]*
(135)

2v/2
= i tanh — (2 + sech?

3 \/5
Now we bound the error E(uc,[—1,1]* — B1(0)).

E(ue, [~1,1]*\ B1(0)) = 215/1 /,193,@3“}14 ((\@e)*lx) dz dy
Y imsest

< 1/11 /\;ﬁsech‘l ((\@e)*lx) dz dy
< i/ol /11 sech’ ((\/ie)—lx) da dy

< 4/01 /1;;2 e Lexp ( — (\/56)_137) dz dy
= 4/ et [ V2eexp ( — (\/56)_11‘) } }77;2 dy (136)
—4[/ 1\;’67@ Vi dy

\fe)

< 4v2e” WE/ efédy

0

1
S4\/§6_ﬁ/ eVze dy

0
< 4\/§e_ﬁ\/§e(eﬁ —1)
< 8e.

In the above, we substitute z — —x, use the evenness in y of the outer integral and t> < t on [0, 1], use
sech? z < sechz < 2¢~1#I, and evaluate the inner integral. Thus

Be(ue, B1(0)) = Ee(uc, [-1,1]%) = Ec(ue, [~1,1]* \ Bi(0))

2{(2+S€Ch2 \/Jie)t nhi6 —‘rO( ) (137)

42
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Otis 2.5
Part A

Remark. Some of showing the existence and smoothness of u (using trace for example) is complicated by
Qg not being smooth. Howewver, it is Lipschitz, so it is probably OK: round off the corners slightly to make
the domain smooth (in such a way that it is contained in Qg), then run the Arzela-Ascoli argument of Part
D on the solutions on the approzimating smooth domains to obtain a solution on Qg.

The Allen-Cahn energy functional E[w] = [ 3 |Dw|® + W(w) is coercive and convex in Dw, so there
exists a minimizer u of E in H{. Moreover, [ W(u) < oo, as E[0] = C |Qg| < co. In particular, u € L%, as
Jut=[—1+2u?+4W (u) < co. Thus u is a minimizer over Hj N L*. We now show that u weakly solves
Allen-Cahn (and is thus smooth by 2.1a), a slight modification of the argument in Evans. Set i(7) = Elu+7v]
for fixed v € H} N L*. Then for 7 # 0,

(1) — (0 1 1 1
Z4@——’(—2:7/ Z|Du+rDv)* + W(u+70) — = |Duf* — W(u)
T T 2 2
(138)
::/LT.
Taking a directional derivative, L™ — Du - Dv + W'(u)v. as 7 — 0. Also,
1 /MdJ1
L™ = ;/0 = {2 |Du + sDo|* + W (u + sv)}
1 [7d 1 )
= - — [ = |Du+ sDv|" + W(u+ sv
T jﬁ ds {2 | | ( )} (139)
1 T
== / Du - Dv + s |Do|*> + W' (u + sv)v
T Jo
= Du-Dv+7|Dv|* + W'(u + 1v)v,
and as 7 — 0,
|L7| < C(|Dul* + | Dv|* + ’uS + 03 + v+ ww?® + v —u - vl |v)) (140)

< C(IDu? + |Dv)* + [uf] + || + [ul? + o)),

where we used Young’s inequality to show in particular that |u3v’ < C’(\u|4 + \1}|4). And so L™ € L! because
u,v € Hi N L*. Passing to the limit as 7 — 0 in eq. (138) by the dominated convergence theorem shows that
i’(0) exists and is equal to [ Du- Dv + W'(u)v. Because ¢ has a minimum at 0, we conclude that i'(0) = 0,
and so u weakly solves Allen-Cahn.

If u > 1 somewhere, then u attains an interior maximum on U and thus on V := {u > 1}, because u =0
on QU. On V, we have Au = W/(u) > 0, so by the maximum principle « is constant on V', which contradicts
its continuity. Thus v < 1, and similarly one shows —1 < u < 1. If u = 1 somewhere, then Lu = —Au+2u, so
that v := u—1 achieves a non-negative interior maximum and satisfies Lv = —Au+2u—2 = —ud+3u—2<0
(because u < 1), so we conclude by the maximum principle that w = 1, which contradicts the boundary
condition, so u < 1. Similarly one shows —1 < w. Thus |u| < 1.

/D|u\Dv:/Du+Dv+/Du_Dv: f/ W’(u)er/ W' (u)v.
{uz0} {u<0}
When u > 0, W (u) < 0, and when v < 0, W/(u) > 0. So

[ W [ W= [ W= [ W

Therefore |u| would be a weak solution, and thus smooth.
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Part B

Let V = {(z,y)|z,y > e, 2% + y*> < (R — €)?}. Let ¢ be a smooth function that is 1 on V, decreases linearly
outward and vanishes on the boundary of Q. Then D{ = W(¢{) = 0 on the interior of V. Let U = Qg — V.
Then U has area

T

(2nrR? —2m(R—€)*) + eR+ eR = —€(2R — €) + 2¢R = (7 + 2)eR — T,

m(U) < 2 2

==

On U, |2 is at most L. Same is true for |g—§|. Therefore

1
72.

1
Z1D¢P? <
SIDCE < -

Hence,

Bi(Q) = [ 5IDCE+ 3¢ =1

<G+ DeR—T)
<CR

upon choosing some appropriate €. Since upg is a minimizer, it must has energy less than or equal to (.
To construct such a function ¢ (independent of the dimension), we use mollifiers. First notice that for
|z| < 1, if ¢ is the standard mollifier, then

__1 1
g, (1) = —2€ 7P ————;, (141)
(1—z[)?
S0
|Dp(z)| < Clz| < C (142)
1
as e 1-lef? m is bounded (in fact we can take C' = 2). By the chain rule |Dyp,(z)| < Ce~ 1. Now

let K be a compact set and define K := {x : d(z, K) < 0}. Then ¢¢ * xx, has range in [0,1], is 1 on K,
2
and is supported in K. Thus D(p, * xi)(x) =0 for z € K and for z € K, — K,

Dips *xieg )(@)] = (Do % xic)(@)|

< / Do (y)Xr g (x| Dy
lyl<g (143)

< Ce= (D) / 1dy
lyl<5
< Ce L.
Nice job! Might be more useful to define things radially and start working with the laplacian/gradient

operator in radial coordinates, but this is good

Part C
Let B = B(0, R). If @ is what we constructed in part B, define by odd reflections

a(x,y) z,y >0
—u(—z,y) z<0<y
u(—z,—y) z,y<0
—a(z,—y) y<0<uz.

u(w,y) = (144)
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Then u € C! at the axes except possibly at 0, so u € H} (B —{0}), and weakly solves Allen-Cahn on B\ {0}.
To see this, let R; be the intersection of B — {0} with the i-th quadrant of R? and let v € C2°(B — {0}). We
can integrate by parts

4
Du - Dv+ W' (u)vdx = Z Du - Dv+ W' (u)v
B0 = Jr,

- Z/ (—Au+ W'(u))v (145)
i=1 7T
= 0,

where the boundary terms vanish because u = 0 on the axes and 0B, and we use the fact that u solves A-C
strongly on each R;. An approximation argument lets us take v € Hg above. By elliptic regularity, u is thus
smooth on B — {0}.

Remark. This doesn’t work over the whole ball because we don’t know u € C* at 0, so we can’t immediately
show u solves A-C on the whole ball. If we instead used even reflections to construct u, then u would not be
Cl (jump discontinuity of the derivative at axis), so we couldn’t integrate by parts.

To show this, for 0 < r < 1 define

0 lz| < r?
Grla) =2 =88 2 < g) <, (146)
1 |z| > r

Then 0 < ¢ <1 and ¢, is supported away from the origin and converges pointwise to 1 on B\ {0} as r — 0.
Then for any v € C°(B), (v € CX(B — {0}), so

0= /Du -D(¢v) + W (u)¢pv = /CTDU -Dv+vDu- D¢, + W (u)C,v. (147)

Then
¢ Du - Dop| < || Dull72 + [|Dolf7» < oo (148)

and because |u| < 1,
W (@)¢ro] < C + Jolf72 < oc, (149)

and the right sides are in L' because the domain is finite. On the other hand,

[ opu 6| < ol 1Dl 106, (150)
by Holder’s inequality, and
T
(CT)ZEz ) ) (151)
|z|” logr
SO
1 c [ C
[ par= rm < | e (152)
B\{0} re<fo<r |z|* flogr|® T [logr|* Jr2 [log 7|

which goes to 0 as 7 — 0. Thus we may pass to the limit by the dominated convergence theorem to obtain
/Du -Dv+ W' (u)v =0 (153)

in the entire ball. Thus u solves Allen-Cahn on the whole ball, so it is smooth. Applying the energy estimate
to each quadrant shows that Flu] < CR as well.
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Part D

Remark. This maximum principle argument is a lower-tech proof for 5.6 (in dimension 2 at least) than
Schauder estimates. Adjusting the function h should probably let this proof work for any dimension. Same
argument works any family of solutions to A-C defined on sufficiently large domains.

The purpose of the set K is to avoid the non-smoothness of w on open sets containing the boundary (like
half-squares centred at a boundary point), because the mazimum principle needs u € C*(U). For some nice
domains, this compact set K stuff is not really necessary: the only purpose of K is to ensure that the domain
of the solution contains a half-square centred at each point in the domain of u. But really what we need is
that each point in the domain is contained in some half-square centred at some other point in the domain,
and this is true for some nice domains (like squares haha), like all of R™. Also the size of the half-square
being 1 is not really necessary; adjusting h could probadbly let you choose arbitrary sizes.

Lemma. If ur are the solutions above, then ’DkuR‘ < C(k,K) on compact sets K.

Proof. First we prove a pointwise estimate on Du, assuming only that |u|,|Au] < C and w is defined
well outside (like distance 2) K. For R large enough, B(0, R) contains the half-square S centred at each
point of K, so this is OK. Without loss of generality, we suppose 0 € K. Take C' > 1 if needed. Let
S ={]z| < 1,0 < y < 1} be a half-square and define the functions
u(x,y) —ulz, —y 5 3

) w20 e y) = ot + 2y - 2y (154)
2 2 2

We have |Ag| < |Au| <1and Ah=—-C,s0 A(h+g) <0. Also,0 =g <hondS wheny=0and h > C

on the other three sides of 95 (where y # 0), so by the maximum principle ming(h + g) = mings(h+g) > 0.
We conclude that |g| < h in S. Now

g(x,y) =

90,9) _ 1, ~u0y) —u(0,~y)
Yy 2y—0 y
2 y—0 y —y
= Dyu(O),
% 0 h(0
|, (0)] = lim g(’y)’ < 1im M09 _ (156)
y—0 Yy y—0 Yy

Similarly one shows |D,u(0)| < C. Because the bounds on u, Au are translation invariant and B(0, R)
contains the half-squares centred at points in K for R large, this argument shows |Dug| < C everywhere in
K for R large.

Now we induct. Let C' denote a constant depending on k. Everything below is done in K. Suppose that
for each |a| < k, we have 1. |D%u| < C, 2. AD%u is a finite sum of products of WP (u) and DPu for
|B| <k, Let || = k + 1 with DPu = D,, D*u. Because W and its derivatives are bounded in [~1,1], (a)
and (b) together with the base case k = 0 applied D*u give |D5u| < C. Moreover, ADPu = D,,AD%u is a
finite sum of products W7D (u) and DVu for |y| < k + 1. By induction |Dku’ < C for all k. O

We now diagonalize to obtain a subsequential limit function uz — u. By the above, all derivatives of
upr are bounded uniformly in R. Consider a compact domain, to apply Arzela-Ascoli. By Arzela-Ascoli,
find a sequence {nyo} € N such that u,, , has a uniform limit u. Refine to a subsequence {ny 1} such that
Duy,,, , converges uniformly. In general, if all derivatives up to order m of uy, , converge uniformly, then
refine to a subsequence {nj 41} so that D™*1u,, . converge uniformly. Then all derivatives of uy, ,
converge uniformly, and thus in fact to the corresponding derivatives of u. Thus w is smooth, and passing
to a pointwise limit in Aur = W'(ug) shows that u is a smooth solution to Allen-Cahn on R™. For the rest
of the problem, we can re-index ug so that ugr — u uniformly in C,..
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Part E

Now we show {u =0} = {xy = 0}. Because of the symmetry of u, it suffices to show u # 0 in the interior
of the first quadrant. Let B = B(xg,7) be a ball compactly contained in the first quadrant. As seen in the
example constructed in 5.4, a minimizer on B has energy at most Cr, while E(0, B) = Cr?, so taking r
large enough and recalling the maximum principle argument made in Part A (which applies because u has
constant sign in a quadrant), we conclude that if « were a minimizer on balls, it would be nonzero in the
interior of the first quadrant. We are done if we show u is a minimizer on such balls.

For R large enough, Qr compactly contains B. Then if w = u on 9B, the function v that is u on
Qr — B and w on B is in H}(Qg), so by Part A, E(v,Qr) > E(ug,Qg), and v = ug on Qr — B, so
E(v,B) > E(ug, B). Now we show this property passes to the limit.

Suppose u does not minimize energy on B. Then, as argued in Part A, there exists a minimizer w € H*(B)
with w = v on OB and E(w, B) < E(u, B) — § for some ¢ > 0. Moreover |w| < 1. Define ¢ the log-cutoff
function

1 x € B(wo, 7 — %)
pr(z) =2 - elilemol) By r— L) — Blao,r — %) - (157)
z € B— B(wo,7 — 33)

We now claim
E((1 = ¢r)ur + prw, Qr) = E(Xar-Bur + X5W, QR) + o(1) (158)
as R — oco. Note that xo,—pu+ xBWw € Hl(QR) because u = w on 0B. First we estimate the derivatives:
[D((1 = ¢r)ur + ¢rW)| 12(0,) — [P(Xer-BUR + XBW)| 1200 ) (159)
< [(ur — w)DSORHp(QR) +(xs — ‘PR)DURHL’A‘(QR) +(xs — %OR)DWHL?(QR) :

For the second term, the integrand is bounded by 2|Dug| < C on B and it is 0 outside of B. The third
integrand is bounded by 2|Dw| € L? on B and 0 outside of B. By the dominated convergence theorem
(pr — xB a.e.), they both go to 0. For the first term,

1

Blao,r—t)~Blzo,r— %) |& — zo| (r — |z — o)) [log R?

¢ /Tﬁ? dp (160)

/ ju —w]? | Derf? < C
Qr

ST

logR|® Jr—1 T —p
C

- 0.
\logR|%

For the potential term,

/ W((1 = ¢r)ur + prw) = W(xaz-Bur + XpW)|
n (161)

- / WL = er)un + orw) — Wixap_mur + X5w),
B

and the integrand is bounded by 2W (0) because |u|,|w| < 1. The dominated convergence theorem on the
finite domain B and the pointwise convergence of both terms in the integrand to W (xq,—pu + xpw) shows
that the difference in potential terms is o(1).

Now we derive a contradiction. Starting from the minimizing property of ugr on Qg and applying the
above,

E(ur,Qr) < E((1 — ¢r)ur, prw, AR)
= E(xar-BUuR + XBW,2R) + 0(1)
= E(ugr,Qr — B) + E(w, B) 4+ o(1) (162)
= FE(upr,Qr — B) + E(u,B) — 6 + 0o(1)
= E(ur,Qr — B) + E(ug,B) — 6+ o(1)
= E(ugr,Qgr) — 0+ o(1),
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which gives § < o(1), a contradiction. Notice that we used E(ugr,B) = F(u,B) (because ur and its
derivatives converge uniformly to those of u on B). Thus u vanishes only on {zy = 0}.

Otis Chapter 5
Problem 5.4

Note that it suffices to assume u is a minimizer on balls. Pick smooth functions 0 < @1, < 1 with
|Dp1], |Dpa| < Ce=! such that ¢ is 1 on dBg and 0 on Br_, and s is 1 on Br_s. and supported in
Bpr_. (see 2.5b for construction). Then w := up; + 2 agrees with u on dBpg, so it is admissible in the
minimization problem on Bg. Then, noting that |[Bgr — Br—.| = C(R" — (R — ¢)") < CR" !¢ (with the
constant depending only on n) and recalling from what was proved in 2.5d that |Du| < C, we compute

Elw] = /B 5 1Dwf? 4+ W (w) da

<C |1 Du + uDepy +D<,02|2+W(w) dz

Br
<C |Dul® + | D1 |* + |Dgs|? da —|—/ wW(0)dx (163)
Br—BRr_« Br—BRr-2¢
< OR" te+ 0/ €2
Br—BRr—-
n—1
< CR + CR" e

For R > 1, take e = 1 to get E[w] < CR"™!. For R <1, let e = R{ to get E[w] < CR"® < CR" ..

Exercise 5.5

e (a)

Proof. If Vu = 0 everywhere, then we have w is constant on R™, which we know only has 0,1, —1 as
solutions. O

e (b)

Proof. Using the hint of Exercise 4.2, we have
2|Vu|V|Vu| = V (|Vul?) =2 i Ugi; Uz, = 2D*u(Vu, -) = 2D*uVu
ij=1
where D?u is the Hessian matrix of u with
(Dzu)ij = Ug,z; -
Thus, taking the norm and square both sides, we get
4Vul?|V|Vul|* = 4| D*uVul? < 4|D*ul?*|Vul|?.
Then we cancel 4|Vu|? on both side since it’s nonzero and get that

IV|Vul]? < |D*uf? = |Dul? — |V|Vulf? > 0.
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* (¢)

Proof. 1t suffices to show that

Vu
— 0.
P
Now we compute.
’ Z:: IVUI i
um vz | Vu| = g, Vu|wj]2

[Vul?

- ||F13

Z uamcj ‘V“‘Q =+ u (|VU|I]) QUwiwjuwi|VU||vu|wj

i,j=1

(ID%ul|Vul* + [Vul?|V|Vul|* - *IVIVUI %)

\VUP

\V a
1
~[VuP

We used the fact that |V|Vu||? = |D?u|? and chain rules. O

(2[Vul?|V[Vul[* ~ *I2IVUIV|VUI| )=

Exercise 5.6

Fix u smooth solving Allen-Cahn on R™ with |u| < 1. Then Au = f with f = W’/ ou. Fix xo € R™ and let
B; = B(zo, R) and By = B(xg,2R). Throughout let C' denote a constant depending on n, a, and any extra
given parameters. By a first estimate (GT 4.45),

luly 5, < lulyq,p, < Cldiam By) |uly , g, < C(R)(|uly g, +1fo,5,) < C(R), (164)

where we recall that H;CQQ is equivalent to || k.o, With the proportionality constant depending only on &
and diam €. Thus

| flo.a.B, = [flo, B, + [flo,a,B.
<|flo,s, +1Pflo.B,

, ., (165)
< Wiw)lo,, + W7 oulg g,
< C(R).
Then Schauder estimates (GT 6.1a) say
ulprom, < luliioas, < CK R)(|ulyp, + | flkam,) (166)
With k = 0, this is
luly, 5, < C(R) (167)
by the above. More generally, suppose |u|j’B1 < O(k,R). for all j < k+ 1. Expanding out D’ f with the

product rule, the above calculation gives
|f‘k,a732 < ‘f|k,B2 + ‘Df‘k,BQ <C(k,R)(1+ |“|k+1,32) < C(k,R), (168)

with the k-dependence in the constant coming from derivatives of W and |ul .B» for j < k4 1. Then by
induction the Schauder estimate gives

|u‘]~c+2,Bl < C(k,R) (169)
for all k. Now fix R and take a supremum over z( to get
|ulp gn < C() (170)

for all k.
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Exercise 5.8

A compact set in R? is a compact set in R3, and thus u*>°(z1, z5) is stable. Hence
uioo(xl, x9) = H(ayz1 + agxs — b).

Since the energy Fi (-, Bg) is radially symmetric, it suffices to let a3 = 1, ag = 0. We can compute that

1 1 x1—b
- D iOO 2: - h4 1
51 DU = Jseeli'(FL20)
and . b
W (ut>) = = sech? L )
(1) = G sech'("L220)
Therefore,
1
El(uiooaBR):/B §|Duioo|2_’_W(uioo)
R
1 —-b
=3 sech® (=2 , )
Br
5 (R R (R _b
S\Gf/ / / sech4($1\/§ Ydx1dzodrs
-RJ-RJ-R
2 (R —b —b\1R
S\[/ / [tanh(x )<2+sech2(x7))} dxodxs
6 J_r/J-r V2 V2 —R
R R
g\f/ / 6 daodrs
—-RJ-R
=v2R?
Next,

E;(u', Br) :/

1
—|Du'? + [ W(ub).
2

Br

By dominated convergence theorem (the dominating function being 1),

im [ W) = /W(uoo).

t—o00 Br

Moreover,
3

|Dut (w1, w2, 23)|* = Dl (w1, w2, w3+ 1)
i=1

But the derivatives are uniformly (in ¢) bounded, so by dominated convergence theorem

1 1
lim —|Dut|? :/ —|Du*>?.
2 Br 2

t—o0 Br
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