Student Analysis Talk 11/5: Introduction to Renormalized Volume

1 Motivation

e Suppose you're in H? ball model
- dr? + r2dgge
gus = 1 —r2)2
and you want to compute the volume of some Y2 < H? (Draw picture!)
o If Y2 closed, then its fine because
gms < Kv(dT2 + T2d5'2)

=2
e If Y2 is noncompact, then consider Y~ C H?, then gys has unbounded coefficients

e Example: H? C H? represented as the geodesic disk. The restricted metric on H? is

2m
h:=g [dr +rdf?] = dVolh = / / i r2 Ty rdrdd =

B 4
mz (1-—1r2)2
(you can check that this integral diverges, because near the boundary it tends like (1 — r)~2

e Despite our foolish idea, suppose we wanted to still extract some information related to the volume
computation

o Let p= ( ) . Notice that p~1(0) = 1, and also

1
G = pigmz = ( 6 [dr? + r2df)

1+7r)?
is defined everywhere on H?. And finally
[ldlog(p)|[; = lldpll5 = 1

so p is like a distance function. (These conditions actually determine p, though its unclear at the
moment why we’'d want this)

e Consider the expansion of

4r
/ dA :/ L drdf
p>e p>e€ (1 -r )

(@2-9/C+9) g4 1
= 471'/ ———dr

0 dr1—r2
we get
e ¢ 4 + 4e + €2 1 1 €
dA:4 1_271(2 )/(2"1‘):4 R N ] - = e
p>e m [( r ) ]TZO 4 e T 2¢ 2 + 8



2

Taking the constant term in € then yields

FP/ dA:47T';1:—27T
p>e€ 2

e—0

(FP0 means “finite part as € — 0)
€E—

We can do this much more generally

Instead of H3, consider M™ ! asymptotically hyperbolic, conformally compact (i.c. has a
compact boundary with some given conformal class of metrics, [k]), and Y™ C M™*+! minimal
4(1—r)
1+r
Do the same process and define

Instead of p = consider py

e—0

V(Y) = FP/ dAy
Py >€

— We call V(Y) the Renormalized Volume

Physical Motivation (Briefly)

Need to change labels, e.g. let M be X, and then N = OM and v = N instead... Make it consistent
with Rafe’s and my notation

Source: Graham-Witten “Conformal Anomaly of Submanifold Observables...” (1999)

String theory: happens (in one old model) on M x S°, M Einstein and conformally compact, 9M = N.
(Draw M at least, ball model is good choice)

“Wilson Loop Operator”, W(y) for y C N = OM, — find “string” whose “world sheet”, Y C M,
Y =~

In “supergravity approximation”, we only care about when Y is minimal, and we have
(W(N)) =~ exp(-=T'A(Y))
(T is some constant, called the String tension)

— Aside: T would hypothesize that

W)= [ en-rAr)mdn = [ exp(i(iA(Y))(T/1)dy

Y sit. Y=y
— where p is some measure on the set of extensions Y with 0Y = N. Ok this would give exp(:A(Y)),
but then maybe a wick rotation saves it and you can get exp(A(Y))?

— Stationary phase approximation (Quals haha) says that we only care about the integral near
critical points of —T'V(Y') (assume T constant), i.e. local volume minimizers

— Also, stationary phase approximation is how physicists get around not having to define the measure
on the set of extensions Y with 0, which could be quite complicated

— So it suffices to compute the volume of Y minimal surfaces with Y = N - usually just 1 (nonde-
generate gives uniqueness vs degenerate situation)

Again, A(Y) not defined, but turns out (somehow) that
(W(N)) = exp(=TV(Y))

i.e. the divergent terms probably cancel out in the integral (“ultraviolet divergences”), maybe again
due to stationary phase approximation

Remark Alexakis, Mazzeo (2008): critical points of Renormalized volume in H? are minimal

— so stationary phase argument with W(N) = [, exp(=TV(Y)) still makes sense
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Mathematical Motivation

e Renormalized Volume is a conformal invariant for even dimensional manifolds

— i.e. if we change the metric on N = OM by a conformal factor, then V(M) stays the same

— Same holds if we change metric on v C N and compute V(Y) for ¥ a minimal extension

e V(Y) reflects topological /geometric information

Proposition (Alexakis, Mazzeo 2008). Suppose (M, g) Einstein with conformally compact boundary.
Suppose v € OM and Y? < M with Y =~ and Y intersecting the boundary orthogonally, then

1 ~
/ 2|I’I|2 — |k“2dA+/ Wia12dA
Y Y

VY)=-2mnxY)+ 5

Some remarks:
— This formula is very specific for Y two dimensional
— [ |H|* is the Willmore energy and is conformally invariant in two dimensions

- [y k|2, where k is trace-free second fundamental form is also conformally invariant
— Wia12 is the Weyl curvature, and also conformally invariant (note: this vanishes when Y C ]H["H)

— “Intersecting the boundary orthogonally” - seems strong, but automatically satisfied by minimal
surfaces. It says that in some graphical asymptotic expansion

Y = graph(u) = u(s,p) = uo(s) + uz(s)p* + ...

then u is quadratic as we approach the boundary (Quadratic in what? Some boundary defining
function like p)

— Intersecting the boundary orthogonally is guaranteed when Y is minimal!

Formal Background

Given an ambient space, M", with boundary N = 9M, and a conformal class of metrics [k], the
conformal infinity, for V

(M, g) is Einstein if

Ricy = kg
for some k € R
Definition: M is conformally compact, if M is a manifold with compact boundary and

Ip: M —-R2% st {p=0}=0M

Moreover, we define

g:=pg
require that g is a metric on M and

\4J 0
Plow ™

e Definition: p as above is called a boundary definition

e Remark If ¢ : M — Rt smooth, then p* = p is a bdf
e Definition: A bdf is special if

[ld1og(p)l[5 = lldpll7 =1

(So special bdfs are most like distance functions to the boundary)



4.1

Proposition. For M conformally compact and a choice of representative kg € [k], there exists a unique

special bdf for M such that

Proof: Requires more machinery than I have time for

Example

Poincare Ball model of hyperbolic space H?

g= 7(1 —7)e [dr2 + r2d¢2 + 72 sin? q5d92}

is Einstein.

e Want special bdf, p, for H?. Assume rotational symmetry and enforce

4.2

2 2)2
Pr rr L—r
1= [[atog(o)} = g™ = 0 () L
—2
= Or(log(p)) = 1,2
1—r
=A
—f 147

Note: A#0 = p~1(0) = {r =1} = 5% = 9H3.
Suppose we want to prescribe the standard metric on this boundary i.e. we want
ko(6) = sin® pdb? + d¢?

Enforce this

ko = p*h| = 47Az[dr2 + r2d¢? 4 r?sin® ¢d02]‘ = ﬁ[ddﬁ + sin? ¢dh?
r—=1 (1 + r>4 r=1 16
choose A = 2 so that p is positive.
Set g := p*h
q = a = k
— 9 r=1 g‘BM 0
also
- _ (1+7r)* —4
— I (H. L T — .
Vp=9"(0ip)0; = 9" (9,p)0: TR T)Q&
Vp =-0,
r=1

Conformal Invariance of Renormalized Volume
With our set up, we can now give meaning to conformal invariance of Renormalized Volume

If we have ko € [k] <> po, k1 € [k] <> p1, then

FP/ dAM:FP/ dAn
e—0 po>e e—0 p1>e

i.e. if we expand
dAy = dpo A (pg"Tn + po " Tt - 4 pg i+ 7o)
=dpr A (py "+ 1y s+ 01 R+ o)

then the result is the same
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e Because of Poincare-Einstein condition, g actually has an even expansion in terms of special bdfs, i.e.
(Modify previous equation, don’t write below)

dA dp N (0" +pg " a2+ 4 pg ' +70) noodd
M= - ot~ oo -
dpo A (p~"Tn + po T o4 fo 25, + 7o) n even

so that

/ QA — coe "+ e, 362 +dln(e) + ¢, +0o(1) nodd
p>e M coe "ty et e, +0(1) n even

e Proposition: For n odd, d is independent of the special bdf (i.e. independent of the choice of
ko € [K]). If n even, then ¢, is conformally invariant

Results Overview

e Care about critical points for renormalized volume (via stationary phase approximation) — want
information about Y minimal

e For convenience, we work in M = H"*! the half space model with

Coda? +dyf + -+ dyl
gHn+1 = :L'2

where z is almost a special bdf for H*+!, and

— 2
g = T gur+1 = YEuc

I'll explain technicalities of why x is not a special bdf but we can still use it. Moreover, we can treat
x like a special bdf for Y, despite it not satisfying the “special” condition of ||dz|| | =1
g

Y

5.1 Graphicality

e Y™ C H"*! minimal, conformally compact with boundary v = 0Y =Y N H"*!. We require that Y
be embedded in some neighborhood of the boundary ~.

e Consider cylinder over the boundary: (Draw this in Half-space model)
I =+ xR" ={(z,s) | s€~}
e Describe Y near the boundary as a graph over I' via the exponential map (Draw Y'!)

YN {z < e} = {expr(uls,z))}

where exp denotes the exponential map taken with respect to the Euclidean metric, restricted to
elements of N(I).

e 1y satisfies a degenerate elliptic equation coming from Y being minimal, and just like the metric, is
even to high order

Proposition: For u(s,z) = u'(s,z)N;(s) with {N;} ONB for T,

u'(s,x) =

uh(s)z? + ui(s)zt + - +ul (s)a™ +ul, 4 (s)z™ T+ m even

ub(s)x? +uf(s)at + -+ ul, 4 (s)2™ T + Ul(s)a™ M log(z) + tmga(s)z™ 2 4+ ... m odd

for smoothly varying coefficients ux(s) and U(s).

Remarks:



Even expansion hypothesized for a while by physicists

— PDE can be thought of as an ODE in x, which is essentially

(0:) (20, — (m+ 1)u(s,z) = R

Getting regularity is difficult: requires geometric arguments with maximum principle, and mi-
crolocal analysis (edge operators)

Above expansion is asymptotic, not convergent (i.e. can give partial series with remainder
vanishing to next order)

e Corollary: Renormalized Volume is well defined mathematically

5.2 Variations

e Consider variations of Y. Describe smooth family of minimal submanifolds as
Y; = expy (St)
for S; € N(Y) a smooth

o S:= O Sy satisfies the Jacobi equation
t

J(X) = A+(X) — A(X) + Tr(Ric(X,-)) =0

e As a result, S satisfies a regularity theorem. In codimension 1 we can write
S = (Z.S(Sa I)V(Sa 3:)

for ¥ a normal to Y.

. bo(s) + da(8)a2 + -+ + b (s)z™ + O(x™ 1) m even
o(s,x) =
bo(s) + do(8)22 + - 4 G (s)z™ T 4+ B(5)2z™ 1 log(x) + O(z™F2) m odd

i.e. ¢ is even in x to high order

Theorem 5.1. First variation of Renormalized volume in codimension 1:

neven =— %V(Y{g) o —(n+1) / bo(8)tni1(s) dA,(s)
nodd = SV =-(m+1) / [Bo() s (5) + F (o) ()] ddy (s)

and the second variation:

npven — TV = [ (0= mda(s)dnna(5) + (s [0 = D0n = 2) = Szt (5)]) dA, )
odd = Ty - / (1= m)d0(5)6nt1(5) + do(s)* [(n = 1)(n = 2) = Sntigt41(s)]

do(s) [ 40+ 2)do ()2 (5)U (5) + (s)] + Fa(do, uz)| dA, (s)




	Motivation
	Physical Motivation (Briefly)
	Mathematical Motivation
	Formal Background
	Example
	Conformal Invariance of Renormalized Volume

	Results Overview
	Graphicality
	Variations


