
Student Analysis Talk 11/5: Introduction to Renormalized Volume

1 Motivation

� Suppose you’re in H3 ball model

gH3 =
dr2 + r2dgS2

(1− r2)2

and you want to compute the volume of some Y 2 ↪→ H3 (Draw picture!)

� If Y 2 closed, then its fine because
gH3 ≤ K(dr2 + r2dS2)

� If Y 2 is noncompact, then consider Y
2 ⊆ H3, then gH3 has unbounded coefficients

� Example: H2 ⊆ H3 represented as the geodesic disk. The restricted metric on H2 is

h := g
∣∣∣
H2

=
4

(1− r2)2
[dr2 + r2dθ2] =⇒

�
H2

dV olh =

� 1

0

� 2π

0

4

(1− r2)2
rdrdθ =∞

(you can check that this integral diverges, because near the boundary it tends like (1− r)−2

� Despite our foolish idea, suppose we wanted to still extract some information related to the volume
computation

� Let ρ = 2(1−r)
1+r . Notice that ρ−1(0) = 1, and also

g := ρ2gH2 =
16

(1 + r)2
[dr2 + r2dθ]

is defined everywhere on H3. And finally

||d log(ρ)||2g = ||dρ||2g = 1

so ρ is like a distance function. (These conditions actually determine ρ, though its unclear at the
moment why we’d want this)

� Consider the expansion of

�
ρ>ε

dA =

�
ρ>ε

4r

(1− r2)2
drdθ

= 4π

� (2−ε)/(2+ε)

r=0

d

dr

1

1− r2
dr

since ρ > ε↔ 2−ε
2+ε > r. Integrating, we get

�
ρ>ε

dA = 4π
[
(1− r2)−1

](2−ε)/(2+ε)

r=0
= 4π

[
4 + 4ε+ ε2

8ε
− 1

]
= 4π

[
1

2ε
− 1

2
+
ε

8

]
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Taking the constant term in ε then yields

FP
ε→0

�
ρ>ε

dA = 4π · −1

2
= −2π

(FP
ε→0

means “finite part as ε→ 0)

� We can do this much more generally

– Instead of H3, consider Mn+1, asymptotically hyperbolic, conformally compact (i.e. has a
compact boundary with some given conformal class of metrics, [k]), and Y m ⊆Mn+1 minimal

– Instead of ρ = 4(1−r)
1+r , consider ρY

– Do the same process and define

V(Y ) := FP
ε→0

�
ρY >ε

dAY

– We call V(Y ) the Renormalized Volume

2 Physical Motivation (Briefly)

� Need to change labels, e.g. let M be X, and then N = ∂M and γ = N instead... Make it consistent
with Rafe’s and my notation

� Source: Graham-Witten “Conformal Anomaly of Submanifold Observables...” (1999)

� String theory: happens (in one old model) on M×S5, M Einstein and conformally compact, ∂M = N .
(Draw M at least, ball model is good choice)

� “Wilson Loop Operator”, W (γ) for γ ⊆ N = ∂M , → find “string” whose “world sheet”, Y ⊆ M ,
∂Y = γ

� In “supergravity approximation”, we only care about when Y is minimal, and we have

〈W (N)〉 ≈ exp(−TA(Y ))

(T is some constant, called the String tension)

– Aside: I would hypothesize that

〈W (N)〉 =

�
Y s.t. ∂Y=γ

exp(−TA(Y )/~)dµ =

�
Y s.t. ∂Y=γ

exp(i(iA(Y ))(T/~))dµ

– where µ is some measure on the set of extensions Y with ∂Y = N . Ok this would give exp(iA(Y )),
but then maybe a wick rotation saves it and you can get exp(A(Y ))?

– Stationary phase approximation (Quals haha) says that we only care about the integral near
critical points of −TV (Y ) (assume T constant), i.e. local volume minimizers

– Also, stationary phase approximation is how physicists get around not having to define the measure
on the set of extensions Y with ∂γ, which could be quite complicated

– So it suffices to compute the volume of Y minimal surfaces with ∂Y = N - usually just 1 (nonde-
generate gives uniqueness vs degenerate situation)

� Again, A(Y ) not defined, but turns out (somehow) that

〈W (N)〉 ≈ exp(−TV(Y ))

i.e. the divergent terms probably cancel out in the integral (“ultraviolet divergences”), maybe again
due to stationary phase approximation

� Remark Alexakis, Mazzeo (2008): critical points of Renormalized volume in H3 are minimal

– so stationary phase argument with W (N) =
�
Y

exp(−TV(Y )) still makes sense
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3 Mathematical Motivation

� Renormalized Volume is a conformal invariant for even dimensional manifolds

– i.e. if we change the metric on N = ∂M by a conformal factor, then V(M) stays the same

– Same holds if we change metric on γ ⊆ N and compute V(Y ) for Y a minimal extension

� V(Y ) reflects topological/geometric information

Proposition (Alexakis, Mazzeo 2008). Suppose (M, g) Einstein with conformally compact boundary.
Suppose γ ⊆ ∂M and Y 2 ↪→M with ∂Y = γ and Y intersecting the boundary orthogonally, then

V(Y ) = −2πχ(Y ) +
1

2

�
Y

2|H|2 − |k̂|2dA+

�
Y

W1212dA

Some remarks:

– This formula is very specific for Y two dimensional

–
�
|H|2 is the Willmore energy and is conformally invariant in two dimensions

–
�
Y
|k̂|2, where k̂ is trace-free second fundamental form is also conformally invariant

– W1212 is the Weyl curvature, and also conformally invariant (note: this vanishes when Y ⊆ Hn+1)

– “Intersecting the boundary orthogonally” - seems strong, but automatically satisfied by minimal
surfaces. It says that in some graphical asymptotic expansion

Y = graph(u) =⇒ u(s, ρ) = u0(s) + u2(s)ρ2 + . . .

then u is quadratic as we approach the boundary (Quadratic in what? Some boundary defining
function like ρ)

– Intersecting the boundary orthogonally is guaranteed when Y is minimal!

4 Formal Background

� Given an ambient space, Mn, with boundary N = ∂M , and a conformal class of metrics [k], the
conformal infinity, for N

� (M, g) is Einstein if
Ricg = kg

for some k ∈ R

� Definition: M is conformally compact, if M is a manifold with compact boundary and

∃ ρ : M → R≥0, s.t. {ρ = 0} = ∂M

Moreover, we define
g := ρ2g

require that g is a metric on M and

∇gρ
∣∣∣
∂M
6= 0

� Definition: ρ as above is called a boundary definition

� Remark If ϕ : M → R+ smooth, then ρ∗ = ϕρ is a bdf

� Definition: A bdf is special if
||d log(ρ)||2g = ||dρ||2g = 1

(So special bdfs are most like distance functions to the boundary)
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Proposition. For M conformally compact and a choice of representative k0 ∈ [k], there exists a unique
special bdf for M such that

g
∣∣∣
N

= k0

Proof: Requires more machinery than I have time for

4.1 Example

� Poincare Ball model of hyperbolic space H3

g =
4

(1− r2)2

[
dr2 + r2dφ2 + r2 sin2 φdθ2

]
is Einstein.

� Want special bdf, ρ, for H3. Assume rotational symmetry and enforce

1 = ||d log(ρ)||2g =
ρ2
r

ρ2
grr = ∂r(log(ρ))2 (1− r2)2

4

=⇒ ∂r(log(ρ)) =
−2

1− r2

=⇒ ρ = A
1− r
1 + r

� Note: A 6= 0 =⇒ ρ−1(0) = {r = 1} = S2 = ∂H3.

� Suppose we want to prescribe the standard metric on this boundary i.e. we want

k0(θ) = sin2 φdθ2 + dφ2

Enforce this

k0 = ρ2h
∣∣∣
r=1

=
4A2

(1 + r)4
[dr2 + r2dφ2 + r2 sin2 φdθ2]

∣∣∣
r=1

=
4A2

16
[dφ2 + sin2 φdθ2]

choose A = 2 so that ρ is positive.

� Set g := ρ2h

=⇒ g
∣∣∣
r=1

= g
∣∣∣
∂M

= k0

also

∇ρ = gij(∂iρ)∂j = grr(∂rρ)∂r =
(1 + r)4

16
· −4

(1 + r)2
∂r

∇ρ
∣∣∣
r=1

= −∂r

4.2 Conformal Invariance of Renormalized Volume

� With our set up, we can now give meaning to conformal invariance of Renormalized Volume

� If we have k0 ∈ [k]↔ ρ0, k1 ∈ [k]↔ ρ1, then

FP
ε→0

�
ρ0>ε

dAM = FP
ε→0

�
ρ1>ε

dAM

i.e. if we expand

dAM = dρ0 ∧ (ρ−n0 τn + ρ−n+1
0 τn−1 + · · ·+ ρ−1

0 τ1 + τ0)

= dρ1 ∧ (ρ−n1 τ̃n + ρ−n+1
1 τ̃n−1 + · · ·+ ρ−1

1 τ̃1 + τ̃0)

then the result is the same

4



� Because of Poincare-Einstein condition, g actually has an even expansion in terms of special bdfs, i.e.
(Modify previous equation, don’t write below)

dAM =

{
dρ ∧ (ρ−nτn + ρ−n+2

0 τn−2 + · · ·+ ρ−1
0 τ1 + τ0) n odd

dρ ∧ (ρ−nτ̃n + ρ−n+2
0 τ̃n−2 + · · ·+ ρ−2

0 τ̃2 + τ̃0) n even

so that �
ρ>ε

dAM =

{
c0ε
−n+1 + · · ·+ cn−3ε

−2 + d ln(ε) + cn + o(1) n odd

c0ε
−n+1 + · · ·+ cn−2ε

−1 + cn + o(1) n even

� Proposition: For n odd, d is independent of the special bdf (i.e. independent of the choice of
k0 ∈ [k]). If n even, then cn is conformally invariant

5 Results Overview

� Care about critical points for renormalized volume (via stationary phase approximation) → want
information about Y minimal

� For convenience, we work in M = Hn+1 the half space model with

gHn+1 =
dx2 + dy2

1 + · · ·+ dy2
n

x2

where x is almost a special bdf for Hn+1, and

g = x2gHn+1 = gEuc

I’ll explain technicalities of why x is not a special bdf but we can still use it. Moreover, we can treat
x like a special bdf for Y , despite it not satisfying the “special” condition of ||dx||

g

∣∣∣
Y

= 1

5.1 Graphicality

� Y m ⊆ Hn+1 minimal, conformally compact with boundary γ = ∂Y = Y ∩ ∂Hn+1. We require that Y
be embedded in some neighborhood of the boundary γ.

� Consider cylinder over the boundary: (Draw this in Half-space model)

Γ = γ × R+ = {(x, s) | s ∈ γ}

� Describe Y near the boundary as a graph over Γ via the exponential map (Draw Y !)

Y ∩ {x ≤ ε} = {expΓ(u(s, x))}

where exp denotes the exponential map taken with respect to the Euclidean metric, restricted to
elements of N(Γ).

� u satisfies a degenerate elliptic equation coming from Y being minimal, and just like the metric, is
even to high order

Proposition: For u(s, x) = ui(s, x)N i(s) with {N i} ONB for Γ,

ui(s, x) =

u
i
2(s)x2 + ui4(s)x4 + · · ·+ uim(s)xm + uim+1(s)xm+1 + . . . m even

ui2(s)x2 + ui4(s)x4 + · · ·+ uim+1(s)xm+1 + U i(s)xm+1 log(x) + um+2(s)xm+2 + . . . m odd

for smoothly varying coefficients uk(s) and U(s).

Remarks:
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– Even expansion hypothesized for a while by physicists

– PDE can be thought of as an ODE in x, which is essentially

(x∂x)(x∂x − (m+ 1))u(s, x) = R

– Getting regularity is difficult: requires geometric arguments with maximum principle, and mi-
crolocal analysis (edge operators)

– Above expansion is asymptotic, not convergent (i.e. can give partial series with remainder
vanishing to next order)

� Corollary: Renormalized Volume is well defined mathematically

5.2 Variations

� Consider variations of Y . Describe smooth family of minimal submanifolds as

Yt = expY (St)

for St ∈ N(Y ) a smooth

� Ṡ := ∂tSt

∣∣∣
t=0

satisfies the Jacobi equation

J(X) = ∆⊥(X)− Ã(X) + Tr(Ric(X, ·)) = 0

� As a result, Ṡ satisfies a regularity theorem. In codimension 1 we can write

Ṡ = φ̇(s, x)ν(s, x)

for ν a normal to Y .

φ̇(s, x) =

φ̇0(s) + φ̇2(s)x2 + · · ·+ φ̇m(s)xm +O(xm+1) m even

φ̇0(s) + φ̇2(s)x2 + · · ·+ φ̇m(s)xm+1 + Φ(s)xm+1 log(x) +O(xm+2) m odd

i.e. φ̇ is even in x to high order

�

Theorem 5.1. First variation of Renormalized volume in codimension 1:

n even =⇒ d

dt
V(Yt)

∣∣∣
t=0

= −(n+ 1)

�
γ

φ̇0(s)un+1(s) dAγ(s)

n odd =⇒ d

dt
V(Yt)

∣∣∣
t=0

= −(n+ 1)

�
γ

[
φ̇0(s)un+1(s) + F (φ̇0, u2)(s)

]
dAγ(s)

and the second variation:

n even =⇒ d2

dt2
V(Yt)

∣∣∣
t=0

=

�
γ

(
(1− n)φ̇0(s)φ̇n+1(s) + φ̇0(s)2 [(n− 1)(n− 2)− 8nu2un+1(s)]

)
dAγ(s)

n odd =⇒ d2

dt2
V(Yt)

∣∣∣
t=0

=

�
γ

[
(1− n)φ̇0(s)φ̇n+1(s) + φ̇0(s)2 [(n− 1)(n− 2)− 8nu2un+1(s)]

− φ̇0(s)
[
4(n+ 2)φ̇0(s)u2(s)U(s) + Φ̇(s)

]
+ F2(φ̇0, u2)

]
dAγ(s)
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