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1. The plan for the course is:

(a) First 8 lectures from Alan Weinstein’s “Lectures on Symplectic Manifolds”

(b) Gromov Non-squeezing (follow Gromov’s paper on J-holomorphic curves)

(c) Symplectic Rigidity: Lagrangian manifolds (see Audin-Lalonde-Potterovich)

2. Some other resources are

(a) Mc-Duff-Salamon (good reference but large)

(b) Da Silva: Lectures on Symplectic Manifolds

(c) Arnold: Methods of Classical Mechanics

3. So what is a symplectic manifold? It is M , a manifold, equipped with ω, a non-degenerate closed two-form

4. ωi is a smoothly varying anti-symmetric bilinear form/pairing on each TpM with p ∈M

(a) v, v′ ∈ TpM =⇒ ω(v, v′) ∈ R, ω(v, v′) = −ω(v′, v)

(b) Non-degenerate:
∀p ∈M, ∀v ∈ TpM, ∃v′ ∈ TpM s.t. ω(v, v′) 6= 0

(c) Closed: dω = 0

5. The above three conditions give us some magic: around each point p ∈ M , there exists coordinates s.t.
x1, . . . , xn, y1, . . . , yn and

ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn ∀p ∈ TU ⊆ TM

which in matrix coordinates looks like
A 0 . . . 0
0 A 0 . . .
0 . . . A 0
0 . . . 0 A

 s.t. A =

(
0 1
−1 0

)
(1)

contrast this with a metric, which is a 2-form but has no such expression

6. Why do we study symplectic forms?

(a) Answer 1: They arise naturally in many different areas of mathematics

i. Classical (Hamiltonian) Mechanics

A. Stuff happens in T ∗X, e.g. H : T ∗X → R, H = hamiltonian

B. Energy function, H, leads to time evolution via the symplectic structure

ii. Complex Geometry

A. Y a complex manifold: Assume that it is an affine variety (or more generally, a stein manifold),
i.e. it is a solution set of a list of polynomial equations in ÅnC = Cn as a complex manifold. Y
then has a natural symplectic structure up to isomorphism

iii. Lie Groups and Algebras → ”coadjoint orbits”
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iv. Representation Varieties, which are important in low dimensional topology

(b) Answer 2: Symplectic Manifolds are worth studying for their own sake

i. No local invariants

ii. Interesting (highly dependent on ω!) but ∞-dimensional (large!) symmetry groups. Symmetries are
diffeomorphisms of M

iii. Beautiful and Complicated global invariants

iv. Lots of input from other fields

9/25/19

There are 3 levels of symplectic structures:

Symplectic Vector Spaces

1. V a symplectic R-vector space (finite dim)

2. A symplectic structure is a bilinear pairing

Ω : V × V → R↔ Ω̃ : V → V ∗ ∈ HomR(V,R)

3. Anti-symmetry tells us that Ω(v, w) = −Ω(w, v)

4. Non-degeneracy tells us Ω̃ is an isomorphism

5. Ex:Let U be any vector space over R. U ⊕ U∗ has a natural symplectic structure given by

Ω(u⊕ u∗, v ⊕ v∗) = v∗(u)− u∗(v)

6. If you pick a basis {e1, . . . , en} for U , this has a dual basis, {e∗1, . . . , e∗n} for U∗

7. The matrix of Ω is then given by 1

8. Note that every symplectic vector space is of the form U ⊕ U∗, and we can find some decomposition using
linear algebra

Symplectic vector bundles over manifolds

1. X a smooth manifold, E → X (this should be a vertical arrow to denote a vector bundle, but I’m too lazy and
will be using this notation from hereon)

2. Symplectic structure:= smoothly varying symplectic pairing Ωx on Ex for every x ∈ X

E ⊗ E X × R

X

Ω

or equivalently

E E∗

X

Ω

3. Here Ω is a section of Hom(E,E∗)→ X, and smoothness is formulated in consider this bundle

4. Ex: P is any vector bundle, P ⊕ P ∗ → X has a symplectic structure (whitney sum of vector bundles)

5. Question: Is any symplectic vector bundle of this form? No consider TS2 which has a symplectic structure
not induced by a Whitney sum
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Symplectic Manifolds

1. X a smooth manifold

2. Symplectic structure is given by a symplectic structure on TX → X as a vector bundle, i.e. ω ∈ Ω2(X)
nondegenerate and closed

3. Ex: V a vector space, thought of as a manifold

(a) There exists a natural/canonical form on T ∗V

(b) T ∗V ∼= V × V ∗ where the ∼= denotes diffeomorphism so Tv⊕v∗ = V ⊕ V ∗ which is naturally symplectic

(c) We have our original example of a symplectic structure, i.e.

ω(u⊕ u∗, v ⊕ v∗) = u∗(v)− v∗(u)

(d) Note that this form is immediately closed because it is translation invariant

(e) V has a basis {e1, . . . , en} → {q1, . . . , qn}, which can be thought of as position coordinates
V ∗ has a basis {f1, . . . , fn} → {p1, . . . , pn}, which can be thought of as momentum coordinates.

(f) Then

ω =
n∑
i=1

dpi ∧ dqi

4. Another example is for M a manifold, T ∗M has a natural symplectic structure

(a) Construction 1: M = ∪αUα ⊆ Rn, an open cover by coordinate charts, then

T ∗M = ∪αT ∗Uα ⊆ T ∗Rn ∼= TR2n

The idea is to glue charts on T ∗M together, where each chart has the natural symplectic structure for an
open set in R2n

(b) Construction 2: There exists a “tautological” one form on T ∗M given by

λ ∈ Ω1(T ∗M) s.t. ω = dλ

consider the exact sequence

0 T ∗XM Tpx(T ∗M) TxM 0inclusion as the vertical subbundle dπ∗

which motivates
λpx(v) = px(dπ∗v) ∀x ∈M, px ∈ T ∗xM, v ∈ Tpx(T ∗M)

Clearly this is a one form on T ∗M as it takes in elements of the tangent space to T ∗M

(c) Claim: dλ is symplectic, we have that
d(dλ) = 0

so dλ is closed. Non-degeneracy follows because for

T ∗M = ∪αT ∗Uα T ∗Rn ∼= R2n = Rnq × Rnp =⇒ λ ∈ Ω1(T ∗M) s.t. λ
∣∣∣
T∗Uα

=

n∑
i=1

pidqi

This computation can be done in coordinates, and its fairly straightforward, because

dπ∗ : TpxT
∗M → TxM

is given by
dπ∗(v) = dπ∗(ax, bx) = ax

where ax lies in the horizontal component of TpxT
∗M corresponding to TxM , and bx lies in the vertical

component corresponding to T ∗xM . Then we also have that locally

px =

n∑
i=1

pidei s.t. px(ax) =

n∑
i=1

piai
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where ax =
∑
i aiei locally. Thus

px(dπ∗(v)) =
∑
i

piai

because dqi denotes the spanning set for Rnq , the latter n-dimensions of T ∗Rn
∣∣∣
x=(q,p)

which act on elements

of TqM (remember that q denotes the position part, not p), and so we have that

px(dπ∗) =
∑
i

pidqi

9/27/19

1. Recall: T ∗M for M a smooth manifold, is naturally a symplectic manifold with ωM = dλM the tautological
one form

2. If we have M
ϕ−→ N a diffeomorphism, then we get

T ∗N T ∗M

N M

Tϕ

π π

ϕ−1

with Tϕ = dϕ

3. Claim: (Tϕ)∗λM = λN
Proof: Consider v ∈ Tξn(T ∗N), then we want to show

((Tϕ)∗(λm))ξn(v) = (λn)ξn(v)

Note that the left hand side is equivalent to

(λm)dϕ∗ξn(dTϕ∗v) = dϕ∗ξn(dπx ◦ dTϕ∗(v)) = ξn(dϕ∗ ◦ dπ∗ ◦ dTϕ∗v)

= ξn(dϕ∗ ◦ (dϕ−1)∗ ◦ dπ∗(v)) = ξn(dπ∗(v))

4. This all works because ϕ is a diffeo

5. In coordinates, this amounts to

pT · dq =
∑
i

pidqi = (dϕT ◦ p̃)T (dϕ−1)dq̃ = p̃T dϕdϕ−1dq̃ = p̃T dq̃

where p̃ and q̃ denote the momentum and position coordinates on N .

6. Corollary:
Tϕ∗ωM = ωN

i.e. Tϕ is a symplectomorphism

7. Proposition: Let T ∗N
Φ−→ T ∗M be a diffeomoprhism, with Φ∗λM = λN . Then Φ = Tϕ for some ϕ : M → N .

Proof: The key object here is the Liouville vector field. For any T ∗X, we define a canonical vector field
implicitly by

ιLx(ωx) = ωx(Lx, ·) = λx

here ιLx is the interior derivative, which normally has a more complicated form than the above form, but it
works out because we’re working with a two form.
In coordinates, we have

ωx =
∑
i

dpi ∧ dqi λx =
∑
i

pidqi =⇒ Lx =
∑
i

pi
∂

∂pi

which can be thought of as the fiberwise radial vector field (remember that p stands for momentum and hence
the {∂/∂pi} span the fiber).
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Given that Φ∗λm = λn, it follows that Φ∗LN = LM . Note that Φ∗ is not usually well defined acting on vector
fields, but it is here because Φ is a diffeomorphism.
Now let ϕtN be the flow of −LN for all t ∈ R and Φ ◦ ϕtN = ϕtM ◦Φ. We claim that Φ sends the zero section of
TN to the zero section of TM , but this follows immediately because

Φ (Z(LN )) = Z(LM )

where Z(X) denotes the points on M where X vanishes as a vector field. This follows because Φ is a diffeo.
Now we claim: Φ sends cotangent fibers to cotangent fibers. The proof is that

lim
t→∞

ϕtN (ξN ) = 0N ∈ TNN

i.e. because the flow ϕtN is generated by the radial vector in vertical fiber, then letting t → ∞ pushes any
vector in the fiber to 0. Now let

ψ := Φ
∣∣∣
Z(Φ)

: N →M

i.e. ψ is the restriction of Φ to its zero section, which is N because Φ is a diffeo. We also have

Φ ◦ ϕtN (ξN ) = ϕtM (Φ(ξN )) ∀t ∈ R

by nature of the flow commuting. Taking t→∞ on both sides, we get

lim
t→∞

ϕtN (ξN ) = 0N

In coordinates, this amounts to

{pNi }, {qNi } {pMi }, {qMi } s.t. qM = ψ(qN ) pM = ρ(qN , pN )

for an unknown ρ. Then because λM = λN we have

pNi dq
N
i = pMi dq

M
i = ρ(qN , pN )dψ(qN ) = ρ(qN , pN )(dψ)dqN

but also
(pN )T dqN = (pM )T dqM = (ρ(qN , pN ))T dψ(dqN )

Thinking of these as matrices, we have

(pM )T = (ρ(qN , pN )T )dψ =⇒ ρ(qN , pN ) = (dψT )−1pM

and so Φ = dψ for ψ our restriction of Φ to its zero section.

8. Remark: Φ∗ωM = ωN would not have lead to the same conclusion. The counterexample is the Dehn Twist,
which is a symplectomorphism

T ∗S1 = Rq/Z× Rp, ω = dp ∧ dq

The Dehan Twist takes a vertical fiber and the twists a full 2π about 0 in the fiber

Figure 1: Dehn Twist twisting the fibers a full rotation about 0
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In this case, the fibers are not sent to fibers, and so we can’t have that the above symplectomorphism is
Tϕ = dϕ for some ϕ. However. dp ∧ dq is mapped to dp ∧ dq somehow, while pdq 67→ pdq

9/30

1. From last time: note that the Dehn Twist can be made into a compactly diffeomorphism, i.e. the twist is
accomplished in a finite amount of time. This means that we can “implant” the twist in other surfaces, e.g.
the torus which locally looks like S1 × [0, 1], which gives a symplectomorphism on most surfaces which is not
of the form Tϕ = dϕ

2. Note that for a symplectomorphism of the form Tϕ : T ∗M → T ∗M , fibers move via a linear map, and so not
compact supported

3. Three levels of important subobjects

Symplectic Vector Spaces

(a) V a symplectic vector space with Ω. Let W ⊆ V be a subspace, and define

WΩ = {v ∈ V | Ω(v, w) = 0, ∀w ∈W}

which is called the symplectic complement

(b) Claim: dimWΩ + dimW = dimV
Proof: f : V →W ∗ such that v 7→ Ω(v, ·). Rank-nullity tells us that

ker(f) = WΩ

but f is surjective because Ω is non-degenerate, so

0 V V ∗ W ∗ 0Ω̃

I think.

(c) Claim: W ⊆ (WΩ)Ω. Proof is left as an exercise

(d) Definition: W is

i. Coisotropic if WΩ ⊆W (e.g. when W is codim 1)

ii. isotropic if W ⊆WΩ (e.g. when W is dim 1)

iii. Lagrangian if W = WΩ

iv. Symplectic if W ∩WΩ = {0}

Subbundles

(a) A subbundle P ⊆ E → M for E a symplectic vector bundle is called (coisotropic, isotropic, lagrangian,
or symplectic) if for all y ∈M , Py ⊆ Ey is one of those, respectively

Submanifolds

(a) Y ⊆ M a submanifold is called (coisotropic, isotropic, lagrangian, or symplectic) if TY ⊆ TM
∣∣∣
Y

if

TY ⊆ TM
∣∣∣
Y

is (coisotropic, isotropic, lagrangian, or symplectic) respectively

4. Ex: Y ⊆M is lagrangian if ωy

∣∣∣
TyY

= 0 for all y ∈ Y and Y is half the dimension of M

5. Examples of Lagrangian objects: Lagrangian subspaces of (V ⊕ V ∗,Ωst), as for any V a real vector space,
V, V ∗ ⊆ V ⊕ V ∗ are Lagrangian
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6. When is the graph of a linear map V → V ∗ lagrangian? We want that

∀v, w ∈ F Ω(v ⊕ f(v), w ⊕ f(w)) = f(w)v − f(v)w = 0

i.e. f̃ : V ⊗ V → R is linear and symmetric

7. Lemma: W ⊆ V is a lagrangian subspace iff it is isotropic + half dimensional

8. Not every lagrangian subspace is graphical over V

Lagrangian subbundles

(a) If a bundle is of the form E ⊕ E∗ → X for some E → X an R-vector bundle, then E,E∗ ⊆ E ⊕ E∗ are
lagrangian subbundles

(b) Claim: Let P → X be a symplectic vector bundle, then P → X is symplectically isomorphic to some
E ⊕ E∗ → X iff P has a Lagrangian subbundle.
Proof: Only if is easy, if will be proved Wedn.

(c) Fact: There exist symplectic vector bundles which admit half-dimensional subbundles which are not
Lagrangian

9. Lagrangian Manifolds in symplectic manifolds

(a) Surfaces (2-dim) manifolds with an area form because any 1-dim submanifold, S, is lagrangian b/c at a
point p, we have

vp, wp ∈ TpS =⇒ ω(vp, wp) = Kω(vp, vp) = 0

as wp = Kvp for some K and this is an area form so it is zero on linearly dependent vectors

(b) Cotangent bundles T ∗X with dλx are also lagrangian manifolds

(c) The zero section ⊆ T ∗X is lagrangian because
∑
i dpi ∧ dqi = 0

∣∣∣
p=0

(d) Also every cotangent fiber because dλx is of the form

dλx =
∑
i

dpi ∧ dqi
∣∣∣
q=c

= 0

as all of the dqi terms will be vanish on this fiber

(e) Claim: Let s : X → T ∗X be a section, and let ηs be the corresponding one form given the isomorphism
between TX ∼= T ∗X. Then

s∗(λx) = (ηs)x

for λx the “tautological” one form evaluated at a point x.

10/02

1. Examples of lagrangian manifolds: Curves in surfaces

2. Claim: if α ∈ Ω1(X), then for sα : X → T ∗X we have s∗α(λx) = α

3. Last time, we defined a Lagrangian submanifold Ln ⊆ M2n as a submanifold such that TL ⊆ TM
∣∣∣
L

is a

Lagrangian subbundle.

4. Generalizing this:

Ln is a smooth manifold. Ln
f−→ (M2n, ω) is an embedding. We will call this a Lagrangian embedding if

f∗ω = 0

5. Check: f∗ω = 0 is equivalent to Im(f) being a lagrangian submanifold. This follows directly, as we want
WΩ = W , but then ω(v, ·) = 0 for all v ∈ W . If W = Im(f) = f(L), then we have ω(f(`), ·) = 0 for all ` ∈ L,
and so f∗ω = 0 by definition.
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6. Corollary: (follows by the claim) If α is closed then Im(sα), called “the graph of α” is a Lagrangian.
Proof: We want to show

sα∗(dλx) = 0 =⇒ s∗α(dλx) = ds∗α(λx) = dα = 0

by nature of s∗α(λx) = α

7. Important examples of closed 1-forms: Exact 1-forms α = df , for then

sα∗(λx) = α = df

meaning that λx

∣∣∣
Im(sα)

is exact (note that Im(sα) is the graph α). This gives us “an exact Lagrangian”

8. Recall: For V a real vector space yielding (V ⊕ V ∗,Ω) symplectic, and f : V ⊗ V → R a symmetric map, then
we get a graphical lagrangian over V inside V ⊕ V ∗, where

f : V → R s.t. v 7→ q(v, v)

is a quadratic form arising from the symmetric map f .

9. A separate type of lagrangian manifold arises from (X1, ω1)
ϕ−→ (X2, ω2) where ϕ is a symplecticomorphism

10. A symplectic manifold can be created from the above via (X1×̃X2, π
∗
1ω1− π∗2ω2) where the ×̃ is just to denote

the extra symplectic structure and we have

X1 ×X2

X1 X2

π1

π2

11. Claim: Graph(ϕ) ⊆ X1×̃X2 is a Lagrangian submanifold.
Proof: Consider

Φ : X1 → X1×̃X2 s.t. x 7→ (x, ϕ(x))

then
Φ∗(π∗1ω1 − π∗2ω2) = ω1 − ϕ∗ω2 = 0

and so by our corollary about an immersed submanifold being lagrangian iff f∗(ω) = 0, we have the claim

12. The converse is also true. If X1
ϕ−→ X2 a diffeomorphism, then ϕ is a symplectomorphism iff graph(ϕ) ⊆ X1×̃X2

is Lagrangian

13. There’s a famous quote by Alan Weinstein “Symplectomorphisms are special cases of Lagrangian Manifolds”
which references the above

Symplectic Linear Algebra (More of It)

(a) What we know: If F an R-v.s. then F ⊕ F ∗ symplectic

(b) V 2n,Ω symplectic vector space (n ≥ 1)

(c) We can always find a lagrangian subspace via the following method

i. Start with a 1-dimensional W , then W ⊆WΩ because

W = span(v0) =⇒ ∀k1, k2 ∈ RΩ(k1v, k2v) = k1k2Ω(v, v) = −k1k2Ω(v, v) = 0

by anti-symmetry. If W = WΩ then we’re done, else if W ( WΩ, then choose w0 ∈ WΩ\W and
repeat and form W ′ = span{v0, w0}

ii. Note that W ′ will again satisfy the condition W ′ ⊆ (W ′)Ω because

Ω(v0, w0) = Ω(v0, v0) = 0 =⇒ Ω(av0 + bw0, cv0 + dw0) = 0

by definition of W and such
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iii. We can repeat this process until our updated W ′ is n-dimensional and W ′ ⊆ (W ′)Ω, i.e. W ′ is
isotropic. Then by our lemma that half dimensional plus isotropic is equivalent to Lagrangian, we’re
done

(d) Let W ⊆ V be a Lagrangian subspace, then ∃W ′ ⊆ V Lagrangian with W ⊕W ′ = V
Proof: Similar to as the previous claim:

(e) Claim:
∃basis {e1, . . . , en, f1, . . . , fn} ⊆ V s.t. Ω(ei, ej) = 0 = Ω(fi, fj), Ω(ei, fj) = δij

(f) Note: if V = F ⊕ F ∗, then we already have such a basis, namely

ei = vi fi = v∗i

where the {vi} span V and v∗i are the corresponding dual basis vectors.

(g) To prove our claim, it suffices to show that there exists such a W ′ such that W ⊕W ′ = V

(h) Claim: ϕ : V toW ⊕W ∗ s.t. w ⊕ w′ 7→ w ⊕ Ω(·, w′) is a symplectomorphism, so just need to show that
the map f : W ′ → W ∗ given by w′ 7→ Ω(·, w′) is an isomorphism + a symplectomorphism (i.e. the pull
back maps the symplectic two forms to each other).
Clearly, w′ 7→ Ω(·, w′) is an isomorphism of vector space. We now want to show

Ω(w1 ⊕ w′1, w2 ⊕ w2)
?
= Ω(w1, w

′
2)− Ω(w2, w

′
1)

but this is true by definition of Ω. On second thought, I think the above should be

Ω(w1 ⊕ w′1, w2 ⊕ w2)
?
= w′2(w1)− w′1(w2)

(i) The upshot is V = W ⊕W ′ corresponds to a symplectomorphism V →W ⊕W ∗. In fact, fix W ⊆ V , then{
Symplectic Isomoprhisms V →W ⊕W ∗which restrict to W

Id−→W
}

1−1↔{
Lagrangian complements to W inside of V

}
(j) We can understand the above correspondence as follows:

i. Choose W ′ s.t. V = W ⊕W ′ ∼= W ⊕W ∗, then{
Lagrangian complements to W inside of V

}
=
{

Lagrangian complements of W inside of W ⊕W ∗
}

=
{

graphical Lagrangians over W ∗ ⊆W ⊕W ∗
}

=
{

Maps W ∗ ⊕W ∗ q−→ R s.t. qsymmetric
}

ii. Note that W ′ 6= W⊥, because we can things like R2 = R(1, 0)⊕ R(1, 1)

iii. Note: This collection of symmetric maps forms a convex set, i.e. q, q′ are symmetric maps W ∗⊕W ∗ →
R then so is tq + (1− t)q′, so the space of all symmetric maps of this form is contractible

10/04

1. Last Time

(a) W ⊆ V a Lagrangian subspace of a symplectic vector space, then there exists a 1− 1 correspond (in fact
a diffeomorphism){Symplectic isomorphisms V →

W ⊕W ∗ extending W
Id−→W

}
↔
{

Lagrangian complement W ′ to W ,
i.e. W ⊕W ′ = V

}
for fixed complement W’↔

{
graphical Lagrangian subspaces
over W ∗ inside W ⊕W ∗

}
Note that the last collection of lagrangian subspaces are each contractible
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2. Corollary: P → X a symplectic vector bundle. If P admits a Lagrangian subbundle L ⊆ P then P = L⊕L∗,
Ω is a symplectic pairing.
Proof: Finding an iso L⊕L∗ = P is equivalent to finding a complementary Lagrangian subbundle L′⊕L = P .
At every point x ∈ P , we have a contractible space of choices of Lagrangian complements in Px. More
precisely, we have a bundle ⋃

x∈X{L′x ⊆ Px | L′x is lagrangian complement to Lx}

X

We want to find a continuous section of the above. To do this, choose a CW complex on X by building it up,
i.e. X(0) ⊆ X(1) ⊆ X(2) ⊆ · · · ⊆ X(n). Such a construction works because our fibres are contractible.
We can now approximate our continuous section by a smooth section.

3. Really not sure about the above proof

4. One more corollary of the classification of non-degenerate skew-symmetric bilinear pairings on a symplectic
vector space is that we can classify all skew-symmetric bilinear pairings:

(a) Let V be a vector space, Ω a skew-symmetric bilinear map

(b) Let W := {w ∈ V | Ω̃(w) = 0}

(c) Choose an arbitrary complement to W inside V , with Ṽ such that V = W⊕Ṽ . Then Ω
∣∣∣
Ṽ

is non-degenerate

(d) In particular, there exists a basis {e1, . . . , en, f1, . . . , fn, w1, . . . , wk} of V s.t.

Ω(ei, ej) = 0 = Ω(fi, fj), Ω(ei, fj) = δij Ω(wi, x) = 0 ∀x

5. Corollary: We can think of Ω, a skew-sym bilinear pairing, as an element Ω′ ∈ Ω2(V ). Ω is non-degenerate,
which is equivalent to

Ω′ ∧ · · · ∧ Ω′ 6= 0

6. Corollary: If ω a symplectic form on M , then in fact ∀x ∈M , ωnx 6= 0

Almost Complex Structures

(a) V an R-vector space

(b) J : V → V a complex structure if J2 = −Id
(c) Let V,Ω be symplectic. A complex structure on V , J : V → V is called

i. Almost comptabile if J is symplectic, i.e. Ω(v, w) = Ω(Jv, Jw)

ii. Tame if Ω(v, Jv) > 0 for all 0 6= v ∈ V
iii. Compatible if Almost compatible + Tame

(d) Claim: V,Ω, J is almost compatible ⇐⇒ Ω(·, J ·) is a symplectic bilinear form.
Proof: We jave

Ω(v, Jw) = Ω(Jv, J2w) = −Ω(Jv,w) = Ω(w, Jv)

ending it

(e) Corollary: (V,Ω) is compatible ⇐⇒ Ω(·, J ·) is a symmetric positive definite bilinear form, i.e. an inner
product

(f) Definition: If (M,ω) symplectic, a compatible, almost complex structure on TM , J : TM → TM and
J2 = −Id such that at every x ∈M , TxM , ωx, Jx is compatible

(g) Similarly, given 〈·, ·〉 positive definite + symmetric and J an isometry and complex structure, then there
exists a symplectic pairing (Ω, 〈J ·, ·〉). This is because

Ω(v, w) = 〈Jv,w〉 = 〈−v, Jw〉 = −〈Jw, v〉 = −Ω(w, v)

10



(h) Claim 2: for (V,Ω) symplectic pairing, there exists a contractible (and hence non-empty) space of com-
patible complex structures.
Proof: Non-empty because choose basis {e1, . . . , en, f1, . . . , fn}, i.e. standard basis. Define

J(ei) = fi, J(fi) = −ei

and then 〈·, ·〉 := Ω(·, J ·) is the standard inner product w.r.t this basis.

(i) This proof required a choice of basis, there is a more efficient construction that works on manifolds though

Polar Decomposition

(a) Let F be an R-vector space with an inner product 〈·, ·〉 and T : V → V a linear isomorphism. Then there
exists a canonical P : V → V and O : V → V such that:
P is symmetric, i.e. 〈Pv,w〉 = 〈v, Pw〉 and positive definite, i.e. 〈v, Pv〉 > 0 for all v 6= 0.
O is an isometry, i.e. 〈Ov,Ow〉 = 〈v, w〉 and T = OP = PO

(b) Proof: TT ∗ is positive definite/self adjoint (because we’re over reals), which implies that

P = (TT ∗)1/2

where the square root of this matrix exists because of the spectral theorem. Now define O = P−1T , and
note that

〈Ov,Ow〉 = 〈OtOv, w〉

but also
OtO = T t(P 2)−1T = T t(T t)−1T−1T = Id

10/07

1. We begin with a remark about problem 4 from the last pset: A good example of non-commuting vector fields
(as per Dylan’s suggestions):

M = R2, S = {x0} V1 =


d
dx |x| ≤ r
∂
∂r R ≤ |x| ≤ K
0 |x| > K

; V2 =
∂

∂θ
∀R ≤ |x| ≤ K

For r < R < K. The idea is that V1 looks like a constant vector field on the inner disk, and then a partition
of unity argument is used to connect the constant vector field to the radial vector field, which is full strength
on the annulus, A = {r ≤ |x| ≤ R}. Everything then dies outside of some radius K = R+ ε.

V2 by contrast is just ∂/∂θ times some smooth bump function so that the vector field is full strength on the
annulus.

The idea is that the radial vector flow and the constant flow ∂/∂x agree on the positive x-axis. Thus if x0 = 0,
we can first flow with V1 and then V2, and so we’re good once we get to A, the annulus. On the other hand if
we first do V2 and then V1, we can only move x0 along the x-axis.

Thus when the vector fields don’t commute,

Φtkk (Φ
tk−1

k−1 (· · ·Φt11 (x0)))

is a weird set.

In the non-commuting case, the sufficiency part of the problem still holds. One needs to use that transversality
is an open condition restricted to small enough t ∈ R, then St should also satisfy the condition

2. Last time: we were trying to understand the space of compatible complex structures inside a symplectic vector
space, (V,Ω)

(a) We had seen that this space is non-empty! Choose a basis and get standard symplectic vector space

11



(b) Claim 1: There is a a compatible smooth map

S1 :=
{

Inner products on V
}

θ→
{Compatible complex structures on

(V,Ω)

}
=: S2

which admits a section.
Proof: Given 〈, 〉 Don’t we start with 〈, 〉? How do we get an Ω. It seems like we’re assuming we start
with an Ω we can turn Ω into a skew adjoint operator K : V → V

〈Kv,w〉 := Ω(v, w)

(skew adjoint because 〈Kv,w〉 = Ω(v, w) = −Ω(w, v) = −〈Kw, v〉 = −〈v,Kw〉). Write down the polar
decomposition of K w.r.t 〈, 〉
Now K =: P (〈, 〉)Θ(〈, 〉) = Θ(〈, 〉)P (〈, 〉). We will define the map Θ such that

Θ : 〈, 〉 7→ Θ(〈, 〉)

we want
Θ(〈, 〉)2 = −Id ⇐⇒ Θ(〈, 〉) = −Θ(〈, 〉)t

because ΘΘt = Id by definition of polar decomposition. From the above, the left hand side is equal to
P−1K = Θ while the other side is equal to −Kt(P t)−1, but

K = −Kt P = P t

which readily gives the equivalence. Thus we conclude that Θ(〈, 〉) = −Θ(〈, 〉)t and hence Θ2 = −Id.

We also have to check that Ω(Θv,Θw)
?
= Ω(v, w). By definition the left side is equal to

〈KΘv,KΘw〉 = 〈Θ−1KΘv, w〉 = 〈PΘv, w〉 = 〈Kv,w〉

This tells us that Θ is almost compatible w.r.t. Ω, and we already know that Θ is an isometry by its
definition from polar decomposition.

Now we need to show that it is tame, i.e. Ω(v,Θv)
?
> 0. TO see this

Ω(v,Θv) = 〈Kv,Θv〉 = 〈PΘv,Θv〉 = 〈P (Θv),Θv〉 > 0

where the last step holds because P is positive definition in the polar decomposition of K. Therefor Θ is
a compatible almost complex structure for Ω.

(c) Claim 2 This map, Θ, has a section, i.e. there exists a map s : S2 → S1 such that Θ ◦ s = Id. Note that
Θ is surjective, but not injective. What is this section?

Let J be a compatible almost complex structure. We define

〈·, ·〉 := Ω(·, J ·)

want to check that Θ(〈, 〉) = J , so that s : J 7→ Θ would be our section.

We check the above

Ω(v, w) = 〈Kv,w〉 = Ω(Kv, Jw) = Ω(JKv,−w) =⇒ JK = −Id =⇒ K = J

because J2 = −Id. But we also know that J is an isometry w.r.t. to the inner product 〈, 〉. Therefore
Θ(〈, 〉) = J because this polar decomposition is unique. Now we have our correspondence s as desired and

{〈, 〉} {J}Θ
s

but note that the left hand side is convex (i.e. the space of all inner products is convex), and hence
contractible. Further note that Θ is a surjection, whereas s is simply a section, and not injective or
anything.

12



(d) Corollary: The space {comptabile complex
structures on (V,Ω)

}
is a contractible space.
Proof: The {〈, 〉} space is convex. Fix a g ∈ {〈, 〉}, we can define a contraction of {J} to Θ(g) by

Θ ◦ ((1− t)s(J) + t · g)

in particular, we can map I 7→ g ∈ {〈, 〉}.
(e) A choice of J makes (V,Ω) more rigid. For W ⊆ V a lagrangian subspace, JW is also a lagrangian.

JW ⊕W = V . If you define
〈, 〉 := Ω(·, J ·)

then JW ⊥W . Just need to check that 〈v, Jw〉 = 0 for all v, w ∈W but, this is equal to −Ω(v, w) which
equals 0 because W Lagrangian.

(f) Corollary: (2) Every symplectic vector bundle admits a compatible complex structure. Moreover, any
two compatible complex structures are homotopic to each other (which is a result of this space being a
contractible space). In particular, this implies that they are isomorphic as complex vector bundles.

(g) One way to think about two bundles being homotopic is construct base space M × [0, 1] and then connect
E1 which occurs at M × {0} and E1 which occurs at M × {1}. We need a connection to do this

(h) With our work today, we can show that there exists manifolds of half dimension which are not lagrangian

10/09

1. Last time: Every symplectic vector bundle admits a compatible complex structure. Moreover the resulting
isomorphism class of the resulting complex vector bundle is independent of choices

2. Ex: We know that E ⊕ E∗ → X (where E is a real vector bundle) is a symplectic vector bundle - so what is
the associated complex vector bundle up to isomorphism?

3. AnswerIt is the complexification of E, i.e. E ⊗R C = EC → X id a complex vector bundle. In particular, we
have an isomorphism between E ⊕ E∗ → X and EC → X which sends the complex structure of the former to
the latter

4. Note: a real vector bundle with a complex structure is not exactly a complex vector bundle if we compare the
definitions

5. How do we prove that the complexification of E is the associated complex vector bundle? Fix 〈, 〉 on E. Choose
J : E ⊕ E∗ → E ⊕ E∗ by

J : e→ 〈·, e〉

This defines J on the E component, to define it on E∗, we use the fact that J2 = −Id. Another way to say
this is that J is a map for the bundle E ⊕ E → X where Je = ẽ, such that ẽ is the copy of e in the second
factor.

Now define a map between real vector bundles EC ∼= E ⊕ E 7→ E ⊕ E∗,

(e, ẽ) 7→ (e, 〈ẽ, ·〉)

6. Now consider P → X a symplectic vector bundle, this induces PJ → X, which is a complex vector bundle
up to isomorphism. Here the J denotes the complex vector bundle, which yields an actual J as before (up to
isomorphism). This in turn induces a complex line bundle detC(PJ) := ΩkC(PC)→ X, which is also well defined
up to isomorphism.

If E a real vector bundle, then detC(EC) ∼= det(E)C

7. Consequence: detC(EC)⊗C2 is always trivial because det(F )⊗2 is always trivial, being a trivial bundle tensored
with itself Don’t understand. Also links online say this is not true unless the first Chern class vanishes

8. Upshot: If P → X symplectic vector bundle admits a Lagrangian subbundle, then detC(PC)⊗C2 is trivial.
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9. Now consider the symplectic vector bundle, TS2 ⊕ R2
st → S2 (standard symplectic structure on R2).

(a) This clearly has a rank 2 Lagrangian submanifold

(b) Also detC(TCP1 ⊕ C) = detC(TCP1), by some complex analysis, we have

det
C

(TCP1 ⊕ C) = det
C

(TCP1) = TCP1 = O(2) on P1

and the square of this last thing is O(4) which is non-zero.

(c) As an aside O(−1) is the tautological line bundle over P1. O(1) = O(−1)∗, and then O(2) = O(1)⊗C2, i.e.
the tensor of the tautological line bundle with itself.

10. Almost Complex vs. Complex Manifolds

(a) Almost Complex Manifold: A manifold, and an endomorphism J : TM → TM such that J2 = −Id
(b) Complex Manifold: X is covered by charts which are open subsets of Cn with biholomorphic transition

maps

(c) It’s easy to see: if X is a complex manifold, then the underlying real manifold, XR, has a canonical, almost
complex structure

(d) On charts: multiplication by i is a map, i.e. ·i : Cn → Cn, and this induces a map ·i : R2n → R2n. The
differential of this map is in fact the “J” we’ve been talking about J : TR2n → TR2n. These glue together
by the biholomorphism of the transition map.

(e) Biholomorphism can be thought of as a PDE on the transition functions. When we say that J preserves
the biholomorphic structure, that also yields a differential equation on J

(f) In the Almost complex manifold case, no such differential equation exists because we don’t require that
our maps are holomorphic. We have trivializations, and we just want that J commutes with the transition
maps, which is just a linear equation pointwise.

11. Theorem: An almost complex structure on M is of the form XR for some complex manifold X if and only if
a certain Nijenhuis tensor, which is in Γ(T ∗M ⊗ T ∗M ⊗ T ∗M), vanishes.

12. Think of the above tensor as a pointwise quaternion.

13. Such complex structures are called integrable.

14. In symplectic geometry, we don’t care (95 percent of the time), whether an almost complex structure is
integrable or not.

15. Symplectic structres in complex geometry

(a) Lemma: Let (V,Ω, J) a symplectic vector space, with J tame. Let W ⊆ V be a subspace that is closed
under J . Then W is actually symplectic as a subspace, in particular it’s a symplectic vector space itself
via Ω.
Proof: Ω(v, Jv) > 0 for all v 6= 0. We need to show that W ∩WΩ = {0}. Take v ∈ W ∩WΩ, since
Jv ∈W , we have

Ω(v, Jv) = 0 =⇒ v = 0

by J being tame.

(b) Corollary: An almost complex submanifold Y of (M,ω, J) which is tame, is symplectic itself w.r.t ω
∣∣∣
Y

.

Not totally sure how this follows, is Y preserved by ω
∣∣∣
Y

necessarily by nature of being almost complex?

(c) In particular, a complex submanifold of a complex manifold whose associated complex structure is compt-
abile with a symplectic form ω, is symplectic

(d) Ex: Cn has a symplectic structure.

ω =

n∑
i=1

d<(zi) ∧ d=(zi) s.t. {zi} are C coordinates

If you write zi = pi +
√
−1qi then

ω →
∑
i

dpi ∧ dqi

the standard almost complex structure on Cn is compatbile. Then any solution set of polynomial equations
in Cn that is smooth gives you a symplectic manifold Why is this?
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10/11

1. Last time: Complex submanifold of Cn have symplectic structures induced from being a symplectic submanifold
of (R2n, ωst). Among these, the well behaved (important) ones are the properly embedded ones

2. Recall that a proper map satisfies that the preimage of a compact set is compact

3. Ex: Of a non-proper map: say we have f : R → R2 such that Im(f) is a bounded simple curve with open
endings. Then this is not proper because take a compact neighborhood of the open endings, then the preimage
will be of the form (a,∞), which is not compact

4. Ex: A proper map would be something where we send R to an unbounded simple curve in R2

5. Definition: A complex manifold is called stein if there exists a proper holomorphic embedding of C into CN ,
for some N

6. Ex: Subsets of Cn that are cut out smoothly by polynomial equations

7. Note that there may be many such embeddings, each of which can equip X with a different symplectic form

8. Fortunately, they are not really different

9. Proposition: (Gromov-Eliashberg) Any two symplectic structures obtained on X this way are symplecti-
comorphic. I.e. if we have two proper, holomorphic embeddings of X into CN , then both embeddings are
holomorphic

10. Note that affine varieties are Stein, but there non-algebraic Stein manifolds as well

11. Aside: We don’t have a good way to generally construct a symplectic manifold (compare this to the construction
of 3-manifolds via knots). Umut seems upset about this, implying that it’s a big problem in symplectic geometry

12. We will now show that complex submanifolds of CPn are also symplectic (e.g. projective complex varieties)
but these symplectic structures actually depend on the embedding

(a) Let’s start with another important definition

(b) Definition: Kahler manifolds: the following are equivalent definitions

i. (M,ω, J) symplectic manifold with complex structure such that J is integrable

ii. (M, g, J) where g is a Riemannian metric and J is an almost complex structure, such that J preserves
the metric at each tangent space, and J is covariantly constant (i.e. when you differentiate J w.r.t.
to the connection ), i.e.

∇J = 0

where ∇ is the Levi-Civita connection from the metric

(c) Remark: from the first definition, we can get a Riemannian metric by composing the form with the
complex structure. From the second definition, J is not assumed to be integrable as it follows from the
other requirements

After that, we get ω from J and g and we have that ∇J = 0 ⇐⇒ dω = 0. In particular

ω := g(J ·, ·) =⇒ ∇ω = ∇g(J ·, ·)

(d) Pointing out the obvious: Kahler manifolds have symplectic structures no matter which definition is used
(In the second definition, is ω = g(·, J ·)?)

(e) Ex: Cn is a Kahler manifold

(f) Note: complex submanifolds of Kahler manifolds are Kahler, so a complex submanifold of Cn is not just
symplectic, but also Kahler

(g) Fubini-Study form (or metric) on CPn: Consider the standard Kahler structure on Cn+1, i.e. ωst,
Jst, gst.

(h) We have a canonical map

S2n+1 π−→ CPn

sending each point x ∈ S2n+1 to the complex line it lies on.
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(i) There is an U(1)-action (where U(1) = S1 but thought of as a Lie group) on S2n+1 given by multiplication
by eiθ. The map, π, is the quotient map given by this action

(j) Note that S2n+1 has an induced Riemannian metric from g on Cn+1

(k) Define the distribution D2n ⊆ TS2n+1 defined by taking perpendiculars to the fibers of π. Some picture
with the Hopf map here

Here’s what’s happening: Given p ∈ S2n+1 we have the fiber at p which is equal to {peiθ | θ ∈ [0, 2π)}.
This fiber defines a vector at p in TS2n+1, and hence we can take the orthogonal complement to this
vector within TS2n+1, giving us a 2n-dimensional subspace of the tangent space. To imagine this, think
of great circles as being the fibers over a point in S2 (wrong dimension, I know, but so it goes) and then
we get a subspace by taking the complement of the vector which defines the great circle through p at that
point.

(l) By construction of the smooth structure of CPn, for every x ∈ S2n+1, we have

dπx

∣∣∣
Dx

: Dx → T[x]CPn

The above is because dπ is surjective with the fiber of π as the kernel Moreover, dπx is invariant under
the U(1) action (precisely because of the fiber being the kernel remark) and

Dx Deiθx

T[x]CPn

U(1)action

(m) Not sure I understand the construction of D2n, ask UMUT in office hours. What is the “fiber
directions”? resolved

(n) Hence, in order to define structures on CPn, we need U(1) invariant structures on D = D2n

i. Each Dx ⊆ TxCn+1 is a complex subspace (because it is the perpendicular to a complex subspace).
In particular, multiplication by eiθ is a biholomorphism of Cn+1, therefore, we have that the below
commutes

J
∣∣∣
Dx

: Dx Dx

J
∣∣∣
D
eiθx

: Deiθx Deiθx

�

ii. For the Riemannian metric and symplectic form on CPn, we follow the same strategy. Noting that
·eiθ is an isometry and also a symplectomorphism

iii. We need to show that
dωFS = 0 or ∇JCPn = 0

where ωFS denotes the Fubini-Study form. Did we show this? I think not

iv. The point is that we’ve equipped each Dx with a metric, which is invariant under the eiθ· action and
patches together well

(o) Remark: Next time we will see a conceptual explanation for why dω = 0

(p) Note the U(n+ 1) action on CPn. It is a transitive action and it is an action by biholomorphic isometries.
In fact gFS is determined uniquely by this property (invariant under U(n+ 1) action) up to scaling

(q) Why is ∇J = 0?

∇J is a (1, 2) tensor which is also invariant under the U(n + 1) action. For every point p ∈ CPn, there

exists an element A ∈ U(n + 1) which does the following: A fixes p and dA
∣∣∣
p

= −Id (automorphism of

the tangent space at that point p). Note that these kind of things are called “symmetric spaces”

Trick/Proof: for a vector space V , no non-zero element of V ⊗i ⊗ (V ∗)⊗j with i + j odd number can be
preserved by multiplication by −1. Therefore ∇J = 0
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10/14 (Need to start reviewing from here)

1. Last time: Kahler manifolds (e.g. complex submanifolds of Cn or CPn, where these spaces are equipped with
the fubini-study form)

2. Warning: There are closed Kahler manifolds which are not projective, i.e. they cannot be embedding in CPn
holomorphically. In fact, most closed Kahler manifolds are of this form (i.e. there are many of them )

3. Ex: K3 surfaces (e.g. 4 real dimension, 2 complex dimensions):

(a) are closed complex surfaces

(b) admit a Kahler structure

(c) The first Chern class of the tangent bundle also vanishes (i.e. c1(TCM)) = 0

(d) and M is not equal to a 4-torus (so we assume that M is simply connected), nor an abelian variety

Any two M satisfying the above conditions are diffeomorphic. Hence smoothly, there is one K3 surface. There
is a 20 (complex) dimensional family of complex structures on M , and each of these support a Kahler structure.
But only a 19 dimensional family admits a holomorphic embedding into CPn. Somehow 19 is the cut-off for a
nice property for K3 surfaces. Note that 19 and 20 are the dimensions of the moduli space of complex structures
on M , where M is a fixed K3 surface. Note: A moduli space means a space of objects where each object is an
equivalence class of things, e.g. a moduli space of complex structures would be a space of equivalence classes
of complex structures.

4. Ex: Consider {x4 + y4 + z4 + t4 = 0} ⊆ CP3

5. What is special about Stein Manifolds (i.e. properly embedded holomorphic submanifolds of Cn for some n)
among open symplectic manifolds?

(a) Answer 1: They have infinite volume!

But of course there are many open symplectic manifolds with finite volume (and by volume we know
that for ω a symplectic 2 form on a 2n-dimensional manifold, then dV = ω ∧ · · · ∧ ω)

(b) Answer 2: If X2n is Stein, then Hk(X,Z) = 0 for k > n. For intuition, think of affine varieties, because
they have half of the homology that they can have (i.e. half of their dimension). This is called the “Weak
Lefschetz Theorem”

As an example of this theorem, consider submanifolds of C2. Then affine varities will correspond to a
Riemann surface, which deformation retracts onto a 1 (real) dimensional manifold, so it can have first
homology and lower, but nothing above

(c) Remark: There is a pure characterization of symplectic Stein manifolds (with no reference to complex
structures). This says that all Stein manifolds can be obtained by “Weinstein handle attachments.” This
is a theorem of Eliashberg-Cielibach.

Further note that anything obtained by Weinstein handle attachments are called Weinstein manifolds.
Moreover the functor from Stein manifolds to Weinstein manifolds is denoted

Wein : {Stein} → {Weinstein}

6. What is special about compact Kahler manifolds among closed (i.e. compact no boundary) symplectic mani-
folds?

(a) Answer 1: There is a Hodge decomposition (which only depends on the complex structure of the manifold,
i.e. no dependence on the symplectic form) This does not exist for arbitrary compact complex manifolds

Hk(M,C) = ⊕i+j=kHi,j(M)

where Hi,j(C) = Hj,i(C) (i.e. complex conjugate under exchanging symmetry) as complex vector spaces
Still not sure what it means to take the complex conjugate of a complex vector space Complexification of
Hi,j(C) as a (real?) vector space I think. For the dimension of these spaces, aka the betti numbers, we
have the following relation

bk =
∑
i+j=k

bi,j , bi,j = bj,i
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These {bi,j} form the Hodge diamond.

. . .

. . . . . .

b2,0 b1,1 b0,2

b1,0 b0,1

b0,0

For a K3 surface, we have the following Hodge diamond

1

0 0

1 20 1

0 0

1

(b) Note that if M is compact, Kahler, then bk is even whenever k is odd

(c) Ex: Kodaira-Thurston manifold: This is a quotient of R4 with the standard structure, dx1∧dx2+dx3∧dx4,
and the quotient is by the following equivalence relation

(x1, x2, x3, x4) ∼ (x1 + 1, x2, x3 + x4, x4) ∼ (x1, x2 + 1, x3, x4) ∼ (x1, x2, x3 + 1, x4) ∼ (x1, x2, x3, x4 + 1)

Note that without the first x3 + x4, we would just have the 4-torus. But this extra addition gives it an
interesting structure

It’s best to think about this as a torus bundle over a torus.

T 2 X

T 2

(x1,x2)

Monodromy in the x1 direction is a Dehn Twist. Monodromy in the x2 direction is the identity.

Now take T 2
x3,x4

×R2 and then glue accordingly to make our manifold. This is not Kahler because b1 = 3

(d) Answer 2: There is a Hard Lefschetz theorem for Kahler manifolds:
Theorem: If M is Kahler with symplectic class [ω], then for 0 ≤ k ≤ n− 2, we get a map

Hn−k(M,R)
∧[ω]k−−−→ Hn+k(M,R)

i.e. wedging with [ω] k-times gives an isomorphism between the homologies.

(e) Answer 3: Formality of rational cohomology ring.
Corollary: No Massey Products
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(f) Note: the Kodaira-Thurston manifold fails all of the above properties

7. Constructions of symplectic manifolds

(a) Symplectic blow-up operation: Geometrically, this looks a lot more like blow up in complex manifolds
then real ones. On real manifolds, blowing up a point is look removing a ball. On C2 though, blowing up
a point amounts to removing a ball and replacing it with CP1

How does this work? Given M a symplectic manifold and Z a symplectic submanifold. then

(M,Z) 7→ BL(M,Z) a closed symplectic manifold

basically “remove an open tubular neighborhood of Z and then do a partial collapsing of the boundary.”

Ex: For M = R4 and Z = {0} then we go from R4 to S3 by removing a ball and then we get to S2.

The blow up process does basically nothing if Z is codimension 2

Not sure how the above example works. Ask Umut

Check Macduff and Salamon

(b) Symplectic sum along codimension 2 symplectic submanifolds

V ↪→M1, V ↪→M2

which are topologically gluable e(N(V,M1)) = −e(N(V,M2)) where e is the euler class, and then the two
embeddings can be glued.

(c) Theorem: (Gompf) Arbitrary finitely presented groups can arise as fundamental groups of closed sym-
plectic 4-manifolds.

(d) Proof uses a symplectic sum construction.

(e) Note: This is not true at all for a Kahler manifold

10/16

1. Today we talk about Symplectic reduction

2. Linear algebra version: (V,Ω) a symplectic vector space, and W ⊆ V is any subspace. Then W/(W ∩WΩ) is
naturally symplectic

3. Ex: If W is coisotropic, i.e. WΩ ⊆W , then W/WΩ is naturally symplectic.

4. This clearly has a symplectic bundle version: Given any symplectic vector bundle and any vector subbundle,
then we apply this construction fiberwise to the subbundle. Note: we have to assume that Ex ∩EΩ

x is constant
rank, where Ex is the fiber over the point x in the subbundle E

5. If (M,ω) is a symplectic manifold and X ⊆ M a submanifold, and (Assumption 1) we assume that TxX ∩
TxX

Ω ⊆ TxX has constant rank, then TX ∩ TXω is a subbundle of TX.

6. Ex: For X coisotropic manifold, then TxX
Ω ⊆ TxX is a subbundle of codimension X ⊆ M (follows by rank

nullity and dim(W ) + dim(WΩ) = n proof)

7. Claim: the distribution TX ∩ TXΩ ⊆ TX is integrable under assumption 1
Proof: Let ξ1 and ξ2 be vector fields on X which are tangent to TXΩ ∩ TX.

Let ωx := ω
∣∣∣
X

. We need to show that for every η, a vector field on X, ωx([ξ1, ξ2], η) = 0, as this is equivalent

to being integrable

We use the Cartan formula for exterior differentiation and the fact that dω = 0:

0 = dω(ξ1, x2, η) = ±ξ1ωx(ξ2, η)± ξ2ωx(ξ1, η)± ηωx(ξ1, ξ2)

±ωx([ξ1, ξ2], η)± ωx([ξ1, η], ξ2)± ωx([ξ2, η], ξ1)

19



note that most terms vanish because ξ1, ξ2 all lie in TXΩ and hence ωx(ξ1, v) = 0 for all v. This leaves our last
term

0 = 0 + 0 + ωx([ξ1, ξ2], η) + 0 + 0

Thus TX ∩ TXΩ is tangent to a foliation of X. What we’ve done is shown that our distribution is integrable
and hence by the frobenius integrability theorem, it is a folation

8. Ex: If X is coisotropic, then we get what is called the characteristic foliation

9. Ex: If X is codimension 1 then TX ∩ TXΩ is rank 1, then it is automatically coisotropic and TX ∩ TXΩ is
automatically integrable

10. Note: the leaves of F are isotropic

11. (Assumption 2): There is a smooth manifold (“the leaf space”) such that the foliation F is given by the
fibers of a surjective submersion, π : X → B with connected fibers. I.e. each leaf of our original manifold is a
point in the “leaf space” manifold

12. Claim: B has a canonical symplectic structure, ωred (omega reduced), such that π∗ωred = ωX .
Proof: By linear algebra, for each x ∈ X, TxX/(TxX∩TxXΩ) has a symplectic structure. Let π(x) = π(x′) = b,
then

TxX/TxX ∩ TxXΩ Tx′X/Tx′X ∩ Tx′XΩ

TbB

∼

∼

∼

Need to show (∗): the identification
∼
99K preserves symplectic structures

Lemma: If ξ is a vector field on X that is tangent on TX ∩TXΩ, then Lξωx = 0 where Lξ is the lie derivative
w.r.t. ξ.
Proof: We have by cartan magic formula

Lξωx = ιξdωx + d(ιξωx) = 0

where both of these terms vanish because dωx = 0 and ιξωx is zero by nature of being tangent to TX∩TXΩ.

Now let’s prove (∗) for x and x′ lying in the same submersion chart, i.e. where we project the chart U ⊆ Rn
to the first k coordinates:

Find a constant vector in U where the time 1 map takes x→ x′, then multiply by some smooth bump function
to extend it to the entirety of the manifold, where it is supported in U . Then apply the lemma. This preserves
the symplectic structure Does flowing by a vector field in general preserve the symplectic structure? This is
exactly the content of the lemma and gives the identification

TxX/TxX ∩ TxXΩ ↔ Tx′X/Tx′X ∩ Tx′XΩ

For the general case, choose a path x→ x′ and cover it with finitely many canonical submersion charts (finite
by compactness). What is a canonical submersion chart?

Now we have a non-degenerate 2-form ωred s.t. π∗ωred = ωx. This implies that dωred = 0 because we can take
a local section

π−1(U)

U

π s

then
s∗π∗ωred = s∗ωx

but (π ◦ s)∗ = s∗ ◦ π∗ = Id so the left hand side is ωred. Then we have

dωred = d(s∗ωx) = s∗(dωx) = s∗(0) = 0

13. Ex: S2n−1 ⊆ Cn. The characteristic foliation is given by the fibers of S2n−1 → CPn−1 because the fibers are
given by the S1 action on S2n−1. We want to show that the symplectic structure restricted to the tangent
space of the sphere has ker = S1 Did we show this

This shows that ωFS (fubini-study ) is closed. Because we apply the lemma in the direction of the S1 fiber?
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10/18

Symmetries of symplectic manifolds

1. Heuristically (MYTH?): If we want to find n functions (in some number of variables) which satisfy k partial
differential equations, then we feel like k ≤ n. This is a direct translation from linear algebra (PDE’s in
involutive form)

2. Consider the equation dα = β, where β is the input and we’re trying to solve for α. Here α ∈ Ω2(R4) and
β ∈ Ω3(R4). Here, we’re trying to solve for 6 functions and we’re given 3 equations. Note the following:

If dβ 6= 0, then no solution. If β = 0, then there is an ∞-dimensional family of solutions. For any ξ ∈ Ω1(R4)
is a solution

3. If (X2n, ω) is a symplectic manifold, ϕ : X → X a symplectomorphism. If ϕ∗(ω) = ω, then this is O(n)
functions and O(n2) equations but it still has a solution

4. Umut says this is more proof that the Heuristic is wrong - but I’m skeptical because there are more equations
encoded in a symplectic form, e.g. ω(u, v) = −ω(v, u). However, the first example with dα = β does check
out...

5. Definition: A vector field V ∈ Γ(TM) is called symplectic if αV ω = 0, i.e. the flow of V preserves ω, this is
equivalent to

0 = LV ω = ιV dω + d(ιV ω)

This establishes a correspondence{
symplectic vector fields

}
↔
{

closed 1-forms
}

6. Definition: A symplectic isotopy is a time dependent vector field that preserves ω in the same way, i.e.
LVtω = 0 for all t.

7. Definition: A symplectic vector field V is called Hamiltonian if ιV ω is exact.

8. Definition: Let f : M → R a function (“Hamiltonian”). The Hamiltonian vector field, Xf , is defined by
the formula

ω(Xf , ·) = df

Two functions gives rise to the same Hamiltonian vector field if they differ by a locally constant function. The
flow generated by a Hamiltonian vector field is called the Hamiltonian flow (might be time dependent)

9. Proposition: Energy Preservation: For H : M → R, the flow of XH preserves the level sets of H (energy
levels).
Proof: Want to show XH ·H = 0 but

XH ·H = dH(XH) = ω(XH , XH) = 0

10. Let c be a regular value of H, what is the characteristic foliation/line field of H−1(c)? Intuitively, the line field
is given by XH along the curve What is the curve? Integral curve given an initial point and a Hamiltonian
flow starting at that point? From here, it makes sense because the above calculation tells us that our curve is
coisotropic, so we can talk about a characteristic foliation The curve is defined because XH is defined at every
point. So yes it’s the integral curve, but also the tangent space is often more than a curve because the level set
could be higher dimensional

text

11. The line field generated by XH (which is never 0 because c is a regular value) is precisely the characteristic
line field. Why?

Let V be a tangent vector to H−1(c) this implies that 0 = dH(v) = ω(XH , v), so XH is ω orthogonal to v. As
a result, the flow lines of XH follow the leaves of the characteristic foliation.

Need a picture. Is H−1(c) one dimensional? In this case, isn’t ω-orthogonal to XH equivalent to parallel to
XH? Nope, H−1(c) can be higher dimension as a level set
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12. Hamilton’s equations: (R2n,
∑
i dpi ∧ dqi), and we also have H : R2n → R, then

ιXHω =
∑
i

∂H

∂pi
dpi +

∂H

∂qi
dqi

Why does the above hold? I’m not sure what defining properties of the Hamiltonian vector field give us this
where

XH =
∑
i

fi
∂

∂pi
+ gi

∂

∂qi

this implies that
∂H

qi
= fi, gi = −∂H

∂pi

13. Any integral curve (~p(t), ~q(t)) of XH satisfies

q̇i(t) = −∂H
∂pi

(~p(t), ~q(t)) ṗi(t) =
∂H

∂qi
(~p(t), ~q(t))

Why? Look this up myself

14. Note: this is Hamilton’s equations from physics with the signs switched (many sign choices are made in
symplectic geometry)

15. If

H = − p2

2m
+ V (~q) =⇒ ~̇q = − p

m
, ṗi(t) =

∂V

∂qi
(~q(t))

these are the equations for (negated) velocity and force. The above two equations imply

mq̈i(t) = −∂V
∂qi

(~q(t)), (ma(t) = F (q(t)))

16. Theorem: (Liouville): For V ⊆ R2n a compact domain, and H : R2n → R, and let the system evolve according
to ϕt = ΦXH (i.e. the flow associated to XH). Then

vol(ϕt(V )) = vol(V )

at all times. This is because XH preserves ω, which implies that XH preserves ωn, which is exactly the volume
element.

17. Definition: (Poisson Brackets): For f, g ∈ C∞(M), then {f, g} ∈ C∞(M) is the Poisson Bracket

{f, g} := ω(Xg, Xf )

18. Claim 1: Let ξ1 and ξ2 be symplectic vector fields then ω([ξ1, ξ2], ·) = d(ω(ξ1, ξ2)), i.e. [ξ1, ξ2] is the Hamiltonian
vector field of the function ω(ξ1, ξ2).

Claim 2: X{f,g} = [Xf , Xg]
Proof: For Claim 1

Lξ1(ω(ξ2, ·)) = (Lξ1ω)(ξ2, ·) + ω(Lξ1ξ2, ·) = ω([ξ1, ξ2], ·)
Note that Lξ1ω(ξ2, ·) = 0 because Lξ1ω = 0 by nature of being a sympelctic vector field

On the other hand, we can also expand as follows

Lξ1(ω(ξ2, ·)) = ιξ1(d(ω(ξ2, ·))) + d(ω(ξ2, ξ1))

the first term vanishes because we showed that when ξ2 is symplectic, then ω(ξ2, ·) is closed and so

dω(ξ2, ·) = 0

and so combining the two expansions, we have

ω([ξ1, ξ2], ·) = d(ω(ξ2, ξ1))

For claim 2, we set ξi = Xf and ξ2 = Xg. Then in 1), we have

ω([Xf , Xg], ·) = d({f, g}) =⇒ X{f,g} = [Xf , Xg]
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1. Last time: symplectic vector fields, Hamiltonian vectors fields

2. Lemma: (M,ω) symplectic, there exists an exact sequence of Lie Algebras

0 H0(M,R) C∞(M,R) χ(M,ω) H1(M,R) 0

Ω1
closed(M,R)

inclusion of locally con-
stant functions

d [ ]

where H0(M,R), H1(M,R) are deRham cohomology groups with trivial lie bracket, and χ(M,ω) are symplectic
vector fields with operator [, ], and C∞ is equipped with the Poisson bracket
Proof: Exactness as R vector spaces is fine, why is this exact as a sequence of lie algebras?

At the first non-trivial arrow H0 → C∞, the map is fine I guess? Not sure how inclusion meshes with the Lie
structure but sure. Also what does locally constant mean? Like on connected components

At the second arrow, we have X{f,g} = [Xf , Xg] (a corollary of what we proved) kernel will definitely contain
constant functions, but if the association is f 7→ Xf , then maybe locally constant isn’t enough?

At the third arrow, we have that ξ, ξ′ ∈ χ(M,ω) then [ξ, ξ′] is Hamiltonian from last time, so exactness also
follows. So here we want the map to be surjective, with kernel equal to the image of smooth functions (i.e.
exact forms inside the set of closed forms). I’m not even sure what this map is considering a lie bracket requires
two inputs. We proved all of these properties in previous lectures, but the point is that we want these maps
to respect the lie structure, so v, w ∈ L1 and f : L1 → L2, then f([v, w]) = [f(v), f(w)] in the appropriate
spaces.

3. Isotopies: Let Φ : [0, ε]×M →M be a smooth map, define Φt = Φ{t}×M . This map is a diffeotopy if Φ0 = Id
and Φt is a diffeomorphism ∀t ∈ [0, ε].{

Φ : [0, ε]×M →M
}
→
{

smooth maps : [0, ε]→ Γ(TM)
}

Note this is a map in one direction, where the time dependent vector field is given by differentiation with
respect to t. We can almost get a map backwards by integrating the flow assuming some completeness of
the manifold

4. Definition: (Symplectic isotopy): A diffeotopy preserving ω at all times

5. Definition: (Hamiltonian diffeomorphism): A diffeomorphism obtained as the time t = 1-map of a [0, 1]
dependent Hamiltonian vector field (at every time it’s Hamiltonian)

6. Definition: (Hamiltonian Isotopy): A diffeotopy which is Hamiltonian at all times I think this means that
∀t ∈ [0, ε], we have Φt(x) = ϕHt(x0, 1), i.e. the flow generated by some function XHt for Ht a function (can
think of Ht(x) as H(t, x) for H : [0, ε]×M → R) starting at the point x0 up to time t = 1. The above is almost
correct, the point is that Ht(x) does not piece together in a coherent way with respect to t,i.e. H(t, x) is not
smooth in t! It is a big theorem to say that H(t, x) is actually smooth

7. For the above definition to actually hold, we need to show that the composition of two Hamiltonian diffeomor-
phisms is a Hamiltonian diffeomorphism

8. We define Ham(M,ω) as the group of Hamiltonian diffeomorphisms and Symp(M,ω) as the group of symplec-
tomorphisms.

9. We have Ham(M,ω) ↪→ Symp0(M,ω) ↪→ Symp(M,ω) where Symp0(M,ω) is the connected component of the
identity in Symp(M,ω)

10. Remark: There are many many components to Symp(M,ω)! To many to count even because apparently we
can do surgery with the Dehn twist at many places and get a new connected component of Symp(M,ω)
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11. What is the Lie Algebra (i.e. tangent space at the identity) of Ham(M,ω)? Hamiltonian vector fields!

χHam(M,ω) ∼= C∞(M,R)/{locally constant functions} ↪→ χ(M,ω)

this is because hamiltonian vector fields are in correspondence with Hamiltonian functions, up to a locally
constant function, hence why we’ve drawn the isomorphism between χHam ∼= C∞/{· · · }

12. Geometric interpretation of Hamiltonian isotopies etc. What is?

13. Terminology: u : Σ→ (M,ω) a smooth map. Σ is a 2-dimension manifold

14. Symplectic area of u is ˆ
Σ

u∗ω

15. If we take an embedding u : Σ→M which bounds a 3-dimensional manifold, by stokes theorem, then integration
of ω along the boundary is the same as integrating dω on the interior 3-dimensional manifold, i.e. ω closed
is equivalent to u being the boundary of N3 ↪→ M where N3 is a manifold with boundary. This implies that
the symplecic area of u is 0 I feel like some stronger machinery might be needed here where we can say that´
N
dω = 0 if and only if ω is closed. Yes, kind of. The actual condition is that if for every 3-dimensional

manifold with a boundary of a 2-manifold, then if we have that
´

Σ
ω = 0, then we can conclude that ω is

closed.

16. Lemma: i) Φ : M →M is a symplectomorphism iff Φ preserves symplectic areas.

ii) Φ : M × [0, ε] → M a diffeotopy is a symplectic isotopy iff symplectic areas are preserved at all times.
This is also equivalent to the symplectic area traced by contractible loops (γ : S1 →M) is 0 at all times. This
last statement means the symplectic area of the cylinder traced by contractible loops is zero at all times.

iii) Φ is a Hamiltonian isotopy iff symplectic areas traced by all loops are zero. Is this right? Maybe it
should be “contractible loops” The original is correct

Proof: i) (→) We have
ϕ∗ω = ω {u : Σ→M} ↔ {ϕ ◦ u : Σ→M}

then ˆ
Σ

(ϕ ◦ u)∗ω =

ˆ
Σ

u∗ϕ∗ω =

ˆ
Σ

u∗ω

verifying one direction.
(←) Assume ϕ is not a symplectomorphism, i.e. there exists a point x ∈M and two vectors v, v′ ∈ TxM such
that

ωx(v, v′) > ωdϕ(x)(dϕxv, dϕxv
′)

(if it was “<”, we could take −v instead of v). Now we choose an embedding, u of D(ε) ⊆ R2
y,y′ ↪→ M such

that

u(0) = x,
du

dy
(0) = v,

du

dy′
(0) = v′

this implies that for sufficiently small ε′ > 0 we have that for all b, b′ in Tyu(D(ε)) for y ∈ u(D(ε)) that

ωy(b, b′) > ωϕ(y)(dϕyb, dϕyb
′)

Still want to ask Umut about this, not totally certain about the picture/whether or not this follows by continuity.
This implies that ˆ

D(ε′)

u∗ω >

ˆ
D(ε′)

(ϕ ◦ u)∗ω

done.
Proof: ii) to see the first equivalent condition is fine by definition because preserving symplectic areas will
yield diffeotopies preserving symplectic areas at all times.

For the second part: we want to show that symplectic areas preserved implies that the trace of contrabible
loops have zero area. Take

γ : S1 →M s.t. ∃u ∈ D2 →M s.t. ∂u = γ
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Define the map f : [0, ε]×D2 →M such that (t, z) 7→ Φt(u(z)). Then
ˆ
∂([0,ε]×D2)

(∂f)∗ω =

ˆ
[0,ε]×D2

f∗dω = 0

then we have that

0 =

ˆ
{ε}×D2

f∗ω −
ˆ
{0}×D2

f∗ω +

ˆ
[0,ε]×∂D2

f∗ω

The first two terms cancel and so we get that the last term is 0. Repeat this argument for all time t.

To go the other way: first prove that symplectic areas of discs small enough are preserved, then we chop up
whatever region we have into small pieces.

iii) (→) If we have a Hamiltonian isotopy γ : S1 →M and u : S1 × (0, ε)→M , where (θ, t) 7→ Φt(γ(θ))
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1. Recall:

(a) Hamiltonian Diffeomorphism: a time-1 map of a [0, 1] dependent Hamiltonian vector field

(b) Hamiltonian Isotopy: A diffeotopy consisting of Hamiltonian diffeomorphisms

(c) Symplectic Isotopies A diffeotopy consisting of symplectomorphisms

2. Lemma: For any Φ : [0, ε]→M a diffeotopy, then TFAE:

(a) Φ is a symplectic isotopy

(b) The corresponding [0, ε] dependent vector field is symplectic for every t ∈ [0, ε]

(c) For any compact oriented manifold with boundary and smooth map u : Σ→M , then

Area(u) = Area(Φt ◦ u) ∀t ∈ [0, ε]

here “Area” denotes symplectic area like a few classes ago

(d) For every γ : S1 →M such that there exists u : Σ→M such that ∂Im(u) = γ consider the map

S1 × [0, 1]→M s.t. (θ, s) 7→ Φs(γ(θ))

then the image of this map has 0 symplectic area.

Note: the above is the definition of “trace” as used in the previous class (i.e. the image of this map
“traces” out a cylinder in some sense)

Proof: Last time, we showed that (a) ⇐⇒ (c) and (c) ⇐⇒ (d). We now show (a) =⇒ (b):

The time dependent vector field of Φ (which is almost like ∂tΦ but see Spivak for details) is a map [0, ε]→ Γ(TM)
s.t. t 7→ Xt.

Umut says the below is wrong _̈ I think he’ll give us a correct proof later It suffices to show that X0 is
symplectic because for any other t0 ∈ [0, ε] we can just start the isotopy at t = t0.Because starting the flow
from t0, we obtain vector fields X̃t, t ∈ [t0, ε], X̃t, t ∈ [t0, ε] and

X̃t = (Φt0)Xt, t ∈ [t0, ε]

X̃t0(x) is defined as follows. Given a starting point x and a vector v tangent to the flow line Φt, then we define

X̃t0(x) = v

and Xt0(x) is defined as follows
Xt0(x) = (Φ−1

t0 )∗w

for w the tangent vector to the flow line starting at x and defined by Φt(x). Correction to the above:
Apparently in the last thing above, we want to define

Xt0(x) =
dγx
dt

(t0) = Xt0(γx(t0))
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which means it is also equal to X̃t0(x) from before, so now we change the definition of X̃t0 . Now we have that

γ̃x represents the flow lines of Φ
∣∣∣
[T,T+ε]

, and so we can define

dγ̃x
dt

(t0) =: X̃t0−T (γ̃x(t0 − T ))

We’re given Xt(x) and d
dtΦ
∗
tω = 0, we want to show LXtω

?
= 0

Let us define a vector field on [0, ε]×M which lies over M via [0, ε]×M pr−→M .

X̃(t) = Xt +
∂

t

note that
LX̃pr

∗ω = 0

because in one component it vanishes and in the other, we get d
dtΦ
∗
tω = 0. We also claim that

Lx̃−x̃0
pr∗ω

∣∣∣
t=0

= 0 s.t. (Xt −X0)

where X̃0(t) = X0 + ∂
∂t and so

Lx̃0pr
∗ω = 0

by linearity, and so we have

Lx̃0pr
∗ω = 0 =⇒ Lx0pr

∗ω = 0 =⇒ Lx0ω = 0

this is what we wanted to show. But we in fact proved that

d

dt
Φ∗tω

∣∣∣
t0

= Lx0
ω

10/25/19

1. Last time: Symplectic Isotopies - showed that TFAE definitions of symplectic isotopies

(a) Showed that the above are diffeotopies of symplectomorphisms

(b) They are the flow of a time dependent symplectic vector field

(c) Areas are preserved at all times

(d) Areas swept by contractible (or equivalently, null-homologous) loops are zero

2. Today, we discuss Hamiltonain Isotopies

3. Lemma: Let H, G : M × [0, ε] → R be two time dependent Hamiltonian functions. These yield flows,
ϕtH , ϕ

t
G : M × [0, ε]→M . Then the composition, ϕtH ◦ ϕtG : M × [0, ε]→M is the Hamiltonian flow of

Ht +Gt ◦ (ϕtH)−1 : M × [0, ε]→ R

Note: If the Hamiltonian flows commuted, then we’d have that Gt ◦ (ϕtH)−1 = Gt and our overall Hamiltonian
would be Ht +Gt.
Proof: Let Vt,Wt be [0, ε] time dependent vector fields.

V,W → ϕtV , ϕ
t
W → ϕtV ◦ ϕtW

d

dt
ϕtV (ϕtW (x))

∣∣∣
t=t0

= Vt0(ϕt0W (x)) + (ϕt0V )∗Wt0(ϕt0W (x))

Shouldn’t there be another chain rule here? which implies that

Vt + (ϕVt )∗Wt genereates ϕtV ϕ
t
W
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so what is this flow in terms of Hamiltonian vector fields? It is

XHt + (ϕHt )∗XGt

Not sure why this ends the proof This is the vector field if they were hamiltonian vector fields. Now we use
the below lemma to find the actual hamiltonian
Lemma: For ϕ : M →M symplectomorphism, F : M → R, then ϕ∗XF = XF◦ϕ−1

Proof: we have
ω(ϕ∗XF , V ) = ϕ∗ω(XF , (ϕ

−1)∗, V ) = ω(XF , (ϕ
−1)∗V )

= dF (ϕ−1
∗ V ) = (ϕ−1)∗dF (V ) = d(F ◦ ϕ−1)(V )

ending the proof.
Note, now that we have the lemma, we get that

(ϕHt )∗XGt = XGt◦(ϕHt )−1

which gives us the desired Gt ◦ (ϕtH)−1 term in our Hamiltonian.

4. Corollary: Composition of Hamiltonian diffeomorphisms is Hamiltonian. This is because a Hamiltonian
diffeomorphism is a time 1 map of a Hamiltonian flow so t = 1 in our above composition proof

5. Lemma: Φ : M × [0, ε]→M is a diffeotopy. Then TFAE

(a) Φ is a Hamiltonian isotopy

(b) The corresponding time dependent vector field is Hamiltonian.

(c) For every loop, γ : S1 → M , the area of u : S1 × [0, ε] → M where (θ, s) 7→ Φs(γ(θ)) is zero! (Not that
this differs from symplectic isotopy because there is no contractible condition on the loop)

As an example, consider translation given by (θ, x) 7→ (θ, x+ t) on the cylinder S1 × R. Then the vector
field is given by ∂

∂x and ω
(
∂
∂x

)
= ±dθ, but recall that dθ is not the differential of a global function (it’s

the same as an on the circle). Hence this is not a Hamiltonian isotopy.

Proof: (a) =⇒ (b) is not obvious. (b) =⇒ (a) is obvious up to the following trivial fact: the time-t = 1 of H
is the same as the time t = ε map of H/ε, which allows us to pass from the definition of Hamiltonian isotopy
as a time 1 map to a time t map for any t just via dividing.

Let’s analyze (c), we have
u : S1 × [0, ε]→M s.t. (θ, t) 7→ Φt(γ(θ))

then ˆ
S1×[0,t]

u∗ω =

ˆ t

0

ˆ
S1

ω

(
du

dt
,
du

dθ

)
dθds

note that
du

dt
= Vs(Φs(γ(θ)))

where Vs is the vector field generating Φ. Now we define

αs = ω(Vs, ·)

and hence from the aboveˆ
S1×[0,t]

u∗ω =

ˆ t

0

ˆ 1

0

αs

(
du

dθ

)
dθds =

ˆ t

0

(ˆ
S1

(
u
∣∣∣
S1×{s}

)∗
αsds

)
Now we know that Vs is Hamiltonian if and only if αs is exact. Yes because if Vs is Hamiltonian, then by
definition ω(Vs, ·) = dH for some H function

Lemma: (basic) A closed 1-form is exact iff it integrates to zero on every loop.

With this, we can prove (b) =⇒ (c) because if VS Hamiltonian then αS is exact and we have

(
u
∣∣∣
S1×{s}

)∗
αs

is exact and so integrating it along S1 will yield 0, meaning that the original area integral is 0.

For (c) =⇒ (b), we get that αs integrates to 0 on every loop, so somehow we can cook up a Hamiltonian
which will yield the vector field of Φ

For (a) =⇒ (c): we feel like this should follow by homotoping our trace to the trace of a time dependent
hamiltonian vector field, but we will do this on homework.
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6. Remark: If Φ : [0, ε] ×M → M a symplectic isotopy, then you canonically obtain an element of H1(M,R).
This is called the flux of Φ.

If the flux is zero at all times, we have a Hamiltonian isotopy

7. Infinitesimal group actions

(a) Let g be a Lie algebra (something with a lie bracket that is antisymmetric, bilinear, and satisfies the
Jacobi equation)

(b) An infinitesimal (symplectic) action on M (for (M,ω)) is a map g 7→ Γ(TM), a lie algebra homomorphism,
which is symplectic and in particular, g 7→ χ(M,ω), i.e. we map into the collection of symplectic vector
fields. Recall (see 10/18) that a symplectic vector field is a vector field whose flow preserves ω, i.e.
Φ∗V ω = 0, which is equivalent to LV ω = iV dω + d(iV ω) = 0.

(c) A Hamiltonian action is a map (lie algebra homomorphism) g→ C∞(M,R), where we equip the space of
smooth functions with Poisson bracket.

(d) Assume that the image of g 7→ χ(M,ω) lies inside Hamiltonian vector fields. Does this imply that we have
a Hamiltonian action? Not necessarily!

(e) The obstruction comes from the fact that

g

C∞(M,R) χHom(M,ω)

lies in the second lie algebra cohomology of g with coefficients in H0(M,R) what lies?. Concretely: choose
a basis g1, . . . , gk of g and lift each gi to a function. But now look at [g1, g2], this is a linear combination,∑
i aigi, and so it has two possible values under the lift because of the lie algebra homomorphism, i.e.

{fg1 , fg2} but also f∑
i aigi

and we want these two to be equal.

10/28

1. Lie Group Actions on Symplectic Manifolds

(a) Lie groups: G is a smooth manifold and also a group which satisfies

i. G×G m−→ G the multiplication operator is smooth

ii. G
x−1

−−→ G s.t. x 7→ x−1 is also smooth

(b) Each Lie group produces a lie algebra, g = TIdG

(c) To define the lie algebra structure, we discuss the left-invariant vector field

(d) We can naturally identify the vector fields at TIdG with

TIdG = {V ∈ Γ(TG) | (mg)∗V = V } = {left invariant vector fields}

so for v ∈ TIdG, define ξv(g) = (dmg)∗v

(e) The Lie bracket of left invariant vector fields make g into a Lie Algebra

(f) In fact, every Lie Algebra occurs via this construction and this is a one-to-one correspondence when we
restrict our Lie Group to be simply connected. Pictorially{

connected + simply
connected Lie Groups

}
↔
{

finite dimensional Lie
Algebras

}
(g) The above is also a functorial assignment, i.e. given two lie groups and a lie group homomorphism, then

we induce a homomorphism of lie algebras under the above correspondence
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(h) Lemma: If f : G→ H is a Lie group homomorphism. Then df0 : g→ h is a lie algebra homomorphism.
Proof: (sketch) If v ∈ TIdG, then we get our left-invariant vector field ξGv , and similar for f∗v ∈ TIdH,
then we get ξHf∗v.
Claim: These vector fields are f -related, i.e.

g ∈ G, f∗(mg)∗v
?
= (mf(g))∗f∗v

but the above actually holds because f commutes with multiplication by g by nature of being a Lie Group
homomorphism. Not sure how the commutation works. What’s the second element we are multiplying
by? To see this we first start with

g, h ∈ G =⇒ f(g · h) = f(g)f(h)

now consider the map f(g · something) and take the differential on both sides and use the chain rule.
Claim: f -relatedness is preserved under Lie brackets.
Proof: (sketch) To see this, use the differential operator description of vector fields.
The above two claims imply that [ξGv , ξ

G
v′ ] and [ξHf∗v, ξ

H
f∗v′

] are f -related by looking at the identities of each
Lie group.

2. Actions of Lie Groups on Manifolds

(a) The ation of G is a smooth map G×M →M which includes the axioms of being an action. In particular{
G-action on M

}
↔
{
f : g→ Γ(TM) lie algebra hom

}
{
α : G×M →M} → ∀v ∈ g, x ∈M,

d

dt
exp(tv) · x =

d

dt
α(exp(tv), x)

∣∣∣
t=0

How does α manifest in the lie algebra homomorphism here? Maybe implicitly through the exponential
map resolved

(b) For f : g→ Γ(TM) a lie algebra homomorphism T0G = g then if we have

i. G simply connected and connected

ii. There exists a basis of g whose vector fields are complete

THEN, we get that G acts on M inducing f by looking at the infinitesimal generator of the action

3. Adjoint action:

(a) G acts on g by lie algebra homomorphisms

(b) Namely: ∀g ∈ G, then cg : G→ G such that cg(x) = gxg−1

(c) As such, cg is a lie group homomorphism with

(dcg)Id : g→ g

a lie algebra homomorphism

(d) Moreover, we have
Ad(·) : G× g→ g

defined as follows: Ad(g) : g→ g I don’t think I caught this definition in time In book and I also get this

(e) Make sure to ask Umut why for a matrix lie group, we have that Adg(Y ) = gY g−1 - also why doesn’t
this generalize for all lie groups? What goes wrong in the differentiation argument. And how this tells us
that locally, this is always the case for any Lie Group? Because locally, we have an isomorphism between
a lie group and a matrix group in Rn2

or something This isn’t really a welldefined statement to say that
Adg(Y ) = gY g−1 always, because g doesn’t really act on Y in the lie algebra unless we define the action
to be by the pushforward of multiplication, i.e. (mg)∗

(f) The infinitesimal action of the adjoint Does this mean infinitesimal action of Ad(g)? See board picture
sends g→ Γ(Tg) where v 7→ Vw = ±[v, w] for w ∈ g thought of as the base point on Tg.

(g) The above can also be thought of as a map g × g → g where (v, w) 7→ [v, w], and we call this map
ad(·) : g× g→ g
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(h) Coadjoint action of G on g∗ is given by g acting by (Ad(g−1))∗

(i) From Da Silva, ask umut: when G = R or G = S1, the coadjoint action is trivial, why? see middle bottom
of p. 134 Both the adjoint and coadjoint action are trivial actually

4. Symplectic structures on coadjoint orbits

(a) Aside: Poisson Structures:

i. A poisson structure is assigned on the entire dual of the lie algebra

ii. For M a closed manifold, a lie algebra structure on C∞(M,R), denoted by {}, is called a Poisson
Structure if it satisfies the Leibniz rule:

{f, gh} = g{f, h}+ h{f, g}

iii. Ex: The poisson bracket for ω a symplectic form

iv. Umut says that when you turn a classical mechanical system, you take a symplectic manifold with a
poisson bracket and turn it into something with a parameter, which is a quantization? This is how
you go from classical mechanics to quantum mechanics apparently I’d like more info on this

v. A poisson structure is equivalent to a bivector field π (an element of T (∧2TM)) which satisfies
[π, π] = 0 (here we’re using the Schouten bracket, not the lie bracket)

vi. Further note that [π, π]s = 0 is equivalent to the jacobi identity

vii. Consider π̃ : T ∗M → TM which is defined by contraction with π. The image of this map is a
“distribution.” Using Frobenius, we get a singular foliation whose leaves are symplectic

(b) Poisson Structure on the lie algebra, g∗:

i. Think of ∧2V as an antisymmetric pair on V ∗

ii. This implies that T ∗a g
∗ = g

iii. Then we define π by
∀a ∈ g∗, πa(g, g′) = a([g, g′]) ∀g, g′ ∈ g

iv. The Symplectic leaves of the induced foliation are the coadjoint orbites of G

v. We can directly describe the symplectic structure of an orbit, θ:
For every X,Y ∈ T0G, can define a([X,Y ]) := ω(X#, Y #). Here’s what I think is happening: X,Y
lie in T0G = g∗ so their lie bracket also lies there. We draw an isomorphism between g ∼= T ∗a g

∗ via ii
(not sure how though) so that.... actually not sure how that relates So X# is the same vector field
we were talking about before, i.e. with this map from g → TG and this vector field also lies in the
tangent space of the coadjoint orbit. But we need that if X or Y is in TIdStab(a) then the number
above is equal to 0.

vi. Here X#, Y # are some lifts given that π is a surjective map. We then want to show that ω(X#, Y #)
is independent of the choice of lift

vii. Ex: G = SL(2,R) = 2 by 2 matrices with determinant 1, then g = sl(2,R) = 2 by 2 matrices with trace = 0.
Can identify g ↔ g∗ in a G-equivariant manner. Consider Adj(·) (conjugation matrices )

viii. There’s some nice picture for this, but we ran out of time

10/30

1. Last time: Given G, a Lie group, then G acts on g∗ (dual of lie algebra) by the coadjoint action and the
orbits of this action have natural symplectic structures. Formally, we have the coadjoint action is given by
K : G→ Aut(g∗) such that

∀g ∈ G, ∀Y ∈ g, F ∈ g∗ 〈K(g)F, Y 〉 = 〈F,Ad(g−1Y )〉

so we can think of K, the coadjoint action, as the formal adjoint of the adjoint representation

2. Note: If G smoothly acts on any smooth manifold, then its orbits are images of of injective immersions
Proof: Let p ∈M , want to show the orbit, O(p) is the image of an injective immersion. Consider

Stab(p) = {g ∈ G | gp = p} ⊆ G is a closed subset
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by the closed subgroup theorem. Moreover, Stab(p) is a Lie group itself. Then we consider a map ι :
G/Stab(p) → M with [g] 7→ g · p. Then the image of this map gives the orbit of p, and it is an injective
map from the quotient space to M .

Using that Stab(p) is a closed subset, we can show that G/Stab(p) is a manifold (quotient manifold theorem).
Moreover, ι has constant rank, and so it is an immersion.

3. Aside: If G is compact, then ι is a proper map and the orbits are submanifolds

4. Examples of coadjoint action 1)

G = SU(2), g = su(2) =
{( ai z
−z −ai

) ∣∣∣ z ∈ C, a ∈ R
}

we can identify g with g∗, G-equivariantly How is this identification happening? (something to do with the
killing form). We can just consider G acting on g by conjugation. Note that elements of g are all diagonalizable
with imaginary eigenvalues. The orbits of our G action are just round spheres (of varying radii) centered at
the origin. The same result occurs for SO(3)

5. Example of coadjoint action 2)

G = SL(2,R) g = sl(2,R) =
{(a c

b −a

)}
moreover, we can identify g ↔ g∗. Here the identification between the lie algebra and its dual has to do with
semisimplicity of the lie group.

We look at the conjugation action of G on g and we get 6 conjugacy classes{(0 0
0 0

)
,

(
0 0
1 0

)
,

(
0 1
0 0

)
,

(
λ 0
0 −λ

)
,

(
0 −λ
λ 0

)
,

(
0 λ
−λ 0

)}
λ > 0

the point is that for some λ > 0 fixed, the last three matrices give us 3 distinct conjugacy classes. Moreover,
such a collection of conjugacy classes exist for each λ > 0. The change in λ can be thought of as the different
leaves in a foliation.

6. Theorem: (Kirilov-Kostant-Souriau) Every symplectic homogenous manifold of a Lie Group G is, up to a
possible covering, a coadjoint orbit of some central extension of G.

Here a (symplectic) homogenous manifold is a (symplectic) manifold which admits transitive G-action (by
symplectomorphisms). Central extensions are those such that

0 A G̃ G 0

for some A, where Im(A) ⊆ Z(G) = center(G)

7. Hamiltonian Lie Group Actions

(a) For G×M →M a symplectic action is called Hamiltonian if the map g→ χ(M,ω) lifts to g→ C∞(M,R)
as a Lie algebra homomorphism

g

C∞(M,R) χ(M,ω)X

The lifted map, α : g → C∞(M,R) is called the comoment map. What is X here? Also in order to
have a lift, I assume we need X to be surjective? Or at least having imagine contained in the image of
g → χ(M,ω)) We’re not saying this lift always exists, so X may not be surjective. Also X is the map
which sends a Hamiltonian to its hamiltonian vector field
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(b) Claim: α is G-equivariant.
Proof: We have for any G-action that

g
#−→ χ(M,ω) s.t. v 7→ v#

where
(Ad(g) · v)# = (ag)∗v

#

What is ag? Maybe this is supposed to be adg? Instead of mg, which we used before because our lie group
action on itself was just multiplciation, we replace the multiplication action with a more general action,
a, and we call this ag. suppose v# generates the flow ϕt. Then we have (Ad(g)v)# generates the flow
agϕ

ta−1
g . This implies that (Ad(g)v)# = (ag)∗v

#. Moreover, the Hamiltonian vector field of H ◦ ϕ−1 is
ϕ∗XH .

(c) There is also a moment map defined by

µ : M → g∗ s.t. x 7→ [g ∈ g 7→ α(g)(x)]

where α(g) ∈ C∞(M,R) Not sure what’s happening in this map. Maybe we take the left invariant vector
field associated to g ∈ g and then apply some α, our comoment map, to g all at the point x. Here, we
implicitly have a G action on M . Note that each point x ∈ M , yields a map on g through the above
defined map, which is the image of x

(d) It’s easy to check that M is G-equivariant using the coadjiont action on g∗.

(e) Ex: If O ⊆ g∗. The action of G on O is Hamiltonian, via the inclusion map O ↪→ g∗ maybe? Not sure
about this last sentence. We need to check this, in particular that the action of G is Hamiltonian

(f) Ex: Consider the unit sphere S2 ⊆ R3 with the area form on the symplectic structure. The action we
consider is an S1 action given by rotation along the z-axis. Intuitively, this action is Hamiltonian because
of the geometric criterion from a few classes ago.

11/1

1. Last time: Hamiltonian G-actions

(a) We have the following diagram

g

C∞(M,R) χ(M,ω)

Infinitesimal action

comoment map

(b) µ : M → g∗ (moment map) which satisfies ∀X ∈ g, the Hamiltonian associated to X is equal to X · µ :

M → g∗
·X−−→ R

2. Ex: S2 ⊆ R3 with area form. S1 action given by rotation along z-direction. We introduce cylindrical coordinates
in R3

area form = sinφdφdθ = −d(cosφ)dθ = −dzdθ

generator of the action on S1 =
∂

∂θ

Hamiltonian of S1 action = z = moment map

So the moment map is the projection from S2 → R of the z-coordinate. The “generator of S1 action” is the
image of 1 under the map from g→ χ(M,ω) where 1 ∈ R = g. This is because R is the lie algebra for S1.

3. In fact, SO(3) acts on S2 with a Hamiltonian action

4. This is a coadjoint orbit of SO(3), with the moment map: S2 → g∗ = R3 the inclusion. This follows from
general story but can also be directly shown from our computations from a moment ago.

5. Remark: Comoment maps are not unique, e.g. in the rotation example we could take R 7→ C∞(M,R) via
1 7→ z + 1 instead of 1→ z
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6. Note that 0 ∈ g∗ is a special point, because {0} is always preserved and hence its preimage is a coadjoint action.
This corresponds to Noether’s principle of conserved quantities somehow!

7. If g is semi-simple, then the moment map, µ, is unique

8. If g is abelian then we have [X,Y ] = 0 for all X,Y ∈ g and so if µ is a moment map, then µ + translation by
a vector in g∗ also is

9. Exercise: R3 � R3 via translations. This can be lifted to R3 � TR3. This is a Hamiltonian group action, so it
has a moment map T ∗R3 → R3, given by projection to the p coordinates, where T ∗R3 parameterized by (q, p)

10. Ex: SO(3) acts on R3 which lifts to an action SO(3) � T ∗R3. The Hamiltonian group action gives a moment
map µ : T ∗R3 → R3 which sends (p, q)→ p×q, i.e. it maps the point in phase space to the angular momentum.

11. Symplectic Reduction

(a) We have G×M →M a Hamiltonian action with µ : M → g∗

(b) Claim:
dµp : TpM → Tµ(p)g

∗ ∼= g∗

ker dµp = (TpO(p))ω

Im(dµp) = annihilator of LieAlg(Stab(p)) inside of g∗

where the right hand side of the second line is the symplectic orthogonal complement of the tangent space
(at p) of the orbit of p.
Proof: We have ωp(X

#
p , v) = 〈dµp(v), X〉 for every X ∈ g, and v ∈ TpM . This is because for every

X ∈ g,
d(X ◦ µ) = ω(X#, ·)

this is the definition of the comoment map if you stare at it for a while. But

d(X ◦ µ)(v) = dX ◦ dµ(v)

we then have
W ∈ ker dµp ⇐⇒ W ∈ (TpOp)ω

This is because of the first equality
ωp(X

#
p , v) = 〈dµp(v), X〉

For the image statement, if X#
p = 0, then dµp(W ) annihilates Imdµp ⊆ annihilator.

(c) What’s the Upshot of all of this?

(d) Theorem: (Marsden-Weinstein-Meyer) For G compact, G : M → M with Hamiltonian µ : M → g.
Assume compact G acts freely on µ−1(0).

Then Im(dµp) = g∗ for all p ∈ µ−1(0), which implies that 0 is a regular value of µ, which implies that
µ−1(0) is a manifold.

Moreover, ker dµp = Tpµ
−1(0) and O(p) ⊆ µ−1(0). If we take the symplectic orthogonal complements of

these spaces, we get
(Tpµ

−1(0))ω = TpOp
which tells us that µ−1(0) is a coisotropic manifold, with the characteristic folation given by the orbits of
G because the tangent directions are given by TpOp.
Formally, µ−1(0) is coisotropic with characteristic foliation biven by the G-orbits, which implies that
µ−1(0)/G admits a symplectic structure. This is called the symplectic reduction, M//G := µ−1(0)/G

11/4/19

1. Theorem: Let (M,ω) be a connected symplectic manifold. Then for any p, q ∈M , there exists a Hamiltonian
isotopy Φ : M × I → M such that Φ1(p) = q, i.e. “any two points in a symplectic manifold look locally the
same”
Proof: Heuristically: If we were trying to just find a diffeotopy, we could just find a path from p → q and
then create a vector field along this path which integrates to the path. The vector field could then be extended
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to a compact neighborhood and we’d get a diffeomorphism which sends p→ q and equals the identity outside
some compact set containing the path. Note also that if M is connected, then it is path connected by nature
of being a manifold

Actual proof:
Step 1: Choose a smooth path (embedded) γ : [0, 1]→M such that γ(0) = p and γ(1) = q and let vt = γ′(t) ∈
Tγ(t)M

Step 2: Find a [0, 1]-dependent vector field Xt such that Xt(γ(t)) = vt for all t ∈ [0, 1] and there exists a
neighborhood of Im(γ) such that Xt = 0 outside of N for all t ∈ [0, 1]. For v0, choose H0 : M → R such that
XH0

(γ(0) = p) = v0. This is equivalent to dH0(p) = ω(v0, ·). By multiplying H0 with cutoff functions, we can
assume that its support is the closure of an arbitrarily small open subset

Choose a neighborhood N of Im(γ). Find a diffeotopy ψt : M × I →M such that ψt is just the identity outside
of N and ψt(γ(0)) = γ(t) and ∂ψt(v0) = vt.

A naive thing to do (which Umut thought was the correct answer) is to consider Ht := H0 ◦ ψ−1
t . But this

doesn’t work because XHt(vt) 6= vt, as
dHt(vt) = (ψt)

∗dH0(v0)

we do have that ∂tHt = vt though, but the Hamiltonian vector field is often not equal to ∂tHt.

Try 2: Fix an embedding of Bε(0) ↪→ M which sends 0→ γ(0). Call this embedding E. Then we get a series
of embeddings, ψt ◦ E : B(ε) ↪→ M which sends 0 7→ γ(t). Find a linear hamiltonian (i.e. linear in Bε and
standard Rn coordinates), H̃t, at each time t such that XH̃t

(γ(t)) = vt (solve this in Bε). Note that H̃t will

be smooth as a function of t because there’s only one way to solve the equation XH̃t
= vt when H̃t is linear.

Now to finish the proof, we cutoff XH̃t
with a smooth function ρ : Bε → R. Step 3 is to flow along XH̃t

and
we finish the theorem.

2. Theorem: (Darboux): Let (M,ω) symplectic and x ∈M , then there exists a coordinate system with coordi-
nates (p1, . . . , pn, q1, . . . , qn) such that ω = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn in the domain of these coordinates. This
is called the normal form about x. Note that via symplectic linear algebra, this is easy to achieve at a point,
but not on a chart, i.e. in all of the neighborhood of a point.
Proof: It suffices to prove: Let y 6= x, then there exists another symplectic structure on M , ωnew on M , s.t.
ωnew = ω near x and ωnew = dpi ∧ di near y in some coordinate system. Then use the previous lemma to map
the symplectic structure near y to the symplectic structure near x.

Choose some coordinates p1, . . . , pn, q1, . . . , qn at y such that dpdq
∣∣∣
y

:= dpi ∧ dqi
∣∣∣
y

= ω
∣∣∣
y
. Now we want to

interpolate between dpdq and ω in a neighborhood of y. Think of it as the two forms agree at y and then
immediately stop agreeing outside of the point of y. Now we want to make them equal in a small neighborhood.

Remark: If ρ1 +ρ2 = 1 partitions of unity and ω1, ω2 are symplectic forms, then ρ1ω1 +ρ2ω2 is not symplectic
in general, because this form may not be closed (i.e. dρi 6= 0).

One can patch together exact two forms, i.e. if we have dλ1, dλ2, then d(ρ1λ1 + ρ2λ2) is exact and therefore
closed. However, non-degeneracy becomes harder to achieve as we also need bounds on dρi.

Patching together dpdq and ω now becomes a pain. We need a 1-form, θ, which is compactly supported near
y such that

(a) ω + dθ = dpdq in a neighborhood of y.

(b) dθ is small.

This is possible because ω − dpdq
∣∣∣
y

= 0. We could get away with much less.

Here’s a more local argument near x. We have ω and dpdq at x such that ωx = dpdqx by choice of coordinate
chart. We can try to find a diffeomorphism defined near x, taking ω → dpdq but also fixing x.

Now we use Moser’s trick: construct a diffeomorphism as a time-1 map of a vector field of a [0, 1]-dependent
vector field that vanishes on x for all t ∈ [0, 1]. We do this by rigidifying the problem, i.e. making the problem
more constrained and hence easier to solve. Let ωt = tω+ (1− t)dpdq. Note that this is still closed because its
a convex combination of constant functions what? These forms are constant? How What Umut means is that

for a fixed t, we have t and (1− t) are constant, and so dωt = tdω+ (1− t)d(dpdq) = 0. Also ωt

∣∣∣
x

= ω = dpdq.
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Note that for some neighborhood U 3 x, ωt is symplectic for all t. Nondegeneracy is thus satisfied because at
t = 0, ωt is non-degenerate at x and non-degneracy is an open condition.

Now we want to find Vt with flow ϕt such that ϕ∗tωt = ω for all t ∈ [0, 1]

11/6

1. Last time: We were priving the Darboux theorem and were just setting up the Moser Argument:

We have (M,ω) symplectic with x ∈M and ωx = (
∑
i dpi ∧ dqi)x where the coordinates are p1, . . . , pn, q1, . . . , qn

Consider tω + (1 − t)dpdq is a symplectic form in some neighborhood U2 3 x when we fix any t ∈ [0, 1]. We
want to find Vt : [0, 1]→ Γ(TU2) such that:

(a) Vt(x) = 0 for all t ∈ [0, 1] which implies that there exists a U3 such that the flow I × U3 → U2 is defined,
i.e. the flow never leaves U2. This comes from an ODE argument

(b) If the flow is ϕt : U3 → U2, then ϕ∗tωt = ω for every t

Now note that

ϕ∗tωt = ω ⇐⇒ d

dt
ϕ∗tωt = 0 = ϕ∗tLvtωt + ϕ∗t

(
d

dt
ωt

)
The above expansion can be thought of as the chain rule because we have a function

R 7→ R2 → Ωk(M) s.t. t 7→ (t, t) 7→ ϕ∗tωt

now because ϕ∗t is a diffeomorphism, we get that

Lvtωt +
d

dt
ωt = 0 =⇒ d(ιvtωt) = Lvtωt = − d

dt
ωt = dpdq − ω

Now note that dpdq − ω is an exact 2-form which vanishes at x by this inequality. Choose a random primitive
for this, i.e. dpdq−ω = dθ. If we choose the appropriate constant so that θ = ιvtωt, then this uniquely defines
vt.

Now for our first statement (a), we need θ(x) = 0. We can do this by either subtracting a constant (i.e.
differential of a linear one form) or use the proof of the Poincare lemma to produce a specific θ.

2. The Moset argument at it’s best: (M,ω) a closed sympelctic manifold, ωt is [0, 1] family of symplectic forms
ω0 = ω and [ωt] = [ω] for every t (here we formulate the equivalence classes in H2

dR(M))

3. Lemma: There exists a diffeotopy, ϕt, such that ϕ∗t (ωt) = ω and in particular, (M,ω0) is symplectomorphic
to (M,ω1)
Proof: Note that now every vector field is complete. Run the Moser argument and get

0 =
d

dt
ϕ∗tωt = · · · = d(ιvtωt) = − d

dt
ωt

Note first that
[
d
dtωt

]
= d

dt [ωt] = 0. Now we need to choose some ξt ∈ Ω1(M) such that d
dtωt = dξt and ξt

depends smoothly on t. Umut says there are many ways to go about this, but they’re all kind of a hassle. One
involves choosing a Riemannian metric, which gives a primitive of our closed 2-form, d

dtωt. We then use the
Hodge theorem via the hodge star operator ∗, which gives an L2 metric on Ω∗(M), which yields the adjoint
operator d∗. This gives us a canonical choice of primitives.

We can also try to choose a covering of our manifold and patch together local primitives by using the Mayer-
Vietoris theorem.

We can also try to make a bundle over [0, 1] with all of the choices we have, which will give a contractible,
infinite dimensional vector space.

4. Warning: If [ω0] = [ω1] and they’re both symplectic, then that does not mean that they can both be connected
by a ωt such that [ωt] = [ω0] for all t. I.e. Two symplectic forms with the same cohomology class are not
necessarily connected by a one-parameter family of symplectic forms with the same cohomology. Note: the
naive approach tω0 + (1− t)ω1 might be degenerate at a point!
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5. Theorem: Let Σ be a closed surface, ω0, ω1 two area forms, i.e. symplectic forms, then

(Σ, ω0)
symplectomorphic∼ (Σ, ω1) ⇐⇒

ˆ
Σ

ω1 =

ˆ
Σ

ω0

This tells us that up to scaling and symplectomorphism, there is a canonical symplectic form on a surface.
Proof: Key point, for every t ∈ [0, 1], if ω0 and ω1 have the same sign (makes sense because Λ2(Σ) is one
dimensional because the manifold is dimension 2), then tω0 + (1 − t)ω1 is a symplectic form and we can use
the Moser argument to get a primitive.

6. We can prove more stuff with Moser:

7. Theorem: (Extension): Let P a manifold, N ⊆ P a closed submanifold,

(a) Let Ω be a skew-symmetric bilinear form on TNP := TP
∣∣∣
N

whose restriction to TN is a closed two form.

Then Ω extends to a closed two form on in a neighborhood of N . If Ω is symplectic, then the extension
can be made to be symplectic (this is because non-degeneracy is an open condition so if Ω non-degenerate,
then surely it is non-degerate in a neighborhood).

(b) Let Ω0, Ω1 be symplectic structures on P whose restriction to TNP are equal (e.g. when we were proving
Darboux ω and dpdq satisfied this condition where N = {x}). Then there are neighborhoods U and V of

N ⊆ P and a sympletomorphism, F , from (U,Ω0)→ (V,Ω1) such that F
∣∣∣
N

= Id and dF
∣∣∣
TNP

= Id.
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1. Extension theorem: P a manifold, N ⊆ P a closed submanifold

(a) Let Ω be a skew symmetric bilinear form on TNP := TP
∣∣∣
N

whose restriction to TN is closed. Then Ω

can be extended to a closed form in a neighborhood

(b) Let Ω0,Ω1 symplectic structures on P , Ω0

∣∣∣
TNP

= Ω1

∣∣∣
TNP

, then there exists neighborhoods, U , V of N

which are symplectomorphic (extending the identity on N and TNP )

2. Homotopy formula (is deRham theory): f, g : X → Y and F : X × I → Y a homotopy between f and g.

3. Let f∗, g∗ : Ω∗(Y )→ Ω∗(X) be chain homotopic

4. Define h : Ω∗(Y )→ Ω∗−1(X) such that

ω 7→
ˆ 1

0

(ι∗t ι∂/∂tF
∗)ωdt

where
ιt : X → X × I s.t. x 7→ (x, t)

i.e. first pullback ω by F , then contract by ∂/∂t, then pull back by ιt.

5. Note that as defined above,
f∗ − g∗ = dh+ hd

as a consequence of Cartan’s magic formula

6. Corollary: Let E →M be a vector bundle, with

D ⊆ E

M

π z

a disk bundle. We have a homotopy between z ◦ π and id : D → D such that

F : D × I → D s.t. ((v,m), t) 7→ (tv,m)
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thinking of D as the disk bundle. Is this for the disk bundle??? yes works out because 0 ≤ t ≤ 1 If ω is a form
on D, then we have

ω − (z ◦ π)∗ω = dhω + hdω

why tho

7. For any α ∈ Ω1(D), then

hα
∣∣∣
Tz(M)D

= 0

Why?

i∂/∂tF
∣∣∣
z(M)×I

α = 0

i∂/∂tF
∗α(v1, . . . , vk) = α(F∗

∂

∂t
, F∗v1, . . . , F∗vk)

I don’t understand this computation

8. Also note that
dhα

∣∣∣
Tz(M)D

= 0 if α
∣∣∣
Tz(M)D

= 0

as then we have
α− π∗z∗α = hdα+ dhα

but the first term is 0 by assumption, the second term vanishes for some reason what reason?, and dα = 0 by

the first thing we proved, so dhα
∣∣∣
Tz(M)

= 0 when restricted

9. Proof of theorem:

(a) Given Ω on TNP , we need this one form in a neighborhood. Can assume P is a tubular neighborhood of
N .

(b) Step 1: Extend Ω to so some form

(c) Step 2: Consider P as a disk bundle of the normal bundle of N . Choose a connection, which tells us that
every point (x, v) ∈ P , we have

T(x,v)P ∼= (TNP )x

Note that (TNP )x 6∼= TxN ⊆ TP .

(d) With the above isomorphism, we get out extension α and write the homotopy formula for the contraction:

α− π∗z∗α = dhα− hdα

Also don’t get this, but I assume it’s similar to the first iteration of this. Note that because α restricted
to the zero section is closed, then π∗z∗α is closed. We also have dhα := d(hα) is closed because it is exact,
and so

α− hdα = closed 2-form

and so the left hand side still extends Ω on TNP . This proves part a) of the extension theorem

(e) For part b), we have Ω0 and Ω1, and Ω0

∣∣∣
TNP

= Ω1

∣∣∣
TNP

.

(f) We can choose a nice primitive of Ω0 − Ω1. Notice that ωt = tΩ0 + (1 − t)Ω1 is again symplectic in a
neighborhood of V . Now we proceed exactly as in the Darboux theorem:

ivtωt = ξ

(g) For df
∣∣∣
TNP

= id, vt

∣∣∣
N

= 0 is not enough. Here f is the time 1 flow of vt. We need

dϕvtt : TnP → TnP, n ∈ N

to be the identity map. We check that this follows from dξ = 0. “The derivation of vt along any direction
v ∈ TpN is zero”
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1. Wedn: No class (to be rescheduled). Friday we’ll have a sub

2. Last time: Extension theorem: For N ⊆ P

(a) Ω on TNP and closed on TN implies there exists a closed extension to a neighborhood

(b) Ω0 = Ω1 on TNP , then we can find a symplectomorphism

3. How do you do this?

4. Ex 1: Darboux theorem: Tubuluar neighborhood theorem: Let E be the normal bundle of N ⊆ P , Fix an
isomorphism TN ⊇ TNE

∼−→ TNP ⊆ TN . Then there exist open neighborhoods, U ⊇ N ⊆ E and V ⊇ N ⊆ P
and diffeomorphisms U → V which induce the isomorphism TNE

∼−→ TNP

5. Ex 2: Let L ⊆M be a lagrangian, then the normal bundle is isomorphic to T ∗L and so we have

N = TLM/TL T ∗L

L L

∼=
ω

Choose a lagrangian complement subbundle to TL ⊆ TLM so that TLM ∼= T ∗L ⊕ TL ∼= TL(T ∗L), where
TL(T ∗L) means the tangent bundle of T ∗L when restricted to the zero section, which is L. T ∗L already has a
symplectic structure extending the natural skew-symmetric pairing on TL(T ∗L)

6. Theorem: (Weinstein Neighborhood Theorem) For L ⊆M a lagrangian, there exists neighborhoods U ⊇ L ⊆
T ∗L and V ⊇ L ⊆M such that there exists a symplectomorphism

U V

L L

∼

⊇ ⊇

∼

7. Ex 3: C ⊆ M coisotropic. Remark: Here the normal bundle and (TCM,Ω) doesn’t just depend on C, it can
depend on the embedding. Compare this to the lagrangian case where the normal bundle is T ∗L and hence
has a canonical symplectic form, hence symplectic structure.

Linear algebra: V symplectic vector space, W ⊆ V isotropic (or W ⊆WΩ coisotropic)

(a) Choose any complement to W in WΩ, call it S

(b) Then WΩ is also symplectic

(c) W ⊆ SΩ is lagrangian

(d) Choose lagrangian complement to W in SΩ

=⇒ V
sympl. isom.∼= W ⊕W ∗ ⊕ S

8. From the above linear algebra, we get TCM ∼= S(C) ⊕ TC ⊕ T ∗C where S(C) ∼= TCΩ/TC. So the choice
for the symplectic structure for arbitrary C not lagrangian, comes from how many choices of a normal bundle
S(C) that we can make

9. The normal bundle satisfies
TCM/TC ∼= S(C)⊕ T ∗C

where the right hand side lies over C as a vector bundle. We can now use previous results to get a symplectic
form extending the symplectic form on the normal bundle, which is S(C)⊕ T ∗C, to a neighborhood of it.

10. Hence, neighborhoods equipped with a symplectic structure of C correspond to rank dimM−2 dimC symplectic
vector bundles over C

11. S(C) corresponds to the part of the normal bundle sensitive to its embedding. In the lagrangian case, all choices
are contractible and hence there’s a canonical choice, but the same is not true for isotropic and coisotropic
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12. Gromov non-squeezing:

(a) Br ⊆ R4 is a ball of radius r. Let Z(R) = D(R) × R2 where D(R) is the disk of radius R, this is called
the cylinder.

(b) Theorem: If B(r) symplectically embeds into Z(R) then R ≥ r
(c) The reason this is a non-trivial result is because if we just require a volume preserving diffeomorphism,

then we can squeeze the ball into a thin, elongated ellipsoid so that the volume is preserved and we can
fit the ball in the cylinder

(d) Theorem: (Guth, Polterovizh) If Σ = T 2\{open disk} and area(Σ) = 1, then ∀r > 0, B(r) symplecti-
callty embeds into Σ× R2. Here, we replaced S2 − {open disk} with T 2 − {open disk} and there was no
obstruction to the embedding.

(e) Remark: the idea is that in the Gromov theorem, we consider D(R) × R2 ∼= [S2 − {open disk}] × R2

because a sphere minus an open disk is diffeomorphic to an open disk

(f) Remark: For every R, there are symplectic embeddings B4(R) ⊆ R4, with arbitrarily large percentage
(volumewise) of B4(R) maps into Z(1) = D(1)× R2. This is called a Katok Embedding

(g) The proof of Gromov non-squeezing and Guth requires the knowledge of J-holomorphic curves

(h) Sketch: Consider (Σ, j) a Riemann Surface for j an almost complex structure which is actually complex.
Let (M,J) be an almost complex manifold and finally a map

u : (Σ, j)→ (M,J) s.t. du ◦ j = J ◦ du

then u is called a (j, J)-holomorphic curve. If one chooses holomorphic coordinates, z = s+ it locally on
Σ, then our above equation becomes

du ◦ j
(
∂

∂s

)
= J ◦ du

(
∂

∂s

)
du

(
∂

∂t

)
=
∂u

∂t
= J ◦ ∂u

∂s
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1. Gromov Nonsqueezing (1985): For B(r) ⊆ Cn the open ball of radius r and Z(R) = D2(R) × Cn−1 ⊆ Cn,
R > 0 ( a cylinder).
Theorem: There exists a symplectic embedding ϕ : B(r) ↪→ Z(R) iff r ≤ R and ϕ∗ω0 = ω0.
Note: ω0 =

∑
i dxi ∧ dyi where Cn is thought of as a 2n-real dimensional manifold parameterized by

(x1, y1, . . . , xn, yn).

2. Morally, whenever a symplectic structure is more rigid than differential structure, it’s because there’s a holo-
morphic curve obstructing the equivalence of the two

3. Proof of theorem: Assume that ϕ exists. Let ε > 0, then

ϕ(B(r − ε)) ⊆ D2 × [−A,A]2n−2

because the image of the closed ball ϕ(B(r − ε)) will be compact (compactness preserved by symplcetic em-
beddings) and hence the image of the interior will be contained in a compact set.

Moreover, we can embed D(R) ↪→ S(πR2 + ε) where S2(πR2 + ε) means a two-sphere of area πR2 + ε. This
means we have the following embedding

ϕ̃ : B(r − ε) ↪→ (S2(πR2 + ε)× T 2n−2, σ ⊕ τ)

4. Theorem: For (M, τ) symplectic dimension 2n− 2. If there exists a symplectic embedding

ϕ : B(r) ↪→ S2(a)×M

where the image has symplectic form σ ⊕ τ . Then πr2 ≤ a. Here S2(a) again means a sphere of area a.
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5. Corollary: (non-squeezing) If we have the above theorem, then

π(r − ε)2 ≤ πR2 + ε ∀ε > 0 =⇒ r ≤ R

6. This concludes the proof of the non-squeezing theorem, once we prove our stronger theorem

7. Definition: For (Σ, j) a riemann surface and (X, J) an almost complex manifold, with J : TX → TX and
J2 = −Id, then u : Σ → M such that du ◦ j = J ◦ du is called pseudoholomorphic, (j, J)-holomorphic, or
J-holomorphic.

8. In the above, the point is that in local charts the equation du ◦ j = J ◦ du amounts to the cauchy Riemann
equations

9. Lemma: (Main Lemma) For π2(M) = 0, there exists an ω-compatible almost complex structure J on S2×M
such that ϕ∗J = i on B(r) and a J-holomorphic curve

u : CP 1 → S2 ×M

s.t.

(a) [u] = [S2 × {pt}] ∈ H2(S2 ×M)

(b) ϕ(0) ∈ Im(u)

10. Lemma: (Monotonicity Lemma) (from minimal surface theory) For ũ : (Σ, j)→ (B(r), i) nonconstant proper
pseudoholomorphic curve and 0 ∈ Im(ũ) then Area(ũ) =

´
Σ
ũ∗ω0 ≥ πr2, where πr2 is the area of the intersec-

tion of any complex line and B(r)

11. With the monotonicity lemma (which we won’t prove or verify the conditions needed to apply), we have
πr2 ≤ Area(ũ) ≤ Area(u), where the second inequality follows from ϕ being a symplectic embedding.

This secretly comes from the fact that u is J-holomorphic with ω(·, J(·)) = g(·, ·) andˆ
u∗ω =

ˆ
|du|2

and so when we pull back by ũ instead of u, we get the same integrand but over a smaller domain. From here,
we have

a = σ([S2]) = ω([S2 × pt]) =

ˆ
u∗ω

and so we get out desired bound of a ≤ πr2.

12. Finally, to prove the main lemma:

ζ = {ω − compatible almost complex structures on S2 ×M}(W k,2)

For J ∈ ζ, let

M̃J = {u : CP 1 → S2 ×M
∣∣∣ u is J-holo, u(∞) = ϕ(0), [u] = [S2 × pt]}

Moreover

M̃J = ∂
−1

J (0) ⊆ BJ
∂J←→ εJ =

⋃
u

W k−1(Γ(HomC(TCP 1, u∗T (S2 ×M))))

Here BJ is a Banach manifold and is the same as MJ but we don’t require that they’re J-holomorphic and u
is in W k,p. Also

∂J = J ◦ du ◦ j + du

∂
(u)

J = 0 ⇐⇒ u is J-holo

Du∂J : TuBJ = Γu∗T (S2 ×M)→ (EJ)u

Now we use the implicit function theorem for Banach manifolds:

Theorem: If Du∂J is surjective for all u ∈ ∂−1

J (0) then MJ is smooth manifold of dimension 4 via Riemann
Roch

Now define
MJ := M̃J/Aut(CP 1,∞) which is of smooth dimension = 4− 4 = 0

Since [u] = [S2 × pt], MJ is compact.
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13. Outline of the remainder of the proof

(a) J0 = ιCP 1×ιT 2n−2 is Fredholm regular (so the implicit function theorem applies). Can check that |MJ0 | = 1

(b) There exists a J1 Fredholm regular such that ϕ∗J1 = i (warning: it’s very luck that J1 exists due to choice
of the homology class [S2 × pt])

(c) For a generic path Jt, t ∈ [0, 1] from J0 → J1, M =
⋃
t∈[0,1]{t}×MJt , this has the structure of a compact

1-dimensional manifold, with ∂M = MJ0 tMJ1

(d) Now MJ0 is a single point, and MJ1 may have many points, M is a 1-dimensional manifold with MJ0 ,MJ1

as a boundary, and hence there is a cobordism between the two. Because MJ0 has one point, then MJ1 is
nonempty. So we get some holomorphic curve in MJ1 , which is what we wanted
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1. Recap of Gromov Non-squeezing (one last summary):

(a) B(r) ⊆ R4 and Z(R) = D(R)× R2 ⊆ R4

(b) Theorem: B(r) symplectically embeds into Z(R) iff r ≤ R
Proof: (sketch) Assume that E : B(1) ↪→ Z(R) then for any ε > 0, there exists a symplectic embedding
Ẽ : B(1) ↪→ (S2(πR2 + ε)) × T 2(A) for A � 1. Umut says this step isn’t too bad and amounts to
decomposing B(1) into D2(1) times another part.

Now we want to show that if B(1) ↪→ S2(α) × T 2(A) when A � a, then area of a linear slice of B(1) is
less than a. This implies the claim because then we use

∀ε > 0, π < πR2 + ε =⇒ R ≥ 1

From here, the key points are:

i. If A > a, then for any generic, tame, compatible J , for any point in S2(a) × T 2(A), there exists
a J-holomorphic curve CP 1 → T 2(a) (here we think of CP 1 as S2 with the complex holomorphic
structure), which is in the homology class of S2 × {pt}

ii. Monotonicity: B(1) ⊆ R4 = C2 in a metric sense so consider a J-holomorphic curve, u : Σ → B(1)
with ∂Σ mapping to ∂B(1) and passing through the origin. Here, Σ is a compact surface with
boundary.
Then, area(u) =

´
u∗ω ≥ π. This is not true in general, but is true for J-holomorphic curves. The

examples of holomorphic curves are given by graphs of polynomials C→ C
From these two facts, assume that we have F : B(1) ↪→ S2(a) × T 2(A). Then the standard symplectic
structure, J on B(1) pushes forward to the image, and this is compatible because E is a symplectic
embedding. Note: our monotonicity theorem is only true when we’re considering R4 with the standard
structure.

Now we want to extend our compatible structure to a tame J on the whole space of S2× T 2. As a result,
ω(v, Jv) > 0 for v 6= 0. Moreover

a =

ˆ
u∗ω >

ˆ (
u
∣∣∣
the part mapping inside B

)∗
ω

where strict inequality comes from the fact that some portion of the curve leaves B. But we know that
the right hand side integral is greater than π by monotonicity, and so a > π.

2. Existence of J-holomorphic curves: through every point in S2(a)× T 2(A) for generic J

(a) Show that S2 × T 2 with the almost complex structure obtained by S2 = CP 1 and T 2 = C/Ω (and taking
the product of the two complex structures) counts as generic

(b) Then show that the foliation persists under generic deformation of J

(c) Warning: Notice that Σg × T 2 (for g ≥ 1) also is foliated by J-holomorphic curves in the split, almost
complex structure. Yet, almost all of these curves just disappear under generic deformation of J

3. Symplectic reduction: (Lagrangian)
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(a) Recall: basic linear algebra, V is symplectic Q ⊆ V 7→ Q/Q ∩Qc symplectic. Q is coisotropic and maps
to Q/Qc

(b) Linear Algebra: V a symplectic vector space, W ⊆ V coisotropic so that W/WΩ is symplectic.

(c) Lemma: : L ⊆ V lagrangian. Then, the image of L ∩W 7→ W/WΩ is a lagrangian (no assumptions on
dimL ∩W ).
Proof: Let’s denote the image LW ⊆ W/WΩ. LW is isotropic (obvious). We want LΩ

W ⊆ LW as well to
show that LW is lagrangian.

v ∈W, [v] ∈ LΩ
W ⇐⇒ ω(v, ϕ) = 0, ∀ϕ ∈ L ∩W ⇐⇒ v ∈ (L ∩W )Ω

We want to show v ∈ (L ∩W ) +WΩ. Note that (L ∩W )Ω = LΩ +WΩ = L+WΩ. Now we take

v ∈ (L ∩W )Ω, s.t. v = v1 + v2, v1 ∈ L, v2 ∈WΩ

Note WΩ ⊆W and v2 ∈W so v1 = v − v2 ∈W .

(d) If L t W (this is what I use for transverse, t), i.e. L + W = V , W is n + k dimension (so n − k
codimension), then dimL ∩W = k and dimW/WΩ = 2k.

The image of L ∩W → W/WΩ is isomorphic to L ∩W/L ∩WΩ, which has dimension k. This implies
that L ∩WΩ = 0 by dimension counting.
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1. Last time: V a symplectic vector space, W ⊆ V coisotropic, L ⊆ V Lagrangian

(a) Then LW ⊆W/WΩ, where LW is the image of L ∩W →W/WΩ

(b) If L transverse to W , then L ∩WΩ = 0, and L ∩W ↪→W/WΩ and injection

2. Today: Symplectic vector bundles

(a) Let E ↓M be a symplcetic vector bundle and Q ⊆ E a coisotropic subbundle

(b) This implies we get a symplectic vector bundle

Q/QΩ

M

Let L ⊆ E a lagrangian subbundle

(c) Assume: L∩Q is constant rank (hence a subbundle). Then the image L∩Q→ Q/QΩ is also a subbundle

(d) To see this, note that the image at a point is isomorphic to Lx ∩Qx/(Lx ∩QΩ
x ) where

Lx ∩QΩ
x = LΩ

x ∩QΩ
x = (Lx +Qx)Ω

and the fibers of the last object forms a bundle if Lx ∩Qx does. This implies that L∩Q/L∩QΩ forms a
bundle.

(e) Therefore, we obtain the reduced Lagrangian subbundle in Q/QΩ:

L reduced−−−−−→ LQ

3. Manifold case

(a) M a symplectic manifold, C ⊆M coisotropic, and L ⊆M Lagrangian

(b) Assumption 1: C is foliated by the isotropic leaves. The leaf space, X, is a manifold, e.g. the leaves are
the fibers of a submersion C → X = reduction of C. Umut says that this came from the construction of
our foliation in Frobenius integrability. This means X has a natural symplectic structure
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(c) Assumption 2: L should intersect C cleanly, i.e. L∩C is a submanifold and for any a ∈ L∩C, TaL∩C =
TaL ∩ TaC. In particular, any P ⊆ M intersects P ⊆ M cleanly. Note this is slightly weaker than
transverse

(d) We want to obtain a Lagrangian inside X. We have a smooth map, g : L∩C ↪→ C → X. The differential
TaL ∩ TaC → TaC/(TaC)Ω, has a lagrangian image. In particular, g has constant rank. Now by the
constant rank theorem, the image is an immersed Lagrangian. But note, that g is not necessarily an
immersion map itself, just that the image of g is the image of another immersion.

(e) This image is the reduced Lagrangian, LX , where L t C implies L ∩ C → X is an immersion itself.

(f) Warning: This is not an embedding because L can intersect a leaf more than once

4. Now we’ll talk about Weinstein’s Symplectic Category

(a) Definition: A lagrangian correspondence (canonical relation) from (M,ωM ) to (N,ωN ) is just a la-
grangian in the twisted product, (M ×N, π∗MωM − π∗NωN ) = M×̃N .

(b) Ex: If M
ϕ−→ N is a symplectomorphism, then graph(ϕ) ⊆M×̃N is a Lagrangian correspondence.

(c) If G a Hamiltonian action on M with µ a moment map M → g∗. Assume the fact G � µ−1(0) is free.
This implies that

µ−1(0) ↪→M×̃(M//G)(= µ−1(0)/G)

here the map is µ−1(0) ↪→M , i.e. inject into the first component, and then a ∈ µ−1(0) 7→ [a] ∈ µ−1(0)/G
in the second component. Note that µ−1(0) is a coisotropic with leaves given by the orbits of G

(d) Ex: S2n−1 → Cn × CPn−1

(e) If P1 = {pt}, then a Lagrangian correspondence P1 → P2 is just a lagrangian in P2.

(f) Proposition: : Lagrangian correspondences can be composed, L1 ⊆ P1×̃P2, L2 ⊆ P2×̃P3 gives rise to
L1 ◦ L2 ⊆ P1×̃P3

Proof: L1 × L2 ⊆ (P1×̃P2) × (P2×̃P3), this is a Lagrangian submanifold. ∆P2 ⊆ −(P2×̃P2) is the
diagonal, and

P1 ×∆P2
×̃P3 ⊆ (P1×̃P2)× (P2×̃P3)

is coisotropic.

The reduction of P1 ×∆P2×̃P3 is just P1×̃P3, if the intersection is clean, then we’re good.

11/22

1. Let (T ∗M,dλtaut). Then L ⊆ T ∗M is called exact if λ
∣∣∣
L

is exact

2. Ex: zero section of T ∗M (in fact, λ
∣∣∣
TZM (T∗M)

= 0 for λ = pdq)

3. ϕ : T ∗M → T ∗M Hamiltonian diffeomorphism, then ϕ(ZM ) is also exact

4. Why? You can show this using a flux argument. Pick a Hamiltonian isotopy and compute integrals of λ over
1-cycles on ϕ(ZM ) via stokes theorem

5. Nearby Lagrangian conjecture: Any compact exact Lagrangian in T ∗M is Hamiltonian isotopic to the zero
section

6. Generating functions (families):

(a) Let π : E → M be a submersion (e.g. M × R N−→ M , OR a vector bundle over M), and S : E → R a
function

(b) Inside T ∗E, we have a coisotropic,

N := {(e, ξ) | ξ
∣∣∣
ker dπe

= 0}

Note that ker dπe represents the collection of vertical vectors
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(c) Note that we have

N ↪→ T ∗E
dπ−→ T ∗M

it is easy to see that N ⊆ T ∗E is a coisotropic with isotropic leaves being the fibers of the composite map
(i.e. the one from N → T ∗M)

(d) If graph(dS) ⊆ T ∗E, then we can consider the reduced lagrangian:

ιS : N ∩ graph(dS)→ T ∗M

is a lagrangian immersion where M is the reduction of N . Denote N ∩ graph(dS) =: ΣS

(e) This is called “the lagrangian generated by S

(f) We further have

ΣS ⊆ T ∗E → E s.t. ΣS
inject−−−−→ E

with this, it’s best to think of ΣS ⊆ E, and it corresponds to “vertical critical points of S.” Then ιS is
defined by recording the horizontal part of dS at a point of ΣS ⊆ E.

(g) In coordinates,

Rn+k

Rn

such that (ξ, η) 7→ η such that

ΣS := {(ξ, η) | ∂S
∂ξ

(ξ, η) = 0}

ιS : ΣS → T ∗Rn = Rn × Rn

(ξ, η) 7→ (
∂S

∂η
(ξ, η), η)

this is always an immersion because lagrangian reduction always yields an immersion. It need not be an
embedding

(h) Ex: S : Ra × Rx → R such that Rx = M . We have the map

(a, x) 7→ a3

3
+ (x2 − 1)a

Then
ΣS = {(a, x) | a2 + (x2 − 1) = 0} ⊆ R2

a,x

and
ιs : ΣS → R2 s.t. (a, x) 7→ (2xa, x)

this is a mapping of the unit circle into R2 such that the image looks like a figure 8. Furthere more, in
this case, our ambient E = Ra × Rx so

N = {(e, ξ) | ξ|ker dπ = 0} = {(a, x, pa, px) | pa = 0}

where T ∗E = {(a, x, px, pa)}

(i) Lemma: ι∗sλtaut = d(S
∣∣∣
ΣS

) so ιS is an exact lagrangian immersion.

Proof: this is trivial to check in coordinates

(j) Theorem: Every Lagrangian L ⊆ T ∗M (for L and M compact) that is Hamiltonian isotopic to the zero
section admits a generating function. In fact, this generating function can be chosen so that S : RN×M →
R and S is quadratic at infinity in the Rn direction.
Proof: The following construction does not really work, but gives the right idea:
Let γ : [0, 1] → T ∗M and γ(t) = (p(t), q(t)), fix a time-dependent hamiltonian H : T ∗M × [0, 1] → R.
Then the action of γ is defined as

A(γ) :=

ˆ
[0,1]

γ∗λtaut +

ˆ 1

0

Ht(γ(t))dt =

ˆ 1

0

p(t)q̇(t) +Ht(p(t), q(t))
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Claim: consider E = {γ : [0, 1]→M | γ(0) ∈ ZM}, i.e. all paths which start at the zero section. Moreover,
the projection

p : E →M s.t. γ 7→ π(γ(1))

for π : T ∗M → M . Then A “generates” the time 1 image of ZM under the flows of Ht. This is almost
our generating function, but E is infinite dimensional, so we look at critical points of the action.

(k) Exercise: γ(t) = (p(t), q(t)) 7→ (p(t) + δp(t), q(t) + δq(t)). Then

A(γ)→ A(γ) + δA

where

δA =

ˆ
δp(t)

(
q̇(t) +

∂Ht

∂p
(p(t), q(t))

)
−
ˆ
δq(t)(ṗ(t)− ∂Ht

∂q
(p(t), q(t))) + p(1)δq(1)− p(0)δq(0)

note that when we look at vertical variation, we get δq(1) = 0 and we know p(0) = 0, so the last two
terms dies. This vanishes for all small variation when γ satisfies Hamilton’s equations, i.e. ∂pHt = −q̇
and ∂qHt = ṗ.

(l) γ ∈ ΣS iff γ satisfies Hamilton’s equations. Moreover, if so, then

ΣS → T ∗M s.t. γ 7→ (p(1), q(1))

the image if precisle the image of ZM under the Hamiltonian flow under Ht.

(m) In order to turn this into a real proof, we need to discretize Ht
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