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Things to talk about

1. Weak Derivatives

(a) Preliminary definitions: for U ⊆ Rn open, we define

D(U) := C∞c (U,C) = {smooth functions with compact support lying in U}

(b) D(U) has a standard convergence topology, i.e. {ϕk}
D(U)→ ϕ ⇐⇒ limk→∞ ||∂αϕk − ∂αϕ||∞ = 0.

(c) D′(U) := (D(U))∗ is the space of distributions such that T ∈ D′(U) and ϕ ∈ D(U) then we denote T (ϕ)
as 〈T, ϕ〉 or (T, ϕ).

(d) Remark: the above notation arises because if we have any f ∈ L1
loc(U) then we have a natural

distribution

Tf s.t. ∀ϕ ∈ D(U), Tf (ϕ) =

ˆ
U

fϕ

which is well defined because remember that ϕ has compact support.

(e) Remark: In some sense, integrating ϕ against an integrable function is the normal case. This is because
{Tϕ}ϕ∈D(U) is dense in D′(U), i.e. for any T ∈ D(U), there exists a sequence {Tn} = {Tfn} such that
fn ∈ D(U) and

∀ϕ ∈ D(U) lim
n→∞

(Tn, ϕ) = (T, ϕ)

One direct way to show this is Tn := T ∗ρn where ρn is a function which approaches δ0 in the distributional
sense

(f) Ex: Consider
δ0 ∈ D′(U) s.t. δ0(ϕ) = ϕ(0)

This is clearly linear. Boundedness follows, but we’d have to delve into the topology of C∞(U) which is
some locally convex topology defined by the collection of semi-norms

ρK,m : C∞(U)→ R s.t. ρK,m sup
x∈K
|α|≤m

|∂αϕ(x)|

for K a compact subset of U and m ≥ 0.

(g) For now, I just note that T is bounded if there exists an m ≥ 0 such that

T : D(U)→ C a linear operator is bounded ⇐⇒ ∀K ⊆ U compact

∃CK s.t. ∀ϕ ∈ D(U) s.t. supp(ϕ) ⊆ K, |T (ϕ)| ≤ CK sup
x∈K
|α|≤m

|∂αϕ(x)|

(h) We can differentiate distributions to get ∂jT by

(∂jT, ϕ) = −(T, ∂jϕ)

If we have that
(∂jT, ϕ) = −(T, ∂jϕ) = (g, ϕ)

for some g locally integrable, then we say that g is the weak derivative of T
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(i) Here is a fun example which makes high school me happy. Let f(x) = ln |x|, then f is locally integrable
because its bounded outside of (−ε, ε) but also you can integrate it on (−ε, ε). The weak derivative is then

(
d

dx
f, ϕ) := −(ϕ′, f) = −

ˆ
R
ϕ′ ln(|x|)dx

ϕ has compact support so this is well defined. In particular, we can write

ˆ
R
ϕ′ ln(|x|)dx = lim

ε→0

ˆ
|x|>ε

ϕ′ ln(|x|)dx

Now we perform integration by parts

ˆ
x>ε

ϕ′ ln(|x|)dx = ϕ(x) ln(|x|)
∣∣∣∞
ε
−
ˆ ∞
ε

ϕ(x)

x
dx

and ˆ
x<−ε

ϕ′ ln(|x|)dx = ϕ(x) ln(|x|)
∣∣∣−ε
−∞
−
ˆ −ε
−∞

ϕ(x)

x
dx

Now note that ϕ has compact support so

ˆ
|x|>ε

ϕ′ ln(|x|)dx = ln(ε)[ϕ(ε)− ϕ(−ε)]−
ˆ
|x|>ε

ϕ(x)

x
dx

But now we write
ϕ(x) = ϕ(0) + xg(x) =⇒ ϕ(ε)− ϕ(−ε) = ε[g(ε)− g(−ε)]

for g smooth. But note that limε→0 ε ln(ε) = 0. And thus we have

(f ′, ϕ) = P.I.

ˆ
R

ϕ(x)

x
= lim
ε→0

ˆ
|x|>ε

ϕ(x)

x
dx

(j) I think this is cool because when I was younger I saw stuff like

ˆ
R

cos(x)

x
dx

and I was like “EZ” it’s zero because its an odd function. But my teacher said its not defined because it’s
not absolutely integrable. However, note that

lim
ε→0

ˆ
|x|>ε

ϕ(x)

x
dx = lim

ε→0

ˆ
|x|>ε

ϕ(x)− ϕ(0)

x
dx

and so this is all nice and well defined.

(k) Remark: We can define weak derivatives in the context of higher order partial differential operators:
suppose we have

L
∣∣∣
x

=
∑
|α|≤m

cα(x)∂α

for α = (α1, . . . , αn) a multi-index, then we say that Lf = g weakly if

∀ϕ ∈ C∞c (U),

ˆ
U

gϕdx =

ˆ
U

fL∗ϕdx

where L∗ is the formal adjoint given by

L∗ϕ =
∑
|α|≤m

(−1)|α|∂α(cα(x)φ)

2. Sobolev space → What is this?
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(a) Staying with U ⊆ Rn, we define

W 0,p(U) = Lp(U) W k,p = {f | ∂if exists and ∂if ∈W k−1,p(U)} = {f | f ∈ Lp(U) and ∀|α| ≤ k}

with the norm
||f ||Wk,p =

∑
|α|≤m

||∂αf ||p

(b) Some nice properties of Sobolev spaces:

i. Sobolev spaces are Banach spaces

ii. They are reflexive for all k and 1 < p <∞
iii. For p = 2, they form a Hilbert space with inner product

〈u, v〉k =

ˆ
Rn

∑
|α|≤k

∂αu · ∂αv

 dx

iv. C∞C (U) is dense in W k,p(U) for all k and p

(c) For example, define

f(x) =

{
0 x ≤ 0

x 0 < x < R
=⇒ ∈W 1,p(R)

(d) Why do we care?

i. Definition: Suppose (Σ, j) is a Riemann surface (complex manifold of dimension one) with almost
complex structure j (hey look I know what that means) and (M,J) is an almost complex manifold
with almost complex structure J . A smooth map u : Σ→M is J-Holomorphic if its differential at
every point is complex-linear, i.e.

Tu ◦ j = J ◦ Tu

The above only makes sense if u ∈ C1, or more generally when u ∈W 1,p (apparently)

ii. Often in symplectic geometry, we have these “J-holomorphic maps” u : Σ → M which might be
smooth or might not. When we look at integrable maps, i.e. the complex structure arises from
multiplication by i after pushing forward through the coordinate charts, we can choose a coordinate
basis and get that J = i so that it is of course smooth.

iii. In the non-integrable case, no such nice expression exists, and thus we have fewer smoothness assump-
tions on J . In this case, the a priori lack of regularity says that we need to work in Sobolev spaces to
extract information about u

iv. Sobolev spaces also show up everywhere, and in particular, we can convert weak derivatives into actual
regularity. The most notable result is the Sobolev embedding theorem

3. Sobolev Embedding Theorem

(a) Definition: A compact operator T : X → Y sends bounded sets to precompact sets, i.e. for B ⊆ X
s.t. supb∈B ||b|| < R then T (B) is compact. Equivalently we have that T sends bounded sequences to
sequences with a weakly convergent subsequence.

(b) Definition: The STRENGTH of a sobolev space, W k,p(Rn), is defined to be

σN (k, p) = k −N/p

this value is a measure of how big a sobolev space is: the larger the STRENGTH, the more regular the
functions are, and thus the space has fewer total functions.

(c) Strength is derived from a scaling argument, i.e. suppose that we want to bound

||∂αu(λ·)||p ≤ A||∂αu||p
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for some scalar λ, then note that

||∂αu(λ·)||p =

(ˆ
RN

|∂αu|p
)1/p

=⇒

||∂αu(λ·)||p =

(ˆ
RN

|∂αu(λ·)|pdx
)1/p

=

(
1

|λ|N

ˆ
RN

|λ|α|(∂αu)(λ·)|p|λ|Ndx
)1/p

=
(
|λ||α|p−N ||∂αu||pp

)1/p

= |λ||α|−N/p||∂αu||p

For |α| = k, this is exactly the strength. For some reason or another, mathematicians care about this top
term in the sobolev norm, which is the quantity above.

(d) Theorem: (Sobolev Embedding) For W k,p(RN ) and Wm,q(RN ) such that

σN (k, p) = σN (m, q) < 0 and k > m

then
ι : W k,p(Rn) ↪→Wm,q(Rn)

is continuous, i.e.
||f ||Wm,q ≤ C(N, k,m, p, q)||f ||Wk,p

Proof: (sketch) We prove a lemma

Lemma 0.1. For N ≥ 2 and f1, . . . , fN ∈ LN−1(RN−1). Then define

ξi = (x1, . . . , x̂i, . . . , xn) ∈ RN−1

and

f(x) =

N∏
i=1

fi(ξ
i)

then f ∈ L1(RN ) with

||f ||1 ≤
N∏
i=1

||fi||N−1

With the above lemma, we prove an inequality of the form

||u||N/(N−1) ≤ C||du||1 s.t. |du|2 = |∂1u|2 + · · ·+ |∂Nu|2

for smooth functions of compact support. Then using density of smooth functions in W 1,1(RN ), we get
our desired result for k = 1, p = 1, m = 0, and q = N/(N − 1).

To go from here to the general case of (k, p,m, q) is not entirely clear to me but I believe it uses an
interpolation inequality of the form

(e) Remark: that most of these results can be extended W k,p(U) for U ⊆ RN , when U has a nice boundary,
i.e. either C1 or lipschitz.

(f) Corollary: When k = 1 and ` = 0, we have that

W 1,p(U) ↪→ Lp
∗
(U) s.t.

1

p∗
=

1

p
− 1

n

(g) Theorem: (Rellich-Kondrachov) For W k,p(Rn) and Wm,q(Rn), if k > m and 0 > σN (k, p) > σN (m, q),
then we have

ι : W k,p(Rn) ↪→Wm,q(Rn) is compact

The inclusion W k,p(U) ↪→W k−1,p(U) is also compact. which Dylan asked me to say
Morally this should make sense because we have an extra derivative to peel off and get some equicontinuity
bound so that we can Arzela-Ascoli this bad boy and get that our embedding is compact.

Proof: (sketch) We’ll sketch for k = 1 and hence m = 0, which forces

q <
(
p−1 −N−1

)−1
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We first show that for
τh : Lq(RN )→ Lq(Rn) s.t. τh(f)(x) = f(x+ h)

we get the following bound
||τhu− u||q,Br ≤ C|h|α||u||W 1,p(RN )

remember, for k = 1. Then we use an interpolation equality for p∗ = Np/(N − p) and α such that

1

q
= α+

1− α
p

the inequality is of the form

||f ||Lq(BR) ≤ ||f ||αL1(BR)||f ||
1−α
Lp∗ (BR)

=⇒ ||τhu− u||q ≤ ||τhu− u||α1 ||f ||1−αLp∗ ≤ C|h|α||u||W 1,p

having used our first bound and one of the consequences of the Sobolev embedding theorem.

Now consider S = {un} ⊆ W 1,P (Rn) a bounded sequence of smooth functions with support lying in BR.
We want to prove that it has a convergent subsequence in Lq.

The idea from here is that we form

Sδ = {uδ := ρδ ∗ u | u ∈ S}

i.e. we convolve our functions by ρδ where ρ is a bump function on B1(0) and ρδ = 1
δN
ρ(x/δ), and then

we show that for each δ, we get a convergent subsequence, and then we take an appropriate diagonalizing
subsubsequence.

From the sobolev embedding theorem and properties of convolutions, we can show that Sδ is equicontinuous
and pointwise bounded. By Arzela-Ascoli, Sδ is precompact in C0 (i.e. has compact closure), and hence,
we get

∀δ > 0 ∃ {unk
}∞k=1 s.t. lim

k,`→∞
||unk

∗ ρδ − un`
∗ ρδ|| = 0

Now let εk = 1/k. For εi find a

It takes a bit of work to show, but for S bounded in W k,p, the uniform bound tells us that

∀ε > 0, ∃δ s.t. ∀u ∈ S, ||u ∗ ρr − u||q,BR
< ε ∀0 ≤ r ≤ δ

i.e. we get δ uniform in S. From here, let εm = 1/m. For εm find a δm such that the above bound holds.
Let {uni,1} be the sequence of functions such that {uni,1 ∗ ρδ1} is the convergent subsequence given by
Arzela Ascoli. Set f1 = un1,1. Now find a subsequence of this, call it {uni,2} such that {uni,2 ∗ ρδ2} is
convergent by Arzela Ascoli. Define f2 = un2,2, and repeat this to define fm.

Now note that for j > m ≥ N , we have

||fm − fj || ≤ ||fm − fm ∗ ρδN ||q + ||fj − fj ∗ ρδN ||q + ||fm ∗ ρδN − fj ∗ ρδN ||q

By our choice of indices, the first two terms are bounded above by 1/N independent of j and m. And if
we let m, j large while leaving N fixed, we know that the last term goes to 0 as fm ∗ ρδN , fj ∗ ρδN → gN
for gN continuous when N is fixed. Thus {fm} is our cauchy sequence of functions in Lq.

(h) Theorem: (Also Rellich) If U ⊆ Rn is a bounded open domain with smooth boundary and kp > n,
then there are natural continuous inclusion W k+d,p(U) ↪→ Cd(U) for each integer d ≥ 0. Moreover, these
inclusions are compact!

(i) Motivation: Let’s prove this on (0, 1). Consider {ϕn} bounded in W 1,p((0, 1)), then we want to show
that some subsequence {ϕnk

} converges in Lp. To see this, first replace each {ϕn} with its continuous
representative, i.e. we have

ϕn(x) = ϕ̃n(x) a.e. s.t. ϕ̃n(x) =

ˆ x

0

ϕ′(x)dx
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To see that this is really equal to ϕ a.e., note that ϕ and ϕ̃ have the same weak derivative (see p. 204-206
in Brezis). Then from the above, we have that

|ϕ̃n(x)− ϕ̃n(y)| ≤
ˆ y

x

|ϕ′n(x)|dx ≤ ||ϕ′n||p|x− y|1/q ≤ K|x− y|1/q

where K ≥ supn ||ϕn||W 1,p . Now by arzela ascoli, there exists a uniformily convergent subsequence and
so { ˜ϕnk

} → ϕ0(x) continuous.

4. Elliptic Bootstrapping

(a) Idea: Suppose we have F : Rn → Rn is a Ck operator, and we have a C1 solution to the ODE

ẋ = F (x)

we see that for k ≥ 1, we have ẋ = F (x) is at least C1 as it is the composition of C1 functions. This
implies that x =

´
ẋ is actually C2. If k ≥ 2 as well then x will be C3.

(b) In general, we can upgrade our initial regularity of x being C1 up to Ck+1 regularity. This process of
upgrading is known as “bootstrapping,” which comes from the expression “lifting yourself up by your own
bootstraps”

(c) Definition: a linear differential operator L of order m on a domain Ω ⊆ Rn to be of the form

Lu =
∑
|α|≤m

aα(x)∂αu

This operator is elliptic if we have that

∀x ∈ Ω, ∀0 6= ξ ∈ Rn,
∑
|α|=m

aα(x)ξα 6= 0

where we have α = (α1, . . . , αn), and ξα =
∏n
i=1 ξ

αi
i .

(d) We denote the principal symbol, σLm is given by all the order m terms in the operator and operates on
n-tuples

σLm(x, ξ) =
∑
|α|=m

aα(x)ξα

Ellipticity then amounts to the principle symbol, σLm(x, ·) being non-zero away from 0

(e) Theorem: (Powerful due to Morrey) Let L be an elliptic operator of order m of the above form. Then
for every k ≥ 0, there exists a constant c such that

||u||Wm+k,p(Br) ≤ K(r)
(
||Lu||Wk,p(r) + ||u||Lp(Br)

)
where K(r) is a constant depending on r and our elliptic operator

(f) Ex: Consider the Laplacian

∆ = −
n∑
i=1

∂2
i =⇒ σ∆

2 (ξ) = −
n∑
i=1

ξ2
i = −|ξ|2

so ∆ is elliptic. In particular, let’s say we have a harmonic function, i.e. one that satisfies ∆u = 0. Then
if u ∈ Lp, we have that u is smooth, as

||u||W 2+k,p(Br) ≤ K(r)
(
||Lu||Wk,p(r) + ||u||Lp(Br)

)
≤ K(r)||u||Lp(Br)

Taking k arbitrarily large and using the sobolev embedding theorem, we can get infinite regularity of u,
i.e. u is smooth!

(g) Cor: For ∆ : W 3,p →W 1,p then ker(∆) is finite dimensional. From the above, we have that

∆u = 0 =⇒ ||u||W 3,p ≤ C||u||p

so if we consider a bounded sequence {un} ⊆ ker(∆), then we know that BW 3,p ↪→ W 2,p compactly, and
so there exists a convergent subsequence in W 2,p. In particular, we get that ||unk

− un`
||p → 0, and by

the above bound, this tells us that ||unk
− un`

||W 3,p → 0. Thus the unit ball in ker(∆) is compact, so it
must be finite dimensional
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