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Inverse Problems
Given some quantity/function on (M, g), can you determine g?

Ex: Can you hear the shape of a drum? (Does the spectrum of ∆g

determine g?) (No, Milnor (’64), Gordon-Webb-Wolpert (’92))
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Inverse Problems: distances

Suppose M has boundary: does distance between any two points on the
boundary determine g?

(yes, locally near the boundary) (Stefanov-Uhlmann-Vasy)
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Inverse Problems with Closed Geodesics

Given (S2, g), suppose `(γ) = 2π for each simple closed geodesic.
g = ground?

(No, Zoll metrics on (S2, g))

Similar question for the “p-widths”, ωp(M, g) (MK ’24,
Ambrozio-Marques-Neves ’24)
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Inverse Problem with Minimal Surfaces:
Alexakis-Balehowsky-Nachman

Figure

(B3, g) compact

Suppose {Yt}, foliation of
minimal surfaces near ∂B.

Knowledge of A(Yt) for all t
does determine g globally
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Expanding scope for this inverse problem?

When do areas of minimal surfaces determine the metric?

New answer in asymptotically hyperbolic setting: Renormalized Area
of minimal surfaces determines the asymptotic expansion of the
metric near the boundary

Equivalent: “The D-to-N map for Plateau problem determines the
metric” (Asymptotically hyperbolic Calderon problem?)
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Conformally Compact Asymptotically Hyperbolic Metrics

A complete manifold with topological boundary. Near boundary,
sectional curvature tends to −1 (asymptotically hyperbolic)

Figure: Path of particle with constant
acceleration

Figure: Noncompact Hyperbolic
3-manifold

“CC AH” = Conformally Compact Asymptotically Hyperbolic
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CC AH Motivation: Poincaré-Einstein manifolds

Given closed (N, h), conformal invariants of [h]?

Fefferman–Graham: Construct (M, g), CC, Einstein metric, ∂M = N,
“
[
x2g |∂M

]
= [h]” on N.

{Riemannian invariants of M} → {conformal invariants of N}

M is a “Poincaré–Einstein” manifold. (Given (N, h), ∃(M, g)?)
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Given closed (N, h), conformal invariants of [h]?

Fefferman–Graham: Construct (M, g), CC, Einstein metric, ∂M = N,
“
[
x2g |∂M

]
= [h]” on N.

{Riemannian invariants of M} → {conformal invariants of N}
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Poincaré-Einstein Manifolds

Studied by Witten, Anderson, Qing, Chang, Yang, Gursky, Ozuch,
Mazzeo, Pacard, Case, Tyrrell, Wang, Blitz, Waldron, McKeown,
Wei, Saez, Curry, Hirachi, Lin, Ratzkin, Takeuchi, Yan, Matsumoto,
Case, Han, Ge, Kuo, Wang, Kopinski among others

Example of Poincarè-Einstein (PE) metric: AdS Schwarzschild,
Hyperbolic Space
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Formal Definitions CC AH Metrics

Figure

(M, g) complete with boundary

g is conformally compact
(CC) if ∃x : M → R≥0 with

I x
∣∣∣
∂M

= 0

I g = x2g metric on M
I ||dx ||2g = 1 on ngbd of ∂M

(special)

x - “(special) boundary defining
function (bdf)”
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Conformally Compact Asymptotically Hyperbolic Metrics

g is Asymptotically
Hyperbolic (AH) if

g =
dx2 + ω0 + xω1 + x2ω2 + . . .

x2

near ∂M, ωk ∈ Sym2(T∂M).

g is CC, define the conformal
infinity:

c(g) =
[
x2g

∣∣∣
∂M

]
= [ω0]

Figure
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Renormalized Volume
Suppose (Mn+1, g) CC AH with g even up to order m (even)

g =
dx2 + ω0 + (even) + ωmx

m + O(xm+1)

x2

near ∂M.

Ym, minimal submanifold,
define the renormalized
volume of Y

V(Y ) = FPε→0

�
x>ε

dAY

(= FPz=0

�
Y
xzdAY )

(conformally invariant/
independent of x!)
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Renormalized Volume Example

Y 2 = D2 ⊆ B3

x = (1−r)
1+r

Consider the expansion of

�
x>ε

dA =

�
x>ε

4r

(1− r2)2
drdθ

= −4π

[
−1

ε
+

1

2

]
V(Y ) = FPε→0

�
x>ε

dA

= −2π
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Regularity + Variations of Minimal Surfaces in AH Spaces

Figure

In 2021, MK computed
variations of renormalized
volume and proved regularity
of minimal submanifolds
(high codim)

Previous work on
existence/uniqueness in
codim 1: Lin (89), Guan,
Spruck, Szapiel (09),
Tonegawa (96)
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Significance of Renormalized Volume

Bernstein (2020) introduced an analogy of entropy for surfaces in
hyperbolic space, λH(Y ).

Theorem (Bernstein 2021)

Let Y 2 a minimal surface in Hn with asymptotic boundary
∂Y = Y ∩ ∂Hn. Then −2πλH(Y ) ≥ V(Y )

Theorem (Anderson 82’, Bernstein 21’, Qing 99’)

Let Ym ⊆ Hn minimal with asymptotic boundary. For any p ∈ Hn,

ψp(r) =
Volm(Y ∩ Bp(r))

Volm(Bm
p (r))

is monotone non-decreasing. When m = 2

lim
r→∞

ψp(r) ≤ −V(Y )
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Significance of Renormalized Volume

Physics: Type IIB String theory (Witten). Renormalized Area of Y
represents the entanglement entropy of the region it bounds
(Ryu–Takayanagi)

Proposition (Alexakis, Mazzeo 2008)

Suppose (Mn+1, g) Poincare Einstein (PE). For Y 2 ⊂ Mn+1 with
∂Y = γ ⊆ ∂Mn+1 and Y intersecting the boundary orthogonally,

V(Y ) = −2πχ(Y ) +
1

2

�
Y

2|H|2 − |k̂|2dAY +

�
Y

trY (WM)dAY
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Rigidity of V

When Y 2 minimal in Hn+1, have

V(Y ) = −2πχ(Y )− 1

2

�
Y
|k̂ |2dA

V(Y ) ≤ −2π

with equality if and only if χ(Y ) = 1 and k̂ = 0, i.e. Y = HS2 and
γ = S1 (Non-trivial, due to Bernstein).
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Question: How can we use rigidity and variations of renormalized
area to determine the metric?
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Prior work: Graham-Guillarmou-Stefanov-Uhlmann

Figure

Renormalized Length functional on
geodesics in AH spaces

RL(γ) = lim
ε→0

[
`g (γ ∩ {x > ε})

+ 2 log(ε)
]

Knowledge of RL(γ) determines
expansion of metric near boundary

(Remark: RL(γ) not conformally
invariant)
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Main Results
We extend metric determination results to Renormalized Area of minimal
submanifolds

Theorem (MK, 2024)

Suppose (Mn+1, g) is CCAH, even to order 2, and V(Y 2) is known for all
minimal surfaces. Then c(g) = [x2g |∂M ] is determined.

Theorem (MK, 2024)

Suppose (Mn+1, g) is CCAH, even to order 2, and c(g) is known. Fix
ω0 ∈ c(g). Then knowledge of V(Ym) for any m even, 0 < m < n + 1,
determines the asymptotic expansion of the metric.

(Recall)

g =
dx2 + ω0 + ω2x

2 + (even) + ωmx
m + O(xm+1)

x2
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Applications: Rigidity

Corollary

Suppose (M, g), (M, g ′) CC AH even to order 2. For γ1 ⊆ ∂M, let Y 2
γ,g

and Y 2
γ,g ′ be minimal with ∂Y 2

γ,g = ∂Y 2
γ,g ′ = γ.

If Vg (Y 2
γ,g ) = Vg ′(Y 2

γ,g ′) for all γ, then ∃ψ : M → M diffeomorphism

ψ
∣∣∣
∂M

= Id

ψ∗(g ′)− g = O(x∞)

If g , g ′ are real-analytic, then ψ∗(g ′) = g
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Rigidity Illustrated

Figure

V(Yγ,g ) = V(Yγ,g ′) ∀γ =⇒ g“ = ”g ′
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Applications: Poincaré–Einstein Metrics

For n odd and (Mn+1, g) Poincaré–Einstein:

g =
dx2 + ω0 + x2ω2 + even + xn−1ωn−1 + xn ωn + O(xn+1 log(x)k)

x2

(ω0, ωn) determine entire asymptotic expansion. ωn 6= 0 is
obstruction to existence of unique PE metric with prescribed
conformal infinity.

Corollary

Let (Mn+1, g) PE. If V(Y 2) is known on all minimal surfaces, or c(g) and
V(Ym) is known for all m even with 2 < m < n + 1, then the non-local
term, ωn, is determined.
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Proof of theorem 1: Determining
c(g)
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Preliminary: Blow up

g =
dx2 + [(ω0)ij + x2(ω2)ij + O(x3)]dy idy j

x2

Fδ(x̃ , ỹ
1, ỹ2, . . . , ỹn) = (x = δx̃ , y1 = δỹ1, . . . , yn = δỹn)

F ∗δ (g) =
dx̃2 + (ω0(p))ijdỹ

idỹ j + O(δ2)

x2
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Determining ω0

Determine (ω0(p))ij up to scalar factor → determine c(g) = [ω0]

Compute limδ→0 V(Yδ) for {Yδ} special family

Use rigidity of renormalized volume

V(Y ) = −2πχ(Y ) +

�
Y
|k̂|2dAY

V(Y ) = −2π
Bernstein⇐⇒ Y = H2

⇐⇒ “Good choice” of {y i}
⇐⇒ (ω0(p))ij = λδij
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What are Yδ?

S1
δ (y) = {(y1)2 + (y2)2 = δ2} = {(ỹ1)2 + (ỹ2)2 = 1}

lim
δ→0
V(YS1

δ (y)
,F ∗δ (g)) = V(Yỹ , g0)

g0 standard hyperbolic metric, Yỹ minimal w.r.t g0 (Apply rigidity here)
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Determining The Conformal Infinity

Recall

V(Y ) = −2π − 1

2

�
Y
|k̂ |2dA

V(Yỹ ) = −2π ⇐⇒ Yỹ
∼= HS2

(∂Yỹ = {(ỹ1)2 + (ỹ2)2 = 1})

Up to an orthonormal change of basis

g0 =
dx2 + ω0

x2
=

dx2 + A(dỹ1)2 + B(dỹ2)2

x2

V(Yỹ ) = −2π ⇐⇒ ω0 = A[(dỹ1)2 + (dỹ2)2]
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Determining The Conformal Infinity (Cont.)

Up to an orthonormal change of basis

lim
δ→0

gδ = g0 =
dx2 + ω0

x2
=

dx2 + A(dỹ1)2 + B(dỹ1)2

x2

V(Yỹ ) = −2π ⇐⇒ ω0 = A[(dỹ1)2 + (dỹ2)2]

Strategy: Vary ỹ2 7→ ỹ2 = c1ỹ
1 + c2ỹ

2, recompute

V(Yγ), γ = {(ỹ1)2 + (ỹ2)2 = 1}

until it equals −2π.

Tells us we have good coordinates, ỹ , for which ω0(p) = λ
∑

i (dỹ
i )2.

This gives [ω0], conformal class.
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Determining ω2: δ derivatives

Recall

g =
dx2 + ω0 + x2ω2 + . . .

x2

F ∗δ (g) =
dx̃2 + ω0

∣∣∣
y=δỹ

+ δ2x̃2ω2

∣∣∣
y=δỹ

+ . . .

x̃2

F ∗δ (g)
∣∣∣
δ=0

=
dx̃2 + ω0

∣∣∣
y=0

x̃2

∂2δF
∗
δ (g)

∣∣∣
δ=0

=
[(∇2ω0)(ỹ , ỹ) + ω2]y=0

x̃2

If we know ω0, ∂2δF
∗
δ (g) gives ω2!
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Determining ω2: Perturbations of Minimal Surfaces
Idea: vary curve when computing ∂kδ V(Yδ)

d

dγ

dk

dδk
V(Yγ,δ)↔

dk

dδk
F ∗δ (g)↔ ωk(0)
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Determining ω2: Perturbations of Minimal Surfaces
For each δ, exists Yγ,δ minimal w.r.t. gδ = F ∗δ (g).

Assume we know ω0, compute

d2

dδ2
V(Yγ,δ, g)

∣∣∣
δ=0

= FPz=0

�
Yγ,0

xz TrYγ,0(ω2) dAYγ,0 + K (ω0)

(
Recall gδ =

ω0 + δ2x̃2ω2 + O(δ3)

x̃2

)
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Determining ω2

Compute variation of V w.r.t. boundary curve γ → γt

d

dt

d2

dδ2
V(Yγt ,δ, g)

∣∣∣
δ=0

∣∣∣
t=0

= FPz=0

�
Yγ,0

x φ̇TrYγ,0(ω2) dAYγ,0 + K (ω0)

φ̇ a jacobi field on Yγ,0.

Compute Jacobi fields explicitly about Y = HS2 ⊆ Hn+1

φ̇1(θ, x) =
1

x

φ̇2(θ, x) = cos(2θ)
(1− x)(2x + 1)

x(1 + x)
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Determining ω2

Up to linear combination:

Figure
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Determining ω2

Explicitly compute

d

dt

d2

dδ2
V(Yγt ,δ, g)

∣∣∣
δ=0

∣∣∣
t=0

(φ̇1) =
3π

8
[ω2,11 + ω2,22]

d

dt

d2

dδ2
V(Yγt ,δ, g)

∣∣∣
δ=0

∣∣∣
t=0

(φ̇2) =
3π

40
[ω2,11 − ω2,22]

Now can recover ω2,11, ω2,22 individually

Proof essentially generalizes to higher dimensions: some indicial root
analysis + hypergeometric functions
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Future Work

Rigidity/Upper bounds for renormalized volume of higher dimensional
minimal surfaces Ym ⊆ Hn+1

Determining conformal infinity using Ym for m ≥ 4?

Geometric interpretations/classification of “stable minimal surfaces”
w.r.t renormalized area? How about Stable PE manifolds? Stable
Q-curvature?

Radon transform for minimal surfaces in AH spaces?
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Thank You!
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