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I Phase transitions: two
different materials mixed
together - how do they
equilibriate?

I Minimize configuration
energy ↔ transition
region is small
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I Build a model for phase
transitions, uε : M → R
such that

lim
ε→0

u−1ε (0)“ = ”Y minimal

lim
ε→0

Eε(uε) = σ0A(Y )
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Allen–Cahn Background

Let (M, g) closed manifold. The Allen–Cahn equation is a
model for phase transitions given by

ε2∆gu = u(u2 − 1) (1)

Solutions are critical points of

Eε(u) =

�
M
ε
|∇gu|2

2
+

W (u)

ε
(2)

W (u) = (1−u2)2
4 .

I Small energy (or critical point) → balancing between
u ≈ ±1 and small dirichlet energy
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Allen–Cahn Background
I Γ-convergence (Modica-Mortola, ’77):

Eε(uε)
ε→0−−→ P({uε = 0})

I For u : R→ R solutions are either periodic (infinite
energy)

Figure

or u = tanh
(

t
ε
√
2

)
=: gε(t), the “heteroclinic” solution

Figure
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one can find a solution to (1)
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I Index and Nullity bounds:

Figure

I {uε} solutions with u−1ε (0)→ Y minimal (nicely) as
ε→ 0,

(Gaspar, Hiesmayr, Le)

IndAC,ε(uε) ≥ Ind(Y )

(Chodosh–Mantoulidis)

IndAC,ε(uε) + NullAC,ε(uε) ≤ Ind(Y ) + Null(Y )
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Theorem (Chodosh-Mantoulidis, 2018)

Let (M3, g) a closed manifold with bumpy metric. Then
there is C > 0 and smooth embedded minimal surfaces Σp

for all p > 0 so that each component of Σp is two-sided and

C−1p1/3 ≤ Areag (Σp) ≤ Cp1/3

Ind(Σp) = p

genus(Σp) ≥ p

6
+ 1− Cp1/3

Theorem (Chodosh-Mantoulidis, 2021)

Let (S2, g) the round sphere. Then for every p ∈ Z+

ωp(S2, g0) = 2πb√pc

where ωp is the “p-width” of the length functional.
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Theorem (Caselli, Florit-Simon, Serra (2023))

Let (Mn, g) closed. There exists C > 0 such that for every
p ≥ 1 and s ∈ (0, 1), there exists an s-minimal surface
Σp = ∂Ep with morse index at most p and

C−1ps/n ≤ (1− s)Pers(Ep) ≤ Cps/n

In particular, M has infinitely many s-minimal surfaces
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Motivation

I Eε(u) defined for all u ∈ H1, not just those with u−1ε (0)
“well behaved” hypersurface

I Only interested in Allen–Cahn in connection to minimal
surfaces

I Why not look at u ∈ H1 vanishing on hypersurfaces?
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BE Set up
I (Mn, g) closed, Y n−1 ⊆ Mn separating, closed

I Exists unique solutions, u±ε , on M± vanishing on Y
I Define the “Balanced Energy”

BEε(Y ) := Eε(u
+
ε ,M

+) + Eε(u
−
ε ,M

−)

Figure
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1st Variation

Figure

Theorem (MK, Silva, 2023)

The first variation is given by

d

dt
BEε(Yt)

∣∣∣
t=0

=
ε

2

�
Y
f [(u+ε,ν)2 − (u−ε,ν)2]

I Critical points =⇒ u+ε,ν = u−ε,ν

I Finding critical points ↔ computing
dirichlet-to-Neumann map for
Allen–Cahn equation on manifold with
boundary
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I ν(uε) (hence d
dt BEε(Yt)|t=0) asymptotically computable

Theorem (MK)

For Y a C 4,α hypersurface,

ν+(u+ε ) =
1

ε
√

2
+ σ0H0 + σ1ε[RicY (ν, ν) + |AY |2] + O(ε2−α)

Figure

I Above implies

=⇒ d

dt
BEε(Yt)

∣∣∣
t=0

= σ0ε

�
Y
fH0 + O(ε2)
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2nd Variation

Theorem (MK, Silva)

Let Y a critical point for BEε. The second variation is given
by

d2

dt2
BEε(Yt)

∣∣∣
t=0

= ε

�
Y
fuν [u̇+ε,ν − u̇−ε,ν ]

If Y satisfies mild geometric assumptions, then

d2

dt2
BEε(Yt)

∣∣∣
t=0

= D2A|Y (f ) + E (f )

|E (f )| ≤ Kε1/2||f ||2H1
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2nd Variation

d2

dt2
BEε(Yt)

∣∣∣
t=0

= ε

�
Y
fuν [u̇+ε,ν − u̇−ε,ν ] = D2A|Y (f ) + E (f )

I u̇±ε satisfies linearized Allen–Cahn system on M±

[ε2∆g −W ′′(uε)]u̇±ε = 0 p ∈ M±

u̇±ε

∣∣∣
Y

= −fuν

I Error bound E (f ) ≤ O(ε1/2)||f ||2H1 relies on:

I invertibility of ε2∆g −W ′′(u) : H1
0 (M+)→ H−10 (M+)

I (3g(t)2 − 1)−1(0) = ±0.93123
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Application: Index computation

Figure

I Let Q(uε)(v) = d2

dt2
Eε(u + tv)

∣∣∣
t=0

.

Recall

IndAC (u) := max{dimV | V ⊆ H1(M), Q(u)
∣∣∣
(V ,V )

< 0}

NullAC (u) := dim ker(ε2∆g −W ′′(u))
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Application: Index computation

Theorem
Let Y ↔ uε a critical point for BEε. Then

IndAC (uε) = IndBEε(Y )

NullAC (uε) = NullBEε(Y )

Theorem says we can compute index/nullity on smaller space
of

W = {ẇ(f ) ∈ H1(M) | f ∈ H1(Y ), ε2∆g ẇ = W ′′(u)ẇ ,

ẇ
∣∣∣
Y

= −fuν}
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Proof Sketch of IndAC (uε) ≤ IndBE (Y )

I Want to compute d2

dt2
Eε(u + tv)

I Let
Yt = (u + tv)−1(0)

and M±t accordingly
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Proof Sketch (continued)

I Rewrite u + tv = ut + ψt , ut is a minimizer on M±t

d2

dt2
Eε(u + tv)

!
=

d2

dt2
BEε(Yt)

∣∣∣
t=0

+ Q(u)(ψ̇, ψ̇)

for ψ̇ = d
dtψt

∣∣∣
t=0
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Proof Sketch (continued)

I ψ̇
∣∣∣
Y

= 0 and uε is a minimizer gives:

Q(ψ̇, ψ̇) ≥ 0

=⇒ d2

dt2
Eε(u + tv)

∣∣∣
t=0
− d2

dt2
BEε(Yt)

∣∣∣
t=0
≥ 0

=⇒ IndAC (uε)− IndBEε(Y ) ≤ 0
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Applications of 2nd Variation: Solutions on S1

Let uε,2p : S1 → R be the unique Allen–Cahn solution on S1

vanishing on D2p-symmetric points:

Theorem
Fix p > 0. There exists εp such that for all ε < εp, uε,2p has
Allen–Cahn Morse index 2p − 1 and nullity 1. The nullity is
realized by rotations and every other variation produces a
strictly negative variations.
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Motivation for solutions on S1

I Inspriation for + used as barriers to prove the following

Theorem (Mantoulidis, 2022)

Let uεi Allen–Cahn solutions on M × S1 such that

lim
i→∞

u−1εi (0) = {θ1, . . . , θm} ×M

then m is even and θi − θi+1 = 2π/m

I Gives example of minimal surfaces which can not be
approximated by Allen–Cahn solutions

I Shows that the set of Allen–Cahn min-max varifolds is a
strict subset of Almgren–Pitts min-max varifolds
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Proof Sketch

d2

dt2
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!

= εc2v(ε)
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(
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2p
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(
i + 1

2p

)]2
where v(ε) < 0 - relies on explicit computation of u̇i ,x
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Further Projects

I Reproving Pacard-Ritore without Lyapunov-schmidt
reduction

I Constructing solutions near minimal surfaces with
singularities, solutions converging with multiplicity 2?

I Applying framework to line bundle valued Allen–Cahn
for existence of minimizers

I Development of BEε-surface flow

∂tx = [u+ν (x)]2 − [u−ν (x)]2
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