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Allen—Cahn Background

Let (M, g) closed manifold. The Allen—Cahn equation is a
model for phase transitions given by

EAgu = u(u?® —1) (1)

Solutions are critical points of

U2 u
R @

W(u) = C=227

» Small energy (or critical point) — balancing between
u ~ %1 and small dirichlet energy
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» For u: R — R solutions are either periodic (infinite
energy)
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t . “w R .
or u = tanh (m) =: g(t), the “heteroclinic” solution
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» {u} solutions with u1(0) — Y minimal (nicely) as
e — 0,

(Gaspar, Hiesmayr, Le)
Indac,e(ue) > Ind(Y)

(Chodosh—Mantoulidis)
Indac,(ue) + Nullac ¢ (ue) < Ind(Y) + Null(Y)
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Theorem (Chodosh-Mantoulidis, 2018) e e

on Hypersurfaces

Let (M3, g) a closed manifold with bumpy metric. Then
there is C > 0 and smooth embedded minimal surfaces ¥,
for all p > 0 so that each component of ¥, is two-sided and

C1p'/3 < Area (x,) < Cpt/3
Ind(¥p) = p
genus(Xp) > g +1—Cp'/3

Theorem (Chodosh-Mantoulidis, 2021)
Let (52, g) the round sphere. Then for every p € Z*

wp(S% g0) = 2| /P

where wy, is the “p-width” of the length functional.
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Theorem (Caselli, Florit-Simon, Serra (2023))

Let (M", g) closed. There exists C > 0 such that for every
p>1ands € (0,1), there exists an s-minimal surface
Y P = QEP with morse index at most p and

C™1p¥/" < (1 — s)Pery(EP) < Cp®/™

In particular, M has infinitely many s-minimal surfaces
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» E.(u) defined for all u € H*, not just those with u=1(0)
“well behaved” hypersurface

» Only interested in Allen—Cahn in connection to minimal
surfaces

» Why not look at u € H! vanishing on hypersurfaces?
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» (M", g) closed, Y"1 C M" separating, closed
Ei, on M* vanishing on Y
» Define the “Balanced Energy”

BE(Y) == E(u},M") + E.(u7,M™)

» Exists unique solutions, u

/ u;

Ug
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1st Variation

Theorem (MK, Silva, 2023)

The first variation is given by

iBEG(Yt)

dt
M)

€

o5 | A~ ()

t

> Critical points = uf, = u_,

» Finding critical points <> computing
dirichlet-to-Neumann map for
Allen—Cahn equation on manifold with

Figure boundary
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Theorem (MK)

For Y a C** hypersurface, BE Basics

1
v (uh) = —= + ooHo + o1e[Ricy (v, v) + |Ay 2] + O(272)

V2

Figure

> Above implies

d
—BE.(Y;
— 4 (Ye)

= er/ fHo + O(€?)
t=0 Y
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Theorem (MK, Silva)

Let Y a critical point for BE.. The second variation is given
by
d? o .
EBEe(Yt) 0 = 6/;/ ny[U€’V — U67V]

If Y satisfies mild geometric assumptions, then

t=

d2

a2 5],

= D2Aly(f) + E(f)

E(F)] < Ke2||f][3
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Y
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y = [ falit, — i) = DAl () + E(F)
Y

t=

» (F satisfies linearized Allen—-Cahn system on M*

[2A; — W' (u)]liE =0  peM*

iE| = —fu,
Y

» Error bound E(f) < 0(61/2)”)(”%’1 relies on:
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d2

@BEE(Yt)

y = [ falit, — i) = DAl () + E(F)
Y

t=

» (F satisfies linearized Allen—-Cahn system on M*

[2A; — W' (u)]liE =0  peM*

iE| = —fu,
Y

» Error bound E(f) < O(el/Z)HfH%{1 relies on:
> invertibility of €2A, — W"(u) : HY(M*) — Hy }(M™)
> (3g(t)? — 1)~1(0) = +0.93123
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Application: Index computation

SO
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> Let Q(ue)(v) = j—;EE(u +tv)| . Recall

Indac(v) :

Nullac(u) :

t=0
max{dim V | V C HY(M), Q(uv) (

dimker(e?A, — W' (u))

V,V)

< 0}
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Theorem
Let Y <> u. a critical point for BE.. Then

Indac(ue) = Indge (Y)
Nullac(ue) = Nullge.(Y)
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Theorem
Let Y <> u. a critical point for BE.. Then

Applications

Indac(ue) = Indge (Y)
Nullac(ue) = Nullge.(Y)

Theorem says we can compute index/nullity on smaller space
of
W = {w(f) € H{(M) | f € HY(Y), e Agw = W (u)w,

A
W), u, }



Proof Sketch of Indac(u.) < Indge(Y)
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> Let

Applications

Y: = (u+ tv)"}(0)

Yy
) uﬁ—‘

and M;t accordingly

M




Proof Sketch (continued)

M
Y

Yy

A

> Rewrite u+ tv = uy + ¢, Uy is @ minimizer on Mti
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Proof Sketch (continued) g

Allen—Cahn Energy
on Hypersurfaces

M
Y

. Applications

Yy

A

> Rewrite u+ tv = uy + ¢, Uy is @ minimizer on Mti

42 d? -
Bt tv) = S BB + Qu)(¢, )
for 1) = %1&

t=0
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> 1/1’ = 0 and uc is a minimizer gives:
\4

Qd,9) =0

d? d?
p — Ee(u + tv) o dtzBE (Y:) . 0
— |ndAc(U5) — |ndBE€(Y) <0

—

v



Applications of 2nd Variation: Solutions on S*

Let ueop : S — R be the unique Allen—Cahn solution on S!
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Applications of 2nd Variation: Solutions on S* e

Variations of an
Allen—Cahn Energy

. . on Hypersurfaces
Let ueop : S — R be the unique Allen—Cahn solution on S! °
vanishing on D,,-symmetric points:

Applications

Theorem
Fix p > 0. There exists €, such that for all € < €p, ucpp has
Allen—Cahn Morse index 2p — 1 and nullity 1. The nullity is

realized by rotations and every other variation produces a
strictly negative variations.
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Motivation for solutions on S!

» Inspriation for 4+ used as barriers to prove the following
Theorem (Mantoulidis, 2022)
Let u,, Allen—Cahn solutions on M x S such that

lim uZ1(0) = {01,...,0m} x M

1— 00

then m is even and 0; — 011 =27 /m

» Gives example of minimal surfaces which can not be
approximated by Allen—Cahn solutions

» Shows that the set of Allen—Cahn min-max varifolds is a
strict subset of Almgren—Pitts min-max varifolds
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Proof Sketch

2

dt?

BE.(Y + tf)
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Proof Sketch

2

@BEE(YHf)

(rearrangement)
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Proof Sketch

2

EBEE(YHf)

(rearrangement)

“i) (z)
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Proof Sketch

d? e i
——BE(Y + tf Fl—)u—)|a" —
di2 (Y +tf) ’; <2p> u <2p> [uhx
(rearrangement) = ec E f <2Ip> i x <2lp>

i+1Y\ . i+1
f i,x
i (2/3 >u’ (2/3)

2p—1

e (3)

i=0

where v(€) < 0 - relies on explicit computation of ;

i+1
2p

)

] (z)
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reduction
» Constructing solutions near minimal surfaces with

singularities, solutions converging with multiplicity 27 Future Directions
» Applying framework to line bundle valued Allen—Cahn

for existence of minimizers




Further Projects

» Reproving Pacard-Ritore without Lyapunov-schmidt
reduction

» Constructing solutions near minimal surfaces with
singularities, solutions converging with multiplicity 27

» Applying framework to line bundle valued Allen—Cahn
for existence of minimizers

» Development of BE.-surface flow

Oex = [uf (x)]1? = [uy ()P
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