University of Tennessee Knoxville Geometry Seminar: On the Existence of Infinitely Many Surfaces with Prescribed Mean Curvature

Jared Marx-Kuo (joint with Pedro Gaspar)

Rice University

March 26, 2025

Minimal Surfaces

 (M^{n+1}, g) manifold, we are interested in *minimal surfaces*, $Y^n \subseteq M^{n+1}$, which appear as

Minimal Surfaces

 (M^{n+1},g) manifold, we are interested in *minimal surfaces*, $Y^n \subseteq M^{n+1}$, which appear as

- Critical Points for Area
- Stationary points of Mean Curvature Flow
- Horizons of Black Holes
- Soap bubbles

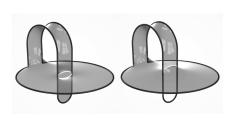


Figure: Plateau's problem

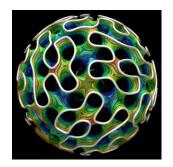


Figure: Gyroid

Yau's conjecture

Q: Given a manifold, how many minimal surfaces are there?

Yau's conjecture

Q: Given a manifold, how many minimal surfaces are there?

Yau's conjecture

Conjecture

For any closed manifold (M^3, g) , there exist infinitely many immersed minimal surfaces.

Yau's conjecture

Q: Given a manifold, how many minimal surfaces are there?

Yau's conjecture

Conjecture

For any closed manifold (M^3, g) , there exist infinitely many immersed minimal surfaces.

Motivation: geodesics

Theorem (Birkhoof, Bangert)

On any closed surface, (M^2, g) , there exist infinitely many geodesics.

Resolution of Yau's conjecture

Theorem (Marques–Neves, Irie–Marques–Neves, Chodosh–Mantoulidis, Song)

For any closed manifold (M^{n+1}, g) , $3 \le n + 1 \le 7$, there exist infinitely many embedded minimal surfaces.

Min-max construction of minimal surfaces (Almgren-Pitts)

Min-max construction of minimal surfaces (Almgren-Pitts)

- Yau's conjecture
 - ▶ for Ric_g > 0 (Marques-Neves)
 - for g generic, bumpy (Irie–Marques–Neves)
 - with refined index count, g bumpy, n + 1 = 3 (Chodosh–Mantoulidis)
 - ▶ for g non-bumpy (Song)

Min-max construction of minimal surfaces (Almgren-Pitts)

- Yau's conjecture
 - ▶ for Ric_g > 0 (Marques-Neves)
 - ▶ for g generic, bumpy (Irie–Marques–Neves)
 - with refined index count, g bumpy, n + 1 = 3 (Chodosh–Mantoulidis)
 - ► for *g* non-bumpy (Song)

Multiplicity 1 of min-max hypersurfaces (Zhou)

Min-max construction of minimal surfaces (Almgren-Pitts)

- Yau's conjecture
 - for $Ric_g > 0$ (Marques–Neves)
 - for g generic, bumpy (Irie–Marques–Neves)
 - with refined index count, g bumpy, n + 1 = 3 (Chodosh–Mantoulidis)
 - ► for *g* non-bumpy (Song)

Multiplicity 1 of min-max hypersurfaces (Zhou)

Key tools: Min-Max constructions, p-widths, $\{\omega_p\}$ (Gromov, Guth, Liokumovich–Marques–Neves)

One-parameter Min-max

Idea to find minimal surface:

"Sweepout" whole manifold, and take the longest hypersurface.

One-parameter Min-max

Idea to find minimal surface:

"Sweepout" whole manifold, and take the longest hypersurface.

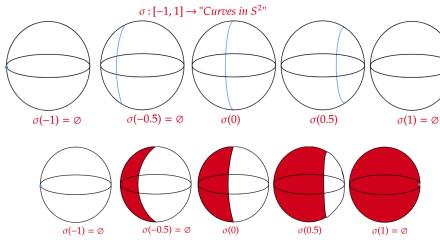


Figure: Map at the level of sets, whose boundaries are the curves.

Min-Max continued

Given $\sigma: [0,1] \to \{\text{Sets}\}$, there is always a t_0 such that $\text{Area}(\partial \sigma(t_0))$ is maximized.

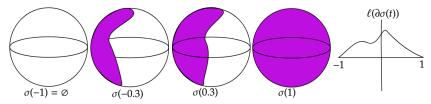


Figure: A non-optimal sweepout

Min-Max continued

Given $\sigma: [0,1] \to \{\text{Sets}\}$, there is always a t_0 such that $\text{Area}(\partial \sigma(t_0))$ is maximized.

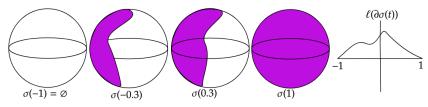


Figure: A non-optimal sweepout

 $\Sigma_{t_0} = \partial \sigma(t_0)$, may not be minimal - how do we find a *minimal* surface? Minimize over all paths

Min-Max continued

Given $\sigma: [0,1] \to \{\text{Sets}\}$, there is always a t_0 such that $\text{Area}(\partial \sigma(t_0))$ is maximized.

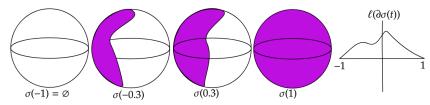


Figure: A non-optimal sweepout

 $\Sigma_{t_0} = \partial \sigma(t_0)$, may not be minimal - how do we find a *minimal* surface? Minimize over all paths

$$\begin{split} \mathcal{P} &:= \{\sigma: [0,1] \to \{ \mathsf{Sets in} \ M^n \} \ \Big| \ \sigma(0) = \emptyset, \sigma(1) = M \} \\ \omega_1 &:= \inf_{\sigma \in \mathcal{P}} \sup_{t \in [0,1]} \mathcal{H}^{n-1}(\partial \sigma(t)) \end{split}$$

 $\omega_1 = \text{Area}(\Sigma)$ for some Σ a minimal surface

p > 1

Higher parameter analogue

$$\mathcal{P}_p := \{ \Phi : X \to \{ \text{Hypersurfaces in } M^n \} \ \middle| \ \Phi \text{ "p-sweep out of" } M \}$$

$$\omega_p := \inf_{\Phi \in \mathcal{P}_p} \sup_{x \in X} \mathcal{H}^{n-1}(\Phi(x))$$

p > 1

• Higher parameter analogue

$$\mathcal{P}_p := \{ \Phi : X \to \{ \text{Hypersurfaces in } M^n \} \ \Big| \ \Phi \text{ "p-sweep out of" } M \}$$

$$\omega_p := \inf_{\Phi \in \mathcal{P}_p} \sup_{x \in X} \mathcal{H}^{n-1}(\Phi(x))$$

Morally, for each p, find a new minimal surface

$$\omega_p = \mathcal{H}^{n-1}(\Sigma_p)$$

"P-widths", $\{\omega_p\}$, Formal Background

• Gromov (1980s): Introduced p-widths, $\{\omega_p\}$, as non-linear analogue of spectrum of laplacian,

$$\Delta u = \lambda u$$

• Recall: Find eigenvalues via rayleigh quotients

$$\lambda_1 = \inf_{f \neq 0} \frac{\int |\nabla f|^2}{\int f^2}, \qquad \lambda_j = \inf_{f \perp \{0, f_1, \dots, f_{j-1}\}} \frac{\int |\nabla f|^2}{\int f^2}$$

"P-widths", $\{\omega_p\}$, Formal Background

• Gromov (1980s): Introduced p-widths, $\{\omega_p\}$, as non-linear analogue of spectrum of laplacian,

$$\Delta u = \lambda u$$

• Recall: Find eigenvalues via rayleigh quotients

$$\lambda_1 = \inf_{f \neq 0} \frac{\int |\nabla f|^2}{\int f^2}, \qquad \lambda_j = \inf_{f \perp \{0, f_1, \dots, f_{j-1}\}} \frac{\int |\nabla f|^2}{\int f^2}$$

 \bullet P_k , a k-plane of functions

$$P_k = \operatorname{span}\{f_1, \dots, f_k\}, \qquad f_i : M \to \mathbb{R}$$

$$\implies \lambda_k(M) = \inf_{P_{k+1}} \sup_{f \in P_{k+1} \setminus \{0\}} \frac{\int |\nabla f|^2}{\int f^2}$$

"P-widths", $\{\omega_p\}$, Formal Background

• Gromov (1980s): Introduced p-widths, $\{\omega_p\}$, as non-linear analogue of spectrum of laplacian,

$$\Delta u = \lambda u$$

• Recall: Find eigenvalues via rayleigh quotients

$$\lambda_1 = \inf_{f \neq 0} \frac{\int |\nabla f|^2}{\int f^2}, \qquad \lambda_j = \inf_{f \perp \{0, f_1, \dots, f_{j-1}\}} \frac{\int |\nabla f|^2}{\int f^2}$$

 \bullet P_k , a k-plane of functions

$$P_k = \operatorname{span}\{f_1, \dots, f_k\}, \qquad f_i : M \to \mathbb{R}$$

$$\implies \lambda_k(M) = \inf_{P_{k+1}} \sup_{f \in P_{k+1} \setminus \{0\}} \frac{\int |\nabla f|^2}{\int f^2}$$

Compare

$$\omega_p := \inf_{\Phi \in \mathcal{P}_p} \sup_{x \in \mathsf{Dom}(\Phi)} \mathcal{H}^{n-1}(\Phi(x))$$

Further Similarities

Recall Weyl's law

Theorem (Weyl)

Let $\{\lambda_k\}$ the eigenvalues of the laplacian, then

$$\lim_{k \to \infty} \lambda_k k^{-2/n} = \frac{(2\pi)^{-n}}{\alpha_n Vol(M)}$$

Further Similarities

• Recall Weyl's law

Theorem (Weyl)

Let $\{\lambda_k\}$ the eigenvalues of the laplacian, then

$$\lim_{k \to \infty} \lambda_k k^{-2/n} = \frac{(2\pi)^{-n}}{\alpha_n Vol(M)}$$

• Analogous law for ω_p !

Theorem (Gromov, Guth, Liokumovich–Marques–Neves)

There exists a constant c(n) > 0 such that for every (M^{n+1}, g) with boundary (possibly empty), we have

$$\lim_{p\to\infty}\omega_p(M)p^{\frac{-1}{n+1}}=a(n+1)\text{vol}(M)^{\frac{n}{n+1}}$$

Utility of p-widths

Utility of p-widths

For each p

$$\omega_p = \sum_{i=1}^{N_p} A(\Sigma_i)$$

with Σ_i connected, distinct (multiplicity one).

Counting arguments from non-linear growth

$$\omega_p \sim p^{1/(n+1)}$$

contradicts finitely many minimal surfaces (even with multiplicity).

Utility of p-widths

For each p

$$\omega_p = \sum_{i=1}^{N_p} A(\Sigma_i)$$

with Σ_i connected, distinct (multiplicity one).

Counting arguments from non-linear growth

$$\omega_p \sim p^{1/(n+1)}$$

contradicts finitely many minimal surfaces (even with multiplicity).

We will apply the p-widths, $\{\omega_p\}$, to find related surfaces called surfaces with **prescribed mean curvature** (PMC).

Constant and Prescribed Mean Curvature Surfaces

Surfaces, Y, with

$$H=c\in\mathbb{R},\quad \text{or}\quad H=h\Big|_{Y},\qquad h\in C^{\infty}(M)$$

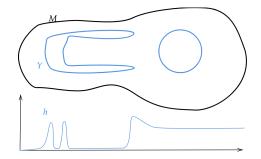


Figure: L: Bubbles as Constant Mean Curvature Surfaces, R: A prescribe mean curvature surface with prescribing function visualized

Definitions

 $h:M\to\mathbb{R}$ smooth. $Y^n\subseteq M^{n+1}$ is a **prescribed mean curvature** (PMC) surface if

$$H\Big|_{Y}=h\Big|_{Y}$$

if h is constant, Y is a **constant mean curvature (CMC)** surface.

Definitions

 $h:M\to\mathbb{R}$ smooth. $Y^n\subseteq M^{n+1}$ is a **prescribed mean curvature** (PMC) surface if

$$H\Big|_{Y}=h\Big|_{Y}$$

if h is constant, Y is a **constant mean curvature (CMC)** surface.

Motivation:

- CMCs bubbles
- PMCs ovaloids (Minkowski problem), regularization/generalization of CMC surfaces (see Zhou), natural elliptic PDE problem

CMCs: Twin Bubble Conjecture

Conjecture (Arnold, Zhou)

On any closed manifold (M^{n+1}, g) , there exist 2 hypersurfaces of constant mean curvature, c, for any c > 0.

- By Arnold, n + 1 = 2, by Zhou for $n + 1 \ge 3$
- Conjecture still totally open!

CMCs: Twin Bubble Conjecture

Conjecture (Arnold, Zhou)

On any closed manifold (M^{n+1}, g) , there exist 2 hypersurfaces of constant mean curvature, c, for any c > 0.

- By Arnold, n+1=2, by Zhou for $n+1\geq 3$
- Conjecture still totally open!

Generalized Yau's conjecture

Conjecture

On any closed manifold (M^{n+1},g) and any $h:M\to\mathbb{R}$ smooth, there exist infinitely many hypersurfaces with prescribed curvature, h.

Our work verifies the above conjecture for certain manifolds and prescribing functions.

Past progress

PMCs

- Existence of 1 PMC (Zhou-Zhu)
- Compactness of PMCs (Zhou–Zhu)
- Existence of PMCs in non-compact settings (Mazurowski, Stryker)

Past progress

PMCs

- Existence of 1 PMC (Zhou–Zhu)
- Compactness of PMCs (Zhou–Zhu)
- Existence of PMCs in non-compact settings (Mazurowski, Stryker)

CMCs

- Existence of 1 c-CMC (Zhou–Zhu)
- Existence of multiple c-CMCs for c large (Pacard–Xu)
- Compactness + Bubbling for c-CMCs of bounded index (Bourni-Sharp-Tinaglia/Sun/Zhou-Zhu)
- Existence of many c-CMCs for c small (Dey)

Dey's construction of many c-CMCS

Theorem (Dey 2019)

Let (M^{n+1},g) $(3 \le n+1 \le 7)$ closed and c>0. For each $p \in \mathbb{N}$, such that $\omega_{p+1}-\omega_p>c\cdot Vol(M)$, there exists a c-CMC, Y with

$$\omega_k - c Vol(M) < Area(Y) < \omega_k + c Vol(M) + C$$

for C independent of k.

Theorem (Dey 2019)

There exists constants $c_0(M,g)$, $\gamma_0(M,g) > 0$, such that for all $c < c_0$, there are at least $\gamma_0 c^{-1/(n+1)}$ closed c-CMC hypersurfaces.

Main Results: Finding Infinitely Many PMCs

Context: Extensions of Dey's work

- Given work of Zhou–Zhu, easy to extend Dey's construction to PMCs with $c{\sf Vol}(M) \to ||h||_{L^1}$
- Number of c-CMCs limited by $\omega_{p+1} \omega_p > c \text{Vol}(M)$, and Weyl law

$$\lim_{p\to\infty}\omega_{p+1}-\omega_p=0$$

Context: Extensions of Dey's work

- Given work of Zhou–Zhu, easy to extend Dey's construction to PMCs with $c{\sf Vol}(M) \to ||h||_{L^1}$
- Number of c-CMCs limited by $\omega_{p+1} \omega_p > c \text{Vol}(M)$, and Weyl law

$$\lim_{p\to\infty}\omega_{p+1}-\omega_p=0$$

Q: What if we work on a manifold such that $\omega_{p+1} - \omega_p \geq C > 0$ for all C?

A: Manifolds with Cylindrical Ends

Cylindrical Ends in Song's Resolution of Yau's conjecture

Song proved the existence of infinitely many minimal surfaces on non-generic metrics by

Cylindrical Ends in Song's Resolution of Yau's conjecture

Song proved the existence of infinitely many minimal surfaces on non-generic metrics by

considering manifolds with boundary and nice foliations

Cylindrical Ends in Song's Resolution of Yau's conjecture

Song proved the existence of infinitely many minimal surfaces on non-generic metrics by

- considering manifolds with boundary and nice foliations
- constructing new minimal surfaces by attaching cylindrical ends, applying min-max using p-widths

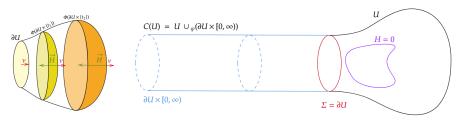
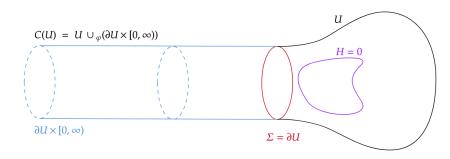


Figure: L: Nice foliations, R: Result of min-max in manifold with cylindrical end attached.

Cylindrical Weyl Law



For a manifold with cylindrical ends,

$$\omega_p \sim C \cdot p \implies \omega_{p+1} - \omega_p \geq C$$

so able to construct many more PMCs via Dey's construction!

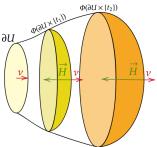
Main Results

 (M^{n+1},g) manifold, $3 \le n+1 \le 7$, $\partial M = \Sigma$ minimal, and g a bumpy metric. Σ has a *contracting neighborhood* if there exists a $U \supseteq \Sigma$,

$$\Phi: \Sigma \times [0, \hat{t}] \xrightarrow{\cong} U$$

$$\Sigma_t := \Phi(\Sigma \times \{t\})$$

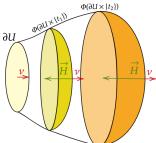
$$H_{\Sigma_t} < 0$$



Main Results

 (M^{n+1},g) manifold, $3 \le n+1 \le 7$, $\partial M = \Sigma$ minimal, and g a bumpy metric. Σ has a *contracting neighborhood* if there exists a $U \supseteq \Sigma$,

$$\Phi: \Sigma \times [0, \hat{t}] \xrightarrow{\cong} U$$
 $\Sigma_t := \Phi(\Sigma \times \{t\})$
 $H_{\Sigma_t} < 0$



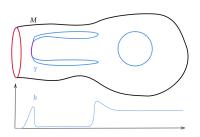
Remark: If Σ is non-degenerate, then such a contracting neighborhood always exists by the inverse function theorem.

Main Results

Theorem (Gaspar-MK)

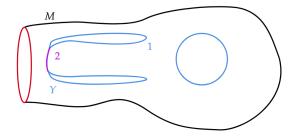
There exists a $C(M,\Sigma) > 0$, such that for $h \in C_c^{\infty}(M \setminus \Sigma)$, $||h||_{C^{3,\alpha}(M)} \leq C$, and h morse away from a neighborhood of Σ , there exist infinitely many multiplicity one, almost embedded, hypersurfaces, $\{Y_p\}$, with mean curvature H = h and

$$(p+1)\cdot A(\Sigma)-2||h||_{L^{1}(M)}\leq A(Y_{p})\leq (p+1)\cdot A(\Sigma)+W_{0}+Cp^{1/(n+1)}+2||h||_{L^{1}(M)}$$



"Sticking"

Remark: Despite being multiplicity one, the PMCs may "stick" to themselves on large open sets, and hence "almost embedded" and have density 2 on this set.



Technical Assumptions, Stronger theorem

Suppose $h: M \to \mathbb{R}$ smooth and satisfies

- **1** $||h||_{L^1(M)} \le A(\Sigma)/2$
- $\bullet \ \, h \Big|_{M \setminus \Sigma} \ \, \text{is a morse function, and} \, \, \{h=0\} = \Sigma \cup \Sigma' \, \, \text{where} \, \, \Sigma' \cap \Sigma = \emptyset \\ \, \text{and} \, \, \Sigma' \, \, \text{is a closed smoothly embedded hypersurface with mean} \\ \, \text{curvature vanishing to at most finite order.}$

Theorem (Gaspar-MK)

For $h: M \to \mathbb{R}$ satisfying the above, there are infinitely many PMCs, and the sticking set is (n-1) dimensional.

Theorem (Gaspar-MK)

For $h: M \to \mathbb{R}$ satisfying the above, there are infinitely many PMCs, and the sticking set is (n-1) dimensional.

Remark: Density 1 except on a set of dimension (n-1) is generic.

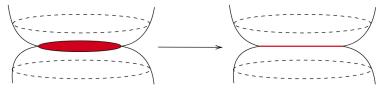


Figure: Density 2 on a codimension 1 (dimension (n-1)) set.

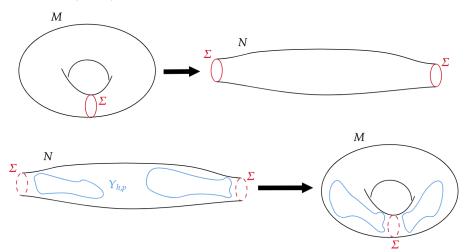
Corollaries: Closed setting

Corollaries: Closed setting

If (M^{n+1}, g) closed and Σ is embedded strictly stable minimal surface, unravel $M \setminus \Sigma$ and apply previous theorems to metric completion, $N = \text{Comp}(M \setminus \Sigma)$.

Corollaries: Closed setting

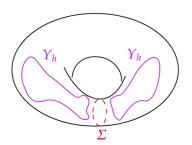
If (M^{n+1},g) closed and Σ is embedded strictly stable minimal surface, unravel $M\backslash\Sigma$ and apply previous theorems to metric completion, $N=\operatorname{Comp}(M\backslash\Sigma)$.



$H_n \neq 0$

Corollary (Gaspar-MK)

Suppose (M^{n+1},g) closed, bumpy metric, and $H_n(M,\mathbb{Z}_2) \neq 0$. Then there exists a stable closed, embedded minimal surface Σ and a constant $C = C(M,\Sigma) > 0$ such that for any prescribing function $h \in C_c^\infty(M \setminus \Sigma)$ and $||h||_{C^{3,\alpha}(M)} \leq C$, there exist infinitely many PMCs.



Non-Frankel

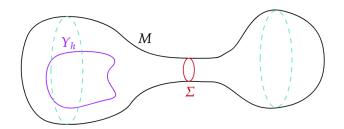
Recall that a manifold (M^{n+1}, g) does *not* satisfy the Frankel property if there exist 2 distinct minimal surfaces which do not intersect.

Non-Frankel

Recall that a manifold (M^{n+1}, g) does *not* satisfy the Frankel property if there exist 2 distinct minimal surfaces which do not intersect.

Corollary (Gaspar-MK)

Suppose (M^{n+1},g) closed, bumpy, and not Frankel. Then there exists a stable closed, embedded minimal surface Σ and a constant $C=C(M,\Sigma)>0$ such that for any prescribing function $h\in C_c^\infty(M\backslash\Sigma)$ and $||h||_{C^{3,\alpha}(M)}\leq C$, there exist infinitely many PMCs.



Main Ideas of Proof

Suppose $h \in C_c^{\infty}(M \backslash \Sigma)$. For each p (associated to ω_p)

- **1** Attach "approximate" cylindrical ends to $M \to (U_{\epsilon}, g_{\epsilon})$.
- **2** Choose approximations, h_{ϵ} , on U_{ϵ} , to h.

Main Ideas of Proof

Suppose $h \in C_c^{\infty}(M \backslash \Sigma)$. For each p (associated to ω_p)

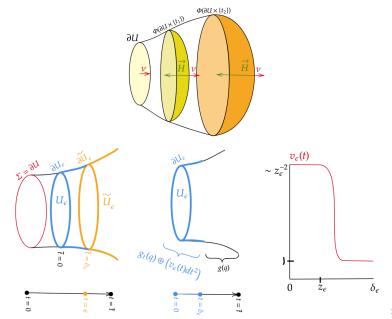
- **1** Attach "approximate" cylindrical ends to $M o (U_\epsilon, g_\epsilon)$.
- **2** Choose approximations, h_{ϵ} , on U_{ϵ} , to h.
- **3** Perform Dey's mountain pass construction on $(U_{\epsilon}, g_{\epsilon})$ for an approximate h_{ϵ} close to h, to get PMC, Y_{ϵ} .

Main Ideas of Proof

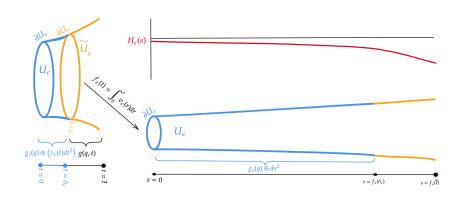
Suppose $h \in C_c^{\infty}(M \backslash \Sigma)$. For each p (associated to ω_p)

- **1** Attach "approximate" cylindrical ends to $M o (U_{\epsilon}, g_{\epsilon})$.
- **2** Choose approximations, h_{ϵ} , on U_{ϵ} , to h.
- **9** Perform Dey's mountain pass construction on $(U_{\epsilon}, g_{\epsilon})$ for an approximate h_{ϵ} close to h, to get PMC, Y_{ϵ} .
- **③** Send $\epsilon \to 0$, use (novel) diameter estimates to show that $Y_{\epsilon} \xrightarrow{\epsilon \to 0} V$, a varifold contained in M.
- **3** Show that $V = Y_h$, an almost embedded PMC with no component equal to Σ . Use morseness of h (away from Σ) and contracting neighborhood of Σ to prevent multiplicity of components.

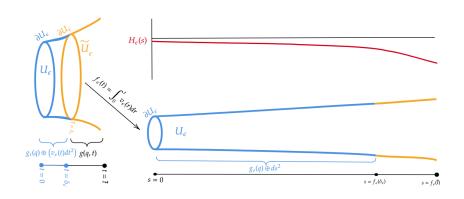
Approximate Cylindrical Ends



Approximate Cylindrical Ends



Approximate Cylindrical Ends



- **1** Slices, $\partial U_{\epsilon} \times \{s\}$ have non-zero mean curvature, H_{s}
- 2 $H_s \rightarrow 0$ as $\epsilon \rightarrow 0$

Approximating h by h_{ϵ}

Approximate h by $h_{\epsilon}: U_{\epsilon} \to \mathbb{R}$, closely in C^1 and L^1 , so that $|h_{\epsilon}|_{\partial U_{\epsilon} \times \{s\}} \leq H_s$

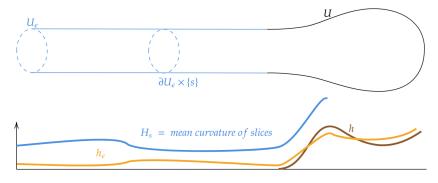


Figure: h is extended to 0 on the cylindrical end due to its compact support.

Dey's construction

- (Higher parameter) **mountain pass construction** for any p > 0.
- Utilizes $\omega_{p+1} > \omega_p$, to show the existence of a mountain pass

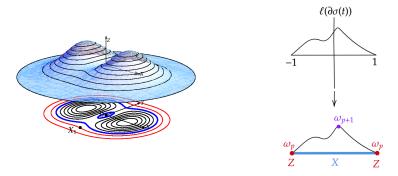
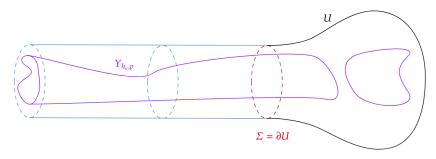


Figure: L: Classical mountain pass, R: Mountain pass via "relative homotopy class"

Dey's Construction

Yields, a PMC, $Y_{h_{\epsilon},p}$ in $(U_{\epsilon}, g_{\epsilon})$:

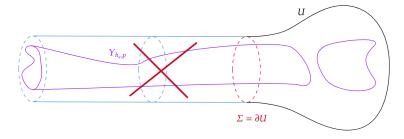


for p fixed, ϵ small, we have

$$(p+1)\cdot C - K \leq \text{Area}(Y_{h,p,\epsilon}) \leq (p+1)\cdot C + K$$

$$\epsilon o 0$$

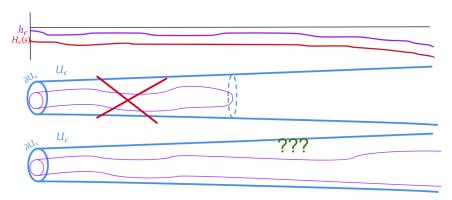
As $\epsilon o 0$, we want $Y_{h_\epsilon,p}$ to converge to a PMC in U



Want to prevent our PMCs from touching ∂U_{ϵ} .

Maximum Principle and Tethering

By the maximum principle



Could have PMC with boundary and large diameter? (Need diameter estimates for PMCs)

Diameter Estimates

Theorem (Chambers-MK)

Suppose $P^m \subseteq M^{n+1}$ and the ambient sectional curvature is bounded, $K_M \le k_0$. If P is closed, then

$$diam_{int}(P) \leq C(m, k_0) \left[\int_P |H_P|^{m-1} + \max(\mathcal{H}^m(P), \mathcal{H}^m(P)^{1/m}) \right]$$

Proposition (Chambers-MK)

Suppose $P^m \subseteq M^{n+1}$ and the ambient sectional curvature is bounded, $K_M \le k_0$. Let $x \in \mathring{P}$, then

$$dist(x, \partial P) \leq C(m, k_0) \left[\int_P |H_P|^{m-1} + \max(\mathcal{H}^m(P), \mathcal{H}^m(P)^{1/m}) \right]$$

Remark: Interpolation of diameter bounds from monotonicity formula and work of Topping.

Diameter and Tethering

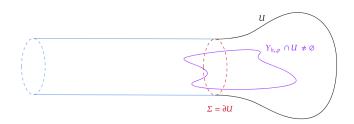
Because our PMCs satisfy $H=h_{\epsilon}$ which has uniform C^1 bounds, and

$$A(Y_{h_{\epsilon},p}) \leq K \cdot (p+1) + C$$

we have

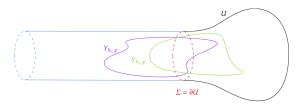
Proposition

 $Y_{h_{\epsilon},p}$, has finite diameter. Moreover, $Y_{h_{\epsilon},p}$ is not a free boundary PMC, and "tethered to the core" of U_{ϵ} .



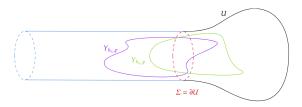
$$Y_{\epsilon} \rightarrow V = Y$$

By maximum principle, and vanishing mean curvature of leaves, $Y_\epsilon \to V$, a varifold supported in M



$$Y_{\epsilon} \rightarrow V = Y$$

By maximum principle, and vanishing mean curvature of leaves, $Y_\epsilon \to V$, a varifold supported in M

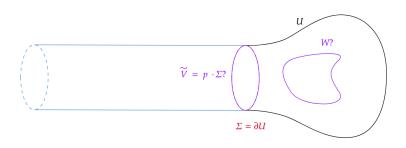


A priori, $Y_{h_{\epsilon},p}$ can **accumulate** at the boundary!

Solomon-White Maximum Principle

Solomon-White maximum principle gives

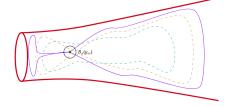
$$\lim_{\epsilon \to 0} Y_{h_{\epsilon},p} = V = \tilde{V} + W, \qquad \mathsf{supp}(W) \cap \Sigma = \emptyset, \qquad \mathsf{supp}(\tilde{V}) \subseteq \Sigma$$



Accumulation at the boundary could lead to multiplicity!

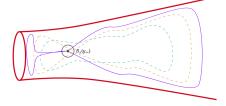
"No Pinching"

ullet But "tethering" + "no pinching" argument implies $ilde{V}=0$



"No Pinching"

ullet But "tethering" + "no pinching" argument implies $ilde{V}=0$



ullet Away from Σ , good regularity of convergence due to good convergence of metric + compactness of PMCs

Our construction for $h \in \mathit{C}^\infty_c(M \backslash \Sigma)$

Our construction for $h \in \mathit{C}^{\infty}_{c}(\mathit{M} \backslash \Sigma)$

• For each p, we construct $Y_{h,p}$, a surface with $H\Big|_{Y_{h,p}} = h\Big|_{Y_{h,p}}$, which is multiplicity one, almost embedded.

Our construction for $h \in \mathit{C}^{\infty}_{c}(\mathit{M} \backslash \Sigma)$

- For each p, we construct $Y_{h,p}$, a surface with $H\Big|_{Y_{h,p}} = h\Big|_{Y_{h,p}}$, which is multiplicity one, almost embedded.
- We have

$$\operatorname{Area}(Y_{h,p}) \geq (p+1) \cdot C$$

for some C > 0.

Our construction for $h \in \mathit{C}^{\infty}_{c}(\mathit{M} \backslash \Sigma)$

- For each p, we construct $Y_{h,p}$, a surface with $H\Big|_{Y_{h,p}} = h\Big|_{Y_{h,p}}$, which is multiplicity one, almost embedded.
- We have

$$Area(Y_{h,p}) \geq (p+1) \cdot C$$

for some C > 0.

 $\frac{ \text{Unbounded growth of area} + \text{multiplicity one implies there exist infinitely} }{ \text{many PMCs!} }$

Theorem 2

Recall $h \in C^{\infty}(M)$

$$1 h \Big|_{\Sigma} = \partial_{\nu} h \Big|_{\Sigma} = \partial_{\nu}^{2} h \Big|_{\Sigma} = \partial_{\nu}^{3} h \Big|_{\Sigma} = 0$$

2 $h\Big|_{M\setminus\Sigma}$ is a morse function, and $\{h=0\}=\Sigma\cup\Sigma'$ where $\Sigma'\cap\Sigma=\emptyset$ and Σ' is a closed smoothly embedded hypersurface with mean curvature vanishing to at most finite order.

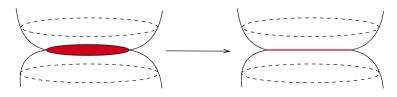
Theorem 2

Recall $h \in C^{\infty}(M)$

$$1 h \Big|_{\Sigma} = \partial_{\nu} h \Big|_{\Sigma} = \partial_{\nu}^{2} h \Big|_{\Sigma} = \partial_{\nu}^{3} h \Big|_{\Sigma} = 0$$

2 $h\Big|_{M\setminus\Sigma}$ is a morse function, and $\{h=0\}=\Sigma\cup\Sigma'$ where $\Sigma'\cap\Sigma=\emptyset$ and Σ' is a closed smoothly embedded hypersurface with mean curvature vanishing to at most finite order.

Want to show infinitely many almost embedded PMCs, density is 1 except on a small set (condition 2 ensures this)



Sketch of theorem 2

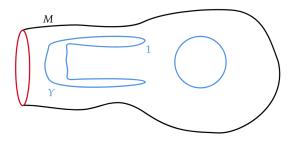
- **1** Approximate h by $h_i \in C_c^{\infty}(M \backslash \Sigma)$
- ② For each i, construct h_i -PMCs for each ω_p , $Y_{h_i,p}$

Sketch of theorem 2

- **①** Approximate h by $h_i \in C_c^{\infty}(M \setminus \Sigma)$
- ② For each i, construct h_i -PMCs for each ω_p , $Y_{h_i,p}$
- **9** By tethering argument, convergence occurs away from Σ , and hence $Y_{h,p} \cap \Sigma = \emptyset$

Sketch of theorem 2

- **1** Approximate h by $h_i \in C_c^{\infty}(M \setminus \Sigma)$
- 2 For each i, construct h_i -PMCs for each ω_p , $Y_{h_i,p}$
- **9** By tethering argument, convergence occurs away from Σ , and hence $Y_{h,p} \cap \Sigma = \emptyset$
- **9** Because h is Morse away from Σ , "touching set" is (n-1)-dimensional



Future Work

- Lower regularity conditions, e.g. $h \in C^{\infty}(M)$, $h\Big|_{\Sigma} = 0$
- No restrictions on *h*?
- Infinitely many PMCs when $H_{\Sigma}=c>0$

Thank You!