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Abstract. Behrstock, Hagen, and Sisto classified 3–manifold groups admitting a hierar-
chically hyperbolic space structure. However, these structures were not always equivariant
with respect to the group. In this paper, we classify 3–manifold groups admitting equi-
variant hierarchically hyperbolic structures. The key component of our proof is that the
admissible groups introduced by Croke and Kleiner always admit equivariant hierarchi-
cally hyperbolic structures. For non-geometric graph manifolds, this is contrary to a
conjecture of Behrstock, Hagen, and Sisto and also contrasts with results about CAT(0)
cubical structures on these groups. Perhaps surprisingly, our arguments involve the con-
struction of suitable quasimorphisms on the Seifert pieces, in order to construct actions
on quasi-lines.
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1. Introduction

Fundamental groups of 3–manifolds are a major source of inspiration in geometric group
theory, providing a great part of the motivation for the notion of Gromov-hyperbolicity
and all its generalisations, the study of actions on nonpositively-curved spaces, and the
increasingly important role of special cube complexes.

One notion of “coarse nonpositive curvature”, inspired partly by special cube complexes,
is hierarchical hyperbolicity. Hierarchically hyperbolic spaces and groups were introduced
in [BHS17b] as a means of isolating geometric features common to mapping class groups and
certain CAT(0) cubical groups. After the definition took an easier-to-verify form in [BHS19],
a budding study of hierarchical hyperbolicity has emerged. This has included

‚ finding new examples of hierarchically hyperbolic spaces and groups [BHS19, BR20,
Mil20, BHMS20, BHS17a, Ber21, BR22, Vok22, HMS21, DDLS20, HS20, RS20,
Rus21, Hug22, NQ22];

‚ development of new tools [DHS17, DHS20, RST23, BHMS20, Spr17, Rus22];
‚ establishment of geometric and algebraic consequence of hierarchical hyperbolicity
[BHS17a, BHS21, ANS19, HP22, Pet21, HHP20, DMS20].

Very roughly, a hierarchically hyperbolic space structure on a space W consists of a set S
indexing a collection of δ–hyperbolic space tCpUquUPS and a collection of projection maps
tπU : W Ñ CpUquUPS satisfying a collection of axioms that allow for the coarse geometry
of W to be recovered from these projections; see [BHS19, Definition 1.1] for the precise
definition. Often, W is a finitely-generated group G equipped with a word metric. In this
case, stronger results can be achieved when G is not only a hierarchically hyperbolic space
(HHS), but has a structure that is compatible with the group action. These hierarchically
hyperbolic groups (HHG) are defined precisely in Definition 2.16, but essentially this means
that G acts cofinitely on S, with elements g P G inducing isometries CpUq Ñ CpgUq so
that all of the expected diagrams involving these isometries and the projections from the
definition of an HHS commute.

The difference between HHSs and HHGs is illustrated by the fact that being an HHS
is a quasi-isometry invariant property, but being an HHG is not [PS23]. While consider-
able geometric information can be gleaned from merely knowing that G is an HHS (e.g.
finiteness of the asymptotic dimension [BHS17a] or control of quasiflats [BHS21]), one gets
much more from the HHG property (e.g. semihyperbolicity [HHP20, DMS20] and the Tits
alternative [DHS17, DHS20], or the consequences listed in Corollary 5).

The first examples of hierarchically hyperbolic spaces beyond mapping class groups and
some cube complexes were the fundamental groups of closed orientable 3–manifolds whose
prime decompositions excludes Nil and Sol pieces [BHS19]. However, the hierarchically hy-
perbolic structures constructed for such groups in [BHS19] are in general non-equivariant.
In the present paper, we use new combinatorial techniques to produce equivariant hierar-
chically hyperbolic structures for 3–manifold groups. While many of the consequences of
hierarchical hyperbolicity were known previously for 3–manifold groups, we find this sat-
isfying as a complete answer to the question of hierarchical hyperbolicity for 3–manifold
groups:
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Theorem 1 (Theorem 3.3). Let M be a closed oriented 3–manifold. Then π1M is a hierar-
chically hyperbolic group if and only if M has no Nil, Sol, or non-octahedral flat manifolds
in its prime decomposition.

In light of the previous characterisation of which 3-manifold groups are HHSs, Theorem
1 says the only additional obstruction to being HHG are non-octahedral flat manifolds in
the prime decomposition.

Theorem 1 disproves a conjecture of Behrstock–Hagen–Sisto that there were examples
of non-geometric graph manifold groups that were hierarchically hyperbolic spaces, but not
hierarchically hyperbolic groups; see [BHS19, Remark 10.2]. This is a surprising result as this
conjecture had a compelling heuristic justification. We explain this heuristic justification
and how we circumvent it, then discuss the outline of our proof of Theorem 1.

1.1. Comparison with cubulations: lines vs quasi-lines. To explain the justification
for the original belief that some graph manifold groups were not HHGs, we start with the
octahedral hypothesis in Theorem 1. This says that the flat pieces are quotients of E3 by
crystallographic groups with point group conjugate into O3pZq (see [Hag14, Definition 2.2]
or [Hod20, Theorem 7.1]). For crystallographic groups in any dimension, being octahedral
is equivalent to cocompact cubulation [Hag14]. Petyt–Spriano showed that this is in turn
equivalent to being an HHG [PS23]. So, while every crystallographic group is an HHS via
a quasi-isometry to Zn, many crystallographic groups, such as the p3, 3, 3q–triangle group,
are not HHGs.

There is a similar obstruction to cocompactly cubulating π1M whenM is a non-geometric
graph manifold [HP15]. Specifically, π1M can be cocompactly cubulated if it is flip in the
sense of [KL98], that is, in every Seifert piece there is a “horizontal” surface whose boundary
circles are fibres in the adjacent Seifert pieces. The idea behind the obstruction to cubulation
is then: if rT Ă ĂM is an elevation of a JSJ torus to the universal cover, and π1M is cubulated,
then the walls in ĂM cut through rT in at least two intersecting families of parallel lines. If
the “flip” condition fails, then in some rT , there will be at least three such families, and the
dual cube complex will contain rT ˆR – E3, preventing cocompactness. So, the obstruction
to cocompact cubulation arises from specific Z2 subgroups getting “over-cubulated”, as is
the case with crystallographic groups.

The suspicion (confirmed in [PS23]) that cocompact cubulation is equivalent to the ex-
istence of an HHG structure for virtually abelian groups, together with the restrictions on
cubulating graph manifolds, motivated the now disproven belief that non-flip graph manifold
groups could fail to be HHGs.

The proof of Theorem 1 shows that constructing an HHG structure needs less than is
needed to cocompactly cubulate. Roughly, in a cocompact cubulation of π1M , the immersed
walls in M cut through each Seifert piece in a collection of surfaces whose boundary circles
map to fibers in adjacent blocks; for each Seifert piece B we thus need a π1B–action on
a line where certain elements act loxodromically and specific others fix points. For an
HHG structure, we only need an action of π1B on a quasi-line such that the central Z
acts loxodromically, but the Z subgroups corresponding to the fibers of the adjacent Seifert
pieces act with bounded orbits. The latter constraint is satisfiable even ifM is not flip. This
explains the involvement of quasimorphisms in our proof. The idea of using quasimorphisms
in building HHG structures originated in this project, but has already found additional
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applications to Artin groups [HMS21] and extensions of subgroups of mapping class groups
[DDLS20].

Another simple application of these actions on quasi-lines is that central extensions of
hyperbolic groups by Z are HHGs.

Corollary 2 (Corollary 4.3). If a group G is a central extension Z ãÑ G
π
� F where F is

a non-elementary hyperbolic group, then G is a hierarchically hyperbolic group.

While these central extensions were known to be hierarchically hyperbolic spaces by virtue
of being quasi-isometric to ZˆF , it did not appear to be known that they are in fact HHGs.

We now discuss the proof of Theorem 1 in more detail.

1.2. Reduction to graph manifolds and admissible groups. Let M be a closed ori-
ented 3–manifold. The proof of the forward direction of Theorem 1, that the existence of
an HHG structure for π1M implies that M has no Nil, Sol, or non-hyperoctahedral pieces
in it prime decomposition, is a consequence of results in [PS23, BHS19, RST23]. The idea
is that we can push the HHG structure of π1M to the fundamental groups of each of M ’s
prime pieces, implying they cannot be Nil, Sol, or non-octahedal flat.

The main part of the paper is therefore devoted to other direction of Theorem 1, namely
that if the prime decomposition of M excludes Nil, Sol, and non-octahedral flat manifolds,
then π1M is an HHG. As the geometric cases can largely be handled by appealing to results
in the literature, the main new ingredient we need is that non-geometric graph manifold
groups are HHGs.

Corollary 3 (Corollary 3.2). If M is a 3-dimensional non-geometric graph manifold, then
π1M is a hierarchically hyperbolic group.

With Corollary 3 in hand, we can deduce the general case of Theorem 1 using the fact
that a group that is hyperbolic relative to HHGs is itself an HHG; see [BHS19].

Our proof of Corollary 3 only relies on the specific way a graph manifold group decomposes
into a graph of groups. Hence, instead of working in the specific case of graph manifolds,
we work in the setting of admissible graphs of groups. This is a class of groups introduced
by Croke and Kleiner to abstract the structure of π1M , when M is a non-geometric graph
manifold [CK02]. Roughly, an admissible graph of groups is a nontrivial finite graph of
groups G where each edge group is Z2 and each vertex group Gµ has infinite cyclic center
Zµ with quotient Fµ “ Gµ{Zµ a non-elementary hyperbolic group. Additionally, the various
edge groups need to be pairwise non-commensurable inside each vertex group. The exact
definition is Definition 2.13. Hence, hierarchical hyperbolicity of π1M is a special case of:

Theorem 4 (Theorem 3.1, Proposition 6.8). Let G be an admissible graph of groups. Then
π1G is a hierarchically hyperbolic group. Moreover, if each quotient Fµ is a free group, then
the associated hyperbolic spaces are quasi-isometric to trees.

Recently, Nguyen and Qing showed that every admissible group that acts geometrically
on a CAT(0) space is a hierarchically hyperbolic space [NQ22, Theorem A]. Their result
focuses on CAT(0) geometry and does not in general produce equivariant structures. Our
proof of Theorem 4 will employ a much more combinatorial framework that will ensure
equivariance and avoid the need for the action on a CAT(0) space.
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1.3. Consequences. Equivariant hierarchical hyperbolicity for fundamental groups of ad-
missible graphs of groups has several immediate consequences for these groups.

Corollary 5. cori:consequences Let G be an admissible graph of groups, and let G “ π1G.
Then:

(1) G acts properly and coboundedly on an injective metric space, and is hence semihy-
perbolic;

(2) if G is virtually torsion-free, then G has uniform exponential growth;
(3) the action of G on the Bass–Serre tree is the largest (hence universal) acylindrical

action of G on a hyperbolic space;
(4) the Morse boundary of G is an ω–cantor set. In particular, it is totally disconnected.

Proof. The first assertion follows from the fact that G is an HHG (Theorem 4) by [HHP20,
Corollary 3.8, Lemma 3.10].

For the other assertions, we will need that the Ď–maximal domain in the HHG struc-
ture is G–equivariantly quasi-isometric to the Bass–Serre tree T for G. We prove this in
Proposition 6.8. Because the definition of an admissible graph of groups ensures that T has
infinitely many ends, [ANS19, Corollary 4.8] implies that G has uniform exponential growth.
It follows from [ABD21, Theorem A] that the action of G on T is the largest acylindrical ac-
tion of G on a hyperbolic space1. The last item on the Morse boundary follows from [Rus21,
Corollary A.8] (using HHGs) or [CCS23, Theorem 1.2] (using graphs of groups). �

HHGs on quasi-trees vs cubical groups. We also note the following consequence for the ques-
tion of when hierarchically hyperbolic structures are forced to arise from cubulation. Corol-
lary 3 provides a hierarchically hyperbolic structure in which the constituent hyperbolic
spaces are all quasi-isometric to trees. Such hierarchically hyperbolic structures also arise
on fundamental groups of compact special cube complexes [BHS17b] and more generally,
groups acting geometrically on cube complexes admitting factor systems [BHS17b, HS20].
However, there are many examples of graph manifolds whose fundamental groups are vir-
tually special but not virtually compact special, and indeed not even virtually cocompactly
cubulated [HP15]. Hence Corollary 3.2 provides examples of groups that are not cocom-
pactly cubulated, but do admit HHG structures in which the hyperbolic spaces are all
quasi-trees.

1.4. Proof ingredients: combinatorial HHS and quasi-morphisms. To prove admis-
sible groups are HHGs, we employ the recent combinatorial HHS machinery from [BHMS20].
For a group G, this requires constructing a simplicial complex Y and a graph W , which are
then combined in a graph Y `W . Intuitively, the role of those spaces is as follows: the com-
plex Y encodes the index set of a hierarchically hyperbolic structure, the complex Y and the
graph Y `W together encode the associated hyperbolic spaces, and W is the (equivariant)
quasi-isometry model of G.

1Theorem A of [ABD21], as written, can be read as suggesting that 3–manifold groups are hierarchically
hyperbolic groups, although at the time they were only known to be hierarchically hyperbolic spaces in the
stated generality. But, as noted in [ABD21, Remark 5.3], Theorem A holds for 3–manifold groups without
needing an HHG structure. Alternatively, by Theorem 1, the statement in [ABD21] holds once one excludes
non-octahedral flat pieces from the prime decomposition.
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In our case, the space Y is an augmented version of the Bass-Serre tree, where each vertex
is “blown up” to contain a copy of the coset it represents. This technique of building com-
binatorial HHSs by “blowing up the vertex groups” in some naturally-occurring hyperbolic
graph is quite flexible, and has analogues in a number of other contexts. For example, it
is applied in the context of certain Artin groups in [HMS21], extensions of lattice Veech
groups in [DDLS20], and extensions of multicurve stabilisers in [Rus21]. In [BHMS20], it
is explained how to build combinatorial HHSs for right-angled Artin groups and mapping
class groups by respectively blowing up the Kim–Koberda extension graph [KK13] and the
curve graph.

In a general combinatorial HHS, Y is a simplicial complex with a G–action that has
finitely many orbits of links of simplices, and W is a graph whose vertices are maximal
simplices of Y , where the action of G on Y induces an isometric action of G of W . Given
Y and W , the graph Y `W is constructed from Y p1q by joining every vertex of the maximal
simplex Σ to every vertex of the maximal simplex ∆ by an edge whenever Σ and ∆ represent
adjacent vertices of W . The group G acts naturally on the resulting graph Y `W .

The spaces Y , W , and Y `W encode the HHS structure as follows. The elements of the
index set correspond to the links lkp∆q of non-maximal simplices ∆ of Y (including the
empty simplex, whose link is Y ). The hyperbolic space associated to lkp∆q is the subgraph
lkp∆q`W of Y `W spanned by the vertices in lkp∆q Ă Y . Accordingly, we have to choose
the edges of W in a way that ensures that all of these spaces (including Y `W itself) are
hyperbolic, while also ensuring that the action of G on W is proper and cobounded.

Hierarchical hyperbolicity demands not only the construction of a collection of hyperbolic
spaces, but also a coarse projection from W to each lkp∆q`W (satisfying a list of proper-
ties [BHS19, Definition 1.1]). To arrange this, the definition of a combinatorial HHS requires
the following: consider all of the simplices ∆1 Ă Y with the same link as ∆, and remove their
vertex sets (and incident edges) from Y `W to obtain a graph Y∆, which contains lkp∆q`W .
We ask that the inclusion lkp∆q`W ãÑ Y∆ is a quasi-isometric embedding, for each non-
maximal simplex ∆. The exact definition of a combinatorial HHS is Definition 2.23, which
involves some additional (combinatorial) conditions.

Our combinatorial HHS and the role of quasimorphisms. Given an admissible graph G of
groups, let T be the Bass–Serre tree. The idea for constructing the simplicial complex Y
for π1G is as follows: “blow up” each vertex v of T to become the cone on a discrete set
whose elements correspond to the associated coset of the vertex group. Two such cones are
then graph-theoretically joined according to the edges of T , resulting in a 3–dimensional
simplicial complex. The action of π1G on T induces an action on Y , by construction.

Having constructed the simplicial complex Y , we now need to construct the graph W
whose vertices are maximal simplices of Y and will serve as the geometric model for π1G.
This is where quasimorphisms come in.

Specifically, for each vertex group Gµ, we construct an action of Gµ of a quasi-line Lµ
so that the center Zµ of Gµ acts loxodromically, and each cyclic subgroup conjugate to
the images of the center of adjacent vertex groups acts elliptically. This is achieved by first
choosing an appropriate quasimorphism and then using a result of Abbott–Balasubramanya–
Osin [ABO19] to promote it to an action on a quasi-line; see Lemma 4.2.
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Using the action on this quasi-line, each vertex groups in our admissible graph of group
is equivariantly quasi-isometric to the product LµˆFµ, where Fµ is the hyperbolic quotient
Gµ{Zµ. Balls in the Lµ factor therefore give us coarse “level surfaces” in this product.
Moreover, if ω is adjacent to µ, the fact that the center Zω acts elliptically on Lµ means
that Zω is sent into one of these coarse level surfaces by the edge maps in G.

Now, maximal simplices of Y consist of an edge tu, vu of T and a pair of elements s, t in
the corresponding cosets of the vertex groups. Using the above product structure, each of s
and t determine a level surface in each of the vertex groups corresponding to u and v, and
these two level surface will intersect in uniformly bounded subsets. Roughly, we define W
so that there is an edge between two vertices if these bounded diameter subsets associated
to the two maximal simplices of Y are close; see see Definition 5.7 and Proposition 5.9 for
details. This definition will make W an equivariant quasi-isometric model for π1G.

The definition of edges in W will ensure that the extra edges in Y `W are only added
between vertices of Y that are uniformly close under the collapse map Y Ñ T . Hence
Y `W will be quasi-isometric to the Bass–Serre tree T and hence hyperbolic. The other
hyperbolic spaces coming from our combinatorial HHS are all either bounded diameter or
correspond to one of the two factors of the product Lµ ˆ Fµ for one of the vertex groups.
One set of spaces will be quasi-isometric to the quasi-lines Lµ, while the other will be quasi-
isometric to hyperbolic cone-offs of the Fµ. The quasi-isometric embedding conditions for
these hyperbolic spaces are verified using a combination of closest point projection in the
Bass–Serre tree T with the hyperbolic geometry of the Fµ factor of each vertex group.

1.5. Outline. Section 2 contains background on coarse geometry, graphs of groups and
hierarchical hyperbolicity. This includes the definition of an admissible graph of groups
(Section 2.2) and combinatorial HHS (Section 2.3). Section 3 presents the statements of our
main results in more detail and deduces Theorem 1 from Theorem 4. The rest of the paper is
devoted to the proof of Theorem 4. In Section 4, we use quasimorphism to produce actions
of central Z–extensions on quasi-lines. In Section 5, we construct the simplicial complex
Y and the graph W that will comprise our combinatorial HHS for an admissible graph
of groups. Section 6 contains the proof that pY,W q is a combinatorial HHS. Section 6.1
focuses on describing the link of simplices of Y and verifying the combinatorial parts of the
definition of a combinatorial HHS. Section 6.2 contains the proof that Y `W and the lkp∆q`W

are hyperbolic. Section 6.3 is devoted to checking that the inclusions lkp∆q`W Ñ Y∆ are
quasi-isometric embeddings.
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EP/R042187/1. Russell was supported by NSF grant DMS-2103191. Spriano was partly
supported by the Christ Church Research Centre. We would like to thank the LabEx of
the Institut Henri Poincaré (UAR 839 CNRS-Sorbonne Université) for their support during
the trimester program “Groups acting on Fractals, Hyperbolicity and Self-similarity”. We
thank the referee for their careful reading and numerous helpful comments.

2. Preliminaries

2.1. Coarse Geometry and Groups. We recall some basic notions from coarse geometry
and outline some techniques we will use repeatedly. For a metric space Y , we will use dY to
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denote the distance in the space Y . The metric spaces we will consider will be undirected
graphs, which we always equip with the path metric coming from declaring each edge to
have length 1. For a graph Y , we let Y p0q denote the set of vertices of Y .

Let κ ě 1, ξ ě 0 and f : Y Ñ Q be a map between metric spaces. The map f is a
pκ, ξq–quasi-isometric embedding if for all x, y P Y we have

1

κ
dQpfpxq, fpyqq ´ ξ ď dY px, yq ď κdQpfpxq, fpyqq ` ξ.

The map f is ξ–coarsely onto (or coarsely surjective) if for all q P Q, there exists y P Y
so that dQpq, fpyqq ď ξ. If f is a pκ, ξq–quasi-isometric embedding that is ξ–coarsely onto,
we say f is a pκ, ξq–quasi-isometry. A ξ–quasi-inverse of f is a map h : Q Ñ Y so that
dY py, hpfpyqq ď ξ for each y P Y . The map f will be pκ, ξq–coarsely Lipschitz if

dY px, yq ď κdQpfpxq, fpyqq ` ξ

for all x, y P Y . We often omit the constants when their specific value is not relevant. Note
that the map f is a quasi-isometry if and only if f is coarsely Lipschitz and has a coarsely
Lipschitz quasi-inverse (where the constants on either side of this equivalence determine the
constants on the other).

A (quasi)-geodesic in a metric space Y is an (quasi)-isometric embedding of a closed
interval I Ď R into Y . When Y is a graph, we additionally require that the endpoints of
the (quasi)-geodesic are vertices of Y .

At times it will be convenient to work with coarsely defined maps. A ξ–coarse map from
a metric space Y to a metric space Q is a function f : Y Ñ 2Q where for each y P Y , fpyq
is a subset of Q with diameter at most ξ. By a slight abuse of notation, we still write
f : Y Ñ Q to denote a coarse map. We say that a coarse map is coarsely Lipschitz, coarsely
onto, a quasi-isometric embedding, a quasi-inverse or a quasi-isometry if it satisfies the same
inequalities as described in the previous paragraph (where the distance between two sets is
the minimal distance between two elements).

For graphs, we frequently use the following criteria to determine whether a map is coarsely
Lipschitz and when an inclusion is a quasi-isometric embedding. The proofs are left as
straightforward exercises.

Lemma 2.1 (Locally Lipschitz is Lipschitz). For each ξ ě 0 and κ ě 0, there exists ξ1 ě 0

and κ1 ě 1 so that the following holds. Let Y and Q be graphs and suppose f0 : Y p0q Ñ Q
is a ξ–coarse map. Let f : Y Ñ Q be the map that extends f0 by sending each edge e of
Y to union of the images of the endpoints of e under f0. If dQpf0pxq, f0pyqq ď κ for each
x, y P Y p0q that are joined by an edge of Y , then f is a pκ1, κ1q–coarsely Lipschitz ξ1–coarse
map.

Lemma 2.2 (Coarse retracts are undistorted). Let Y and Q be graphs and assume there is
an injective simplicial map i : Q Ñ Y . If there is a pκ, κq–coarsely Lipschitz κ–coarse map
f : Y p0q Ñ Q so that fpipQqq “ ipQq and for each q P Q, dQpq, i´1 ˝ f ˝ ipqqq ď κ, then the
map i : QÑ Y is a quasi-isometric embedding with constants determined by κ.

We will apply Lemma 2.2 exclusively in the case where Q is a connected subgraph of Y .
In this case, we emphasise that the map f is coarsely Lipschitz with respect to the intrinsic
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path metric on Q and not the metric the Q inherits as a subset of Y . A map f satisfying
the conditions of Lemma 2.2 is called a coarse retract of Y to Q.

We say a graph Y is δ–hyperbolic if for any geodesic triangle in Y , the δ–neighborhood of
any two sides covers the third side. Special cases of hyperbolic graphs are quasi-trees and
quasi-line, which are graphs that are quasi-isometric to a tree or line respectively. We will
need to use some ideas from the theory of relatively hyperbolic groups and spaces. Given a
collection of coarsely connected subsets Q of a graph Y , we define the electrification of Y
with respect to Q to be the space obtained from Y by adding an additional edge between
x, y P Y p0q whenever there is Q P Q so that x, y P Q. We denote this electrification by ŶQ.
We say that Y is hyperbolic relative to Q if ŶQ is δ–hyperbolic for some δ ě 0 and if it
satisfies the bounded subset penetration property; see [Sis12, Definition 3.7] for full details.

Many of the graphs we will study will be the Cayley graphs of groups.

Definition 2.3. Let G be a group and J be a symmetric generating set for G. We let
CaypG, Jq denote the simplicial graph whose vertices are the elements of G and where two
elements g, h are joined by an edge if g´1h P J .

Note that the generating set J does not need to be finite; in fact we will consider non-locally
finite Cayley graphs throughout the paper.

Suppose a group G is acting by isometries on metric space Y . We say G acts coboundedly
if there exists a bounded set B such that G¨B “ Y . We say the action of G on Y ismetrically
proper if for any bounded diameter subset K of Y , the set tg P G : g ¨KXK ‰ Hu is finite.
A version of the Milnor-Schwartz lemma say that if a finitely generated group G groups
act metrically proper and coboundedly on a metric space Y , then the orbit map gives a
quasi-isometry CaypG, Jq Ñ Y for any finite generating set J .

A finitely generated group G is hyperbolic if for some (and hence any) finite generating
set J , the graph CaypG, Jq is δ–hyperbolic for some δ ě 0. A finitely generated group G
is hyperbolic relative to a finite collection of subgroups tQ1, . . . , Qnu if for some (and hence
any) finite generating set J , the graph CaypG, Jq is hyperbolic relative to the collection of
all cosets of the Qi’s. In particular, the Cayley graph CaypG, J YQ1 . . . Qnq is hyperbolic.

The next lemma is a useful tool that allows to verify that the electrification of a quasi-tree
with respect to quasiconvex subsets is again a quasi-tree.

Lemma 2.4. For all δ, κ ě 1 there exists δ1 such that the following holds. Let Γ be a graph
that is pδ, δq–quasi-isometric to a tree and Q be a collection of κ–quasiconvex subspaces of
Γ. Then the electrification Γ̂Q is pδ1, δ1q–quasi-isometric to a tree.

Proof. We use the following consequence of Manning’s bottleneck criterion [Man05, Theorem
4.6], formulated in [BBF15, Section 3.6] (see also [DDLS20, Proposition 2.3]): a space is a
quasi-tree if and only if there exists ξ as follows: for any two points x, y, path p between
them and point z on a geodesic between x and y, we have dpz, pq ď ξ. Moreover, the
constants of the quasi-isometry to a tree and ξ each determine the other

Let ξ be such a constant for the quasi-tree Γ and let Γ̂ “ Γ̂Q. Our goal is to find an
analogous ξ̂ for Γ̂. Let x, y be two points of Γp0q “ Γ̂p0q and let β̂ be a Γ̂-geodesic between
them. Let ẑ be a point on β̂ and γ̂ be some path in Γ̂ connecting x and y between them.
Let β be a Γ–quasi-geodesic between x, y. By [KR14, Corollary 2.6], the Hausdorff distance
in Γ̂ between β and β̂ is uniformly bounded by some R. Thus, there exists z P β such that
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dΓ̂pẑ, zq ď R. Let γ be the Γ–path obtained from γ̂ by replacing Γ̂´Γ edges with geodesics
of Γ. Since Γ is a quasi-tree, there is a point p P γ with dΓpp, zq ď ξ. If p is also a point
of γ̂ we are done. Otherwise, p is on a geodesic with endpoints on a κ-quasiconvex Qi, we
have dΓpp,Qiq ď κ. As Qi is coned-off in Γ̂ and p̂ intersects Qi, we obtain dΓ̂pp, γ̂q ď κ` 1.
By the triangular inequality,

dΓ̂pẑ, γ̂q ď dΓ̂pẑ, zq ` dΓ̂pz, pq ` dΓ̂pp, γ̂q.

As each of the above quantities is uniformly bounded, we get the claim. �

We conclude with a lemma relating quotients and Cayley graphs with respect to infinite
generators.

Lemma 2.5. Let G be a group and N E G a normal subgroup. For any generating set K
of G satisfying N Ď K the quotient map π : GÑ G{N induces a p2, 1q–quasi-isometry

π : CaypG,Kq Ñ CaypG{N, πpKqq.

Proof. Let Γ “ CaypG,Kq and Ω “ CaypG{N, πpKqq. By construction, the map π gives a
1-Lipschitz map Γ Ñ Ω. For each x P G{N , let θpxq be the be an element of the coset gN
in G so that πpgNq “ x. Given any x1, x2 P G{N with x´1

1 x2 P πpKq we can find y1 in the
same coset as θpx1q and y2 in the coset as θpx2q so that y´1

1 y2 P K. Since each coset gN
has diameter 1 in Γ, we have dΩpπpx1q, πpx2qq ď dΓpx1, x2q ď 2dΩpπpx1q, πpx2qq ` 1. �

2.2. Graphs of groups. We start with recalling some definitions and notations from Bass–
Serre theory. For a comprehensive background, we refer the reader to [SW79]. Firstly, we
recall that for Bass–Serre it is useful to use the language of bi-directed graphs.

Definition 2.6. A bi-directed graph Γ consists of sets V pΓq, EpΓq and maps

EpΓq Ñ V pΓq ˆ V pΓq; EpΓq Ñ EpΓq

α ÞÑ pα`, α´q α ÞÑ ᾱ

satisfying ¯̄α “ α, ᾱ ‰ α and pᾱq´ “ α`.

The elements of V pΓq are called vertices, the ones of EpΓq are called edges, the vertex
α´ is the source of α, α` is the target and ᾱ is the reverse edge. A bi-directed graph Γ is
finite if both V pΓq, EpΓq are finite sets. A subgraph of Γ is a bi-directed graph Γ1 such that
V pΓ1q Ď V pΓq and EpΓ1q Ď EpΓq. Given a bi-directed graph Γ, it is standard to associate
to it a an undirected graph |Γ|, where the vertices are the elements of V pΓq and the edges
are pairs of edges of the form tα, ᾱu. We call these pairs of edges tα, ᾱu undirected edges
of G. An orientation on an undirected edge is choice of one of the directed edges. We say
that a bi-directed graph Γ is connected, respectively a tree if |Γ| is connected, respectively
a tree. We say that a subgraph T of Γ is a spanning tree if V pT q “ V pΓq and T is a tree.

The correspondence between Γ and |Γ| gives an equivalence between undirected graphs
and bi-directed graphs. The reason behind distinguishing the two classes is that the language
of undirected graphs is more natural when considering graphs as metric spaces, whereas bi-
directed graphs highlight combinatorial properties used to describe graphs of groups.

Definition 2.7. A graph of groups G consists of a finite connected bi-directed graph Γ,
two collections of groups tGµ | µ P V pΓqu and tGα | α P EpΓqu satisfying Gα “ Gᾱ, and
injective homomorphisms τα : Gα Ñ Gα` for each α P EpΓq.
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Definition 2.8. Let G “ pΓ, tGµu, tGαu, tταuq be a graph of groups. We define the group
FG as:

FG “
ˆ

˚
µPV pΓq

Gµ

˙

˚

ˆ

˚
αPEpΓq

xtαy

˙

.

Let SppΓq be a spanning tree of Γ. The fundamental group of G with respect to SppΓq,
denoted by π1pG, SppΓqq, is the group obtained adding the following relations to FG:

(1) tα “ t´1
ᾱ ;

(2) tα “ 1 if α P EpSppΓqq;
(3) tαταpxqt´1

α “ τᾱpxq for all x P Gα.

Given a graph of groups G we can associate to it the Bass–Serre tree T ; see e.g. [SW79,
Section 4]. This is the bi-directed graph whose vertices are cosets of the vertex groups, and
two cosets are joined by a directed edge if there are representatives gGµ and hGω such that
the vertices µ and ω are connected by an edge α with α` “ µ and htα “ g. For a vertex v
of T we let v̌ denote the vertex µ of G so that v “ gGµ. Similarly, given an edge e of T , we
define ě to be the edge of G joining ě` and ě´.

If the vertex v P T p0q is the coset gGµ, then stabiliser Stabπ1Gpvq is the conjugate of
the vertex group gGµg

´1. Similarly, for each edge e of T , the stabiliser Stabπ1Gpeq is
gτᾱpGαqg

´1 “ gtαταpGαqt
´1
α g´1 where ě “ α, and g is an element of π1G so that gGě´ and

gtαGě` are the vertices e´ and e` respectively.
Even though T is a bi-directed graph, we will at times think of it as a metric space. When

we do this, we are implicitly referring to |T |, the undirected graph obtained from T . We
will use E to denote unoriented edges of T and e to denote an orientation on E.

Given a graph of groups, we want to provide a geometric model that encodes the geometry
of the entire fundamental group. To achieve this we will take the cosets of the vertex groups
and join them together using the information coming from the tree and the edge group. We
call the resulting space the Bass–Serre space. In order to keep track of the geometry of the
edge spaces, it is useful to introduce a combinatorial notion of edges with midpoints.

Definition 2.9. A subdivided edge is a (undirected) graph isomorphic to the graph with
vertices v0, v1, v2 and edges between v0 and v1, and between v1 and v2. The vertex v1 is
called the middle vertex. Two vertices x, y of a graph Γ are connected by a subdivided edge
if there is a subgraph of Γ isomorphic to a subdivided edge with v0 “ x and v2 “ y.

Definition 2.10 (Bass–Serre space). Let G be a graph of finitely generated groups. For
each vertex group Gµ and edge group Gα fix once and for all finite symmetric generating
sets Jµ and Jα respectively, such that Jα “ Jᾱ and ταpJαq Ď Jα` . We build the Bass–Serre
space X for the graph of groups G in three steps.
Step 1: vertex spaces. For each vertex v “ gGµ of T , we define Xv to be the graph

with vertex set gGµ and with an edge between x, y P gGµ if x´1y P Jµ. We call each Xv the
vertex space for v P T p0q. Because each vertex group injects into π1G, each Xv is graphically
isomorphic to the Cayley graph of Gv̌ with respect to the generating set Jv̌.
Step 2: subdivided edges. Given an undirected edge E of T , pick an orientation

e P E and let α “ ě, µ “ α`, and ω “ α´. Fix an element g P π1G so that gGω “ Xe´

and gtαGµ “ Xe` . For each a P Gα, add a subdivided edge between gτᾱpaq P gGω “ Xe´

and gtαταpaq P gGµ “ Xe` . By Definition 2.8.(3), if x “ gτᾱpaq, then xtα “ gτᾱpaqtα “
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gtαταpaq. Hence, all such x and xtα are joined by a subdivided edge and the addition of
these subdivided edges does not rely on our specific choice of representative g P π1G. Since
t´1
α “ tᾱ, the addition of these subdivided edges is also independent of the orientation
chosen for E.
Step 3: edges spaces. Let E be an undirected edge of T with orientation e. Let

e` “ v, e´ “ w, and ě “ α. For each subdivided edge added between Xv and Xw there
is a middle vertex. Let a, b be two of these middle vertices and x, y the vertices of Xv

adjacent to them. To complete the Bass–Serre space, we add an edge between any two such
a, b if x´1y P ταpJαq in π1G. This is independent of the orientation for E because if p, q
are the vertices of Xw adjacent to a and b respectively, then p “ xtα and q “ ytα. Thus
p´1q “ t´1

α x´1ytα, which implies x´1y P ταpJαq if and only if p´1q P τᾱpJαq by Definition
2.8.(3).

For each (directed) edge e in T , we useXe to denote the (undirected) graph whose vertices
are all of the middle vertices of the subdivided edges between Xe` and Xe´ with the edges
defined as above. We call Xe the edge space for e and note that Xe “ Xē. Each edge space
Xe is graphically isomorphic to the Cayley graph of the edge group Gě with generating set
Jě. We let τe : Xe Ñ Xe` denote be the map that associates to each middle vertex the only
vertex of Xv adjacent to it, and we define τē analogously. Figure 1 gives a schematic of the
edge spaces and τe maps.

The Bass–Serre space X for the graph of groups G is the space constructed from taking
all the vertex spaces in Step 1, adding in all the subdivided edges from Step 2, and then
adding in all the edges of the edge spaces in Step 3. The group π1G acts on the disjoint union
of the vertex spaces by left multiplication. This action can be extended to the subdivided
edges and edge spaces to give an action of π1G of X by isometries. The edge space maps τe
and τē are equivariant with respect to this action.

Remark 2.11. For every x, y P Xe, we have dXpx, τepxqq “ 1 and dXe` pτepxq, τepyqq ď

dXepx, yq ` 2.

While the inclusion of the vertex and edge spaces in to the Bass–Serre space are simplicial
injections, their images maybe very distorted in the total metric on X. However, as there
are only finitely many vertex and edge groups, we have uniform control over this distortion

Lemma 2.12. Let G be a graph of groups with Bass–Serre tree T and Bass–Serre space X.
There exists a monotone diverging function h : r0,8q Ñ r0,8q so that for each vertex v and
edge e of T we have

dXvpx, yq ď h
`

dXpx, yq
˘

and dXepx, yq ď h
`

dXpx, yq
˘

for any x, y P Xv or x, y P Xe.

Proof. For each v P T p0q, define hv : r0,8q Ñ r0,8q to be

hvprq “ max
tx,yPX:dXv px,yqďru

tdXvpx, yqu.

Because X is locally finite and π1G acts transitively on the vertices of the vertex and edge
spaces respectively, hv exists and is a monotone diverging function. We similarly define
he for each edge e of T . If two vertices, v and w, or two edges, e and f , are in the same
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Xv

Xe

Xw

v e w

τepXeq

Figure 1. The cosets corresponding to the edge e are connected by a sub-
divided edge. In the picture, we assume that e` “ v. To every edge of Xe

corresponds an edge in Xv, Xw, but additional edges might be present.

π1G–orbit then hv “ hw and he “ hf . Since π1G acts of T with finitely many orbits of edges
and vertices, we can find the desired h by taking the minimum over all of these finitely
many orbits. �

Croke and Kleiner introduce the following class of admissible graphs of groups to abstract
the properties of the graphs of groups structure of the fundamental groups of non-geometric
graph manifolds [CK02]. This will be the class of graphs of groups that we will study.

Definition 2.13. Let G “ pΓ, tGµu, tGαu, tταuq be a graph of groups. We say G is admissible
if the following hold:

(1) Γ contains at least 1 edge.
(2) Each vertex group Gµ has center Zµ that is a infinite cyclic group, and Gµ{Zµ “ Fµ

is a non-elementary hyperbolic group.
(3) Each edge group Gα is isomorphic to Z2.
(4) If α is an edge with µ “ α` and ω “ α´, then xτ´1

α pZµq, τ
´1
ᾱ pZωqy is a finite index

subgroup of Gα – Z2.
(5) If α1,α2 are distinct edges with α`1 “ α`2 , then

‚ for each g P π1G, gτα1pGα1qg
´1 is not commensurable with τα2pGα2q;

‚ for each g P π1G´τα1pGα1q, gτα1pGα1qg
´1 is not commensurable with τα1pGα1q

.
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We conclude this section with a few basic consequence of Definition 2.13. First we apply
a theorem of Bowditch to obtain that the hyperbolic quotients, Fµ, are actually hyperbolic
relative to the subgroups coming from the incident edge groups.

Lemma 2.14. Let G be an admissible graph of groups. For each vertex µ, let πµ be the
quotient map πµ : Gµ Ñ Fµ, where Fµ is the quotient Gµ{Zµ. The group Fµ is hyperbolic
relative to the collection tπµpταpGαqq : α is an edge with α` “ µu.

Proof. Let Iµ be the set of edges α of G with α` “ µ and let Aα “ ταpGαq for each α P Iα.
We want to show that tπµpAαq : α P Iµu is an almost malnormal collection of quasiconvex
subgroups as this implies Fµ is relatively hyperbolic by [Bow12, Theorem 7.11].

We first establish that πµpAαq is virtually cyclic for each α P Iµ. By construction, πµpAαq
is the quotient of Aα by AαXZµ. Since Aα – Z2 and Fµ is hyperbolic, Aα must intersect Zµ
in a non-trivial subgroup. Hence πµpAαq must be virtually cyclic. Note, this implies each
πµpAαq is quasiconvex in Fµ as virtually cyclic subgroups of hyperbolic groups are always
quasiconvex.

We now show the set tπµpAαq : α P Iµu is an almost malnormal collection of subgroups of
Fµ. Since each πµpAαq is virtually cyclic, if the collection fails to be almost malnormal, there
must be α1, α2 P Iµ so that some conjugate of πµpAα1q is commensurable to πµpAα2q in Fµ.
Because Zµ – Z and each Aα – Z2, this would imply a conjugate of Aα1 is commensurable
to Aα2 in π1G. As this would contradict Definition 2.13.(5), we must have that tπµpAαq :
α P Iµu is an almost malnormal. The lemma now follows by applying [Bow12, Theorem
7.11]. �

Lastly, we note that by choosing appropriate infinite generating sets for the vertex groups
Gµ, we can make Cayley graphs that are quasi-isometric to the hyperbolic groups Fµ as well
as the electrification of Fµ by the cyclic subgroups from the incident edge groups. Recall
each vertex group is a central extension Zµ Ñ Gµ Ñ Fµ where Zµ is cyclic and Fµ is
hyperbolic.

Lemma 2.15. Let G be an admissible graph of groups. Let Iµ be the set of edges α of G
with α` “ µ, then let Eµ “

Ť

αPIµ
ταpGαq. For each finite generating set Jµ of Gµ we have:

(1) The quotient map πµ : Gµ Ñ Fµ induces a quasi-isometry

πµ : CaypGµ, Jµ Y Zµq Ñ CaypFµ, πµpJµqq,

in particular CaypGµ, JµYZµq is hyperbolic and hyperbolic relative to the collection
tgταpGαq : α P Iµ and g P Gµu.

(2) The quotient map πµ : Gµ Ñ Fµ induces a quasi-isometry

πµ : CaypGµ, Jµ Y Eµq Ñ CaypFµ, πµpJµ Y Eµqq.

Hence, CaypGµ, JµYEµq is hyperbolic and will be a quasi-tree whenever Fµ is virtually
free.

The quasi-isometry constants are independent of G.

Proof. The fact that the map are quasi-isometries follows from Lemma 2.5. The first relative
hyperbolicity follows from Lemma 2.14. For the second, since Fµ is hyperbolic relative to
the subgroups tπµpταpGαqq : α P Iµu (Lemma 2.14), the graph CaypFµ, πµpJµ Y Eµqq is
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hyperbolic. Moreover, if Fµ is virtually free, then CaypFµ, πµpJµqq is a quasi-tree. Hence
the fact that CaypFµ, πµpJµ Y Eµqq is a quasi-tree is a consequence of Lemma 2.4. �

2.3. Hierarchically hyperbolic groups. As we will not directly require the full definition
of a hierarchically hyperbolic space, we will only review the necessary data to define a
hierarchically hyperbolic group. We direct the reader to [BHS19] or [Sis19] for complete
details on the HHS axioms.

Fix E ě 1. An E–hierarchically hyperbolic space (HHS) structure on a geodesic metric
space X starts with a set S indexing a collection of E–hyperbolic spaces tCpV quV PS. For
each V P S, there is an pE,Eq–coarsely Lipschitz, E–coarsely surjective projection map
ϕV : X Ñ CpV q. The set S is also equipped with three combinatorial relations: nesting
(Ď), orthogonality (K), and transversality (&). To be a hierarchically hyperbolic space
structure for X , the set S and these relations and projections need to satisfy a number of
axioms. The most relevant for us are:

‚ Every pair of distinct elements of S is related by exactly one of Ď, K, or &.
‚ & and K are both symmetric, while Ď is a partial order.
‚ If V KW and U Ď V , then U KW .
‚ If V Ĺ W or V&W , then there exists a distinguished subset ρVW Ď CpW q with
diameter at most E.

We use S to denote the entire HHS structure (the spaces, projections, relations, and
distinguished subsets) and the pair pX ,Sq to denote the hierarchically hyperbolic space X
equipped with the specific HHS structure S. An HHS structure can be transferred across a
quasi-isometry f : Y Ñ X , by replacing the projection maps ϕV with ϕV ˝ f . In particular,
if a finitely generated group G acts metrically properly and coboundedly on an HHS pX ,Sq,
then S is also a hierarchically hyperbolic space structure for G equipped with any word
metric (or equivalently any Cayley graph of G with respect to a finite generating set).
However, the maps and relations defining S need not be equivariant with respect to the
action of G. If the HHS structure is compatible with the group action, then we can have
the following stronger definition of a hierarchically hyperbolic group.

Definition 2.16. Suppose a finitely generated group G is acting isometrically on an E–
hierarchically hyperbolic space pX ,Sq. We say S is an E–hierarchically hyperbolic group
structure if

(1) G acts metrically properly and coboundedly on X .
(2) There is an Ď, K, and & preserving action of G on the index set S by bijections.
(3) S has finitely many G–orbits.
(4) For each V P S and g P G, there exists an isometry gV : CpV q Ñ CpgV q satisfying

the following for all V,U P S and g, h P G.
‚ The map pghqV : CpV q Ñ CpghV q is equal to the map ghV ˝hV : CpV q Ñ CphV q.
‚ For each x P X , gV pϕV pxqq “ ϕgV pg ¨ xq.
‚ If V&U or V Ĺ U , then gV pρVU q “ ρgVgU .

We say G is a hierarchically hyperbolic group (HHG) if there exists an HHS pX ,Sq so that
S is an E–HHG structure for G for some E ě 1.

Modulo the incompleteness of our description of a hierarchically hyperbolic space struc-
ture, the above definition of a hierarchically hyperbolic group is precise.
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There are examples of finitely generated groups that have hierarchically hyperbolic space
structures, but do not have any hierarchically hyperbolic group structures. In fact, there
are groups that are not HHGs, but have finite index subgroups that are HHGs [PS23].

We will need the following proposition, originally due to Paul Plummer, to check that
certain 3–manifold groups are not HHG.

Proposition 2.17 (Invariant quasiflats for virtually abelian subgroups). Let pG,Sq be an
HHG. Let A Ă G be a virtually Zk subgroup for some k ě 1. Then there exists ` ě k and
U1, . . . , U` P S such that the following hold:

(1) tU1, . . . , U`u is A–invariant.
(2) UiKUj for 1 ď i ă j ď `.
(3) There exists L ă 8 such that diampϕV pAqq ď L for V P S´ tU1, . . . , U`u.
(4) For each i ď `, the image ϕUipAq of A in CpUiq is a quasi-line.

Hence the (A–invariant) hierarchically quasiconvex hull FA of A is quasi-isometric to Z`.

Hierarchically quasiconvex hulls are discussed in [BHS19, Section 6].

Proof of Proposition 2.17. We adopt the standard convention that for a, b P G and V P S,
dV pa, bq denotes dV pϕvpaq, ϕV pbqq. Let 1 denote the identity in G and equip both A and G
with word metrics from finite generating sets.

Apply [PS23, Theorem 5.1] to obtain a nonempty A–invariant set of elements U1, . . . , U` P
S such that

‚ UiKUj for 1 ď i ă j ď `;
‚ if W P S has the property that ϕW pAq is unbounded, then W Ď Ui for some i;
‚ ϕUipAq is unbounded for each i ď `.

Each ϕUipAq is a quasiline: Since ` ă 8, there is a finite-index subgroup :A ď A

such that :A ¨ Ui “ Ui for all i. Assume, by passing to a further finite-index subgroup, that
:A – Zk. In particular, :A acts on each of the E–hyperbolic spaces CpUiq.
Since :A has finite index in A, and ϕUi is pE,Eq–coarsely lipschitz and :A–equivariant, we

have that ϕUipAq and :A ¨ ϕUip1q lie at finite Hausdorff distance. In particular, the above
choice of the Ui implies the orbit :A ¨ ϕUip1q is unbounded for each Ui. Proposition 3.1
of [CCMT15] therefore provides four options for the action of :A on CpUiq: focal, general,
horocyclic, or lineal. We verify the the action must be lineal.

Since :A is abelian, it does not contain a free sub-semigroup and hence the action on CpUiq
action cannot be focal or general. By [DHS20, Theorem 3.1], any infinite-order element of
:A is loxodromic on CpUiq, so the action is not horocyclic. Hence the action is lineal. In
particular, the orbit :A ¨ ϕUip1q, with the metric inherited from CpUiq, is pC,Cq–quasi-
isometric to Z and C–quasiconvex, where C depends on :A and the HHS constant E. Up
to enlarging C, we can assume that ϕUipAq is a C–quasiconvex pC,Cq–quasiline. Moreover,
since there are finitely many i, we can assume that the same constant C works for all i.
Bounding remaining domains: We now bound the diameter of ϕV pAq, V R tU1, . . . , U`u.

Claim 2.18. There exists L ě 0 such that diampϕV pAqq ď L for all V P S´ tU1, . . . , U`u.

Proof of Claim 2.18. It suffices to prove the claim for the finite-index subgroup :A of A, since
the maps ϕV are all pE,Eq–coarsely lipschitz. Choose a1, . . . , ak P A such that a1, . . . , ak
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generate the finite-index subgroup :A isomorphic to Zk. For any g P G, let Bigpgq be the
set tW P S : diampϕW pxgyqq “ 8u. By [DHS17, Lemma 6.7], Bigpgq is a finite, pairwise
orthogonal subset of S for any g P G. Moreover, Bigpgq is non-empty whenever g has
infinite order by [DHS17, Proposition 6.4].

We claim that Bigpaiq is a non-empty subset of tU1, . . . , U`u for all i. Let W P Bigpaiq.
By [PS23, Theorem 5.1] or [DHS17, Lemma 6.3, Proposition 6.4], there is m P N so that
ami fixes W and has unbounded orbits on CpW q. By the choice of the Uj , there exists j
such that W Ď Uj . If W ‰ Uj , then W Ĺ Uj . Hence, ρWUj is defined and is a subset of
CpUjq of diameter at most E. Since :A has unbounded orbits in CpUjq, there is g P :A such
that dUj pρWUj , gρ

W
Uj
q ą 109E. By the definition of an HHG and the fact that :A fixes Uj ,

we have gρWUj “ ρgWUj , so gW ‰ W . Now, gami g
´1 has unbounded orbits on CpgW q, but

gami g
´1 “ ami . Hence, W, gW P Bigpaiq, but they are not orthogonal by [DHS17, Lemma

1.5]. This contradicts that the elements of Bigpaiq are pairwise orthogonal. Hence, W “ Uj .
Since we have shown that Bigpaiq Ď tU1, . . . , U`u for all i, [DHS17, Proposition 6.4]

provides a constant Dpaiq such that diampϕV pxaiyqq ď Dpaiq for all V P S´ tU1, . . . , U`u.
Let D “ max1ďiďkDpaiq. For any b P :A, write b “ an1

1 ¨ ¨ ¨ ankk . Since a´n1
1 V R tU1, . . . , Uku,

we have

dV p1, bq ď d
a
´n1
1 V

p1, an2
2 ¨ ¨ ¨ ankk q ` da´n1

1 V
p1, a´n1

1 q ď d
a
´n1
1 V

p1, an2
2 ¨ ¨ ¨ ankk q `D,

and we get dV p1, bq ď kD by induction. This bounds diampϕV p :Aqq, which proves the
claim. �

This proves the enumerated statements. The distance formula in a HHG [BHS19, The-
orem 4.5] now shows that the hull FA of A is quasi-isometric to the product

ś`
i“1 ϕUipAq,

i.e., to the product of ` quasilines, i.e., to Z`. Since :A – Zk acts properly on FA, we must
have k ď `. �

2.4. Combinatorial hierarchical hyperbolicity. To verify that our admissible groups
are hierarchically hyperbolic groups, we will employ the combinatorial hierarchical hyper-
bolicity machinery introduced in [BHMS20]. This allows us to forgo checking the axioms
directly, and instead extract hierarchical hyperbolicity from an action on a well chosen
simplicial complex. We recall the required definitions and theorems for this approach.

Definition 2.19 (Join, link, and star). Let Y be a flag simplicial complex. If Q,Z are
disjoint flag subcomplexes of Y so that every vertex of Q is joined by an edge to Z, then
the join of Q and Z, Q ‹ Z, is the subcomplex of Y spanned by Q and Z. Given a simplex
∆ of Y , the link of ∆, lkp∆q, is the subcomplex of Y spanned by the vertices of Y that are
joined by an edge to all the vertices of ∆. The star of ∆, stp∆q, is the join ∆ ‹ lkp∆q. We
consider H as a simplex of Y whose link and star are both Y .

Definition 2.20. Given a flag simplicial complex Y , a Y –graph is any graph W whose
vertices are maximal simplices of Y . Here maximal means not contained in a larger simplex.

If W is a Y –graph for the flag simplicial complex Y , we define the W–augmented graph
Y `W as the graph with the same vertex set as Y and with two types of edges:
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(1) (Y –edge) If two vertices y1, y2 P Y are joined by an edge in Y , then y1 and y2 are
joined by an edge in Y `W .

(2) (W–edge) If ∆1 and ∆2 are maximal simplices of Y that are joined by an edge in
W , then each vertex of ∆1 is joined by an edge to each vertex of ∆2 in Y `W .

We note that if a group G acts by simplicial automorphisms on Y that is an isometry of
Y `W , then there is an induced action by isometries of G on W .

Definition 2.21. Let ∆ and ∆1 be simplices of the flag simplicial complex Y . We write
∆ „ ∆1 if lkp∆q “ lkp∆1q. We define the saturation of ∆, Satp∆q, to be the set of vertices
of Y contained in a simplex in the „–equivalence class of ∆. That is x P Satp∆q if and only
if there exists ∆1 „ ∆ so that x is a vertex of ∆1.

Definition 2.22. Let W be a Y –graph. For each simplex ∆ of Y , define Y∆ to be the
subgraph of Y `W spanned by the vertices of Y `W ´ Satp∆q.

Define Cp∆q to be the subgraph of Y∆ spanned by the vertices in lkp∆q. Note, we are
taking the link in Y , not in Y `W , and then considering the subgraph of Y∆ induced by
those vertices. We give Cp∆q its intrinsic path metric (as opposed to the metric induced as
a subset of Y∆). By construction, we have Cp∆q “ Cp∆1q whenever ∆ „ ∆1. Note, since H
is a simplex of Y with lkpHq “ Y , we have YH “ CpHq “ Y `W .

Definition 2.23. Let δ ě 0, Y be a flag simplicial complex and W be a Y –graph. The pair
pY,W q is a δ–combinatorial HHS if the following are satisfied.

(I) Any chain of the form lkp∆1q Ĺ lkp∆2q Ĺ . . . has length at most δ.
(II) For each non-maximal simplex ∆ Ă Y , the space Cp∆q is δ–hyperbolic.
(III) For each non-maximal simplex ∆, the inclusion Cp∆q Ñ Y∆ is a pδ, δq–quasi-isometric

embedding.
(IV) Whenever ∆ and Ω are non-maximal simplices of Y , there exists a (possibly empty)

simplex Π of lkp∆q such that lkp∆ ‹Πq Ď lkpΩq and for all non-maximal simplices Λ
of Y so that lkpΛq Ď lkp∆q X lkpΩq either
(a) diampCpΛqq ă δ or;
(b) lkpΛq Ď lkp∆ ‹Πq.

(V) For each non-maximal simplex ∆ Ă Y and x, y P lkp∆q, if x and y are not joined by
a Y –edge of Y `W , but are joined by a W–edge of Y `W , then there exits simplices
Λx,Λy Ď lkp∆q so that x P Λx, y P Λy, and ∆ ‹ Λx is joined by an edge of W to
∆ ‹ Λy.

Theorem 2.24 ([BHMS20, Thoerem 1.8]). Let pY,W q be a δ–combinatorial HHS.
(1) The graph W is a connected and a hierarchically hyperbolic space.
(2) Suppose G is a finitely generated group that acts on Y by simplicial automorphism.

If there are finitely many G–orbits of links of simplices of Y , and the action of G on
Y induces a metrically proper and cobounded action on W , then G is a hierarchically
hyperbolic group.

3. Statements of the main results

We now state the main result of the paper, summarise where the various parts of the
proof are found, and then deduce our application to 3-manifolds.
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Theorem 3.1. Let G be an admissible graph of groups. Let SpT q and W “ Wr,R be the
spaces from Definitions 5.1 and 5.7. For sufficiently large choices of r ě 0 and R ě 0, the
pair pSpT q,W q is a δ–combinatorial HHS with δ determined by G.

Moreover, π1G is an HHG, because π1G acts on SpT q with finitely many orbits of links
of simplices, and the action on the set of maximal simplices of SpT q extends to a metrically
proper and cobounded action on W .

Proof. Item (I) is verified in Lemma 6.4. Item (II) is verified in Proposition 6.8 and Lemma
6.2. Item (III) is immediate when ∆ “ H or Cp∆q is bounded, while the other cases are
verified in Lemmas 6.14 and Lemma 6.15 (with Corollary 6.1 guaranteeing that all cases are
covered). Item (IV) is Lemma 6.6 and, finally, Item (V) is Lemma 6.5.

The statement on orbits of links is verified in Lemma 6.7, while the metrically proper
and cobounded action is shown in Lemma 5.11. The conclusion that π1G is an HHG then
follows from Theorem 2.24. �

Theorem 3.1 proves that non-geometric graph manifolds are HHG.

Corollary 3.2. If M is a non-geometric graph manifold, then π1M is a hierarchically
hyperbolic group, where the hyperbolic spaces in the HHG structure are all quasi-isometric
to trees.

Proof. Since π1M has the structure of an admissible graph of groups, we can apply Theorem
3.1. The hyperbolic spaces in the HHS structure coming from a combinatorial HHS are the
Cp∆q (as stated in [BHMS20, Theorem 1.18]). These spaces are all quasi-isometric to trees
in the case of π1M by Proposition 6.8 (and Lemma 6.2 for the bounded Cp∆q). �

We can now combine Corollary 3.2 and Corollary 4.3 with results from the literature to
classify when a 3-manifold group has an HHG structure in terms of the geometry of the
prime pieces. We say that a flat 3-manifold is octahedral if it is the quotient of R3 by a
3–dimensional crystallographic group whose point group is conjugate in GL3pRq into O3pZq.

Theorem 3.3. Let M be a closed oriented 3–manifold. π1M is a hierarchically hyper-
bolic group if and only if M has no Nil, Sol, or non-octahedral flat manifolds in its prime
decomposition.

Proof. We first show that if M has no Nil, Sol, or non-octahedral flat manifolds in its prime
decomposition, then π1M is an HHG. Since being hyperbolic relative to HHGs will make
π1M an HHG [BHS19, Theorem 9.1], it suffices to prove that π1M is an HHG whenever M
is prime and not a Nil, Sol, or non-octahedral flat manifold.

We first analyse the possible geometric cases from the geometrisation theorem.
‚ S3, S2 ˆ R,H3. In this case the fundamental group is hyperbolic, whence a hierar-
chically hyperbolic group.

‚ R3. The fact that the fundamental group of a manifold with geometry R3 is an HHG
if and only if the manifold is octahedral follows from [PS23, Theorem 4.4].

‚ H2 ˆ R,PSL2pRq. In these cases, the fundamental group is a central extension of
Z by a hyperbolic surface group, so we can apply Corollary 4.3 to conclude it is an
HHG (the H2 ˆ R case was previously known, see, e.g. [Hug22, Proposition 3.1]).
For later purposes, note that this case also yields HHG fundamental groups when
M is a H2 ˆ R manifold with toroidal boundary.
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In the non-geometric case, π1M is hyperbolic relative to subgroups each of which is either
Z2 or the fundamental group of a non-geometric graph manifold (this is a consequence of
[Dah03, Theorem 0.1] and is stated explicitly as [AFW15, Theorem 9.12]; see also [BW13,
Corollary E]). Each peripheral is therefore an HHG, so the conclusion follows from [BHS19,
Theorem 9.1].

We now assume π1M has an HHG structure S and show M cannot have a Nil, Sol, or
non-octahedral flat manifold in its prime decomposition. If M is prime and has either Nil
or Sol geometry, then π1M cannot be an HHG since it would not have quadratic Dehn
function, contradicting [BHS19, Corollary 7.5]. If M is prime and is a non-octahedral flat
manifold, then π1M is not an HHG by [PS23, Theorem 4.4].

For the non-prime case, letM1# ¨ ¨ ¨#Mn be the prime decomposition ofM . Then π1M is
hyperbolic relative to π1M1, . . . , π1Mn. As the peripheral subgroups in a relative hyperbolic
group, each π1Mi is strongly quasiconvex in π1M . Combining [RST23, Proposition 5.7] and
[BHS19, Proposition 5.6], we have that restricting the projections in the HHG structure S
to the subgroup π1Mi produces an HHS structure for π1Mi (but not necessarily an HHG
structure). As before, this says Mi cannot have Nil or Sol geometry.

To rule out non-octahedral flat geometry, suppose Mi is a flat manifold. Then, π1Mi is
virtually Z3 and Proposition 2.17 says there are U1, . . . , U` P S so that

‚ tU1, . . . , U`u is pairwise orthogonal and π1Mi–invariant;
‚ diampϕV pπ1Miqq is uniformly bounded for all V P S´ tU1, . . . , U`u;
‚ for each i P t1, . . . , `u, ϕUipπ1Miq is a quasi-line in CpUiq;
‚ the hierarchically quasiconvex hull of π1Mi is quasi-isometric to Z`.

Since π1Mi is strongly quasiconvex in π1M , it is undistorted and the hierarchically qua-
siconvex hull of π1Mi is uniformly close to π1Mi in π1M . Hence π1Mi acts properly and
cocompactly on its hierarchically quasiconvex hull. As π1Mi it virtually Z3, this implies the
number ` in the bulleted properties is 3. Hence, we can make an HHG (and not just HHS)
structure for π1Mi by using the three quasilines ϕU1pπ1Miq, ϕU2pπ1Miq, ϕU3pπ1Miq and a
finite number of bounded diameter spaces (this is the standard HHG structure on Z3 with
the ϕU3pπ1Miq replacing the x, y, z axes). By [PS23, Theorem 4.4], this means Mi must be
an octahedral flat manifold. �

Remark 3.4 (Concrete description of octahedral flat 3–manifolds). Combining [Hag14]
and [Hod20], a crystallographic group is octahedral (in any dimension) if and only if it is
cocompactly cubulated if and only if it is Helly. In [PS23], it is shown that for crystallo-
graphic groups, this is equivalent to being an HHG. However, the octahedral flat 3–manifolds
can be explicitly listed, following Scott [Sco83]. Specifically, if M is a compact orientable
flat 3–manifold, M is octahedral if and only if is one of the following:

‚ the 3–torus;
‚ made by gluing opposite faces of a cube with a 1

2 or 1
4 twist, on one pair;

‚ made by gluing opposite faces of a hexagonal prism with a 1
3–twist of the hexagonal

faces;
‚ the Hantzsche–Wendt manifold, which has point group pZ{2Zq2.

The third one is tricky to visualise as octahedral, but here is an explanation in pictures
instead of matrices. Consider the tiling of E3 by hexagonal prisms; this is the universal
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cover of M and so π1M acts freely with quotient the 3–manifold described above. In
Figure 2, we show one of these cells, P .

Figure 2. The 1
3–twist prism manifold is octahedral. The set of planes

through lines of the same colors are preserved by the 1
3–twist.

Consider the six coloured segments in the figure, three in each of the two hexagonal faces
of P . As indicated by the colours/labels, these come in three pairs of parallel segments,
with each hexagonal face contributing one of the segments in each pair. Each parallel pair
lies in a uniquely determined plane in E3. This set of three planes is invariant under an
order 3 rotation of P about the central vertical line. Hence the π1M–orbit of this family
of 3 planes is a set of planes in E3 falling into three parallelism classes. Cubulating the
resulting wallspace (see e.g. [CN05]) therefore gives a proper cocompact action of π1M on
the standard tiling of R3 by 3–cubes, whence π1M is octahedral by [Hag14] or [Hod20]. One
can also directly compute a basis invariant under the point group.

According to [Sco83], there is only one more compact oriented flat 3–manifold. This is
also constructed from a hexagonal prism by identifying opposite faces, but the hexagons are
identified using a 1

6 twist. (So, one can still cubulate π1M as above, but this gives an action
on R6, which is not cocompact.) This manifold is not octahedral since O3pZq does not have
an orientation-preserving element of order 6.

4. Quasi-lines from quasimorphisms

We now use quasimorphisms to construct the actions on quasi-lines. This is both an
essential ingredient in our construction of a combinatorial HHS for an admissible graph of
group and the key to proving that central extensions of Z by hyperbolic groups are HHGs.

We first build quasimorphisms for central extensions where the center is unbounded.

Lemma 4.1. Suppose that the central extension of groups Z ι
ÝÑ G

π
ÝÑ F corresponds to

a bounded element of H2pF,Zq. Then there exists a quasimorphism φ : G Ñ Z which is
unbounded on ιpZq.

Proof. The fact that the cohomology class associated to the central extension is bounded
implies that there exists a (set-theoretic) section s : F Ñ G so that there are only finitely
many possible values of spf1qspf2qspf1f2q

´1 as f1, f2 vary in F . Hence, if we define c P
H2pF,Zq by cpf1, f2q “ ι´1

`

spf1qspf2qspf1f2q
´1
˘

, then the absolute value of cpf1, f2q is
bounded independently of f1, f2.
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We now define φ. Any x P G can be written in a unique way as spfxqιptxq for fx P F and
tx P Z. Hence we can set φpxq “ tx. To show that φ is a quasimorphism note that, since
ιpZq is central and spf1qspf2q “ ιpcpf1, f2qqspf1f2q, we have

xy “ spfxqιptxqspfyqιptyq “ spfxqspfyqιptx ` tyq “ spfxfyqιpcpfx, fyq ` tx ` tyq.

Hence, φpxyq “ φpxq`φpyq` cpfx, fyq, and we are done since the absolute value of cpfx, fyq
is uniformly bounded. �

We now use quasimorphisms to show that the vertex groups of an admissible graph of
groups have the desired action of a quasi-line.

Lemma 4.2. Let G “ pΓ, tGµu, tGαu, tταuq be an admissible graph of groups. For each
edge α of G, denote Cα “ ταppτᾱq

´1pZα´qq ă Gα`. Each vertex group Gµ has an infinite
generating set Sµ so that the following hold.

(1) CaypGµ, Sµq is quasi-isometric to a line,
(2) the inclusion Zµ ãÑ CaypGµ, Sµq is a Zµ–equivariant quasi-isometry,
(3) for each edge α with α` “ µ, Cα is bounded in CaypGµ, Sµq (in fact, the bound is

uniform over all α, µ since there are finitely many).

Proof. By [ABO19, Lemma 4.15], if one can find an unbounded homogeneous quasimorphism
φ̄ : Gµ Ñ R, then there exists a generating set Sµ such that CaypGµ, Sµq is quasi-isometric
to a line and an element g P G acts loxodromically if and only φ̄pgq ‰ 0. In particular, items
(1), (2) and (3) are equivalent to the existence of a quasimorphism φ : Gµ Ñ R so that
φpZµq is unbounded, but φpCαq is uniformly bounded for all edges α with α` “ µ (then φ̄
is the homogenization of φ). Note that each Cα does not intersect Zµ in Gµ. Hence, the
quotient map πµ : Gµ Ñ Fµ is injective on Cα and we have that πµpCαq ă πµpταpGαqq is
infinite.

We now construct certain auxiliary quasimorphisms. The first one, φµ, is just the
homogenization of the quasimorphism from Lemma 4.1, which we can apply by condi-
tion Definition 2.13.(2) and the fact that every cohomology class of a hyperbolic group
is bounded [Min01]. The other ones are constructed as follows. We claim that for each
edge α of G with α` “ µ, there is a homogeneous quasimorphism ψα : Fµ Ñ R so that
ψαpπµpcαqq “ 1, where cα is a fixed generator of Cα, and ψαpcα1q “ 0 for all other edges α1
with α1` “ µ.

By Lemma 2.14, Fµ is hyperbolic relative to the subgroups πµpταpGαqq for edge of G with
α` “ µ. In particular the subgroups πµpταpGαqq are (jointly) hyperbolically embedded
in Fµ. We can then appeal to [HO13, Theorem 4.2] to find the required quasimorphism.
(The construction of Epstein–Fujiwara [EF97] should also be applicable to construct such
quasimorphisms).

Let φα “ ψα ˝ πµ and observe that

φ :“ φµ ´
ÿ

α`“µ

φµpcαqφα

satisfies all the required properties. Thus, φ is the desired quasimorphism. �

To prove the first two bullet points of Lemma 4.2, we do not need the full definition of an
admissible graph of groups. That is, if we have a central extension of groups Z ãÑ G

π
� F
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corresponds to a bounded element of H2pF,Zq, then [ABO19, Lemma 4.15] says the quasi-
morphism from Lemma 4.1 produces a generating set S for G so that CaypG,Sq is a quasi-
line where the inclusion of the central Z is a Z–equivariant quasi-isometry. This construction
allows us to prove all such central extension are HHG.

Corollary 4.3. If a group G is a central extension Z ãÑ G
π
� F where Z is an infinite

cyclic group and F is a hyperbolic group, then G is a hierarchically hyperbolic group.

Proof. Let z be the generator for Z and J be a finite symmetric generating set for G that
contains z. We will identify F with the quotient G{Z and write elements of F as coset of
Z. As described in the paragraph before Corollary 4.3, there is a generating set S for G
so that CaypG,Sq is a quasi-line and the inclusion of Z into CaypG,Sq is a Z–equivariant
quasi-isometry. Let L “ CaypG,Sq and H “ CaypF, πpJqq. We will prove that the diagonal
action of G on LˆH is metrically proper and cobounded (where we fix, say, the `1–metric
on said product). This will imply that G is an HHG as any group acting metrically properly
and coboundedly on a product of hyperbolic spaces preserving the factors is an HHG; see
[BHS19, Section 8.3] or [Hug22, Proposition 3.1].

To prove coboundedness, let r be large enough that every point in L is within r of an
element of Z. Hence, for any vertex pk, hZq of L ˆ H, there is a power zn of z so that
dLpk, z

nhq ď 2r. Thus znh ¨ p1, Zq “ pznh, hZq is within 2r of pk, hZq and hence the action
of G of LˆH is cobounded.

Moving on to metric properness, let BLprq and BHprq be the balls of radius r ě 0 around
the identity element in L and H respectively. Since G acts coboundedly on L ˆH, every
bounded diameter set of LˆH is contained in some G–translate of BLprqˆBHprq for some r.
Hence it suffices to prove that the set of g P G such that gpBLprqˆBHprqqXBLprqˆBHprq ‰
H is finite.

If gpBLprqˆBHprqqX pBLprqˆBHprqq ‰ H, then gB˚prqXB˚prq ‰ H for ˚ “ L or H.
The set tg P G : gBHprq X BHprq ‰ Hu is contained in the set tg P G : dHpgZ, Zq ď 2ru.
However, because F is finitely generated, the later is the union of finitely many cosets of
Z. Now, since orbit maps of the action of Z on L are quasi-isometries, each coset of Z can
only contain finitely many element g for which gBLprqXBL ‰ H. Together, these say that
the set

 

g P G : g
`

BLprq ˆBHprq
˘

X
`

BLprq ˆBHprq
˘

‰ H
(

is finite. �

We now translate the content of Lemma 4.2 into the language and notation of Bass–Serre
space. Firstly, let us introduce the analogues of CaypGµ, Sµq.

Definition 4.4 (Space Lv). Let G “ pΓ, tGµu, tGαu, tτα˘uq be an admissible graph of
groups. Let X be the Bass–Serre space associated to G and T be the Bass–Serre Tree of G.
For each vertex µ of G, let Sµ be a generating set of Gµ as in Lemma 4.2. Without loss of
generality we can assume Jµ Ď Sµ, where Jµ is the fixed finite generating set of Gµ. For a
vertex v P T with µ “ v̌, let gGµ be the corresponding coset of Gµ. Define Lv to be the graph
with vertex set gGµ and edges connecting x, y P gGµ if x´1y P Sµ. Since Lv is obtained
from Xv by adding extra edges to the same vertex set, there is a distance-non-increasing
map pv : Xv Ñ Lv that is the identity on the vertices.
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Proposition 4.5. Let G be an admissible graph of groups with Bass–Serre tree T and Bass–
Serre space X. Let e be an edge of T , with v “ e` and w “ e´. Let g, h P G be such that
gZw̌ Ď τēpXwq Ă Xw and hZv̌ Ď Xv. There exists ξ ě 1, depending only on G, so that:

(1) diamppv ˝ τe ˝ τ
´1
ē pgZw̌qq ď ξ.

(2) The restriction of pv to hZv̌ (seen with the induced metric of Xv) is a pξ, ξq–quasi-
isometry. In particular, the cosets hZv̌ are undistorted in Xv.

(3) Let x P Xv. Then

dXvpx, τe ˝ τ
´1
ē pgZw̌qq ď ξdLvppvpxq, pv ˝ τe ˝ τ

´1
ē pgZw̌qq ` ξ

Proof. Item (1) is a verbatim translation of Lemma 4.2.(3) in the setting of Bass–Serre
spaces. The bound is independent of e, g, h since there are finitely many orbits of vertices
and edges.

For the proof of (2), fix a representative h of hZv̌. This determines a map Zv̌ Ñ hZv̌
defined as z ÞÑ hz. Note that this maps is not canonical, as it depends on the choice of h, but
this will not be a problem. We consider three different metrics on the set Zv̌: the intrinsic
word metric dZ on CaypZv̌q, the restriction of pXv, dXvq using the inclusion Zv̌ Ñ hZv̌ Ď Xv

and the restriction of pLv, dLvq using the map pv. In particular, by choosing an appropriate
generating set on CaypZv̌q, the maps CaypZv̌q Ñ phZv̌, dvq Ñ phZv̌, dLq are all distance
non-increasing. By Lemma 4.2.(2), the composition is a quasi-isometry, yielding that the
pv|hZv̌ : phZv̌, dvq Ñ Lv is a quasi-isometry.

For the proof of (3), we will denote τe ˝ τ´1
ē pgZw̌q by Ce. Let x P τepXeq and x1 P Ce

so that dXvpx,Ceq “ dXvpx, x
1q. Now, there exist g P G so that x is contained in the coset

gZv̌ in Xv. Because we have proved Item (2), there is κ ě 1, depending only on G so that
the restriction of pv to gZv̌ is a pκ, κq–quasi-isometry. In particular, there must be x̄ P Ce
so that dLvppvpx̄q, pvpgZv̌qq ď κ. Moreover, we can choose κ so that diamppvpCeqq ď κ as
well. Using that pv : Xv Ñ Lv is distance non-increasing, we now have

dLvpx, x
1q ď dXvpx, x

1q ď dXvpx, x̄q ď κdLvppvpxq, pvpx̄qq`κ ď κdLvppvpxq, pvpx
1qq`κ2`κ,

which implies

dLvppvpxq, pvpCeqq ď dXvpx,Ceq ď κdLvppvpxq, pvpCeqq ` κ
2 ` κ.

The result follows by taking ξ “ κ2 ` κ. �

We remark that the statements of Proposition 4.5 are concerned only with the metrics of
the vertex spaces Xv and not on the metric on all of X, where Xv and Xe maybe distorted.
In the sequel, we will often use Proposition 4.5 to establish a uniform bound on distances
in Xv or Xe and then use Lemma 2.12 to translate this into a uniform bound on distances
in X.

5. Defining a combinatorial HHS: a blow-up of the Bass–Serre tree

In this section, we describe how to construct the simplicial complex and graph that make
a combinatorial HHS for an admissible graph of group. We prove that this construction
satisfies the requirements of Theorem 2.24 in Section 6.

For the remainder of this section, let G “ pΓ, tGµu, tGαu, tταuq be an admissible graph
of groups (Definition 2.13) and fix G “ π1G. As in Section 2.2, we fix generating sets Jµ
and Jα for the vertex and edge groups of G. Let T denote the Bass–Serre tree of G and
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X the Bass–Serre space from Definition 2.10. For vertices v and edges e of T , Xv and
Xe will denote the vertex and edge spaces of X respectively. Recall that T p0q is the set
tgGµ : g P G,µ P V pGqu and that for each v P T p0q, the elements of Xp0qv are precisely the
elements of the coset gGµ “ v. For an edge e of T , the maps τe and τē denote the maps
from the edge space Xe into the vertex spaces Xe` and Xe´ “ Xē` described in Definition
2.10.

We also fix the generating sets Sµ from Lemma 4.2 for the vertex groups Gµ that produce
Cayley graphs that are quasi-lines. Accordingly, for each vertex v P T p0q we have the
quasi-line Lv from Definition 4.4, which is the Cayley graph of the coset gGµ “ v with
respect to the generating set Sµ. As described in Definition 4.4, there is a 1–Lipschitz map
pv : Xv Ñ Lv.

The simplicial complex for our combinatorial HHS will be the following complex SpT q
that is a “blow-up” of the Bass–Serre tree T to include the vertices of each vertex space Xv

at each vertex v P T .

Definition 5.1. Let Q “
Ů

vPT p0q X
p0q
v . Define the function ν : T p0q \ Q Ñ T p0q as the

identity on T p0q and as νpsq “ v if s P Xv.
Let SpT q be the flag simplicial complex with vertex set T p0q \ Q and the following two

types of edges. First, each s P Q is connected to νpsq. Second, two vertices s, t P SpT q
are connected if νpsq, νptq are adjacent in T . Observe that ν extends to a simplicial map
SpT q Ñ T that we still denote ν.

Having constructed our simplicial complex, we now need to define a graph W whose
vertices are the maximal simplices of SpT q. We start be describing the maximal simplices
of SpT q.

Lemma 5.2 (Maximal simplicies in SpT q). The maximal simplices of SpT q are exactly the
simplices of the form ts, νpsq, t, νptqu, where s, t P SpT qp0q´T p0q and νpsq, νptq are adjacent
in T . We denote such a simplex by Σps, tq.

Proof. Consider a simplex Σ “ ts, νpsq, νptq, tu of SpT q, where νpsq, νptq are adjacent in T .
Suppose that Σ is non-maximal. There then exists a vertex u of SpT q that is adjacent to
each of s, νpsq, t, νptq. Since ν is simplicial, this means that νpuq is equal to, or adjacent
to, each of νpsq, νptq. Since T is triangle-free and νpsq, νptq are adjacent, νpuq cannot be
adjacent to both νpsq and νptq, so, without loss of generality, νpuq “ νpsq. Since u is
different from s and νpsq, we therefore have that ν´1pνpsqq contains a 3–cycle with vertices
s, u, νpsq. This contradicts the definition of SpT q. Thus Σ is a maximal simplex.

Conversely, let Σ be a maximal simplex of SpT q. Since ν : SpT q Ñ T is simplicial, νpΣq is
either a vertex of T or an edge of T . If νpΣq is a vertex, then T has some vertex v adjacent
to νpΣq as T is a connected graph with at least two vertices. But then v ‹ Σ is a simplex
of SpT q properly containing Σ. Hence νpΣq must be an edge joining two vertices, νpsq and
νptq, of T . So, Σ has the form ∆s ‹ ∆t, where ∆s is a simplex projecting to νpsq and ∆t

projects to νptq. Maximality of Σ implies that ∆s,∆t are edges, as required. �

Our goal is to define the edges in W so that G has a metrically proper and cobounded
action onW , and so that we can verify the conditions of a combinatorial HHS. To accomplish
the former, we want to associate to each maximal simplex Σps, tq a uniformly bounded



EQUIVARIANT HHS VIA QUASIMORPHISMS 26

diameter subset of X and then declare two maximal simplices to be joined by any edge if
their corresponding bounded diameter subsets are close in X. To facilitate this, we use the
following “coarse level sets” of the map pv : Xv Ñ Lv from Definition 4.4.

Definition 5.3 (“Level surfaces”). Let v P T p0q and s P Xp0qv . For r ě 0, define σrpsq to be
the set

σrpsq :“ tx P Xv : dLvppvpsq, pvpxqq ď ru.

While we will not use this fact directly, it is helpful to think of the vertex spaces Xv as
having a product structure in which the subspaces parallel to one factor are the σrpsq and
the subspaces parallel to the other factors are cosets of the gZµ. Thus, if one compares to
the motivating case of a graph manifold, we can think of the σrpsq as the “level surfaces” of
the vertex spaces and the gZµ (which are quasi-isometric to the Lv) can be thought of as
“lines”.

The intersection of these “level surfaces” gives us a bounded diameter subset of X asso-
ciated to a maximal simplex.

Definition 5.4 (Coarse points of maximal simplices). Let Ncp¨q denote the c–neighborhood
of a set in X. Given s, t P SpT qp0q ´ T p0q so that νpsq and νptq are joined by an edge e of T
with e` “ νpsq, define

Prps, tq :“ N1pσrpsqq XN1pσrptqq.

Since σrpsq and σrptq are in different vertex spaces (Xv vs Xw), Prps, tq is precisely the set
of vertices x P Xe so that τepxq P σtpsq and τēpxq P σrptq.

Lemma 5.5. There exists r0 ą 0 such that for all r ě r0 there exists ξ ě 0 so that the
following holds. Let s, t P SpT qp0q ´ T p0q be such that νpsq, νptq are joined by an edge of T .
Then

‚ Prps, tq is non-empty and has diameter at most ξ;
‚ the map ps, tq Ñ Prps, tq is a pξ, ξq–coarsely Lipschitz, ξ–coarse map from Lνpsq ˆ
Lνptq to X.

Proof. Let v “ νpsq and w “ νptq, then let e be the edge of T from e´ “ w to e` “ v. The
key tool for the proof is the following quasi-isometry from Xe to Lv ˆ Lw.

Claim 5.6. For each edge e of T , the diagonal map Φe : Xe Ñ Le` ˆ Le´ given by

Φepxq “ ppe` ˝ τepxq, pe´ ˝ τēpxqq

is a uniform quasi-isometry with Φepg ¨ xq “ g ¨ Φepxq for each g P StabGpeq and x P Xe.

Proof. Let e` “ v, e´ “ w, then let µ “ v̌, ω “ w̌, and α “ ě. Equip Gα with the metric
coming from CaypGα, Jαq and gtαZµ, gZω with the metrics as subsets of Xv. By Proposition
4.5.(2), this metric is quasi-isometric to any intrinsic metric on the cosets coming from a
finite generating set of Zµ and Zω.

Let g P G so that w is the coset gGω and v is the coset gtαGµ. If we let zµ and zω be
arbitrary elements of Zµ and Zω respectively, define φ : gtαZµ ˆ gZω Ñ Gα by

pgtαzµ, gzωq ÞÑ τ´1
α pzµqτ

´1
ᾱ pzωq.

Definition 2.13 says Gα – Z2 and that xτ´1
α pZµq, τ

´1
ᾱ pZωqy is a finite index subgroup of Gα.

Hence, φ is a quasi-isometry.
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Now define a map θ : Gα Ñ Xe by θpaq “ τ´1
ē pgτᾱpaqq. The construction of the Bass–

Serre space tells us θ gives an isometry θ : CaypGα, Jαq Ñ Xe. Moreover, θpaq also equals
τ´1
e pgtαταpaq for each a P Gα. Thus, we have

pv ˝ τepθpφpgtαzµ, gzωqqq “ pvpgtαzµq and pw ˝ τēpθpφpgtαzµ, gzωqqq “ pwpgzωq

for each zµ P Zµ and zω P Zω. As pv|gtαZµ and pw|gZω are uniform quasi-isometries by
Proposition 4.5.(2), pv ˆ pw : gtαZ ˆ gZω Ñ Lv ˆ Lw is a quasi-isometry. Hence,

ppv ˆ pwq ˝ pτe ˆ τēq “ ppv ˆ pwq ˝ φ
´1 ˝ θ´1

is a quasi-isometry (here φ´1 is any quasi-inverse of φ that inverts φ on its image).
The constants of all these quasi-isometries can be chosen independent of α because G has

finitely many edges. �

Let Φe : Xe Ñ Lv ˆ Lw be the quasi-isometry

xÑ ppvpτēpxqq, pwpτepxqqq

from Claim 5.6. Because Φe is coarsely onto, there exists x P Xe and r0 ą 0 so that
pv ˝ τepxq is within R0 of pvpsq in Lv and pw ˝ τēpxq is within r0 of pwptq in Lw. Thus,
x P N1pσrpsqq XN1pσrptqq “ Prps, tq is non-empty for each r ě r0.

When Prps, tq is non-empty, then ΦepPrps, tqq Ď pvpσrpsqqˆpwpσrptqq, which is a bounded
diameter subset of Lv ˆ Lw. Since Φe is a quasi-isometry and the inclusion of Xe into X is
1-Lipschitz, Prps, tq is then a bounded diameter subset of both Xe and X.

Finally, the map Ψe : Lv ˆ Lw Ñ Xe given by ps, tq Ñ Prps, tq is a quasi-inverse of Φe.
Since the inclusion of Xe into X is 1-Lipschitz, the extension Ψe into X will be coarsely
Lipschitz (and in fact uniformly so since there are only finitely many orbits of edges). �

We can now define the edges in our graph W , relying on the “level surfaces” σrpsq from
Definition 5.3 and coarse points Prps, tq that arise as their intersections as in Definition 5.4.

Definition 5.7. (W–edges.) For r,R ą 0, let W “ Wr,R be the graph defined as follows.
The vertices of W are the maximal simplices of SpT q. Two simplices Σps, tq and Σps1, t1q
are adjacent if and only if one of the following holds.

‚ νpsq “ νps1q and dXpPrps, tq, Prps1, t1qq ď R.
‚ s “ s1 and dXpσrptq, σrpt1qq ď R` 2.

Remark 5.8. In both cases, being joined by an edge of W implies that the two maximal
simplices share a common vertex of T .

The first type of edge of W is needed to assure that W is quasi-isometric to the Bass–
Serre space X. The second type is needed to arrange a fine combinatorial constraint in the
definition of combinatorial HHS. To prove that G acts metrically properly on W we start
by showing the second type of edges gives a similar bound to the first type.

Proposition 5.9. There exists r1 ě 0 so that for each r ě r1, there exists a monotone
diverging function Φ: r0,8q Ñ r0,8q so that the following holds. Consider two vertices
v1, v2 of the Bass–Serre tree T at distance 2 from each other, with w being the vertex at
distance 1 from both. Suppose that t1, t2, s P SpT qp0q ´ T p0q are such that νptiq “ vi and
νpsq “ w. Then

dXpPrps, t1q, Prps, t2qq ď ΦpdXpσrpt1q, σrpt2qqq.
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Proof. The bulk of the technical work of the proposition is contained in the following claim.

Claim 5.10. There exist r1 ě 0 so that for every r ě r1 there is a constant c ě 0 and
a monotone diverging function Φ1 : r0,8q Ñ r0,8q so that the following holds. Let s, t P
SpT qp0q ´ T p0q so that v “ νptq and w “ νpsq are joined by an edge e of T with e` “ v and
e´ “ w. Let µ “ v̌ and ω “ w̌ .

(1) If g P G is so that gZµ Ď Xv, then σrptq X gZµ ‰ H. Equivalently, if gZω Ď Xw,
then σrpsq X gZω ‰ H.

(2) There exist g P G (depending on t), so that gZω Ď τēpXeq and

τepτ
´1
ē pgZωqq Ď σrptq X τepXeq Ď Ncpτepτ

´1
ē pgZωqq.

(3) For each x P σrptq there exists x1 P τepXeqXσrptq with dXpx, x1q ď Φ1pdXpx, τepXeqqq.
(4) If g1, g2 P G so that giZω Ď Xw for i “ 1, 2, then

dXpg1Zω X σrpsq, g2Zω X σrpsqq ď Φ1pdXpg1Zω, g2Zωqq.

Proof. Proof of (1): By Proposition 4.5.(2), the restriction of pv to any coset gZµ Ď Xv is a
uniform quasi-isometry. In particular, pvpgZµq uniformly coarsely covers Lv. Hence, there is
some r1 ě 0 so that for all r ě r1, pvpσrptqqXpvpgZµq ‰ H, which implies σrptqXgZµ ‰ H.
Proof of (2): The set of cosets gZω so that gZω Ď τēpXeq partition τēpXeq. Since τē is

injective, the images of these cosets under τ´1
ē will partition Xe. Since pv ˝ τepXeq coarsely

covers Lv (Proposition 4.5.(2)), this partition implies there must be an r11 ě 0 and a coset
gZω Ă τēpXeq so that pvpσr11ptqqXpvpτeτēpgZωqq ‰ H. By Proposition 4.5.(1), the diameter
of pvpτeτēpgZωqq is uniformly bounded. Hence there is some r1 ě r11, so that whenever
r ě r1, we have

τeτ
´1
ē pgZωq Ď σrptq X τepXeq.

Now consider x P σrptq X τepXeq. By construction, dLvppvpxq, pvpτeτ
´1
ē pgZωqqq ď 2r, so

the fact that x is uniformly close in Xv to τepτ´1
ē pgZµqq follows from Proposition 4.5.(3).

Since the inclusion Xv Ñ X is distance non-increasing, there is c ě 0 depending on G and
r so that dXpx, τepτ´1

ē pgZµqq ď c.
Proof of (3): Let r1 be the lower bound from the proof of Item (1) so that for all r ě r1,

σrptq X gZµ ‰ H when gZµ Ď Xv. Fix x P σrptq, and let x̄ P τepXeq be a point realizing
dXpp, τepXeqq. There exists some coset gZµ P τepXeq such that x̄ P gZµ (because the cosets
partition Xv). Let x1 be a point of the intersection σrptq X gZµ. As x, x1 P σrptq, we have

|dLvppvpx̄q, pvpxqq ´ dLvppvpx̄q, pvpx
1qq| ď r.

By Proposition 4.5.(2), the map pv : gZµ Ñ Lv is a pκ, κq–quasi-isometry for some κ ě 1
determined by G. As x̄ and x1 both belong to gZµ, we have

dXpx̄, x
1q ď dXvpx̄, x

1q ďκdLvppvpx̄q, pvpx
1qq ` κ

ďκdLvppvpx̄q, pvpxqq ` κr ` κ

ďκ2dXvpx̄, xq ` κ
3 ` κr ` κ

By applying Lemma 2.12, the above bound on dXpx̄, x1q in terms of dXvpx̄, xq produces
a diverging monotone function Φ1 : r0,8q Ñ r0,8q so that dXpx̄, x1q ď Φ1pdXpx̄, xqq. The
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triangle inequality now yields

dXpx, x
1q ď dXpx, x̄q ` dXpx̄, x

1q ď dXpx, x̄q ` Φ1pdXpx, x̄qq.

Since dXpx, x̄q “ dXpx, τepXeqq, this completes the proof of (3).
Proof of (4): Let r1 be the lower bound from the proof of Item (1) so that for all r ě r1,

σrpsq X gZω ‰ H when gZω Ď Xw. Given g1Zω and g2Zω in Xw, let xi P giZω so that
dXpx1, x2q “ dXpg1Zω, g2Zωq. Let z1, z2 be the elements of Zω so that xi “ gizi for i “ 1, 2.

We can assume that x1 P σrpsq X g1Zω by the following argument. Suppose z is the
element of Zω so that g1z is a point in σrpsq X g1Zω. Because Zω is central in Gω, we have

zz´1
1 x1 “ zz´1

1 g1z1 “ g1z P σrpsq X g1Zω

and
zz´1

1 x2 “ zz´1
1 g2z2 “ g2zz

´1
2 z1 P g2Zω.

Hence zz´1
1 x1 P σrpsq and zz´1

1 x2 are points in g1Zω and g2Zω that realise dXpg1Zω, g2Zωq.
We can now proceed by a very similar argument as Item (3) using Lw instead of Lv. Let

y2 be a vertex in σrpsqX g2Zω. After replacing gZµ with g2Zω and Lv with Lw in the proof
of Item (3), we can repeat the same calculations with x1 “ x, x2 “ x̄, and y2 “ x1, to
produce

dXpx1, y2q ď dXpx1, x2q ` Φ1pdXpx1, x2qq.

Since x1 P σrpsqXg1Zω, y2 P σrpsqXg2Zω, and dXpx1, x2q “ dXpg1Zω, g2Zωq, this completes
the proof of (4) with the same function Φ1 as in the proof of (3). �

We now use Claim 5.10 to prove Proposition 5.9. Let t1, t1, s P SpT qp0q ´ T p0q be such
that νptiq “ vi, νpsq “ w and dT pv1, v2q “ 2 with w the only vertex at distance one from
both. Let ei be the edge of T such that e`i “ vi, e´i “ w. Let r ě r1 where r1 ě 0 is the
lower bound on r from Claim 5.10. Consider points xi P σrptiq so that

dXpx1, x2q “ dXpσrpt1q, σrpt2qq :“ d.

We have to show that the Prps, t1q and Prps, t1q are at most some function of d apart in
X. Because the edge spaces separate X, we have dXpxi, τeipXeiqq ď d. By Claim 5.10.(3),
there are points x1i P τeipXeiq X σrptiq such that dXpx11, x12q ď d ` 2Φ1pdq. Setting ω “ w̌,
Claim 5.10.(2) gives us c ě 0 and gi P G so that each giZω Ď Xw and

τepτ
´1
ē pgiZωqq Ď σrptiq X τepXeq Ď Ncpτepτ

´1
ē pgiZωqq.

Since the map τe ˝ τ´1
ē moves points distance at most 2, we have

dXpg1Zω, g2Zωq ď dXpx
1
1, x

1
2q ` 2pc` 2q ď d` 2Φ1pdq ` 2c` 4.

Applying Claim 5.10.(4), we have points x2i P giZµ X σrpsq with

dXpx
2
1, x

2
2q ď Φ1pdXpg1Zµ, g2Zµqq ď Φ1pd` 2Φ1pdq ` 2C ` 4q.

The points x2i are not quite in Prps, tiq, but because τepτ´1
ē pgiZωqq Ď σrptiq X τepXeq, we

have
τ´1
ēi px

2
i q P τ

´1
ei pσrptiqq.

Since x2i P σrpsq X giZω, we also have

τ´1
ēi px

2
i q P τ

´1
ēi pσrpsqq.
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Hence
τ´1
ēi px

2
i q P Prps, tiq,

which implies
dXpPrps, t1q, Prps, t2qq ď Φ1pd` 2Φ1pdq ` 2C ` 4q ` 2,

as desired for Proposition 5.9. �

Lemma 5.11. Let r0 and r1 be as in Lemma 5.5 and Proposition 5.9 respectively. For all
r ą maxtr0, r1u there is R0 “ R0prq ě 0 so that

‚ for all R ą R0 the graph Wr,R is connected;
‚ the G–action on Wr,R by g ¨ Σps, tq “ Σpgs, gtq is metrically proper and cobounded.

Proof. Fix r ě maxtr0, r1u and let W “Wr,R for a choice of R decided below.
W is connected: Because the Bass–Serre tree T is connected, given any two maximal

simplices Σps, tq,Σps1, t1q of SpT q, we can find a sequence of maximal simplices Σpsi, tiq so
that νpΣpsi, tiqq produces a path in T from νpΣps, tqq to νpΣps1, t1qq. Hence, it suffices to
prove that two vertices Σps, tq,Σps1, t1q P W with νpsq “ νps1q can connected by a path in
W .

First assume νpsq “ νps1q and νptq “ νpt1q. Then Prps, tq and Prps1, t1q are both subsets
of Xe. Let e be the edge of T between νpsq and νptq and let h be an element of G so
that StabGpeq “ hGěh

´1. Because StabGpeq acts transitively on the vertices of Xe, there is
k P StabGpeq so that Prpks, ktq X Prps1, t1q ‰ H and hence Σpks, ktq is joined by a W–edge
to Σps1, t1q. Because StabGpeq is generated by the finite set hJěh´1, Σps, tq will be connected
to Σpks, ktq—and hence Σps1, t1q—if Σpgs, gtq is connected to Σps, tq by a W–edge for each
g P hJěh

´1. There exists R1 ě r depending only on Jě so that dXepPrps, tq, Prpgs, gtqq ď R1

for all g P hJěh´1. Thus, Σpgs, gtq is connected to Σps, tq by a W–edge for each g P hJěh´1

provided R ě R1.
Now assume νpsq “ νps1q, but νptq ‰ νpt1q. Let e1 be the edge of T from νptq to

νpsq and e2 be the edge of T from νpt1q to νps1q “ νpsq. Let v “ νpsq and h be an
element of G so that StabGpvq “ hGv̌h

´1. Because StabGpvq acts transitively on the
vertices of Xv, there is k P StabGpvq so that k ¨ τe1pPrps, tqq X τe2pPrps

1, t1qq ‰ H. Thus,
dXpPrpks, ktq, Prps

1, t1qq ď 2. Hence, if R ě 2, then Σpks, ktq is joined by a W–edge to
Σps1, t1q. Because StabGpvq is generated by the finite set hJv̌h´1, Σps, tq will be connected
to Σpks, ktq if Σpgs, gtq is connected to Σps, tq by a W–edge for each g P hJv̌h

´1. There
exist R2 ě r depending only on Jv̌ so that dXpτe1pPrps, tqq, gτe1pPrps, tqqq ď R2 for all
g P hJv̌h

´1. Thus, dXpPrpgs, gtq, Prps, tqq ď R2 ` 2 for all g P hJv̌h´1 and hence Σpgs, gtq
is connected to Σps, tq be a W–edge for each g P hJv̌h´1 whenever R ě R2 ` 2.

Because R1 and R2 depend only on the choice of finite generating set for the vertex and
edge groups of G, they can be chosen to be uniform for each vertex and edge of G. Thus,
W is connected whenever R ě R0 “ R1 `R2 ` 2.
G acts properly: Let KW be a bounded subset of W and let KX be the subset of X

that is the union
Ť

Σps,tqPKW
Prps, tq. We note that when we have W–adjacent maximal

simplices Σps, tq,Σps1, t1q then dXpPrps, tq, Prps
1, t1qq is uniformly bounded. Indeed, if the

W–edge is as in the first bullet of Definition 5.7, this is clear, and otherwise this follows
from Proposition 5.9. Therefore, KX is a bounded subset of X. Since the action of G on
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X is metrically proper, the set tg P G : KX X gKX ‰ Hu is finite. Now,

tg P G : KW X gKW ‰ Hu Ď tg P G : KX X gKX ‰ Hu

because whenever Σps, tq and gΣps, tq are both in KW , Prps, tq and gPrps, tq are both con-
tained in KX . As the latter set is finite, the claim follows.
G acts coboundedly: Since W is connected and G acts cofinitely on the edges of

T , it suffices to prove that for any edge e of T , any two maximal simplices of SpT q that
contain the edge e have StabGpeq translates that are W–adjacent. Let Σps, tq and Σps1, t1q
be two maximal simplices that contain the edge e. Since StabGpeq acts transitively on
the vertices of Xe, there exists g P StabGpeq so that Prpgs, gtq X Prps

1, t1q ‰ H. Thus,
dXpPrpgs, gtq, Prps

1, t1qq ď R and Σpgs, gtq is W–adjacent to Σps1, t1q as desired. �

6. Verification of combinatorial HHS axioms

We now verify that the pair pSpT q,W q from Section 5 is a combinatorial HHS. For our
admissible graph of groups G, we fix the same notation as the beginning of Section 5 and
let SpT q be the simplicial complex from Definition 5.1 for G. We continue to use Σps, tq to
denote the maximal simplex of SpT q determined by s, t P SpT qp0q ´ T p0q (see Lemma 5.2)
and let σrpsq and Prps, tq be the sets from Definition 5.3 and 5.4 respectively.

Fix r ě 0 and R ě 0 large enough that Lemma 5.11 ensures the graph Wr,R is connected
and has a metrically proper and cobounded action of G. Moreover, choose R to be larger
than 2ξ where ξ “ ξprq is the constant from Lemma 5.5. With these values of r and R
fixed, we let W “Wr,R.

Our proof that pSpT q,W q is a combinatorial HHS is spread over three subsections. Section
6.1 contains a description of the links of the non-maximal simplices of SpT q and verifies parts
(I), (IV), and (V) of the definition of a combinatorial HHS (Definition 2.23). This section
also includes a proof that the action of G on SpT q has finitely many orbits of links of
simplices. Section 6.2 proves the augmented links Cp∆q for simplices are hyperbolic, while
Section 6.3 prove that they quasi-isometrically embed in the space Y∆. These are condition
(II) and (III) of Definition 2.23.

6.1. Simplices, links, and the combinatorial conditions. We now describe the com-
binatorics of simplices and their links in SpT q and then verify three of the conditions for
pSpT q,W q to be a combinatorial HHS. In what follows, lkp¨q denotes the link in SpT q, while
lkT p¨q denotes the link in |T |, the unoriented graph obtained from T by replacing each pair
of oriented edges with an unoriented edge. Similarly, we use dT p¨, ¨q to denote the distance
in |T | between two vertices of T .

A basic consequence of the description of maximal simplices of SpT q (Lemma 5.2), is that
non-empty, non-maximal simplices come in one of the following types.

Corollary 6.1. Every non-maximal, non-empty simplex ∆ of SpT q is one of the following
8 types
Type 1: ∆ “ tvu for some v P T p0q

Type 2: ∆ “ tsu for some s P SpT qp0q ´ T p0q
Type 3: ∆ “ tv, wu for some v, w P T p0q

Type 4: ∆ “ ts, tu for some s, t P SpT qp0q ´ T p0q
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Type 5: ∆ “ ts, vu for some v P T p0q and s P SpT qp0q ´ T p0q with νpsq ‰ v

Type 6: ∆ “ ts, νpsq, tu for some s, t P SpT qp0q ´ T p0q
Type 7: ∆ “ ts, νpsqu for some s, t P SpT qp0q ´ T p0q
Type 8: ∆ “ ts, νpsq, vu for some v P T p0q and s P SpT qp0q ´ T p0q with νpsq ‰ v.

Proof. Since every non-maximal simplex can be completed to a maximal simplex by adding
vertices, the above list is a consequence of Lemma 5.2 �

By examining each type of simplex, we also obtain a description of the links of each type
of simplex. Figure 3 contains a schematic of each type of simplex along with its link and
will be a useful reference through this section.
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Figure 3. A schematic of each type of simplex and its link. The simplex
is drawn in black with the vertices of the link highlighted in blue. Below, a
schematic of the link is drawn in blue. To avoid clutter, most edges between
vertices s, t with νpsq ‰ νptq are missing, as can be seen in the links of Type
1 and Type 2.

Lemma 6.2. Let ∆ be a non-maximal, non-empty simplex of SpT q. The link of ∆ is
determined by the type of ∆ as follows, where v, w P T p0q and s, t P SpT qp0q ´ T p0q:
Type 1: if ∆ “ tvu, then lkp∆q is the join of ts P SpT qp0q ´ T p0q : νpsq “ vu with the span

of tt P SpT qp0q : νptq P lkT pvqu.
Type 2: if ∆ “ tsu, then lkp∆q is the join of tνpsqu and the span of

tt P SpT qp0q : νptq P lkT pνpsqqu.
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Type 3: if ∆ “ tv, wu, then lkp∆q is the join of ts P SpT qp0q ´ T p0q : νpsq “ vu with
tt P SpT qp0q ´ T p0q : νptq “ wu.

Type 4: if ∆ “ ts, tu, then lkp∆q is the edge between νpsq and νptq.
Type 5: if ∆ “ ts, wu, then lkp∆q is the join of tνpsqu and tt P SpT qp0q ´ T p0q : νptq “ wu.
Type 6: if ∆ “ ts, νpsq, tu, then lkp∆q is the vertex νptq.
Type 7: if ∆ “ ts, νpsqu, then lkp∆q is spanned by tt P SpT qp0q : νptq P lkT pvqu.
Type 8: if ∆ “ ts, νpsq, vu, then lkp∆q is Xp0qv “ tt P SpT qp0q ´ T p0q : νptq “ vu.
In particular, if ∆ is not of Type 7 or Type 8, then Cp∆q has diameter at most 3, by virtue
of being a single vertex or a non-trivial join with some added edges.

Proof. All cases are a straightforward exercise using the definitions of edges of SpT q. The
“in particular” clause follows as Cp∆q is obtained from adding edges to lkp∆q. �

When the link of a simplex is not a non-trivial join, we will need to understand its
saturation (Definition 2.21) in order to understand the space Y∆.

Lemma 6.3. Let ∆ be a non-empty, non-maximal simplex of SpT q.
(1) If ∆ “ ts, νpsqu is a simplex of Type 7, then

Satp∆q “ tνpsqu Y ts1 P SpT qp0q ´ T p0q : νps1q “ νpsqu.

(2) If ∆ “ ts, νpsq, vu is a simplex of Type 8, then

Satp∆q “ tu P T p0q : dT pv, uq ď 1u Y tt P SpT qp0q ´ T p0q : dT pv, νptqq “ 1u.

Proof. Case 1: ∆ “ ts, νpsqu is a simplex of Type 7. First, suppose that s1 is a vertex
with νpsq “ νps1q and s1 ‰ νpsq, so ∆1 “ ts1, νpsqu is a simplex of SpT q. If u P SpT q is a
vertex adjacent to both s1 and νps1q “ νpsq, then νpuq is adjacent to νpsq, which makes u
adjacent to s. Hence u P lkp∆q, and we have lkp∆1q Ď lkp∆q. By a symmetrical argument,
lkp∆1q “ lkp∆q. Thus, every simplex of the form ts1, νpsqu with νpsq “ νps1q and νpsq ‰ s1

has the same link as ∆. In particular, every such s1 is in Satp∆q and νpsq is in Satp∆q.
Conversely, suppose that ∆1 is a simplex with lkp∆1q “ lkp∆q. Then νp∆1q “ νpsq as

lkT pνp∆qq “ lkT pνpsqq. Now, ∆1 cannot be νpsq P SpT q, because then its link would contain
vertices s1 with νpsq “ νps1q, which are not in lkp∆q. On the other hand, if ∆1 “ s1 for some
s1 P SpT q with νps1q “ νpsq, then lkp∆1q would contain νpsq, which is not in lkp∆q. So ∆1

must be equal to ts1, νpsqu for some s1 ‰ νpsq with νpsq “ νps1q. By definition, Satp∆q is
the union of these ts1, νpsqu, which completes the proof that

Satp∆q “
ď

νps1q“νpsq

ts1, νpsqu.

Case 2: ∆ “ ts, νpsq, vu is a simplex of Type 8. Let u P Satp∆q. If u P T p0q, then u

is adjacent to or equal to v in SpT q and hence in T . If u P SpT qp0q ´ T p0q, then νpuq is
adjacent to or equal to v. Conversely, suppose that u P T p0q and dT pu, vq “ 1. Choose any
vertex t P ν´1puq with t ‰ u. Then tu, t, vu is a simplex with link lkp∆q. Next, suppose
that u P SpT qp0q ´ T p0q and dT pv, νpuqq ď 1. Then ∆1 “ tu, νpuq, vu is a simplex with
lkp∆1q “ lkp∆q. Together, these show the

Satp∆q “ tu P T p0q : dT pv, uq ď 1u Y tt P SpT qp0q ´ T p0q : dT pv, νptqq “ 1u.
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�

We now verify conditions (I), (IV), (V) from Definition 2.23 for pSpT q,W q to be a com-
binatorial HHS.

Lemma 6.4. If ∆1, . . . ,∆n are simplices of SpT q such that lkp∆1q Ĺ ¨ ¨ ¨ Ĺ lkp∆nq, then
n ď 5.

Proof. Corollary 6.1 lists all types of non-maximal, non-empty simplices of SpT q. Examining
the links for each of these different types of simplices (Lemma 6.2) shows that if lkp∆q Ĺ
lkp∆1q, then ∆ must have strictly more vertices that ∆1. Thus, any chain of strictly nested
links of simplices must have length at most 5 (recall, lkpHq “ SpT q by definition). �

Lemma 6.5. Let ∆ be a simplex of SpT q and x, y P lkp∆qp0q be vertices that are not
adjacent in SpT q, but are adjacent in SpT q`W . Then there exist two maximal simplices
Σx,Σy Ď stp∆q that respectively contain x and y such that Σx and Σy are adjacent in W .

Proof. Let ∆ be a simplex of SpT q and x, y P lkp∆qp0q that are not adjacent in SpT q, but are
adjacent in SpT q`W . Let sx, tx and sy, ty be the elements of SpT q´T so that x P Σpsx, txq,
y P Σpsy, tyq and Σpsx, txq is W–adjacent to Σpsy, tyq. Without loss of generality, assume x
and y are respectively contained in the edges ttx, νptxqu and tty, νptyqu. It suffices to find
s P SpT q ´ T so that ∆ Ď stpsq and the simplices Σps, txq and Σps, tyq are W–adjacent.

First assume that νpxq ‰ νpyq. Since x and y are not joined by an SpT q–edge, νpxq
cannot be joined to νpyq by an edge in T . Thus, there must exist s P SpT qp0q´ T p0q so that
∆ is contained in the edge ts, νpsqu and νpxq, νpyq Ď lkpνpsqq. The simplices Σps, txq and
Σps, tyq are therefore W–adjacent, since Σpsx, txq and Σpsy, tyq being W–adjacent implies
that dXpσrptxq, σrptyqq ď R` 2 in both cases of edges in W .

Now assume that νpxq “ νpyq. Since x and y are not joined by an SpT q–edge, both x and
y must be elements of SpT qp0q ´ T p0q. This implies that ∆ is contained in a 2–simplex of
the form ts, νpsq, νpxqu where s P SpT q´T with νpsq Ď lkpνpxqq. Since x ‰ y and Σpsx, txq
is W–adjacent to Σpsy, tyq, we must have tx “ x, ty “ y, and dXpσrpxq, σrpyqq ď R ` 2 in
both case of edges in W . Thus, the simplices Σps, xq and Σps, yq are connected by an edge
in W . �

Lemma 6.6. For any non-maximal simplices ∆ and Ω of SpT q there exists a (possibly
empty) simplex Π of lkp∆q such that lkp∆ ‹ Πq Ď lkpΩq and for all non-maximal simplices
Λ of SpT q so that lkpΛq Ď lkp∆q X lkpΩq either

(1) lkpΛq is a non-trivial join or a vertex; or
(2) lkpΛq Ď lkp∆ ‹Πq.

Proof. First of all, we will implicitly assume throughout the proof that the link of the empty
simplex is not contained in lkp∆q X lkpΩq, for otherwise we have ∆ “ Ω “ H, and we can
take Π to be empty as well.

Let ∆ and Ω be as in the statement, and let U denote the union of all lkpΛq Ď lkp∆qXlkpΩq
such that lkpΛq is neither a non-trivial join or a single vertex. It suffices to show U “

lkp∆ ‹Πq for some simplex Π. Note that if Λ is a non-empty simplex of SpT q so that lkpΛq
is not a single vertex nor a non-trivial join, then Λ is either a Type 7 or Type 8 simplex.
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We say that a subgraph X of SpT q satisfies property P if the following holds. For all
vertices v of T , if there exist two vertices x, y P X with νpxq, νpyq at distance 1 from v in
T , then we have that X contains the entire Type 7 link of a simplex ts, νpsq “ vu.

We make two preliminary observations about this property. First, if two subgraphs satisfy
property P , then their intersection does as well. Secondly, given a subgraph X satisfying
property P , the (possibly empty) union of all links of Type 7 or Type 8 contained in X
satisfies property P .

By inspection of the list of possible links of a non-empty simplex (Lemma 6.2 and Figure
3), we can check that links satisfy property P . In view of the observations above, given
simplices ∆ and Ω, the subgraph U of lkp∆q considered above also satisfies property P .

To conclude the proof, we go through the list of possible links one more time and we
check that, given any simplex ∆ and any union U of links of Type 7 or Type 8 contained in
lkp∆q satisfying property P , we have U “ lkp∆‹Πq. (Note that U “ lkp∆‹Πq is equivalent
to U being a link as a subgraph of lkp∆q, and note also that if U is empty then it suffices
to take Π to be a maximal simplex in lkp∆q.) �

We conclude this subsection by verifying that the action of G on SpT q has finitely many
orbits of link of simplices.

Lemma 6.7. The action of G on SpT q has finitely many orbits of links of simplices.

Proof. Let ∆ be a simplex of SpT q. If ∆ is maximal, then lkp∆q “ H, and if ∆ “ H, then
lkp∆q “ SpT q, and we are done.

If ∆ is spanned entirely by vertices of T (Type 1 or Type 3), then ∆—and hence lkp∆q—
belongs to one of finitely many G–orbits. Similarly, because the G–stabiliser of a vertex
v P T p0q acts cofinitely on the set Xp0qv “ ts P SpT qp0q ´ T p0q : νpsq “ vu, there are
finitely many G–orbits of vertices of SpT q (Type 2 simplices) and simplices of Type 7, i.e.,
∆ “ ts, νpsqu for s P SpT qp0q ´ T p0q. Hence, there finitely many G–orbits of these types of
simplices and their links.

If ∆ is of Type 4 or Type 6, then lkp∆q is either an unoriented edge or a vertex of T
(Lemma 6.2), of which there are finitely many G–orbits of both.

If ∆ “ ts, νpsq, vu is a simplex of Type 8, then lkp∆q is

Xp0qv “ tt P SpT qp0q ´ T p0q : νptq “ vu.

There are only finitely many G–orbits of these sets as there are finitely many G–orbits of
vertices in T .

Finally, let ∆1 “ ts1, v1u and ∆2 “ ts2, v2u be two simplices of Type 5. For each ∆i, there
is an oriented edge ei of T from νpsiq to vi. If g P G so that ge1 “ e2, then lkpg∆1q “ lkp∆2q

(even though g∆1 might not equal ∆2). As there are finitely many G–orbits of edges of T ,
this shows there are only finitely many G–orbits of links of Type 5 simplices.

Examining the lists of types of simplices in Corollary 6.1, we see that the preceding
discussion exhausts all the possibilities. �

6.2. Hyperbolicity of non-join links. Recall from Section 2.3 that Cp∆q is the graph
obtained from lkp∆q by adding an edge between every pair of of vertices x, y for which
there exists maximal simplices Σx, Σy that are joined by an edge of W and contain x and y
respectively. In this section, we verify that each Cp∆q is hyperbolic, which is condition (II)
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of Definition 2.23 for pSpT q,W q to be a combinatorial HHS. Since there are only finitely
many G–orbits of the Cp∆q by Lemma 6.7, the hyperbolicity constant will automatically
be uniform over all simplices of SpT q (although this fact is independently explicit in our
proof). We only need to verify Cp∆q is hyperbolic for the empty simplex and simplices of
Type 7 and 8 as Lemma 6.2 showed Cp∆q has diameter 2 in all other cases.

Proposition 6.8 (Unbounded augmented links are hyperbolic). Let ∆ be a simplex of SpT q.
(1) If ∆ “ H, then SpT q`W “ CpHq is (G–equivariantly) quasi-isometric to |T |. Hence

SpT q`W is a quasi-tree.
(2) If ∆ “ ts, νpsq, vu is a simplex of Type 8, then the identity map on vertices gives a

uniform quasi-isometry from Cp∆q to the quasi-line Lv.
(3) If ∆ “ ts, νpsqu is a simplex of Type 7, then Cp∆q is uniformly hyperbolic. Moreover,

if every vertex group in G is virtually free, then Cp∆q is quasi-isometric to a tree.

Proof. We prove the three case separately.
Proof of (1). The inclusion |T | Ñ SpT q`W is simplicial and hence Lipschitz, thus

it suffices to find a coarsely Lipschitz quasi-inverse for the inclusion. This quasi-inverse
is provided by the map ν : SpT qp0q Ñ T p0q, where SpT qp0q is equipped with the metric
inherited from SpT q`W . To show that the map ν is coarsely Lipschitz it suffices to prove
that dT pνpxq, νpyqq is uniformly bounded whenever x, y P SpT qp0q are joined by an edge of
SpT q`W .

If x and y are joined by an edge of SpT q then νpxq and νpyq are equal or joined by an
edge of SpT q as well, hence dT pνpxq, νpyqq “ 1. Now assume x, y are joined by a W–edge.
This means that x, y respectively belong to maximal simplices Σps, tq and Σps1, t1q that are
adjacent in W . The definition of edges of W (Definition 5.7), allows us to assume that
νpsq “ νps1q without loss of generality. Hence νpxq and νpyq are both either equal to νpsq
or joined by an edge of T to νpsq. Hence dT pνpxq, νpyqq ď 2 as desired.

Since ν and the inclusion are G–equivariant, the quasi-isometry is also G–equivariant.
This completes the proof of (1).
Proof of (2). Let ∆ “ ts, νpsq, vu be a Type 8 simplex, and let µ “ v̌. By Lemma 6.2,

the vertex set of Cp∆q is exactly lkp∆q, which is the set of vertices

Xp0qv “ tt P SpT qp0q ´ T p0q : νptq “ vu.

Recall that Lv is a copy of the vertex space Xv with extra edges between vertices that make
Lv a quasi-line. Let I : Cp∆qp0q Ñ L

p0q
v be the identity on the vertex set.

We first show that I´1 sends edges of Lv to edges of Cp∆q.

Claim 6.9. If t1, t2 P L
p0q
v are joined by an edge of Lv, then I´1pt1q and I´1pt2q are joined

by an edge of Cp∆q. In particular, Cp∆q is connected and I´1 is 1-Lipschitz.

Proof. Let t1, t2 P L
p0q
v be joined by an edge of Lv. By Lemma 5.5, the there is a pξ, ξq–

coarsely Lipschitz ξ–coarse map LνpsqˆLv Ñ X that sends ps, t1q to Prps, t1q and ps, t2q to
Prps, t2q. Because we chose R to be greater that 2ξ, this implies dXpPrps, t1q, Prps, t2qq ď R.
Thus, the maximal simplices ts, νpsq, t1, vu and ts, νpsq, t2, vu are joined by an edge in W ,
which implies t1, t2 are joined by an edge in Cp∆q. �

We now prove that I is also coarsely Lipschitz. This will complete the proof of (2).



EQUIVARIANT HHS VIA QUASIMORPHISMS 37

Claim 6.10. The map I is coarsely Lipschitz.

Proof. It suffices to show that whenever t1, t2 P Cp∆qp0q are adjacent in Cp∆q, that Ipt1q
and Ipt2q are uniformly close in Lv. Since lkp∆q contains no edges in this case, the only
way t1, t2 can being joined by an edge in Cp∆q is for them to be joined by a W–edge. Since
t1, t2 both belong to lkp∆q, Lemma 6.5 provides maximal simplices Σt1 “ ts, νpsq, v, t1u
and Σt2 “ ts, νpsq, v, t2u that are joined by an edge in W . By the definition of the edges
of W , we have dXpσrpt1q, σrpt2qq ď R ` 2. Using Lemma 2.12, there is then a constant
κ ě 1 (determined by r and G) so that dXvpσrpt1q, σrpt2qq ď κ. As the map pv : Xv Ñ Lv
is distance non-increasing, Iptiq P pvpσrptiqq, and diamppvpσrptiqqq ď 2r, we have

dXvpσrpt1q, σrpt2qq ď κ ùñ dLvpIpt1q, Ipt2qq ď κ` 4r. �

Proof of (3). Let ∆ “ ts, νpsqu be a simplex of Type 7, and let v “ νpsq. By multiplying
by an element of G, we can assume that StabGpvq “ Gµ for some vertex µ P G.

Let Y be the graph obtained from lkT pvq by joining distinct x, y P lkT pvq
p0q by an edge

if and only if there exist x1, y1 P lkp∆q`W with νpx1q “ x, νpy1q “ y, and x1, y1 adjacent in
Cp∆q. Note that Gµ acts on Y , and ν : SpT qp0q Ñ T p0q induces a Gµ–equivariant simplicial
map η : Cp∆q Ñ Y .

We first show Y is connected and quasi-isometric to Cp∆q.

Claim 6.11. The graphs Cp∆q and Y are connected.

Proof. Because there is a simplicial surjection η : Cp∆q Ñ Y , connectedness of Cp∆q will
imply connectedness of Y .

Let x, y P Cp∆qp0q and let Σx,Σy be maximal simplices of SpT q containing x and y
respectively. Since x, y P lkp∆q, we can use Lemma 6.5 to assume that Σx,Σy are maximal
simplices of the star of ∆. By Lemma 5.11, there is a path Σx “ Σ0,Σ1, . . . ,Σn “ Σy in
W , where each Σi is a maximal simplex of SpT q and Σi,Σi`1 are joined be an edge of W
for 0 ď i ď n´ 1. We now argue by induction on n that x can be joined to y by a path in
Cp∆q.

If n “ 0, then both x, y are contained in Σx and hence are either equal or are adjacent
in SpT q and therefore in SpT q`W . Since x, y P lkp∆q, either x “ y or x, y are adjacent in
Cp∆q by Lemma 6.5.

If n “ 1, then Σ0 is joined by an edge of W to Σ1, hence x, y P lkp∆q are either equal or
adjacent in SpT q`W . Thus, by Lemma 6.5, x, y are either equal or adjacent in Cp∆q.

Suppose n ą 1. Since Σ0 and Σn are simplices of the star of ∆, the edges νpΣ0q and
νpΣnq contain v. Let v´1 be the vertex of νpΣ0q different from v, and let vn`1 be the vertex
of νpΣnq different from v. Since x, y P lkp∆q, we must have νpxq “ v´1 and νpyq “ vn`1. If
νpxq “ v´1 “ vn`1 “ νpyq, then x, y are in the link of the Type 8 simplex ∆1 “ tv´1, s, νpsqu.
Claim 6.9 therefore implies x is connected to y as Cp∆1q has an injective simplicial inclusion
into Cp∆q.

Now suppose νpxq ‰ νpyq. This implies v´1 and vn`1 must lie in different components
of T ´ tvu. The definition of edges in W (Definition 5.7) ensures that the edges νpΣiq and
νpΣi`1q share a vertex vi for each all i P t0, . . . , n´1u. The sequence v´1, v0, . . . , vn, vn`1 is
then a sequence of vertices of T where consecutive vertices are either equal or adjacent in T .
Because v´1 and vn`1 are in different components of T ´tvu, there exists i P t1, . . . , n´ 1u
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such that νpΣiq contains v. Choose z P Σ
p0q
i such that νpzq P νpΣiq ´ tvu. Then z P lkp∆q,

and z is contained in the maximal simplex Σi. The sequence Σ0, . . . ,Σi is a path in W with
i ă n, and has x P Σ0, z P Σi. So, by induction, x can be joined to z by a path in Cp∆q.
Similarly, considering Σi, . . . ,Σn shows that z can be joined by a path in Cp∆q to y. So x, y
are connected in Cp∆q, as required. �

We now prove that Y is quasi-isometric to Cp∆q.

Claim 6.12. The map η : Cp∆q Ñ Y induced by ν is a quasi-isometry with constants inde-
pendent of ∆.

Proof. As mentioned above, η is simplicial and hence 1-Lipschitz. Consider the composition
of inclusions

Y p0q ãÑ T p0q ãÑ SpT qp0q.
The image of this map is in lkp∆q, and the map is a quasi-inverse for η. Now, if x, y P Y p0q
are Y –adjacent, then let Σps, x1q and Σpt, y1q be W–adjacent simplices where νpx1q “ x,
νpy1q “ y, and νpsq “ νptq “ v. Then νpx1q “ x and νpy1q “ y are adjacent in Cp∆q, so the
map Y Ñ Cp∆q Ď SpT q induced by the above inclusions is uniformly coarsely Lipschitz.
Thus η is a quasi-isometry. �

In view of Claim 6.12, it suffices to prove that Y is δ–hyperbolic (and that Y is uniformly
quasi-isometric to a tree when the vertex groups are Z–by-virtually free). For this we use
the action of Gµ on Y .

Claim 6.13. The action of Gµ on Y is cocompact.

Proof. Because Gµ acts on Y with finitely many orbits of vertices, it suffices to prove that
for each vertex u P Y , there are finitely many StabGµpuq–orbits of edges of Y incident to u.
Note, StabGµpuq “ StabGpeuq where eu is the (oriented) edge of T from u to v.

Let y be an element of Y that is joined by an edge of Y to u. Let eu and ey be the
(oriented) edges of T from u or y to v respectively. By construction of Y , each of u and y
are contained in a maximal simplex of SpT q that contains v and are adjacent in W . The
definition of edges in W then requires that the edge space Xey must intersect the pR` 2q–
neighborhood of Xeu inside the Bass–Serre space X. Hence, each vertex y of Y that is
adjacent to u in Y has a corresponding edge spaces Xey of X that is within R ` 2 of Xeu .
We will argue that there are only a finite number of StabGµpuq–orbits of such edge spaces,
which implies there is a finite number of StabGµpuq–orbits of vertices of Y adjacent to u.

Because StabGµpuq “ StabGpeuq acts cocompactly on Xeu , it also acts cocompactly on
the pR ` 2q–neighborhood of Xeu . Since two edges spaces intersect if and only if they are
equal, there can only be a finite number of StabGµpuq–orbits of vertex spaces of X that
intersect the pR` 2q–neighborhood of Xeu as desired. �

Claims 6.11 and 6.13 show that Y is a connected graph (hence a length space) with a
cocompact action by Gµ. Let tyiu be a finite set of vertices of Y containing exactly one
element of each Gµ–orbit, and let H be the collection of stabilisers in Gµ of the vertices
yi. Given our fixed finite generating set Jµ of Gµ, Theorem 5.1 of [CC07] implies that any
orbit map Gµ Ñ Y induces a quasi-isometry Γ Ñ Y (with constants just depending on Jµ),
where Γ is the Cayley graph of Gµ with respect to the infinite set Jµ Y tHuHPH. If y is
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a vertex of Y , then the stabiliser in Gµ of y is exactly the stabiliser of some edge e of T
with e` “ v. Hence, each H P H is conjugate to the image of some edge group ταpGαq
where α` “ µ. Thus Γ is quasi-isometric to the Cayley graph of Gµ with respect to the
generating set Jµ Y tταpGαq : α` “ µu. By Lemma 2.15 the later is always hyperbolic and
is a quasi-tree when Fµ is virtually free. As Γ is quasi-isometric to Y , this completes the
proof of (3). �

6.3. Quasi-isometric embedding of augmented links. The goal of this section is to
check condition (III) of Definition 2.23, that is, that each augmented link Cp∆q is quasi-
isometrically embedded in the corresponding space Y∆ from Definition 2.22. Because there
are finitely many orbits of links of simplices by Lemma 6.7, we will be able to choose the
quasi-isometry constants uniformly over all simplices ∆.

Because the quasi-isometric embedding condition automatically holds when Cp∆q is bounded,
we only have to check simplices of Type 7 and 8.

6.3.1. Type 7 links.

Lemma 6.14. There exists κ ě 1 so that if ∆ “ ts, νpsqu Ă SpT q is a simplex of Type 7,
then Cp∆q is pκ, κq–quasi-isometrically embedded in Y∆.

Proof. By Lemma 2.2, it suffices to define a coarsely Lipschitz coarse retraction ρ : Y∆ Ñ

Cp∆q, with constants independent of ∆. We define ρ on the vertex set as follows: for
y P Y

p0q
∆ , we let ρpyq be the unique vertex of T (regarded as a vertex of SpT q) at distance

1 from νpsq and on the geodesic in T from νpyq to νpsq. This is well-defined because T is
a tree and y ‰ νpsq if y P Y p0q∆ “ SpT qp0q ´ Satp∆q. Moreover, because ρ coincides with ν
on the vertices of Cp∆q, the distance between ρpyq and y is at most 1 for vertices y P Cp∆q.
Hence, Cp∆q will be a coarse retract if ρ is coarsely Lipschitz.

If we can uniformly bound dCp∆qpρpy1q, ρpy2qq whenever y1, y2 are joined by a edge of
Y∆, then ρ can be extended to a coarsely Lipschitz map Y∆ Ñ Cp∆q. We will obtain
dCp∆qpρpy1q, ρpy2qq ď 3 for such y1, y2.

If y1, y2 are joined by an SpT q–edge, then νpy1q and νpy2q are either equal or joined by
an edge of T . Since νpyiq ‰ νpsq for each i “ 1, 2, this implies ρpy1q “ ρpy2q because T
is a tree. Hence we have dCp∆qpρpy1q, ρpy2qq “ 0. If instead y1, y2 are joined by a W–edge,
then νpy1q and νpy2q lie at distance at most 2 in T by Definition 5.7. If νpy1q and νpy2q

are at most 1 apart in T , then ρpy1q “ ρpy2q as in the previous case. If the νpy1q and
νpy1q are exact 2 apart in T , then there exists a unique vertex z P T at distance 1 from
both νpy1q and νpy2q. If z ‰ νpsq, then νpy1q and νpy1q are in the same component of
T ´ νpsq, which implies ρpy1q “ ρpy2q. If z “ νpsq, then y1 and y2 are in lkp∆q. By Lemma
6.5, this implies y1 and y2 are joined by an edge in Y∆. Because ρpyiq “ νpyiq, we have
dCp∆qpρpy1q, ρpy2qq ď dCp∆qpρpy1q, y1q ` dCp∆qpy1, y2q ` dCp∆qpy2, ρpy2qq ď 3. �

6.3.2. Type 8 links. We now consider simplices of the form ∆ “ ts, νpsq, vu, where s P
SpT qp0q ´ T p0q and v P T p0q ´ tνpsqu.

Lemma 6.15. There exists κ ě 1 with the following property. Let ∆ “ ts, νpsq, vu be a Type
8 simplex of SpT q. The inclusion of Cp∆q into Y∆ is a pκ, κq–quasi-isometric embedding.



EQUIVARIANT HHS VIA QUASIMORPHISMS 40

By Proposition 6.8.(1), the Type 8 simplices are the simplices whose augmented links,
Cp∆q, are quasi-isometric to the quasi-lines Lv. As in the previous case, we will show quasi-
isometric embedding by providing a coarse retraction. However, since the identity map on
vertices gives a quasi-isometry Lv Ñ Cp∆q, it suffices to build a coarsely Lipschitz coarse
map η : Y∆ Ñ Lv, that is the the identity on the vertices Lp0qv “ X

p0q
v Ď Y

p0q
∆ .

To define this map, we need to assign to each vertex space Xu of X a projection onto a
hyperbolic space. Given u P T p0q, let ϑ “ ǔ and choose a coset representative g for gGϑ;
recall the vertices of Xu are the elements of gGϑ. We now define a graph Hu as follows:
the vertices of Hu are the elements of gGϑ and there is an edge between two elements x, y
if x´1y P Jϑ Y Zϑ, where Jϑ is our fixed finite generating set for Gϑ and Zϑ is the center
of Gϑ. Since Hu is a copy of Xu with extra edges attached, there is a simplicial inclusion
ιu : Xu Ñ Hu. By construction, multiplying every vertex of Hu by g´1 produces an isometry
to the Cayley graph of Gϑ with respect to the generating set Jϑ Y Zϑ. Thus, Lemma 2.15
implies that Hu is a hyperbolic graph.

Lemma 2.15 also shows that Hu is hyperbolic relative to the collection

tιupτepXeqq : e an edge of T with e` “ uu.

For an edge e with e` “ u, define `e :“ ιu ˝ τepXeq. As a peripheral subset in a relatively
hyperbolic space, each `e has a coarse closest point projection pe : Hu Ñ `e; see, e.g., [Sis13].
This map is coarsely Lipschitz with constants independent of e or u.

The key property about the `e that we shall need is that they have a coarsely Lipschitz
map onto Le´ . One can show that this is in fact a quasi-isometry, but it will not be needed
in the proof.

Lemma 6.16. Let v, u P T p0q and e be an edge of T with e` “ v and e´ “ u. Let
ψe : `ē Ñ Lv be the map given by restricting pv ˝ τe ˝ τ´1

ē ˝ ι´1
u to `ē. Equipping `ē with

the induced metric from Hu, the map ψe : `ē Ñ Lv is coarsely Lipschitz with constants
determined by G.

Proof. Let ϑ “ ǔ and α “ ě. Recall Jϑ and Jα are our fixed generating sets for the vertex
groups Gϑ and the edge group Gα.

Let g P G so that the vertices of Xu (and Hu) are the elements of gGϑ. Since ιu˝τē : Xe Ñ

Hu is a simplicial map, `ē “ ιu ˝ τēpXeq is a connected subgraph of Hu. Hence it suffices to
verify that whenever x, y P `ē differ by an edge of Hu, that dLvpψepxq, ψepyqq is uniformly
bounded. Let x, y be vertices of `ē that differ by an edge of Hu. Hence x´1y is either an
element of Jϑ or of Zϑ.

If x´1y P Jϑ, then x, y are elements of τēpXeq that are joined by an edge of Xu. Hence
x´1y P Jϑ X τᾱpGαq. Since there is a uniform bound on the number of elements of τᾱpJαq
that are needed to write any element of JϑXτᾱpGαq, there is a uniform bound on the distance
between τ´1

ē ˝ι´1
u pxq and τ

´1
ē ˝ι´1

u pyq inXe (independence of α and ϑ comes from considering
the finitely many vertices and edges of G). Since pv and τe are distance non-increasing from
Xv and Xe respectively, this shows dLvpψepxq, ψepyqq is uniformly bounded.

If instead x´1y P Zϑ, then x, y are elements of the same coset gZϑ and gZϑ Ď τēpXeq.
Proposition 4.5.(1) provides a uniform bound on the diameter of pv ˝ τe ˝ τ´1

ē pgZϑq in Lv.
Hence dLvpψepxq, ψepyqq as uniformly bounded. �



EQUIVARIANT HHS VIA QUASIMORPHISMS 41

We can now use the map ψe from Lemma 6.16 to define a map ρv for vertices of T that
are at least distance 2 from v. We start with the case where w P T p0q is exactly distance 2
from v. In this case, there is a unique vertex u at distance 1 from both v and w. If f is
the oriented edge of T from w to u and e is the oriented edge from u to v, define βfe to be
pēp`f q. We then define

ρvpwq :“ ψepβ
f
e q “ pv ˝ τe ˝ τ

´1
ē ˝ ι´1

u pβ
f
e q.

To define ρvpwq when w is more than 2 away from v in T , let w̄ be the unique vertex of T that
is distance exactly 2 from v and on the geodesic in T from w to v. Define ρvpwq :“ ρvpw̄q.

The first thing to verify is that ρvpwq is uniformly bounded.

Lemma 6.17. There exist κ0 ě 0 so that for any v P T p0q, if w P T p0q with dT pv, wq ě 2,
then diampρvpwqq ď κ0.

Proof. By the definition of ρv, it suffices to verify the lemma when dT pv, wq “ 2. Let u
be the unique vertex of T that is distance 1 from both v and w. Let e be the edge of
T from u to v and f be the edge from w to u. Since `ē and `f are distinct peripheral
subsets in the relatively hyperbolic space Hu, there is a uniform bound on the diameter of
pēp`f q “ βfe ; see, e.g., [Sis13]. Because the map ψe is coarsely Lipschitz (Lemma 6.16), this
implies ρvpwq “ ψepβ

f
e q will be uniformly bounded in Lv. �

Next we verify that when two vertex spaces Xw and Xw1 are close in X, we have that
ρvpwq and ρvpw1q are close in Lv. This will be a key step to showing that pairs of vertices
of Y∆ that are joined by a W–edge are sent to uniformly bounded diameter set in Lv.

Lemma 6.18. For every q ě 0 there exists κ1 ě 0 such that the following holds for each
v P T p0q. Let w,w1 be vertices of T with dT pw,w

1q ď 2 and dT pw, vq, dT pw
1, vq ě 2. If

dXpXw, Xw1q ď q, then dLvpρvpwq, ρvpw1qq ď κ1.

Proof. Let w̄ be the vertex of T at distance exactly 2 from v and along the geodesic from w
to v, let u be the unique vertex of T at distance 1 from v and w̄. Let f and e be the oriented
edges of T from u to v and from w̄ to u respectively. Define w̄1, u1, f 1, e1 analogously, using
w1 rather than w.

If w̄ “ w̄1, then ρvpwq “ ρvpw
1q by definition and we are done. Otherwise, because

dT pw,w
1q ď 2, we must have w “ w̄ and w1 “ w̄1 and u “ u1. This implies e “ e1 as well.

Because each edge and vertex space of X separates X,

dXpXw, Xw1q ď q ùñ dXpτf pXf q, τf 1pXf 1qq ď q.

Applying Lemma 2.12 produces a κ “ κpr,Gq ě 1 so that dXupτf pXf q, τf 1pXf 1qq ď κ. As
the map ιu : Xu Ñ Hu is distance non-increasing, we have dHup`f , `f 1q ď κ. Because pē

is coarsely Lipschitz, there is now a uniform bound on the distance between βfe and βf
1

e .
Since ψe : `ē Ñ Lv is a coarsely Lipschitz (Lemma 6.16), this implies dLvpρvpwq, ρvpw1qq is
uniformly bounded as well. �

We now present the proof of the quasi-isometric embedding of Cp∆q into Y∆.

Proof of Lemma 6.15. By Proposition 6.8, the identity map on vertices is a quasi-isometry
Lv Ñ Cp∆q with constants independent of ∆. Hence, the composition of this quasi-isometry
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with a coarsely Lipschitz coarse map η : Y∆ Ñ Lv that is the the identity on the vertices
L
p0q
v “ X

p0q
v Ď Y

p0q
∆ will produce a coarse retraction Y∆ Ñ Cp∆q. By Lemma 2.2, this

suffices to prove the inclusion is a quasi-isometric embedding.
By Lemma 6.3, Satp∆q “ tvuYtt P SpT q : νptq P lkT pvqu. Since Y

p0q
∆ “ SpT qp0q´Satp∆q,

we have
Y
p0q

∆ “

!

t P SpT qp0q ´ tvu : νptq “ v or dT pνptq, vq ě 2
)

.

We now use the ρvpwq from above to define the desired map η : Y∆ Ñ Lv. If t P Y p0q∆ and
dT pνptq, vq ě 2, then we can define ηptq “ ρvpνptqq Ď Lv. If instead νptq “ v, then t is
a vertex of both Xv and Lv, and we define ηvptq “ pvptq “ t P Lv. Lemma 6.16 ensures
diampηptqq ď κ0 for all t P Y p0q∆ . We can extend this definition of η to a coarsely Lipschitz
map on all of Y∆ if we can show that dLvpηpt1q, ηpt2qq is uniformly bounded whenever t1
and t2 are joined by an edge of Y∆.

Let t1, t2 P Y
p0q

∆ be joined by an edge. By the definition of the W–edge (Definition 5.7),
this implies dT pνpt1q, νpt2qq ď 2. First assume both νpt1q and νpt2q are v. Thus t1, t2 P Cp∆q
and are joined be an edge. Since ηpt1q “ t1 and ηpt2q “ t2, the quasi-isometry between Cp∆q
and Lv ensures dLV pηpt1q, ηpt2qq is uniformly bounded.

Next suppose neither νpt1q or νpt2q equals v. If dT pνpt1q, νpt2qq “ 0, then ηpt1q “ ηpt2q by
definition. If dT pνpt1q, νpt2qq “ 1, then, with out loss of generality, the geodesic in T from
νpt1q to v must contain νpt2q. Since each νptiq are at least distance 2 from v, the definition
of ρvp¨q then implies ηpt1q “ ρvpνpt1qq “ ρvpνpt2qq “ ηpt2q. Finally, if dT pνpt1q, νpt2qq “ 2,
then the edge between t1 and t2 must be a W–edge. This implies Xνpt1q and Xνpt2q are
uniformly close in X. Hence the desired bound on dLvpηpt1q, ηpt2qq is a consequence of
Lemma 6.18.

Finally consider the case where νpt1q “ v, but νpt2q ‰ v. In this case, dT pνpt1q, νpt2qq “ 2,
and so the edge between t1 and t2 must be a W–edge. Hence, dXpσrpt1q, σrpt2qq ď R` 2 in
either case of Definition 5.7. Let u be the vertex distance 1 from both v “ νpt1q and νpt2q,
then let f be the oriented edge of T from νpt2q to u and e be the oriented edge from u to
νpt1q.

Let σe “ τ´1
e pσrpt1qq and σf “ τ´1

f̄
pσrpt2qq. Our choice of r is large enough that

Lemma 5.5 ensures σe and σf are both non-empty. Recalling that ψe is the restriction
of pv ˝ τe ˝ τ´1

ē ˝ ι´1
u , we have that

ψepιu ˝ τēpσeqq “ pvpσrpt1qq. (˚)

Claim 6.19. There exists κ1 ě 1 depending only on G so that dHupιu ˝ τēpσeq, β
f
e q ď κ1.

Proof. Because dXpσrpt1q, σrpt2qq ď R ` 2, we have dXpτēpσeq, τf pσf qq ď R ` 6. Applying
Lemma 2.12 produces κ “ κpR,Gq ě 1 so that dXupτēpσeq, τf pσf qq ď κ. As ιu : Xu Ñ Hu is
distance non-increasing, we have

dHupιu ˝ τēpσeqq, ιu ˝ τf pσf qq ď κ.

Recall that βfe “ pēp`f q, that pē is a coarse closest point projection to `ē, which is a
quasiconvex subset of a hyperbolic space. Hence, there is some κ1, determined by κ and the
hyperbolicity constant, so that dHupιu ˝ τēpσeq, β

f
e q ď κ1. �
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Since ψe is a coarsely Lipschitz, Claim 6.19 plus (˚) implies that ψepβ
f
e q “ ηpt2q is

uniformly close to pvpσrpt1qq. Since t1 P σrpt1q and diamppvpσrpt1qqq ď 2r, this implies
ηpt2q is uniformly close to ηpt1q “ pvpt1q in Lv as desired. �
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