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Abstract. Let Cp denote a cyclic group of prime order p ≥ 7. A topological

action of Cp on a compact, oriented surface S of genus σ ≥ 2 is said to be

finitely maximal if there is no finite supergroup of homeomorphisms G > Cp.
In the following, for sufficiently large genus σ, when non-zero, we show that

the number of topologically distinct finitely maximal Cp-actions on a surface

of genus σ is at least linear in σ.

1. Introduction

A finite subgroup H of the full group of orientation preserving homeomorphisms
Homeo+(S) of a compact oriented surface S of genus σ ≥ 2 is said to be finitely
maximal if there does not exist a finite G < Homeo+(S) with G > H. Two
subgroups H1, H2 ≤ Homeo+(S) are said to define topologically equivalent actions
if they are conjugate in Homeo+(S). For a given finite group G and genus σ ≥ 2,
let NG,σ denote the number of distinct topological G-actions on a surface of genus
σ which are finitely maximal. In the following, we provide a lower bound for the
numberNCp,σ for Cp a cyclic group of prime order p ≥ 7. Specifically, for sufficiently
large genus σ, when non-zero, we show that this number is at least linear in σ.

Though interesting in its own right, motivation for this work comes from a
number of different places. For example, finitely maximal Cp-actions are in one-to-
one correspondence with the isolated strata in the branch locus, Bσ of the moduli
space Mσ of compact Riemann surfaces of genus σ. Providing bounds for NCp,σ

in turn provides bounds for the number of distinct isolated strata in Bσ, and hence
provides a bound for the total number of disconnected components in the branch
locus. For further reading on the branch locus of moduli space, see also [1], [2], [3],
[4], [10], [11], [18].

This work also has implications for counting conjugacy classes of finite sub-
groups of the mapping class group. Specifically, if Mσ denotes the mapping class
group in genus σ, then there is a natural one-to-one correspondence between conju-
gacy classes of finite subgroups of Mσ and equivalence classes of finite topological
group actions on a smooth oriented surface of genus σ. Moreover, if H < G both
act on a surface of genus σ, then we have the corresponding containment in Mσ.
As such, our results provide a lower bound for the number of distinct conjugacy
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classes in Mσ of subgroups isomorphic to Cp that are finitely maximal in Mσ. See
[6], [14], and [26] for work in this area.

Classification and enumeration of group actions on compact oriented surfaces
has spanned the literature for over a century dating back to Hurwitz, see for example
[15], [16] and [17], and is still of current significant interest today. Due to the
simplicity of their structure, cyclic group actions have been extensively studied. In
[13], necessary and sufficient conditions for the existence of the action of a cyclic
group are given. The problem of enumeration of classes of cyclic group actions
was considered in [20] using the theory of generating functions, with an explicit
generating function provided in the special case of a cyclic group of prime order.
Other work, also using generating functions, to count classes of cyclic group actions
appear in [14], and more recently, [22]. Similar results exist for other classes
of groups. For example, conditions for the existence of an Abelian group action
are considered in [21], and enumeration of such actions in [22] using generating
functions, and [6] using more direct methods. There have also been significant
contributions in the classification and enumeration of “large” automorphism groups
and quasiplatonic groups. For example, in [25], it is shown that the number of
classes of quasiplatonic Riemann surfaces of genus at most σ has growth type σlog(σ).
Using computers, other more direct methods have found explicit counts of classes
of large automorphism groups for small (≤ 300) genus, see [9] for a recent survey
of results in this area.

Our approach to the problem of enumeration is direct. A starting point for
our work is the paper [24] in which it is shown that for sufficiently large genus,
NCp,σ = 0 if and only if σ ≡ (p− 3)/2 mod (p− 1)/2. The method used in [24] to
prove this result is explicit – when σ ≡ (p−3)/2 mod (p−1)/2, it is shown that any
such action always has to extend (and in fact extend to the cyclic group of order 2p)
and outside of this sequence, to show NCp,σ 6= 0, an explicit action is constructed
which cannot possibly extend to a larger finite group. Our general approach is to
adapt and extend this method to construct additional finitely maximal actions, the
number of which depend upon the number of fixed points of Cp. We shall then use
this to construct a linear (in σ) lower bound.

Our work is outlined as follows. In Section 2, we provide all the necessary
terminology and background results. Our approach to the problem is fairly stan-
dard, using the theory of Fuchsian groups and generating vectors. In Section 3, we
develop the main results required to prove the result. The proof we offer is direct,
providing explicit descriptions of these actions via generating vectors. We finish
in Section 4 by proving the main result – that outside of an infinite sequence of
genera, the number NCp,σ is at least linear in σ.

2. Preliminaries

We approach the study of topological group actions via the theory of surface
kernel epimorphisms and generating vectors as introduced in [12]. Since we are
only considering actions of cyclic groups of prime order p, we simplify the notation,
terminology and preliminary results to this case. For a more general approach see,
for example [5].

A surface S of genus σ ≥ 2 is topologically equivalent to a quotient of the
upper half plane H/Λ where Λ is any torsion free Fuchsian group isomorphic to
the fundamental group of S, also called a surface group for S. A cyclic group Cp
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of prime order p acts on S if and only if Cp = Γ/Λ for some Fuchsian group Γ
containing such a Λ as a normal subgroup of index p. We call the map ρ : Γ→ Cp
a surface kernel epimorphism.

A presentation of Γ is completely determined by the genus h of the quotient
surface S/Cp and the number r of fixed points of Cp on S and is given by

(1) Γ =

〈
a1, b1, . . . , ah, bh, c1, . . . , cr | cpi ,

h∏
j=1

[aj , bj ]

r∏
i=1

ci

〉
where

σ = 1 + p(h− 1) + r

(
p− 1

2

)
.

Note that the map ρ is completely determined by the images of the generators of
Γ so a convenient way of representing a surface kernel epimorphism is through a
so-called generating vector, defined as follows:

Definition 2.1. A vector of group elements (α1, β1, . . . , αh, βh, η1, . . . , ηr) be-
longing to Cp is called a (h, r)-generating vector for Cp with genus σ if all of the
following hold:

(1) Cp =

〈
α1, β1, . . . , αh, βh, η1, . . . , ηr

〉
(2)

∏r
j=1 ηj = 1

(3) Each ηi is non-trivial
(4) The Riemann-Hurwitz formula holds:

σ = 1 + p(h− 1) + r

(
p− 1

2

)
For conciseness, in a generating vector for Cp, we adopt the notation (α)k to

mean k copies of α and αk to mean a single α raised to the kth power. Since it will
be important later, we call the vector of group elements (η1, . . . , ηr) containing the
last r elements of a generating vector the the tail of the generating vector.

A topological group action gives rise to a generating vector via the correspond-
ing surface kernel epimorphism. Likewise, a generating vector gives rise to a topo-
logical group action by defining a surface kernel epimorphism. Therefore, we shall
often state that a generating vector defines a topological group action of Cp, and
by this, we mean the group action determined by the corresponding surface kernel
epimorphism.

Distinguishing between topological equivalence classes of group actions was first
considered in [23] (see also [12] for cyclic prime group actions, [8, Theorem 7] for
all cyclic groups and [20] for all groups.) When applied to the special case of a
cyclic group of prime order p, this classification implies when r = 0, all generating
vectors define topologically equivalent actions, and when r > 0, we have the follow-
ing criteria to distinguish between topologically distinct actions in terms of their
generating vectors:

Theorem 2.2. Fix a prime p. For r > 0 two (h, r)-generating vectors

(α1, β1, . . . , αh, βh, η1, . . . , ηr) and (α′1, β
′
1, . . . , α

′
h, β
′
h, η
′
1, . . . , η

′
r)
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for Cp define topologically equivalent group actions if and only if there exists a
permutation χ ∈ Sr and τ ∈ Aut(Cp) such that

(τ(ηχ(1)), . . . , τ(ηχ(r))) = (η′1, . . . , η
′
r)

i.e. the tails differ by permutation and/or automorphism of Cp.

For brevity, given the tail T = (η1, . . . , ηr) of a generating vector, a permutation
χ ∈ Sr and an automorphism τ ∈ Aut(Cp), we let τ(T (χ)) denote the composition
(τ(ηχ(1)), . . . , τ(ηχ(r))).

Since our primary goal is to determine when a given Cp-action is finitely max-
imal we adopt this term for generating vectors themselves. That is, when we say
a generating vector is (or is not) finitely maximal, it is understood that the corre-
sponding topological group action is (or is not) finitely maximal.

In [24], it is shown the genus of the quotient surface S/Cp for a finitely maximal
Cp-action satisfies h < (p− 3)/2. The following result, also from [24], proved using
the techniques employed in [7], provides necessary and sufficient conditions for when
a given generating vector defines a finitely maximal Cp-action in terms of its tail:

Theorem 2.3. Let V = (η1, . . . ηr) be the tail of a (h, r)-generating vector for
Cp where h < (p− 3)/2. If V defines an action which is not finitely maximal, then
Cp is a subgroup of either Cp × Cp, Cpq or Cp o Cq for some prime q. Moreover:

(1) Cp < Cpq if and only if there exist integers g, k,m ≥ 0 such that h =

gq + (k +m− 2)
(
q−1
2

)
and after a reordering of the ηi’s, V has the form

((c1)q, . . . , (cn)q, f1, . . . , fk) where r = qn+ k.
(2) Cp < CpoCq if and only if there exist integers g,m ≥ 0 such that h = gq+

(m− 2)
(
q−1
2

)
and after a reordering of the ηi’s, there exists an integer α

with αq ≡ 1 mod (p) so V has the form
(
c1, c

α
1 , . . . , c

αq−1

1 , c2, c
α
2 , . . . c

αq−1

n

)
where r = qn.

(3) Cp < Cp × Cp if and only if there exist integers g,m ≥ 0 such that h =

gp + (m − 2)
(
p−1
2

)
and after a reordering of the ηi’s, V has the form

((c1)p, . . . (cn)p)) where r = np.

If none of these conditions is satisfied then V defines a finitely maximal Cp-action

The following Corollary is immediate.

Corollary 2.4. Let V = (η1, . . . ηr) be the tail of a (h, r)-generating vector
for Cp and suppose η ∈ Cp appears exactly n > 1 times in V i.e. there are exactly
n ηi’s equal to η. If no other element of Cp appears exactly n times, then Cp does
not extend to Cp o Cq or Cp × Cp.

Note that if V is the tail of a generating vector for Cp = 〈x〉, then by Theorem
2.2, it is equivalent to a tail of the form ((x)α1 , (x2)α2 , . . . , (xp−1)αp−1) i.e. we
simply permute all like powers to be consecutive in the generating vector. With
this in mind, we have the following useful consequence of Theorem 2.3

Corollary 2.5. Let V = ((x)α1 , (x2)α2 , . . . , (xp−1)αp−1), be the tail of a (h, r)-
generating vector for Cp which extends to Cpq for some prime q. Then for k defined
in Theorem 2.3, we have k ≥ r1 + r2 + · · · + rp−1 where ri is the remainder of αi
after division by q.

Proof. Let αi = qβi + ri where ri is the remainder of αi after division by q.
By Theorem 2.3, the tail of a Cp-generating vector which extends to the action of
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Cpq will be equivalent to a tail of the form ((c1)q, . . . , (cn)q, f1, . . . , fk). We rewrite
the vector V = ((x)α1 , (x2)α2 , . . . , (xp−1)αp−1) to be of this form. First, since there
are β1q + r1 total copies of x and r1 < q, then there are at most β1 repetitions of
q-copies at the start of the tail. This leaves a minimum of r1 copies of x which must
appear as individual terms at the end of the tail. Using a similar argument with xi

for each i we see that are minimally ri copies of xi that must appear individually
at the end of tail. Thus k ≥ r1 + · · ·+ rp−1. �

3. Bounding Actions by the Length of the Tail

In order to determine a lower bound for the number of Cp actions, we shall
first describe a method to create tails of generating vectors that do not satisfy any
of the conditions of Theorem 2.3 necessary for extension to a larger group. We
emphasis that our work in this section only considers tails of generating vectors,
so in particular, the bound we develop will not be in terms of the genus of the
corresponding surface on which it acts, but rather the length of the tail r. We shall
consider how this relates to the genus in the next section.

Henceforth, let x denote a generator of Cp.

Lemma 3.1. Let T = (x, x2, . . . , xp−1, (x)i, (xa)j , (xb)l) and r = i+j+l+(p−1)
for positive integers i, j, l, a, b satisfying:

(1) l ∈ {4, 6} if r is even, and l ∈ {1, 3} if r is odd
(2) ja 6≡ −i mod (p)
(3) lb ≡ −(i+ ja) mod (p)
(4) 1 < a ≤ p− 1
(5) i is even
(6) i > l
(7) j > i+ l + 1

Then provided h < (p − 3)/2, T defines the tail of a finitely maximal (h, r)-
generating vector for Cp.

Proof. First we check T defines the tail of a generating vector. In order to
do this, we need to show it satisfies the second condition of Definition 2.1 – that
is, we need to show the product of the elements in T is the identity. Now we know
1 + 2 + · · · + (p − 1) ≡ 0 mod (p), so the product of the first p − 1 elements is
the identity. Therefore, we need to show the product of the remaining elements
is also the identity, or equivalently that i + aj + bl ≡ 0 mod (p). This is ensured
by the assumption lb ≡ −(i + ja) mod (p) provided we can solve for b. However,
we are also assuming ja 6≡ −i mod (p) and thus there is always a solution for b.
Therefore, T defines the tail of a generating vector for Cp.

Next we check maximality. Since j > i + l + 1 and a 6= 1, xa appears at least
j+ 1 times (possibly more depending upon the value of b). No other element of Cp
appears in T this many times and therefore containment in Cp×Cp or CpoCq is not
possible by Corollary 2.4. This leaves containment in Cpq as the only possibility.

Suppose that T does extend to Cpq for some q. Then there exists k and m such
that T can be written in the form given in Theorem 2.3. Since x, xa and xb are
the only elements to appear more than one time, by Corollary 2.5, we must have
k ≥ (p− 4). This means when q ≥ 5 we have

h = gq + (k +m− 2)

(
q − 1

2

)
≥ (p− 6)

(
q − 1

2

)
>
p− 5

2
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contradicting our assumption that h < (p− 3)/2. Therefore, we only need consider
q = 3 and q = 2.

For q = 3, if b = 1 or b = a, then there are at most two distinct elements which
appear more than once in the tail, and therefore by Corollary 2.5, we must have
k ≥ (p− 3). This means we have

h = 3g + (k +m− 2)

(
3− 1

2

)
≥ (p− 5) >

p− 5

2

contradicting our assumption that h < (p− 3)/2. If b is distinct from 1 and a, then
xb appears precisely l+ 1 times. For each given value of l, l+ 1 is never a multiple
of 3. Therefore, since there are p − 4 elements which each appear precisely once,
and xb appears l + 1 times which has a positive remainder after division by 3, we
must again have k ≥ p− 3 and we obtain the same contradiction.

For q = 2, a similar argument holds. In this case, we first observe that since i
is even, for each given choice of l, since r = i + j + l + (p − 1), j is also even. It
follows that if 1, a and b are all distinct, then x appears i+ 1 times and xa appears
j+ 1 times. In particular, since i+ 1 and j+ 1 are odd, and there are at least p− 4
elements which appear exactly once, by Corollary 2.5, we must have k ≥ (p − 2).
This means we have

h = 2g + (k +m− 2)

(
2− 1

2

)
≥ (p− 4)

2
>
p− 5

2

again contradicting our assumption that h < (p − 3)/2. If b = a or b = 1, similar
reasoning also implies k ≥ p− 2 and the result follows.

�

Next we shall provide conditions for when the tails defined in Lemma 3.1 define
distinct Cp-actions on a given surface for a fixed h, the genus of the quotient surface,
and r the number of fixed points of the action. In order to do this, we first need
the following simple Lemma which provides bounds on j and i.

Lemma 3.2. For any tail T satisfying Lemma 3.1, we have:

(1) j >
r − p

2
+ 1

(2) i <
r − p

2
− l

Proof. We know r = i+ j + l + (p− 1), so we have j = r − (i+ l + (p− 1)).
Therefore, the last condition of Lemma 3.1 implies

j = r − (i+ l + (p− 1)) = r − (i+ l + 1 + (p− 2)) > r − (j + (p− 2)).

Therefore we get

2j > r − (p+ 2) and so j >
r − (p− 2)

2
=
r − p

2
+ 1.

The inequality for i then follows from the last condition of Lemma 3.1.
�

Lemma 3.3. For the tail defined in Lemma 3.1, for a given l and r, any choice
of the ordered pair (a, i) completely determines the topological equivalence class of a
Cp-action. Moreover, if two pairs (a1, i1) and (a2, i2) define the same action, then
either (a1, i1) = (a2, i2) or |i1 − i2| = l.
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Proof. For a given l and r, given a pair (a, i), the remaining integers are
found using the conditions of Lemma 3.1. Specifically, j = r− i− l− (p− 1) and b
is the unique solution to lb ≡ −(i+ ja) mod (p). Therefore, the generating vector
and hence the topological equivalence class of a Cp-action is determined by the pair
(a, i).

Next we show that when (a1, i1) 6= (a2, i2), the tails

T1 =
(
x, x2, . . . , xp−1, (x)i1 , (xa1)j1 , (xb1)l

)
and

T2 =
(
x, x2, . . . , xp−1, (x)i2 , (xa2)j2 , (xb2)l

)
define topologically distinct actions with the possible exception of when |i1−i2| = l.
By Theorem 2.2, in order to do this, we need to show that there is no automorphism
τ of Cp and permutation χ of r such that τ(T1(χ)) = T2, so we assume there is.

First note that any automorphism of the first p − 1 elements of T1 is simply
a permutation of those elements, and therefore, after an appropriate permutation
can be put back in the same order. Secondly, observe that the number of elements
repeated more than once and the occurrences of those repeated elements will be the
same after application of an automorphism of Cp and a permutation. Therefore,
since we are assuming τ(T1(χ)) = T2, we can actually assume

(x, x2, . . . , xp−1, (τ(x))i1 , (τ(x)a1)j1 , (τ(x)b1)l) = (x, x2, . . . , xp−1, (x)i2 , (xa2)j2 , (xb2)l).

Now, if x, xa1 and xb1 are all distinct, then so are τ(x), τ(x)a1 and τ(x)b1 .
Therefore, since l < i1 < j1 and l < i2 < j2, it follows that τ(x) = x, i1 = i2,
j1 = j2, a1 = a2 and b1 = b2. In particular, (a1, i1) = (a2, i2), a contradiction.

If x, xa1 and xb1 are not distinct, then neither are x, xa2 and xb2 , and we either
have b1 = a1 or b1 = 1 and similarly b2 = a2 or b2 = 1. This means we have one of
the four following possibilities:

(1) (x, x2, . . . , xp−1, (τ(x))i1+l, (τ(x)a1)j1) = (x, x2, . . . , xp−1, (x)i2+l, (xa2)j2)
(2) (x, x2, . . . , xp−1, (τ(x))i1+l, (τ(x)a1)j1) = (x, x2, . . . , xp−1, (x)i2 , (xa2)j2+l)
(3) (x, x2, . . . , xp−1, (τ(x))i1 , (τ(x)a1)j1+l) = (x, x2, . . . , xp−1, (x)i2+l, (xa2)j2)
(4) (x, x2, . . . , xp−1, (τ(x))i1 , (τ(x)a1)j1+l) = (x, x2, . . . , xp−1, (x)i2 , (xa2)j2+l)

By Lemma 3.2,

i1 < i1 + l < (r − p)/2 < (r − p)/2 + 1 < j2 < j2 + l,

so in particular, it follows that

(1) i1 + l < j2
(2) i1 + l < j2 + l
(3) i1 < j2
(4) i1 < j2 + l.

Therefore, for all four cases, we must have τ(x) = x and i1 + l = i2 + l in case (1),
i1 + l = i2 in case (2), i1 = i2 + l in case (3) and i1 = i2 in case (4). In particular,
a1 = a2 in all cases, and in cases (1) and (4) we have i1 = i2, a contradiction, and
in cases (2) and (3) we have |i1 − i2| = l. �

Though ideally we would like the topological equivalence class of an action to
be uniquely determined by a pair (a, i), we note that, as Lemma 3.2 indicates, this
is not always the case. For example, if l is even, there always exists equivalent
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actions given by different pairs provided there exists a tail in which b = a or b = 1.
Specifically, if b = 1, then

(x, x2, . . . , xp−1, (x)i, (xa)j , (x)l)

with pair (a, i) is equivalent to

(x, x2, . . . , xp−1, (x)i+l, (xa)j−l, (xa)l)

with pair (a, i+ l). On the other hand, when b = a,

(x, x2, . . . , xp−1, (x)i, (xa)j , (xa)l)

with pair (a, i) is equivalent to

(x, x2, . . . , xp−1, (x)i−l, (xa)j+l, (x)l)

with pair (a, i− l).
We are now ready to provide a lower bound for the number of distinct actions

using the tails defined in Lemma 3.1.

Theorem 3.4. When non-zero, the number NCp.σ of topologically distinct finitely
maximal Cp-actions with tail of length r > p + 20 on a surface S of genus σ ≥ 2
satisfies

NCp,σ ≥
(p− 3)(r − p− 20)

8
.

Proof. In order to find a lower bound, we shall filter the set of tails of the
form given in Lemma 3.1 to a subset where each define a topologically distinct
action. In order to do this, we must first determine which tails of this form satisfy
the seven conditions of Lemma 3.1.

Suppose T = (x, x2, . . . , xp−1, (x)i, (xa)j , (xb)l) for positive integers i, j, l, a, b.
Since we are assuming r > p+ 20, all conditions of Lemma 3.1 can be imposed on
T except possibly conditions (2) and (3). Also note that satisfaction of condition
(2) guarantees that there is a choice of b that satisfies condition (3). Therefore, we
need to filter our set of tails to a subset for which condition (2) is guaranteed to
hold.

If condition (2) fails, then i + aj ≡ 0 mod (p). Since gcd(a, p) = 1, it follows
that either p divides both i and j, or p divides neither i nor j. In the latter case,
we get a ≡ j−1(−i) mod (p). In particular, a is completely determined by i and j,
so for a fixed i and j, there is only one possibility for a. Therefore, for each i and
j, we can simply exclude this value of a to ensure condition (2) holds.

If p divides both i and j then condition (2) never holds, so we shall impose
conditions on the tail to avoid this happening. Now, if p divides both i and j,
then it must divide i + j, so it suffices to provide conditions ensuring that p does
not divide i + j. For a fixed r and l, since r = (p − 1) + i + j + l, we have
i + j = r − (p − 1) − l and so i + j ≡ r − l + 1 mod (p). Therefore, if r is even,
we choose l = 4 when r 6≡ 3 mod (p) and l = 6 else, and when r is odd, we choose
l = 1 when r 6≡ 0 mod (p) and l = 3 else. Through these choices of l, we never
have i+ j ≡ 0 mod (p) and so condition (2) will always be satisfied (except for the
choice of a previously excluded).

Next we need to filter this set of tails further so that each one defines a unique
topological equivalence class. By Lemma 3.3, we know that if two tails with pairs
(a1, i1) and (a2, i2) define the same action, then either they are the same pair, or
|i1 − i2| = l. Therefore, in order to ensure every tail defines a distinct action, we
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simply restrict the values of i to a maximal subset of integers so that the difference
of two members is never l. Specifically, for l odd, since we have already restricted
i to the even numbers, there are no values for which |i1 − i2| = l, so we use the
same set. For l even, we use the set αl+β where α is odd and β runs over the even
integers {0, 2, . . . , l− 2}. Note that in each case, this will always be at least half of
the possible values of i.

We are now ready to count, and for this, we need to count the maximum
number of pairs (a, i) with the restrictions we have imposed. Since a 6= 1 and for
a given i and j, a 6≡ j−1(−i) mod (p), there are precisely p − 3 possible choices
for a. Now we are assuming i > l and by Lemma 3.2 we have i < (r − p)/2 − 2.
We are also assuming i is even so i = 2t for some t. Since l ≤ 6, this means
8 ≤ 2t < (r − p)/2− 2, and so 4 ≤ t < (r − p)/4− 1. Therefore, there are at most

r − p
4
− 1− 4 =

r − p− 20

4

choices for t, and hence for i. Filtering this set further to ensure that no two values
differ by l leaves at least half of these. Thus the total number of possibilities for i
is at least r−p−20

8 , and therefore, the total number of actions is at least

(p− 3)(r − p− 20)

8
.

�

4. A Lower Bounds for NCp,σ

When non-zero, Theorem 3.4 provides a lower bound for NCp,σ in terms of
r, the length of the tail of a generating vector. We shall now use this result to
show that the number NCp,σ, when non-zero, is always bounded below by a linear
function in σ for sufficiently high σ.

Theorem 4.1. If σ ≡ (p − 3)/2 mod (p − 1)/2, then NCp,σ = 0. Else, for

σ > p2 + 7p− 9, the number NCp,σ of finitely maximal Cp actions on a surface of
genus σ is bounded below by a linear function of σ.

Proof. By [24, Corollary 1], if σ ≡ (p−3)/2 mod (p−1)/2, then NCp,σ = 0.
Therefore, we shall henceforth assume σ 6≡ (p− 3)/2 mod (p− 1)/2.

Now, if Cp acts on a surface S with h the genus of the quotient surface S/Cp
and r the number of fixed points then the Riemann-Hurwitz formula holds:

σ = 1 + p(h− 1) + r

(
p− 1

2

)
.

In order to apply Theorem 3.4, we need r > p + 20. Therefore, since for a finitely
maximal action we know 0 ≤ h ≤ p−5

2 and since the Riemann-Hurwitz formula is
an increasing function in both r and h, if we restrict to

σ > 1 + p

(
p− 3

2
− 1

)
+ (p+ 20)

(
p− 1

2

)
= p2 + 7p− 9,

then the condition r > p + 20 is guaranteed to hold. Therefore, we henceforth
assume σ satisfies this bound.

Now, since σ > p2 + 7p− 9 > 1
2 ((p(p− 4) + 1), there always exists a Cp-action

on a surface S of genus σ, see [19, Corollary 5.4]. In addition, by [24, Theorem 4],
provided σ 6≡ (p − 3)/2 mod (p − 1)/2, then there always exists a Cp-action with
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S/Cp of genus h for some unique h < (p− 3)/2 and r, the number of fixed points,
which can be found using the Riemann-Hurwitz formula:

r =
2(σ − 1− p(h− 1))

p− 1
.

Given the assumptions made on σ, we know r > p + 20 and so we can use the
bound developed in Theorem 3.4 to bound NCp,σ in terms of the length of the tail
r. Specifically, we have:

NCp,σ ≥
(p− 3)(r − p− 20)

8
=

(p− 3)( 2(σ−1−p(h−1))
p−1 − p− 20)

8

=
p− 3

4(p− 1)
σ − ((p− 3)(p(2h+ p+ 17)− 18))

8(p− 1)

Since 0 ≤ h ≤ p−5
2 , this gives

NCp,σ ≥
p− 3

4(p− 1)
σ − ((p− 3)(p(2h+ p+ 17)− 18))

8(p− 1)

≥ p− 3

4(p− 1)
σ − (p− 3)(p2 + 6p− 9)

4(p− 1)
= Aσ +B

for constants A and B dependent only on p. The result follows.
�
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