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Abstract

Suppose S is a compact oriented surface of genus σ ≥ 2 and Cp is a group of
orientation preserving automorphisms of S of prime order p ≥ 5. We show
that there is always a finite supergroup G > Cp of orientation preserving au-
tomorphisms of S except when the genus of S/Cp is minimal (or equivalently,
when the number of fixed points of Cp is maximal). Moreover, we exhibit an
infinite sequence of genera within which any given action of Cp on S implies
Cp is contained in some finite supergroup and demonstrate for genera outside
of this sequence the existence of at least one Cp-action for which Cp is not
contained in any such finite supergroup (for sufficiently large σ).
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Group

1. Introduction

A finite group G is said to act in an orientation preserving manner on a
compact oriented surface S of genus σ ≥ 2 if there is an injection

ε:G ↪→ Homeo+(S)

from G into the group of orientation preserving homeomorphisms. We denote
such an action by the ordered pair (G, ε), though when unambiguous we write
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simply G. Two actions (G, ε1), (G, ε2) are said to be topologically equivalent
if their images ε1(G) and ε2(G) are conjugate in Homeo+(S).

In the following, we determine when a cyclic group Cp of prime order
p ≥ 5 of orientation preserving homeomorphisms of a surface S is finitely
maximal, meaning there is no proper finite supergroup G ≤ Homeo+(S)
containing Cp. We show that when such an action exists the genus of S/Cp
is minimal (or equivalently, the number of fixed points of the Cp-action is
maximal). Following this we show that, for sufficiently large genus, there
exists a finitely maximal Cp-action on a surface of genus σ if and only if

σ 6≡ p− 3

2

(
mod

p− 1

2

)
.

Though an interesting problem in its own right, there are a number of
other motivations for this work. For example, in the context of the mod-
uli space Mσ of compact Riemann surfaces of genus σ, there is widespread
interest in describing the branch locus, Bσ, which is the subset of Mσ of
surfaces with non-trivial automorphisms. We define M(G,ε)

σ ⊂Mσ to be the
set of surfaces whose full group of conformal automorphisms is topologically

equivalent to (G, ε), and M(G,ε)

σ to be the set of surfaces whose full group of
conformal automorphisms contains (G, ε). In [4], Broughton showed that the

sets {M(G,ε)
σ } form a stratification of Bσ known as the equisymmetric stratifi-

cation. A first step in describing this stratification is distinguishing between

M(G,ε)
σ and M(G,ε)

σ ; the following results represent a significant step in this
direction for G = Cp as well as extending current work ([2]) on identifying
the isolated strata of Bσ. For further reading on the branch locus of moduli
space, see also [1], [3], [10], [11], [14].

This work also has implications for the connections between topological
group actions and subgroups of the mapping class group. Specifically, if Mσ

denotes the mapping class group in genus σ, then there is a natural one-to-
one correspondence between conjugacy classes of finite subgroups of Mσ and
equivalence classes of finite topological group actions on a smooth oriented
surface of genus σ. Moreover, if H < G both act on a surface of genus σ,
then we have the corresponding containment in Mσ. As such, our results
allow one to determine when a given conjugacy class in Mσ of subgroups
isomorphic to Cp is finitely maximal in Mσ. See [6], [20] for other recent
work in this area.

Perhaps the most important consequence of the following work is also the
most direct one: it contributes significantly to the eventual goal of a complete
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classification of finitely maximal Cp-actions. Specifically, it was shown in [7]
that for sufficiently large σ, the number of distinct quotient genera S/Cp for
Cp-actions on a surface S of genus σ is linear in σ (though this can also
be derived from Theorem 4 below). Theorem 5 therefore implies that when
classifying maximal actions one need only consider a single quotient genus,
thereby greatly reducing the complexity of the problem.

Finally, we believe this work paves the way for some interesting new
problems. For example, our results provide at least the initial tools to develop
a lower bound for the asymptotic growth rate in terms of the genus of the
number of finitely maximal actions (currently it appears that this rate is
bounded below by the growth rate of the prime numbers).

2. Preliminaries

We approach the study of topological group actions via surface kernel epi-
morphisms and generating vectors, as in Broughton [5]. A surface S of genus
σ ≥ 2 is topologically equivalent to a quotient of the upper half plane H/Λ
where Λ is any torsion free Fuchsian group isomorphic to the fundamental
group of S, also called a surface group for S. A finite group G acts on S if
and only if G = Γ/Λ for some Fuchsian group Γ containing such a Λ as a
normal subgroup of index |G|. We call the map ρ: Γ → G a surface kernel
epimorphism.

We define the signature of the action of G to be the tuple (g;m1, . . . ,mr)
where g is the genus of the quotient surface S/G (which we call the orbit
genus of the signature) and the quotient map π:S → S/G is branched over
r points with orders m1, . . . ,mr (which we call the periods of the signature).
For conciseness, when it appears in a signature we declare (x)k to mean x
listed k separate times, whereas xk denotes a single entry with x raised to the
kth power. The structure of Γ is completely determined by the signature of
G. Namely, if G has signature (g;m1, . . . ,mr) and [ , ] denotes commutator,
then a presentation for Γ is

Γ =
〈
a1, b1, . . . , ag, bg, c1, . . . , cr | cm1

1 , . . . , cmrr ,

r∏
i=1

ci

g∏
j=1

[aj, bj]
〉

(1)

where

σ = 1 + |G|(g − 1) +
|G|
2

r∑
i=1

(
1− 1

mi

)
.
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We call the first 2g generators of Γ hyperbolic generators and the last r elliptic
generators. Note that the map ρ is completely determined by the images of
the generators of Γ so a convenient way of representing a surface kernel
epimorphism is through so-called generating vectors, defined as follows.

Definition. A vector of group elements (α1, β1, . . . , αg, βg, η1, . . . , ηr) belong-
ing to a finite group G is called a (g;m1, . . . ,mr)-generating vector for G with
genus σ if all of the following hold:

1. G =
〈
α1, β1, . . . , αg, βg, η1, . . . , ηr

〉
,

2.
∏g

i=1[αi, βi] ·
∏r

j=1 ηj = e, the identity of G,

3. O(ηi) = mi, where O( ) denotes element order,

4. The Riemann-Hurwitz formula holds:

σ − 1 = |G|

(
g − 1 +

1

2

r∑
i=1

(
1− 1

mi

))
.

We adopt the terminology for hyperbolic and elliptic generators in gener-
ating vectors as inherited from the corresponding Fuchsian groups and again
we adopt the notation (α)k to mean k copies of α and αk to mean a single α
raised to the kth power. Also, since our primary goal is to determine when a
given Cp-action is finitely maximal we adopt this term for generating vectors
themselves. That is, when we say a generating vector is (or is not) finitely
maximal, it is understood that the corresponding topological group action is
(or is not) finitely maximal.

Since we are describing group actions via generating vectors, we need to
determine when two G-actions given by distinct generating vectors define the
same action up to topological equivalence. Clearly two topologically equiv-
alent G-actions have the same signature, but the converse is not necessarily
true and determining whether two generating vectors define the same action
for an arbitrary G is in general a very difficult problem. However, we are only
considering group actions of cyclic groups, and the topological classification
of such actions are known, see [16] (see also [12, Lemma 2] for cyclic prime
group actions and [9, Theorem 7] for all cyclic groups.) We summarize and
translate these results into the language of generating vectors below.

Theorem 1. Fix a prime p and let Cp denote a cyclic group of order p. For
any g ≥ 2, there exists precisely one Cp-action up to topological equivalence
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with signature (g;−). If r > 1, then two (g;m1, . . . ,mr)-generating vectors

(α1, β1, . . . , αg, βg, η1, . . . , ηr) and (α′1, β
′
1, . . . , α

′
g, β

′
g, η
′
1, . . . , η

′
r)

for G define topologically equivalent group actions if and only if there exists
a permutation χ ∈ Sr and τ ∈ Aut(Cp) such that

(τ(ηχ(1)), . . . , τ(ηχ(r))) = (η′1, . . . , η
′
r)

i.e., the last r generators differ by permutation and/or automorphism of Cp.

In order to analyze finitely maximal actions, we shall first try to under-
stand when they are not maximal. The first step in this process is deter-
mining the signature of a subgroup H from a group G, a problem originally
solved in [17]. Since we are only interested in when H is cyclic of prime order,
we translate this result into the language of generating vectors and specialize
to this case:

Theorem 2. Let (α1, β1, . . . , αg, βg, η1, . . . ηr) be a (g;m1, . . .mr)-generating
vector for G. For Cp ≤ G let Φ:G→ SG/Cp

∼= S[G:Cp] denote the map induced
by action of G on the left cosets of Cp. Then the signature of Cp is

(h; (p)n1 , (p)n2 , . . . , (p)nr)

where ni is the number of cycles of length mi/p in Φ(ηi), and h is found by
solving the equation

|G| ·

(
2g − 2 +

r∑
i=1

(
1− 1

mi

))
= p

(
2h− 2 +

r∑
i=1

ni

(
1− 1

p

))
.

In the special case where Cp is normal, all cycles of Φ(ηi) have the same
length, meaning ni = 0 if Φ(ηi) has order mi, and ni = |G|/mi otherwise.

We finish by fixing some notation. Henceforth Cp will denote a cyclic
group of prime order p ≥ 5 acting on a compact Riemann surface S of genus
σ ≥ 2 and, for a given group G, e will denote its identity element.

3. Normal Extensions of Cp

In this section, we show how to extract a generating vector for Cp ≤ G
given a generating vector for G. On the level of Fuchsian groups, if Λ is
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a unformizing Fuchsian group for S, then there are corresponding Fuchsian
groups ΓG, ΓCp and surface kernel epimorphisms ρG: ΓG → G and ρCp : ΓCp →
Cp where ρG|ΓCp = ρCp . Therefore, given a generating vector for G, we can
determine a corresponding generating vector for Cp by considering how the
generators of the group ΓCp relate to the generators of the group ΓG.

Given an arbitrary group G and subgroup H, this process can be very
difficult. However, in Theorem 6 we show that if Cp is not finitely maxi-
mal, then it is necessarily a normal subgroup of either the cyclic group Cpq
of order pq (with q a prime not necessarily distinct from p), a semi-direct
product Cp o Cq (q a prime different from p), or a direct product Cp × Cp.
Thus, when considering whether or not Cp is finitely maximal, we only need
decide whether or not it is contained normally in one of these groups. We
may then invoke [21, Theorem 7.1] (also Proposition 2 of [15] or Theorem
1 of [19]) to find the elliptic elements of the generating vector of Cp from
the elliptic elements of the generating vector of the supergroup, simplifying
things substantially (see also [8] where a similar process is used). Using these
observations with Theorems 1 and 2, we obtain the following.

Lemma 1. Suppose Cp E Cpq. Let (α1, β1, . . . , αg, βg, d1, . . . , dm, c1, . . . , cn,
f1, . . . , fk) be a (g; (q)m, (p)n, (pq)k)-generating vector for Cpq, where n+k > 0
(and m = 0 if q = p). Then Cp has signature (h; (p)r) where h = gq + (k +
m − 2)

(
q−1

2

)
and r = nq + k, and its corresponding generating vector is

equivalent to
(
(e)2h, (c1)q, . . . , (cn)q, f q1 , . . . , f

q
k

)
.

Lemma 2. Suppose CpE(CpoCq). Let (α1, β1, . . . , αg, βg, c1, . . . , cn, d1, . . .,
dm) be a (g; (p)n, (q)m)-generating vector for CpoCq where n+m > 0 and let
a 6= 1 be an integer such that aq ≡ 0 (mod p). Then Cp has signature (h; (p)r)
where h = gq + (m− 2)

(
q−1

2

)
and r = nq, and its corresponding generating

vector is equivalent to ((e)2h, c1, c
a
1, . . . , c

aq−1

1 , c2, c
a
2, . . . c

aq−1

n ).

Lemma 3. Suppose CpE(Cp×Cp). Let (α1, β1, . . . , αg, βg, c1, . . . , cn, d1, . . .,
dm) be a (g; (p)n+m)-generating vector for Cp×Cp, where c1, . . . , cn ∈ Cp and
d1, . . . , dm /∈ Cp for some fixed subgroup Cp, and suppose n + m > 0. Then
Cp has signature (h; (p)r) where h = gp+ (m− 2)

(
p−1

2

)
and r = np, and its

corresponding generating vector is equivalent to ((e)2h, (c1)p, . . . (cn)p).

We illustrate an application of these results by proving the non-maximality
of two different Cp-actions with certain special signatures, a result we will
need later.
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Theorem 3. Suppose that ~v is an (h; (p)r)-generating vector for the cyclic
group Cp of prime order p for r ≤ 2. Then ~v is never maximal.

Proof. First note that there are no generating vectors for Cp when r = 1,
so we only need consider r = 0 and r = 2. For both r = 0 and r = 2, by
Theorem 1, there is a unique generating vector ~v for Cp (up to topological
equivalence) so in each case if we can exhibit the existence of a generating
vector ~u for some group G containing Cp as a normal subgroup acting with
signature (h;−) or (h; p, p), then ~v must coincide with this vector.

First suppose r = 0 and let Dp = 〈x, y | x2 = yp = e, xyx = y−1〉 denote
the dihedral group of order 2p. Since we must have h ≥ 1, the vector ~u =
(xy, xy, (x)2h) is clearly a generating vector for Dp with signature (0; (2)2h+2).
Application of Lemma 2 implies that the Cp subgroup has signature (h;−),
and by uniqueness, its corresponding generating vector must be equivalent
to ~v.

For r = 2 let C2p = 〈y | y2p = e〉 denote the cyclic group of order 2p. The
vector ~u = ((yp)2h, y, y−1) is clearly a generating vector for C2p with signature
(0; (2)2h, (2p)2). Application of Lemma 2 implies that the Cp subgroup has
signature (h; p, p), and by uniqueness, its corresponding generating vector
must be equivalent to ~v.

4. Signatures of Cp-actions

Before we develop our main results, we first describe the possible signa-
tures of Cp that can occur for a fixed genus σ. Since it is important in the
description of Cp-actions, for a given σ and p we henceforth let κ denote the
integer with 0 ≤ κ < (p− 1)/2 and κ = σ

(
mod p−1

2

)
.

Theorem 4. For σ ≥ 2, with the single exception where 2(σ−1−p(κ−1))
p−1

− δp =
1, the valid signatures for a Cp-action on a surface of genus σ are(

κ+ δ

(
p− 1

2

)
; (p)

2(σ−1−p(κ−1))
p−1

−δp
)

where δ runs over the integers satisfying 0 ≤ δ ≤ 2(σ−1−p(κ−1))
p(p−1)

.

Proof. First, it is easy to verify that each of these signatures satisfies the
Riemann-Hurwitz formula for genus σ. Now suppose that (h; (p)r) is any
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other signature that satisfies the Riemann-Hurwitz formula for genus σ, so

σ − 1 = p(h− 1) + r

(
p− 1

2

)
.

Since
(
κ; (p)

2(σ−1−p(κ−1))
p−1

)
also satisfies the Riemann-Hurwitz formula for genus

σ, we also have

σ − 1 = p(κ− 1) +
2(σ − 1− p(κ− 1))

p− 1

(
p− 1

2

)
.

Subtracting the first equation from the second, we get

0 = p(κ− h) +

(
2(σ − 1− p(κ− 1))

p− 1
− r
)(

p− 1

2

)
.

Since (p − 1)/2 is relatively prime to p, this equation can only hold if
2(σ−1−p(κ−1))

p−1
−r = δp for some δ, or equivalently, r = 2(σ−1−p(κ−1))

p−1
−δp. Sub-

stituting back into the equation, we get h−κ = δ
(
p−1

2

)
or h = κ+δ

(
p−1

2

)
. It

follows that (h; (p)r) must be one of the signatures specified in the statement
of the Theorem.

The case 2(σ−1−p(κ−1))
p−1

− δp = 1 is excluded since this would result in a

generating vector of the form (h; p), which is never valid for a Cp-action.
For the remaining signatures, Harvey’s Theorem ([13]) shows each is a valid
signature for a Cp-action on a surface of genus σ.

We note that for a fixed σ, Theorem 4 provides an algorithm to construct
all possible signatures for a Cp-action on a surface of genus σ. Specifically,

start with the signature
(
κ; (p)

2(σ−1−p(κ−1))
p−1

)
and then add and subtract mul-

tiples of (p − 1)/2 and p, respectively, to κ and to (p)
2(σ−1−p(κ−1))

p−1 until the
number of p’s is less than p (with the single exception being when r = p+ 1,
and for this case, we terminate at this point). We also observe that the

signature
(
κ; (p)

2(σ−1−p(κ−1))
p−1

)
is the signature exhibiting the smallest orbit

genus (which is necessarily between 0 and (p − 3)/2), and any other orbit
genus must be at least (p− 1)/2. This signature also has the largest number
of periods.
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5. The Signature of a Maximal Action

We now have the necessary tools to prove our first main result: that most
of the signatures with which Cp can act result in actions that are not finitely
maximal.

Theorem 5. Suppose that ~v is an (h; (p)r)-generating vector for the cyclic
group Cp of prime order p where r ≥ 3. If h ≥ (p − 3)/2, then ~v is not
maximal.

Proof. Letting Cp = 〈x〉, we shall show that each such vector is the restriction
of a generating vector of C2p = 〈y〉 where x = y2.

By pairing like elements, we first observe that for any generating vector
~v of Cp there exist integers n and k with r = 2n+ k and k ≤ p− 1 such that
after applying appropriate transformations from Theorem 1 we have

~v =
(
e, ..., e, xc1 , xc1 , xc2 , xc2 , ..., xcn , xcn , xd1 , .., xdk

)
(2)

(note that 2c1 + . . . 2cn + d1 + . . .+ dk ≡ 0(mod p)). Letting m = 2h+ 2− k,
since we are assuming h ≥ p−3

2
and we know k ≤ p− 1, we have m ≥ 0 since

m = 2h+ 2− k ≥ 2

(
p− 3

2

)
+ 2− (p− 1) = 0.

Therefore, (0; (2)m, (p)n, (2p)k) is a valid signature for a C2p-action whose Cp-
subgroup exhibits signature (h; (p)r) by Lemma 1. As it will be important
later, we note that m and k have the same parity.

To prove non-maximality, we show the generating vector

~u =
(
(yp)m, y2c1 , ...y2cn , yd1+χ(d1)p, . . . , ydk+χ(dk)p

)
where χ:C → {0, 1} is the characteristic function on the even integers is a
(0; 2m, pn, (2p)k)-generating vector for C2p whose restriction to Cp is ~v.

If k > 0, clearly the elements (yp)m, y2c1 , ...y2cn , yd1+χ(d1)p, . . . , ydk+χ(dk)p

generate C2p (since at least one of them has order 2p). If k = 0, then
m = 2h+2 ≥ 2, and by assumption we know r ≥ 2 so (yp)m, y2c1 , ...y2cn must
also generate C2p (since it contains an element of order 2 and an element of
p). So in all cases, the elements of ~u generate C2p. Next we check they satisfy
the necessary relation. We have

m∏
i=1

yp
n∏
i=1

y2ci

k∏
i=1

ydi+χ(di)p = ymp+2c1+...+2cn+d1+χ(d1)p...+dk+χ(dk)p = yN .
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Since 2c1 + . . . 2cn+d1 + . . .+dk ≡ 0 (mod p), we must also have 2c1 + . . . 2ct+
d1 + χ(d1)p . . . + dk + χ(dk)p ≡ 0 (mod p) and thus yN is either the identity
or has order 2. However, for each i, di + χ(di)p is odd and the parity of m
and k are the same, so it follows that mp + d1 + χ(d1)p . . . + dk + χ(dk)p is
even. In particular, yN is the identity and thus ~u is a generating vector for
C2p.

To see that ~v is the restriction of ~u, we simply apply Lemma 1.

The following result is immediate.

Corollary 1. Fix a genus σ ≥ 2. If κ = p−3
2

then there are no finitely
maximal actions of Cp on a surface of genus σ. Otherwise, the signature of
any finitely maximal Cp-action is(

κ; (p)
2(σ−1−p(κ−1))

p−1

)
.

In particular, S/Cp has the smallest possible quotient genus, and the action
of Cp has the maximal number of fixed points over all possible Cp-actions on
a surface of genus σ.

Proof. By Theorem 5, the orbit genus h of any signature (h; (p)r) which
might result in a finitely maximal generating vector for Cp must satisfy h <
(p− 3)/2. Theorem 4 then proves the result.

6. The Existence of Maximal Actions

Next we show that, for sufficiently large genus, there exists a finitely
maximal action if and only if κ 6= p−3

2
. In order to do this, we first note

that Corollary 1 ensures that the orbit genus of the signature (h; (p)r) of a
finitely maximal action must satisfy h < p−3

2
, so we henceforth assume this

to be the case. To exhibit the existence of a maximal action, we shall build
generating vectors which cannot possibly extend to a larger group. Though
this would typically be very difficult, we shall first show that such a Cp is
necessarily contained in one of Cpq, CpoCq or Cp×Cp, as defined in Section
3. This significantly simplifies calculations as we only need consider whether
a generating vector ~v for Cp is the restriction of a generating vector of one of
the groups that contains Cp, and for this we can invoke Lemmas 1, 2 and 3.
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We start by making some preliminary observations about a group Cp that
is not contained in any of Cpq, Cp o Cq or Cp × Cp. Now clearly if G ≥ Cp
and Cp is normal in some subgroup H of G, then it is necessarily contained
in a subgroup isomorphic to one of these three groups. Therefore, we may
restrict to groups in which Cp is not normal in any subgroup.

Since Cp is not normal in any subgroup of G, it must be a Sylow subgroup,
so we can use the Sylow theorems to determine certain information about
the structure of G and the signature of its action. First, we know that
N = [G : Cp] = sp + 1 for some s, and there are precisely sp + 1 subgroups
of order p, all of which are conjugate in G. It also follows that if x ∈ G is
an element whose order is divisible by p, then it must have order p. Thus
G has signature of the form (g; (p)k,m1, . . . ,mt) where p - mi for all i and
for some k. The following Lemma states that we can specify this signature
much further.

Lemma 4. Suppose that Cp acts with signature (h; (p)r) and G > Cp where
Cp is not a proper normal subgroup in any subgroup H of G. Then the
signature of G is (g; (p)r,m1, . . . ,mt) where p - mi for all i.

Proof. By our observations above, we already know that G has signature
(g; (p)k,m1, . . . ,mt) for some k, so we just need to show that k = r. In order
to do this, we use Theorem 2 and the notation introduced in that result. If
ζ is an element of a generating vector of order p for G, then Φ(ζ) can only
have cycles of length p and length 1. Since N = sp + 1, there must be at
least one cycle of length 1 and hence for each element in a generating vector
~v of order p, it must induce at least one element in a generating vector for
Cp; i.e., r ≤ k.

Now suppose that ζ is an element of a generating vector for G of order
p. Given a coset gCp, ζgCp = gCp if and only if g−1ζgCp = Cp. This
means g−1ζg ∈ Cp, or ζ ∈ gCpg

−1. Suppose that ζ stabilizes two distinct
cosets g1Cp and g2Cp. Then it follows that ζ ∈ g1Cpg

−1
1 and ζ ∈ g2Cpg

−1
2 .

Since both are cyclic of prime order, it follows that g1Cpg
−1
1 = g2Cpg

−1
2

or g−1
2 g1Cpg

−1
1 g2 = Cp, so g−1

2 g1 normalizes Cp. However, Cp is its own
normalizer, so g−1

2 g1 ∈ Cp or g1 ∈ g2Cp, so g1Cp = g2Cp, a contradiction. It
follows that ζ stabilizes at most one coset of Cp and thus k ≤ r. It follows
that r = k.

Theorem 6. Suppose that Cp acts with signature (h; (p)r) and extends to a
group G but is not normal in any subgroup of G. Then h ≥ p−3

2
.
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Proof. Under these assumptions, Lemma 4 gives the signature of G. Using
the same notation, applying Theorem 2 and simplifying, we have

sp+ 1 =
2(h− 1) + r

(
p−1
p

)
2(g − 1) + r

(
p−1
p

)
+
∑t

i=1

(
1− 1

mi

)
for s ≥ 1. This means that

p+ 1 ≤
2(h− 1) + r

(
p−1
p

)
2(g − 1) + r

(
p−1
p

)
+
∑t

i=1

(
1− 1

mi

) .
Rewriting, we get

(p+ 1)

(
2(g − 1) + r

(
p− 1

p

)
+

t∑
i=1

(
1− 1

mi

))
≤ 2(h− 1) + r

(
p− 1

p

)
.

Simplifying, we get

p(g − 1) + g +
r(p− 1)

2
+
p+ 1

2

t∑
i=1

(
1− 1

mi

)
≤ h.

By Theorem 3, we may assume r ≥ 3, and we know that t ≥ 0 and g ≥ 0.
Thus

p− 3

2
= −p+

3(p− 1)

2
≤ p(g−1) + g+

r(p− 1)

2
+
p+ 1

2

t∑
i=1

(
1− 1

mi

)
≤ h.

Theorem 6 proves that if Cp acts with signature (h; (p)r) where h <
(p − 3)/2 and Cp is contained in some larger group G, then it must be
normal in some subgroup of G. In particular, it will be a subgroup of either
Cpq, Cp o Cq, or Cp × Cp. We now show finitely maximal actions exist by
constructing generating vectors for Cp which are not restrictions of generating
vectors for any of these groups.

Theorem 7. If h ≤ (p−5)/2 and r > p+7, there exists a maximal generating
vector ~v of Cp with signature (h; (p)r).
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Proof. By our previous remarks, we only need to determine whether or not a
generating vector for Cp arises from the action of a supergroup – Cpq, CpoCq,
or Cp × Cp – in which Cp is normal. We first make a couple of observations
about such generating vectors.

By Lemma 2, if g ∈ Cp occurs exactly t times as an elliptic element in a
generating vector ~u for Cp o Cq, t ≥ 1, then there exists at least one other
group element different from g that occurs exactly t times in ~v too. Second,
by Lemma 3 if g ∈ Cp appears as an elliptic element in a generating vector
~v for Cp × Cp, then it must occur tp times for some t ≥ 1.

Now if r 6≡ 1mod p, for s satisfying 2s ≡ −(r − (p+ 1))mod p, let

~v1 =
(
(e)2h, x, x2, ...xp−2, xp−1, (x)r−(p+1), (xs)2)

and if r ≡ 1mod p, for s satisfying 4s ≡ −(r − (p+ 3))mod p, let

~v2 =
(
(e)2h, x, x2, ...xp−2, xp−1, (x)r−(p+3), (xs)4) .

Clearly both are generating vectors for Cp with signature (h; (p)r) (note that
that such s’s always exist since p ≥ 5).

Since there are at least p − 3 elliptic elements occurring exactly once in
both ~v1 and ~v2, neither of these could be the restriction of a generating vector
~u of Cp × Cp. Next, assuming xs 6= x, xs appears precisely three times in
~v1 and five times in ~v2. Since r > p + 7, x appears at least 8 times in ~v1

and at least and 6 times in ~v2. In both cases all other powers of x appear
exactly once. In particular, in either generating vector, no other element
appears the same number of times as xs, so neither are the restriction of a
generating vector ~u of CpoCq. If xs = x, then x is the only element to appear
multiple times in either ~v1 or ~v2, and so again, neither are the restriction of
a generating vector ~u of Cp o Cq.

To finish, we need to show that neither ~v1 nor ~v2 are the restriction of a
generating vector ~u of Cpq. If one were, then it would be of the form given

in Lemma 1 and there would exist k,m, g such that h = gq + (k+m−2)(q−1)
2

.
Now, if q 6= 2, since p− 3 elements are never repeated in either ~v1 or ~v2, we
must have k ≥ p− 3 so

h = gq +
(k +m− 2)(q − 1)

2
≥ (p− 5)(q − 1)

2
>
p− 5

2
,

contradicting our initial assumption on h. If q = 2 and x = xs, then there
are p−2 elements that are never repeated in either ~v1 or ~v2, so we must have
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k ≥ p− 2. If x 6= xs, then xs appears an odd number of times in both ~v1 and
~v2, and so we must also have k ≥ p− 2. Therefore, in both cases, we have

h = 2g +
(k +m− 2)

2
≥ (p− 4)

2
>
p− 5

2
,

again contradicting our initial assumption on h. It follows that neither ~v1

nor ~v2 are the restriction of a generating vector ~u of Cpq.

The following result is immediate.

Corollary 2. For sufficiently large σ, there exists a finitely maximal Cp-
action on a surface of genus σ if and only if κ 6= p−3

2
.

Proof. Suppose that Cp acts on a surface of genus σ with (h; (p)r). Theorem
3 implies if r ≤ 2, then Cp is not finitely maximal and Theorem 5 implies
if r ≥ 3 and h ≥ (p − 3)/2, then Cp is not finitely maximal. Theorem 7
implies that if h ≤ (p−5)/2 and r > p+7, then there always exists a finitely
maximal Cp-action. The only signatures excluded from these results are of
the form (h; (p)r) with 0 ≤ h ≤ (p − 5)/2 and 3 ≤ r ≤ p + 7. However,
there are only finitely many such excluded signatures, so there exists a genus
σ0 (which can be found using the Riemann-Hurwitz formula) such that for
σ > σ0, Cp does not act with any of these excluded signatures. Therefore,
for σ > σ0 there exists a finitely maximal Cp-action on a surface of genus σ
if and only if κ 6= p−3

2
.

We finish by noting that based on computations for small primes, in the
case of the excluded signatures, there are instances where there are finitely
maximal actions and there are instances where there are no finitely maximal
actions, see Examples 1 and 2. However, the arguments to prove this become
increasingly ad-hoc as there does not appear to be any predictable pattern
on the signatures that do exhibit finitely maximal actions; we feel this would
be an interesting topic for future study.

Example 1. The vectors (x, x, x5) and (x, x2, x4) are the only distinct gen-
erating vectors (up to topological equivalence) for C7 = 〈x〉 with signature
(0; (7)3). The first of these vectors extends to an action of C14 using Lemma 1,
and the second extends to an action of C7oC3 using Lemma 2. In particular,
there are no finitely maximal C7 actions with signature (0; (7)3).
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Example 2. The vector ~v = (x, x2, x3, x4, x4) is a generating vector for
C7 = 〈x〉 with signature (0; (7)5). Since x4 is the only element appearing
twice in ~v, by Lemmas 2 and 3, it can only extend to a cyclic group. However,
if it extends to C7q with signature (g; (q)m, (7)n, (7q)k), q a prime, then k ≥ 3
since three elements of ~v are never repeated. By Lemma 1, this would mean

0 = gq +
(k +m− 2)(q − 1)

2
≥ 1

2

a contradiction. Thus, ~v corresponds to a maximal action on some surface.
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