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My research utilizes techniques from geometric group theory to understand groups from low-
dimensional topology. The starting observation of geometric group theory is that the Cayley
graphs of a finitely generated group with respect to different finite generating sets are all quasi-
isometric, i.e., distances differ only by an additive and multiplicative constant. This allows any
finitely generated group to be given a geometry up to quasi-isometry by identifying it with its
Cayley graph. This point of view has revolutionized our understanding of finitely generated groups
and produced deep applications in logic, topology, geometry, and dynamical systems.

Much of my work draws inspiration from Gromov’s theory of hyperbolic groups to study the
mapping class group of a surface. The mapping class group, MCGpSq, of an orientable surface S
is the group of homeomorphisms of S modulo isotopy. As the topological symmetry group of S, the
mapping class group is a central object in mathematics, appearing in algebraic geometry, number
theory, dynamics, geometric topology, complex analysis, and group theory. Hyperbolic groups
possess a powerful, quasi-isometric invariant notion of negative curvature. While the mapping
class group is not hyperbolic, a major theme of my research is building bridges between Gromov’s
hyperbolic groups and the mapping class group via common generalizations of both. This high level
perspective allows me to pursue specific results for the mapping class group, while simultaneously
producing advances is several other important classes of groups, such as the fundamental groups of
3-manifolds and CAT(0) groups.

I present my research program in three parts, which I address in detail below.

§1 Convex cocompactness and surface group extensions. I have resolved a special case of a
question of Farb–Mosher on a dynamical characterization of convex cocompact subgroups of the
mapping class group (Theorem 1), and answered a question of Dowdall–Durham–Leininger–Sisto
on the geometry of surface group extension of multicurve stabilizers (Theorem 2).

§2 Morse local-to-global groups. A key bridge my collaborators and I have built between
hyperbolic groups and the mapping class group. This framework has yielded advances in subgroup
structure (Theorem 7), a quasi-isometry invariant called the Morse boundary (Theorems 8, 9),
and subgroup growth (Theorem 5). The later answers a question of Farb in the case of MCGpSq.

§3 Hierarchical hyperbolicity. A generalization of Gromov’s hyperbolicity introduced by Behrstock–
Hagen–Sisto. Hierarchical hyperbolicity encompasses the mapping class group, most 3-manifold
groups, and many Artin groups, while producing powerful geometric and algebraic consequences.
My work has produced a foundational understanding of convexity properties in this class (Theo-
rems 10, 11, 12), illuminated the the relationship between hierarchical and relative hyperbolicity
(Theorems 14, 17), taken some of the first steps to understand the hierarchically hyperbolic
boundary (Theorem 16), and resolved several conjectures of Behrstock–Hagen–Sisto on both
graph products and 3-manifolds (Theorems 19, 20, 21, 22).

1. Convex cocompactness and surface group extensions

There is a long running and fruitful analogy between discrete groups of isometries of the hyper-
bolic n-space Hn and subgroups of MCGpSq. Inspired by this analogy, Farb–Mosher transferred the
notion of a convex cocompact subgroup of IsompHnq to subgroups of MCGpSq. Work of Kent–
Leininger and Hamenstädt has shown that is analogy is incredibly robust, with several different
equivalent characterization of convex cocompactness in MCGpSq mirroring the several equivalent
characterization of convex cocompactness in IsompHnq[55, 61, 62]. Combined with subsequent
work from Bestvina, Bromberg, Taylor, Durham, and others, these results have established convex
cocompact subgroups as the “best behaved” subgroups of MCGpSq [15, 40, 64].

Beyond this satisfying analogy, convex cocompact subgroups have a critical role in the study
of π1pSq-extensions and surface bundles. A π1pSq-extension is any group E that fits into a short
exact sequence 1 Ñ π1pSq Ñ E Ñ G Ñ 1. For closed surfaces, each π1pSq-extension has a
monodromy homomorphism G Ñ MCGpSq. The best examples of these extensions come from

1



Research Statement Jacob Russell

topology: if M is a S-bundle over a base manifold B, then we have the short exact sequence of
groups 1 Ñ π1pSq Ñ π1pMq Ñ π1pBq Ñ 1. The monodromy now comes from assigning each loop
in B to the homeomorphism of S produced by moving the fibers along that loop. This topological
monodromy exists even when S is not closed.

A surface bundle
with base a circle

Each S-bundle or π1pSq-extension is determined (up to homeomor-
phism/isomorphism) by these monodromy homomorphisms, and given a ho-
momorphisms into MCGpSq, there is a unique π1pSq-extension with that
monodromy. Understanding the still mysterious relationship between prop-
erties of bundles/extensions and properties of the monodromy is a funda-
mental problem in the study of the mapping class group.

Convex cocompactness connects to the geometry of π1pSq-extensions by
results of Farb–Mosher and Hamenstädt, which say for closed surfaces, a
π1pSq-extension is Gromov hyperbolic if and only if the monodromy has
finite kernel and convex cocompact image [45, 55]. Hence, the study of convex

cocompact subgroups of π1pSq is essentially the study of Gromov hyperbolic π1pSq-extensions.
Here I will describe two components of my research on convex cocompact subgroups. Convex

cocompactness will also appear in §2 and §3 as a source of both inspiration and applications of
results obtained in much broader contexts than the mapping class group.

The foliations of a pseudo-
Anosov

1.1. Purely pseudo-Anosov subgroups. A basic consequence
of convex cocompactness is that every infinite order element of the
subgroup is pseudo-Anosov. Informally, these are the elements
of MCGpSq with the richest dynamics on the the surface. Formally,
each pseudo-Anosov element stabilizes a pair of transverse singular
foliations of the surface S and acts S by contracting along one
foliation and expanding along the other. In their introductory
paper on convex cocompactness, Farb–Mosher asked if the converse
of this property is true, that is:

Question 1. If H ă MCGpSq is finitely generated and every non-trivial element is pseudo-Anosov,
is H convex cocompact?

Question 1 it one of the paramount questions in the study of convex cocompact subgroups,
with either answer having significant implications. A “yes” answer would impose severe geometric
limitations on the groups that could appear as convex cocompact subgroups of MCGpSq, which
in turn would limit the possible hyperbolic π1pSq-extensions. On the other hand, a “no” answer
would produce a π1pSq-extension with interesting pathologies [45].

While Question 1 is still open, partial results have been obtained in several cases by Bestvina,
Bromberg, Kent, Leininger, Dowdall, Koberda, Mangahas, Taylor, and Tshishiku [15, 35, 63, 65, 79].
In joint work with Leininger, I answer Question 1 in the positive for subgroups that live inside
certain non-hyperbolic, fibered 3-manifold groups in the mapping class group.

Theorem 1 ([LR]). The answer to Question 1 is yes, if H is a subgroup of π1pMq, where M is a
non-hyperbolic, non-virually S ˆ S1 3-manifold so that π1pMq injects into the mapping class group
via the Birman exact sequence.

The cases of Theorem 1 where M is hyperbolic or virtually SˆS1 were previously established by
Dowdall–Kent–Leininger [35] and Kent–Leininger–Schleimer [63] respectively1. Hence, Theorem 1
completes the resolution of Question 1 for this class of subgroups. Compared to the previous cases,
the main difficulty in Theorem 1 was that there was no intrinsic hyperbolic geometry from the
manifold to draw on. Instead we use a combination of Bass–Serre theory and Masur–Minsky’s
subsurface projections to achieve the required geometric control.

1In the SˆS1 case, π1pMq does not inject into MCGpS˝
q and so the result is about the image of π1pMq Ñ MCGpS˝

q.
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Future work. There are several excellent candidate subgroups of MCGpSq for continued positive
progress similar to Theorem 1. Candidates included the handlebody group, the stablizers of vector
fields, and surface braid groups. These groups are promising because, like the 3-manifold groups in
Theorem 1, they have additional topological structure as well as useful actions on natural graphs
of curves that can be exploited to understand their purely pseudo-Anosov subgroups.

1.2. Geometric finiteness. Amoung Kleinian groups, convex cocompact groups are a special
case of geometrically finite Kleinian groups. Unlike convex cocompactness, a robust definition
of geometric finiteness in MCGpSq has yet to be established. Mosher proposed that such a definition
should extend the equivalence between hyperbolic π1pSq-extensions and convex cocompactness [71].

Question 2. Is there a definition of a geometrically finite subgroup of MCGpSq so that geometric
finiteness characterizes some generalized hyperbolicity of π1pSq-extensions?

Despite our lack of a good definition of geometric finiteness, there are several examples of sub-
groups of MCGpSq that ought to be included in any robust definition. The first such example are
the Veech subgroups, which act geometrically finitely on an isometrically embedded copy of H2

inside of the Teichmüller space of S [71]. Dowdall–Durham–Leininger–Sisto recently proved that
the π1pSq-extensions corresponding to lattice Veech groups are hierarchically hyperbolic groups
[38]. This inspired them to ask asked if the other groups that ought to be considered geometrically
finite also have hierarchically hyperbolic extension. I showed that the answer is yes for the next
best candidates of geometrically finite subgroups, the stabilizers of multicurves.

Theorem 2 ([Rus21]). Let H be the stabilizer in MCGpSq of a multicurve on a closed surfaces S
with genus at least 2. The π1pSq-extension of H is hierarchically hyperbolic.

A multicurve on a
surface

Hierarchical hyperbolicity is a generalization of Gromov hyperbolic, that
features heavily in my research; see §3. The combination of Theorem 2 with
the result for lattice Veech groups strongly suggest that the “generalized
hyperbolicity” in Question 2 should be hierarchical hyperbolicity.

Future work. The project of understanding the relationship between geometric finiteness, surface
groups extensions, and hierarchical hyperbolicity is just beginning, but is ripe for progress. In
forthcoming work, I prove that the π1pSq-extensions for twist groups (abelian subgroups gen-
erated by twists around disjoint curves) are also hierarchically hyperbolic. Leininger and I are
currently working in the converse direction to Theorem 2, by investigating what sort of geomet-
ric consequences having a hierarchically hyperbolic extension has on a subgroup H ă MCGpSq.
Another angle of attack is examining the geometry of π1pSq-extensions for specific subgroups that
should not be geometrically finite. The aim in these cases is showing that the extensions are not
hierarchically hyperbolic. Understanding these “non-examples” will help us zero in on the correct
notion of geometrically finite. Good candidates for bad examples are the kernel of the Birman
exact sequence and the genus 2 handlebody subgroups.

2. The local-to-global property for Morse quasi-geodesics

The image of a geodesic under a quasi-isometry is a quasi-geodesic, a path that is a multiplica-
tive and additive amount away from being distance minimizing. While quasi-geodesics are natural
objects in geometric group theory, the quasi-geodesics in a space can be dramatically different from
the geodesics in the space. This has attracted special attention to the Morse quasi-geodesics: a
quasi-geodesic α is Morse if every other quasi-geodesic with endpoints on α is contained in a regular
neighborhood of α.
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Schematic of a Morse geodesic.
The quasi-geodesic γ must stay
uniformly close to the geodesic α.

Morse quasi-geodesics have been extensively studied by
Charney, Druţu, Sapir, Mozes, Osin, Ol’Shanskii, and many
others [3, 28, 36, 72]. Since Gromov’s hyperbolic spaces are
characterized by the fact that all quasi-geodesics are uniformly
Morse, Morse quasi-geodesics capture the hyperbolic (or neg-
atively curved) directions in a non-hyperbolic space. Accord-
ingly, some results from the theory of hyperbolic groups have
useful generalizations to Morse geodesics in non-hyperbolic
groups; see for example [3, 30, 26].

Despite these results, examples from Fink [46] and Osin–Ol’Shanskii–Sapir [72] demonstrate
obstructions to many result from hyperbolic groups having a generalization to Morse geodesics
in full generality. Wanting to create a framework that was broad enough to be interesting, but
restrictive enough to avoid these problematic examples, Spriano, Tran, and I introduced a local-to-
global property for Morse quasi-geodesics that that allows for the detection of the Morse property
at a small scale [RST22]. While not every space has this Morse local-to-global property, we
show that many important groups and space do.

Theorem 3 ([RST22]). The following groups and spaces have the Morse local-to-global property.

‚ All CATp0q spaces and groups
‚ Hierarchically hyperbolic spaces, including the mapping class group and Teichmüller space
‚ All finitely generated virtually solvable groups
‚ Any group hyperbolic relative to subgroups with the Morse local-to-global property
‚ The universal cover and fundamental group of any closed 3-manifold

Importantly, we also show that the pathological examples of Fink and Osin–Ol’Shanskii–Sapir do
not have the Morse local-to-global property. Recent work of Sisto–Zalloum shows that injective
metric spaces also have the Morse local-to-global property [76].

An example of a deep result from hyperbolic groups that cannot be generalized to Morse geodesics
is Cannon’s theorem that the geodesic in a hyperbolic group form a regular language [22].
However, Cordes, Spriano, Zalloum, and I showed that this obstruction vanishes when one restricts
to the class of Morse local-to-global groups.

Theorem 4 ([CRSZ22]). Morse local-to-global groups have regular languages of Morse geodesics.

The geodesics of a group form a regular language when there is a finite state automata that
can be used to determine whether or not a path in the Cayley graph of the group is a geodesic.
For hyperbolic groups, this gives an incredibly powerful algorithmic tool to understand the group.
The regular languages from Theorem 4 are more limited as the Morse geodesics can only access the
negatively curved parts of the group. However, these regular languages give us powerful tools for
studying stable subgroups.

A subgroup is stable if every pair of elements can be joined by a Morse geodesic in the Cayley
graph that stays uniformly close to the subgroup. Stability is a convexity property that was
introduced by Durham–Taylor and has been studied in a variety of settings by Hamenstädt, Hensel,
Antoĺın, Mj, Sisto, and others [1, 2, 40, 56]. In several settings, stable subgroups coincide with
other important subgroups. For example, the stable subgroups of right-angled Artin groups are
precisely the purely loxodromic subgroups [65] while the stable subgroups of hyperbolic groups are
the extensively studied quasiconvex subgroups. Most important for my work, Durham–Taylor
showed that the stable subgroups of the mapping class group are precisely the convex cocompact
subgroups from §1 [40]. Morse geodesics and stable subgroups therefore provide an avenue to
prove vast generalization of results from hyperbolic groups, while simultaneously producing specific
consequences of interest for convex cocompact subgroups of the mapping class group. I will highlight
examples of my research in this direction.
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2.1. Growth. Given a finite generating set A for a group G, the growth function of G is the
function that counts the number of elements of G that are a product of at most n elements of A.
The asymptotics of this growth function is a fundamental quasi-isometry invariant of group. For
example, Gromov’s polynomial growth theorem says a groups is virtually nilpotent if and only if
the growth function is asymptotic to a polynomial [50]. We also have a growth function for each
subgroup H, which counts the number of elements of H that are the product of n generators of G.

In the hyperbolic setting, Gersten–Short used regular languages to prove that the stable2 sub-
groups have rational growth [48]. This means, the power series with coefficients given by the
outputs of the growth function is equal to a rational function, which is equivalent to the growth
function of the subgroup satisfying a linear recursive pattern. The regular languages of my coau-
thor’s and I from Theorem 4, allow us to generalize the Gersten–Short result to the wide class of
Morse local-to-global groups.

Theorem 5 ([CRSZ22]). Let G be a Morse local-to-global group. If H is a stable subgroup of G,
then the subgroup growth of H is rational with respect to any finite generating set.

Farb asked which subgroups of the mapping class group have rational growth [43]. The equiva-
lence of stability and convex cocompactness in MCGpSq means Theorem 5 answer’s Farb’s question
in the positive for the convex cocompact subgroups.

Regular languages also give us access to tools from Perron–Frobenius theory to study the
growth of stable subgroups. Using these methods, we show that stable subgroups of Morse local-
to-global groups grow exponentially slower than the entire group in all known examples.

Theorem 6 ([CRSZ22]). In all known examples3, if G is a Morse local-to-global group and H is
a stable subgroup, then H grows exponentially slower than G for any finite generating set of G. In
particular, the convex cocompact subgroups of MCGpSq grow exponentially slower than MCGpSq.

Theorem 6 is a generalization of a theorem of Dahmani–Futer–Wise in the context of stable
subgroups of hyperbolic groups [32], and says that any given stable subgroup takes up a vanishingly
small percentage of the group as you travel farther from the identity. As with Theorem 5, this
general theorem on stable subgroups, gave a new result for convex cocompact subgroups of MCGpSq.

2.2. Combination theorem. The Morse local-to-global property arose from my collaborators and
I trying to prove a combination theorem that would allow us to combine two stable subgroup into
a new stable subgroup. This desire was largely motivated by the most important open question
about convex cocompact subgroups of MCGpSq asked by Farb–Mosher [45].

Question 3. Is there a convex cocompact subgroup of the mapping class group that does not have
a finite index free subgroup? Is there a convex cocompact closed surface group in MCGpSq?

The importance of Question 3 follows directly from the correspondence between convex co-
compact subgroups and hyperbolic π1pSq-extension discussed in §1. For example, if all convex
cocompact subgroups are free, then it would be impossible for a surface bundle over a surface to
be a hyperbolic manifold. The existence of such a bundle is a major open question in 4-manifolds.

The hope of a combination theorem for convex cocompact subgroups is that two free examples
could be combined to make a non-free example. The pathological example of Osin–Ol’shankii–
Sapir demonstrate that a sensible combination theorem for stable subgroups is impossible in full
generality, however, Spriano, Tran and I show that the addition of the Morse local-to-global property
allows for the formulation of a combination theorem. This result is an archetypal example of how
geometric properties can be used to produce algebraic consequences in groups.

2aka the quasiconvex subgroups.
3Specifically, we require that G is virtually torsion free or H is residually finite.
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Theorem 7 ([RST22]). Let G be a Morse local-to-global group and H,K be stable subgroups. There
exists C ą 0 so that if H XK contains all element of H YK whose length in G is at most C, then
xH,Ky is a stable subgroup isomorphic to H ˚HXK K.

The combined subgroup in Theorem 7 being an amalgamated product is promising for producing
non-free groups from free groups. However, verifying the hypothesis on the intersection is difficult
in practice. A successful attempt to use Theorem 7 to make non-free examples in the mapping
class group will require an in-depth knowledge of the specific subgroups involved. However, we
were able to use Theorem 7 to create non-obvious new examples of non-free stable subgroups of
CAT(0) groups, another class of Morse local-to-global groups [RST22, Example 3.5].

2.3. Morse boundaries. Beyond stable subgroups, the Morse local-to-global property has ap-
plications to the Morse boundary, a topological space that collects the asymptotic behavior of
Morse geodesic rays into a quasi-isometry invariant of the group. A group acts on its Morse bound-
ary by homeomorphisms, and my collaborators and I used the regular languages from Theorem 4
to illuminate the dynamics of this action. The most interesting of these result is about the limit
sets of normal subgroups.

Theorem 8 ([CRSZ22]). If G is a Morse local-to-global group, then the limit set of any normal
subgroup of G is the entire Morse boundary of G.

A simple corollary of Theorem 8, is that if G is a non-hyperbolic Morse local-to-global group
and N is a hyperbolic normal subgroup, then there is no continuous surjection from the Morse
boundary of N to the Morse boundary of G (what geometric group theorists call a Cannon–
Thurston map). This result was surprising because work of Cannon–Thurston [23] and later Mj
[70] showed that a continuous surjection does exists when both G and N are hyperbolic.

I have also shown that several Morse local-to-global groups satisfy a criteria of Charney–Cordes–
Sisto to have totally disconnected Morse boundaries [27]. As the Morse boundary is a quasi-isometry
invariant, this helps distinguish theses groups up to quasi-isometry.

Theorem 9 ([Rus21]). The following groups have totally disconnected Morse boundaries.

(1) The π1pSq-extensions of the stabilizers of multicurves discussed in §1.2.
(2) The genus 2 handlebody group.
(3) Any of the admissible groups defined by Croke–Kleiner in [31].

3. Hierarchically hyperbolic spaces

Hierarchically hyperbolicity is a generalization of Gromov’s hyperbolicity introduced by Behrstock–
Hagen–Sisto, and inspired by Masur–Minsky’s subsurface projection machinery for the mapping
class class group [10, 69]. The original examples of hierarchically hyperbolic spaces were Gromov
hyperbolic spaces, the mapping class group and Teichmüller space of a surface, and the virtually
special groups of Haglund–Wise [10]. The class has been enlarged to include a large class of Artin
groups [53], the universal covers and fundamental groups of most 3–manifolds [8][HRSS], the genus
2 handlebody group [29], some π1pSq-extensions [38] [Rus21], and several different ways of combin-
ing of these examples [8, 75, 13] [BR22]. Hierarchically hyperbolicity provides powerful machinery
for understanding the geometry of a wide variety of spaces simultaneously, including significant ad-
vances in understanding the asymptotic dimension [9], quasi-flats [12], and metric geometry [8, 51].
At times, this unified framework has allowed for the development of techniques that would have
been inaccessible in any of the individual settings [7, 9].

A hierarchically hyperbolic space (HHS) structure on a metric space is a collection of pro-
jections onto hyperbolic spaces along with three combinatorial relations between these projections.
The projection maps encode the “hyperbolic parts” of the space while the relations dictate how
these hyperbolic pieces fit together to build the geometry of the entire space. A hierarchically
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hyperbolic space is a metric space that admits an HHS structure and a hierarchically hyper-
bolic group (HHG) is a finitely generated group whose Cayley graph admits an HHS structure
that is equivariant with respect to the multiplication in the group.

My work on hierarchically hyperbolic spaces includes establishing a foundational understanding
of convexity properties, illuminating the relationship between relative hyperbolicity and hierarchical
hyperbolicity, progress on understanding the HHS boundary, and producing new examples.

3.1. Convexity properties. Spriano, Tran, I have provided the bedrock understanding of convex
subsets in hierarchically hyperbolic spaces [RST23]. These results have become fundamental tools
in the theory, appearing in subsequent work of Hagen, Petyt, Hoda, Haettel, Durham, Zalloum and
others [75, 54, 51, 74, 24, 41]. Questions asked in this work have inspired work of Genevois [47],
Cashen [25], and Karrer [60].

In hierarchically hyperbolic spaces, one wants a notion of a “convex” subset that in some way
agrees with the hierarchically hyperbolic structure. At the onset, there were three different candi-
dates for what this notion of convexity could be. A key result of my work with Spriano and Tran
is that these three notions are in fact all equivalent; we call the subsets that satisfy any of these
equivalent definitions a hierarchically quasiconvex subset.

Theorem 10 ([RST23]). The three possible definitions of hierarchically quasiconvex are equivalent.

The blue hierarchy path says
uniformly close to the subset

The simplest description of hierarchically quasiconvexity is
the following: every pair of points in an HHS can be join by
a hierarchy path, a special quasi-geodesic4 that is well un-
derstood using the hierarchy structure. A subset is then hier-
archically quasiconvex if every hierarchy path between points

in the subset stays uniformly close to the subset; see the schematic to the left.
The main technical tool we develop to understand hierarchical quasiconvexity is the construction

of a hierarchically quasiconvex hull for any subset using hierarchy paths. This construction
produces a minimal hierarchically quasiconvex subset containing a given subset.

Theorem 11 ([RST23]). The hierarchically quasiconvex hull of a set in an HHS can be constructed
in a uniformly finite number of steps by iteratively connecting pairs of points by hierarchy paths

The definition of hierarchical quasiconvexity is a direct generalization of the influential quasicon-
vex subsets of hyperbolic spaces, and our construction of hulls using hierarchy paths is a analogous
of the construction of quasiconvex hulls in hyperbolic spaces via geodesics.

Spriano, Tran, and I also studied strongly quasiconvex subsets of hierarchically hyperbolic
spaces. These are subsets where every quasi-geodesic between points stays uniform close to the
subset (as opposed to just the hierarchy paths). The Morse quasi-geodesics from §2 are examples
of strongly quasiconvex subsets. While strongly quasiconvex subsets are more restrictive than hier-
archically quasiconvex subsets, they have the benefit of being quasi-isometry invariants. Genevois
[47], Behrstock [4], and my collaborators and I [RST23] have used this invariance to distinguish
different quasi-isometry classes of groups.

In the case of hyperbolic spaces, strongly quasiconvex subsets are characterized by being the
image of a contracting retraction of the entire space. We prove this equivalence extends to all
hierarchically hyperbolic spaces. The key to this proof is creating an explicit characterization of
strong quasiconvexity in terms of the hierarchy structure.

Theorem 12 ([RST23]). A subset of an HHS space is strongly quasiconvex if and only if it is
contracting. Moreover, strong quasiconvexity can be detected using the hierarchy structure.

4Recall, quasi-geodesics are paths that are a multiplicative and additive amount away from being distance minimizing.
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Using Theorem 12, my collaborators and I characterized the hyperbolically embedded sub-
groups in hierarchically hyperbolic groups. These subgroups were introduced by Dahmani–Guirardel–
Osin [34] and are important in the study of acylindrically hyperbolic groups and group theo-
retic Dehn filling. Bowditch showed the hyperbolically embedded subgroups of hyperbolic groups
are exactly those that are almost malnormal and strongly quasiconvex [16]. We show Bowditch’s
result is a special case of all hierarchically hyperbolic groups. Examples of Ol’shanskii–Osin–Sapir
demonstrate that this characterization fails to hold amongst all finitely generated groups [72].

Theorem 13 ([RST23]). A subgroup of a hierarchically hyperbolic group is hyperbolically embedded
if and only if it is strongly quasiconvex and almost malnormal.

A particularly interesting case of Theorem 13 is the mapping class group, where an equivalence
between strong quasiconvexity and the convex cocompact subgroups of §1 says that Theorem 13
proves the hyperbolically embedded subgroups of MCGpSq are precisely the almost malnormal and
convex cocompact subgroups.

3.2. Relative hyperbolicity. Relative hyperbolicity is an older generalization of Gromov hyper-
bolicity introduced independently by Farb and Bowditch and extensively studied by many authors
including Osin, Druţu, Sapir, Groves, and Dahmani [16, 33, 37, 42, 73]. A relatively hyperbolic
space is a metric space that is hyperbolic outside a collection of isolated, strongly quasiconvex sub-
sets, which we call the peripheral subsets. Naturally occurring examples of relatively hyperbolic
spaces include the fundamental groups of finite volume, non-compact hyperbolic 3-manifolds, free
products of any finitely generated groups, and the “limit groups” of Sela.

Utilizing the understanding of strongly quasiconvex subsets gained from Theorem 12, I charac-
terized when a hierarchically hyperbolic space is also relatively hyperbolic using a combinatorial
condition, called isolated orthogonality, on HHS structures.

Theorem 14 ([Rus22]). A hierarchically hyperbolic space is relatively hyperbolic if and only if it
admits a hierarchically hyperbolic space structure with isolated orthogonality.

Theorem 14 allows one to “read off” the presence of relative hyperbolicity from the HHS struc-
ture. This has been used by Berlyne to prove the relative hyperbolicity of some graph braid groups
[14] and by Behrstock–Martin–Hagen–Sisto to show certain quotients of the mapping class group
are relatively hyperbolic [7].

Vokes and I applied Theorem 14 to hierarchical graphs of multicurves, a large class of
graphs associated to a surface S whose vertices are collections of disjoint curves on S. Examples
of hierarchical graphs of multicurves in the literature include the curve graph used by Ivanov,
Masur–Minsky, and many others to study the mapping class group and 3-manifolds [58, 68]; the
cut-system graph introduced by Hatcher–Thurston to prove finite presentability of the mapping
class group [57]; the pants graph used by Brock to study the coarse geometry of the Weil–Petersson
metric on Teichmüller space [20]; and the Torelli and separating curve graphs use by Farb–Ivanov
and Brendle–Margelit to study the algebra of the Torelli group and the Johnson kernel [44, 17].

Vokes proved that every hierarchical graph of multicurves is a hierarchically hyperbolic space [80].
Subsequently, Vokes and I used Theorem 14 along side more topological techniques to classify when
exactly a hierarchical graph of multicurves is relatively hyperbolic. This produced a new geometric
understanding of the separating curve graph, the Torelli graph, and the cut-system graph.

Theorem 15 ([Rus22, RV22]). If G is a hierarchical graph of multicurves on S, then G is either
hyperbolic, relatively hyperbolic, or thick. Further, which of these is true is determined by the set
of subsurface of S that intersect every curve in the vertex set of G.

Theorem 15 says that if a hierarchical graph of multicurves is not entirely negatively curved
(hyperbolic), then the non-negatively curved parts of the metric space must be organized in one
of two incompatible ways: they are either isolated away each other (relative hyperbolicity) or they
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intersect in an organized network of subspace that covers the entire space (thickness). This sort
of trichotomy was purposed by Behrstock–Druţu–Mosher who established it for Artin groups and
the universal covers of 3–manifolds [5]. The same trichotomy has been established for Teichmüller
space by Brock–Farb, Brock–Masur, and Behrstock–Druţu–Mosher [5, 18, 19]; for Coxeter groups by
Behrstock–Hagen–Sisto–Caprace [11]; and for free-by-cyclic groups by Hagen using work of Macura
and others [52]. This trichotomy produces strong geometric consequences including the existence of
minimal relatively hyperbolic structures and information about a powerful quasi-isometry invariant
called divergence [6, 11, 66].

Future work. The geometric insight gained from Theorem 15 opens the door to understanding
the quasi-isometric rigidity of a hierarchical graphs of multicurves. The main question is a
quasi-isometry version of Ivanov’s meta-conjecture [59].

Question 4. If G is a hierarchical graph of multicurves on a surface S, is every quasi-isometry of
G bounded distance from an element of MCGpSq?

Recent work of Goldsborough–Hagen–Petyt–Sisto combines with Theorem 15 to reduce Question
4 to the case G is Gromov hyperbolic [49]. In this case, there is description of the Gromov boundary
BG in terms of the boundaries of the curve graphs of subsurfaces of S that intersect every vertex
of G [39]. In particular, the boundary of the curve graph of the whole surface, BCpSq, topologically
embeds into BG. One avenue to resolve Question 4 would be to show that quasi-isometries of G
preserve this copy of BCpSq inside BG. One could then use quasi-möbius techniques as I did in
[MR19] or [Rus] to produce a quasi-isometry of CpSq from this map on the boundary. This would
produce an element of MCGpSq that is close to the original quasi-isometry of G as Rafi–Schliemer
have shown the answer to Question 4 is yes for CpSq.

3.3. Maximization and the boundary. Inspired by work in the case of hyperbolic and CAT(0)
groups, Durham–Hagen–Sisto defined a boundary for hierarchically hyperbolic groups [39]. This
attempts to organizes the geometry of the group “at infinity” into to a topological space that
illuminates the geometry of the group and the dynamics of its elements.

It is possible that a group G has two different HHG structures S1 and S2. While the definition
of the boundary depends on the specific structure, Durham–Hagen–Sisto asked whether or not the
boundary BpG,S1q with respect to S1 must be to homeomorphic to the boundary BpG,S2q with
respect to S2. This is the most fundamental open question about the boundary.

Question 5. Does the hierarchically hyperbolic boundary depend on the specific HHG structure?

Abbott, Behrstock and I have recently made the first progress on Question 5, by studying how
the boundary behaves under a “maximization” procedure. This procedure takes one HHG structure
S and produces a related structure S1 with certain universal (or maximal) properties [1]. We show
that the maximized structure S1 produces the same boundary as the original structure S.

Theorem 16 ([ABR22]). The HHS boundary is invariant under the maximization process.

The universal properties of the maximized structure are strong enough that we can use Theorem
16 to prove that some topological and dynamical properties of the boundary are independent of
the specific HHG structure. For example, we show that the the elements of the group that act with
north-south dynamics are independent of the structure [ABR22].

In a second paper, Abbott, Behrstock, and I use Theorem 16 to relate the boundary to my
previous work on relative hyperbolicity (Theorem 14). We establish that relative hyperbolicity
can be characterized in terms of the boundary and that the Bowditch boundary of a relatively
hyperbolic HHG is a quotient of the HHG boundary.

Theorem 17 ([ABR]). Let pG,Sq be a hierarchically hyperbolic group.
9
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(1) Whether or not G is relatively hyperbolic is characterized by the HHS boundary BpG,Sq.
(2) If G is relatively hyperbolic, then the Bowditch boundary of G is a quotient of BpG,Sq.

Theorem 17(1) is analogous to a characterization Behrstock–Hagen showed in the case of CAT(0)
cube complexes, while Theorem 17(2) generalizes work of Spriano [77], Tran [78], and Manning [67]
in the case of hyperbolic and CAT(0) groups.

Future work. The next step in understanding the HHS boundary is trying to resolve Question
5 in some special cases. The best candidate is the relatively hyperbolic case. Here, the Bowditch
boundary is independent of the specific HHS structure, so this independence should be able to
be pulled back under the quotient map from Theorem 17 as long as the peripheral subgroups are
known to satisfy Question 5.

Another test case is rank 2 HHGs. In this case, work of Behrstock–Hagen–Sisto on maximal
quasi-flats in HHGs [12] gives strong control over the parts of the boundary that are not controlled
by the maximization process. Abbott, Behrstock, and I plan to combine these techniques with
those from Theorem 16 to show that the boundary does not depend on the structure in this case.
This would demonstrate a stark difference between the HHG boundary and the CAT(0) boundary,
as the latter is not well behaved even in the rank 2 case.

Beyond Question 5, another promising direction arises from one of the corollaries to Theorem
16. We show that the limit set of any normal subgroup is the entire boundary.

Corollary 18 ([ABR22]). Let pG,Sq an HHG and N ă G a normal subgroup. The limit set of N
in BpG,Sq is all of BpG,Sq.

This is a direct analogue of what happens in the case of normal subgroups of hyperbolic groups, and
begs the question of when the Cannon–Thurston maps that exist in the case of hyperbolic groups
also exist in the case of hierarchically hyperbolic groups. Natural test cases for this question are
the kernel of the Birman exact sequence or special cases of the Bestvina–Brady subgroups of right
angled Artin groups.

3.4. New examples. Finding new examples of hierarchically hyperbolic groups is a central aspect
of my research program. One direction of this research are the π1pSq-extensions of curve stabilizers
and other “geometrically finite” subgroups of MCGpSq discussed in §1.2. In different directions, I
have expanded the world of hierarchically hyperbolic groups and spaces to include graph products,
3-manifold groups, and the admissible curve graph associated to a vector field on a surface.

3.4.1. Graph products. A graph product of a finite collection of groups G1, . . . , Gn is a group
combination technique that interpolates between the free product and direct product of the Gi.
Right-angled Artin groups and Coxeter groups are examples of graph products where the vertex
groups are all Z or Z{2Z respectively.

Berlyne and I answered two questions of Behrstock–Hagen–Sisto about graph products [8]. First
we affirmed that if each Gi is an HHG, then the graph product will be an HHG.

Theorem 19 ([BR22]). If each Gi is an HHG, then the graph product is an HHG.

Berlai–Rubbio had previous given an affirmative answer when the Gi satisfied some additional
hypotheses [13]. Berlyne and I used different techniques that avoid these extra conditions and
produce a more explicit HHS structure. This explicit structure allowed Berlyne and I to also
answer two questions of Genevois about the geometry of the electrification of a right-angled
Coxeter group [47]. This electrification is a metric space associated to every right angled Coxeter
group that is a quasi-isometry invariant. Berlyne and I confirmed Genevois’ conjectures about
when the electrification was a point or a line [BR22].

The techniques employed in Theorem 19 allowed Berlyne and I to show that the syllable metric
on any graph product is an HHS regardless of what the groups Gi are. This gave an affirmative

10
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answer to the second question of Behrstock–Hagen–Sisto [8], which was motivated by the fact that
the syllable metric on a graph product is not quasi-isometric to standard metric on the group, but
is instead a graph product analogue of the Weil–Petersson metric on Teichmüller space.

Theorem 20 ([BR22]). The syllable metric on a graph product of any collection of groups is a
hieraricharically hyperbolic space.

3.4.2. 3-manifolds. Behrstock–Hagen–Sisto showed that the fundamental groups of most 3-manifolds
(those without Nil or Sol geometry) are hierarchically hyperbolic spaces [8]. However, the hierar-
chically hyperbolic structures they created were not always equivariant with respect to the group
action. That is, these 3-manifold groups where HHSs but not necessarily HHGs. Behrstock–Hagen–
Sisto conjectured that in many cases—specifically most 3-dimensional graph manifolds—that there
would never exist equivariant HHS structures. However, Hagen, Sisto, Spriano, and I have shown
this conjecture is completely false.

Theorem 21 ([HRSS]). If M is a 3-dimensional graph manifold, then π1pMq is a hierarchically
hyperbolic group. That is, there exists a π1pMq-equivariant HHS structure for π1pMq.

By combining Theorem 21 with the Perelman–Thurston geometric decomposition of 3-manifolds,
we characterize precisely when a 3-manifold groups is an HHG and not just an HHS.

Theorem 22 ([HRSS]). If M is a compact 3-manifold, then π1pMq is an HHG if and only if there
are no Nil, Sol, or non-octahedral flat manifolds in the geometric decomposition of M .

Future work. The techniques used to prove Theorem 21 are more general than the setting of
graph manifolds. For example, we use them to prove the hierarchical hyperbolicity of any central
Z-extension of a hyperbolic group as well as any group with a certain “admissible” combinatorial
decomposition introduced by Croke–Kleiner [31]. The ideas have also been employed by Hagen–
Martin–Sisto and Dowdall–Durham–Leininger–Sisto in their respective proofs of the hierarchical
hyperbolicity of extra large type Artin groups [53] and extensions of lattice Veech groups [38].

A variant of these techniques should prove useful in establishing the hierarchical hyperbolicity
of other interesting groups. Free-by-cyclic groups are promising candidates as they have a long
established analogy with 3-manifold groups and admit a rich combinatorial decomposition that may
be amenable to the techniques from Theorem 21 in certain cases. The first examples to consider
are the linearly growing free-by-cyclic groups, which are the closest to the case of graph manifold
groups considered in Theorem 21.

3.4.3. The admissible curve graph. A framing ϕ of a surface S with punctures or boundary is a
non-vanishing vector field on the surface, and the framed mapping class group, MCGpS;ϕq,
is the infinite index subgroup that stabilizes ϕ up to isotopy. For surfaces with enough genus,
Calderon–Salter have identified MCGpS;ϕq as the image of the monodromy of the stratum in
the space of abelian differential associated to the framing ϕ [21]. Central to Calderon–Salter’s
techniques to understand MCGpS;ϕq is the action on the admissible curve graph, CϕpSq. This
is the graph of curves whose winding number with respect to the vector field ϕ is 0, with edges
corresponding to disjointness. The admissible curve graph appears to be the framed analogue of the
curve graph, CpSq, that is extremely influential in the study of the full mapping class group. One
of the most important results for the curve graph is Masur–Minsky’s proof that CpSq is Gromov
hyperbolic [68]. In forth coming work, Calderon and I show that the admissible curve graph CϕpSq

is not Gromov hyperbolic, but is hierarchically hyperbolic.

Theorem 23. [CR] For surfaces with genus at least 3 and framings of holomorphic type, the
admissible curve graph is hierarchically hyperbolic, but not Gromov hyperbolic.

The hyperbolicity of the curve graph is an essential component of understanding the geomet-
ric group theory of the mapping class group, and Calderon and I hope that the hierarchically
hyperbolicity of CϕpSq will similarly be a gateway to the geometric group theory of MCGpS;ϕq.
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[55] U. Hamenstädt. Word hyperbolic extensions of surface groups. arXiv:math/0505244.
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