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Abstract. We show that for any surface of genus at least 3 equipped with any choice

of framing, the graph of curves with winding number 0 with respect to the framing is

hierarchically hyperbolic but not Gromov hyperbolic. We also describe how this graph can

be viewed as encoding the combinatorics of a partial bordification of a marked stratum

of abelian differentials.

1. Introduction

There is a storied history to using graphs built from curves on a surface S to understand

the mapping class group, Mod(S), of the surface and related objects. The most famous

and far reaching example is Harvey’s curve graph, C (S), which has a vertex for each

isotopy class of essential simple closed curve on an orientable surface and an edge when

two curves can be realized disjointly [Har81]. The curve graph is a central object in low-

dimensional topology, illuminating not only the mapping class group [Iva97,MM00], but

also the geometry of Teichmüller space [MM98, Raf05] and the structure of hyperbolic

3-manifolds [Min10, BCM12]. Other examples of this paradigm include the pants graph

for understanding the coarse geometry of the Weil–Petersson metric [Bro03, BF06], the

Torelli and separating curve graphs for studying the Torelli subgroup and the Johnson

kernel [FI05,BM04], and the disk graph for examining the handlebody group and Heegaard

splittings [Hen20,MS13].

Recently, the first author and Salter have shown that the framed mapping class group

plays a important role in understanding moduli spaces of abelian differentials [CS22]. A

framing ϕ on a surface S is a trivialization of its tangent bundle, or equivalently (up to

isotopy), a non-vanishing vector field. The framed mapping class group FMod(S, ϕ) is the

subgroup of Mod(S) that stabilizes the isotopy class of ϕ. A natural graph of curves on which

FMod(S, ϕ) acts is the admissible curve graph, Cadm(S, ϕ), the subgraph of C (S) spanned by

curves that have winding number 0 with respect to ϕ. How closely the relationship between

FMod(S, ϕ) and Cadm(S, ϕ) mimics the relationship between Mod(S) and C (S) is an open

question.

A marquee results on the curve graph C (S) is Masur and Minsky’s proof of hyperbolicity

[MM98]. This has had far-reaching implications for the coarse geometry of the mapping class

group and is a central component of the resolution of the ending lamination conjecture [Min10].

A starting place to understand the relationship between FMod(S, ϕ) and Cadm(S, ϕ) is thus

to ask about the geometry of Cadm(S, ϕ). We show that the admissible curve graph is not

hyperbolic, but does possess a generalized notion of hyperbolicity.

Theorem A. For any surface S of genus g ≥ 3 and any framing ϕ of S, the admissible

curve graph Cadm(S, ϕ) is hierarchically hyperbolic (but not hyperbolic).
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Hierarchical hyperbolicity was introduced by Behrstock, Hagen, and Sisto to unify the

coarse geometry of the mapping class group and Teichmüller space with right-angled Artin

groups [BHS17b]. This framework allows one to understand the geometry of a space by

projecting it onto a collection of hyperbolic spaces. In the case of Cadm(S, ϕ), we use Masur

and Minsky’s subsurface projection maps to project Cadm(S, ϕ) on the curve graphs of

witnesses — subsurfaces of S that intersect every admissible curve. The non-hyperbolicity of

Cadm(S, ϕ) emerges from the fact that there exist pairs of disjoint witnesses for Cadm(S, ϕ).

Using the hierarchically hyperbolic machinery, these disjoint witnesses induce undistorted

product regions in Cadm(S, ϕ) which obstruct hyperbolicity.

This approach was inspired by work of Vokes, who showed that a wide variety of graphs

of curves are similarly hierarchically hyperbolic using their subsurface projection maps to

witnesses [Vok22]. Vokes first uses the set of witnesses to build a “model graph” K that she

proves is hierarchically hyperbolic. She then shows that when the graph of curves admits

a cobounded action of Mod(S) it is quasi-isometric to the model graph K. While we can

construct Vokes’s hierarchically hyperbolic model graph K for Cadm(S, ϕ), we cannot employ

her quasi-isometry as Cadm(S, ϕ) does not admit an action by all of Mod(S) and the action

of FMod(S, ϕ) on K is not sufficiently cofinite to use her argument. Instead, we construct

a quasi-isometry K → Cadm(S, ϕ) by hand, without relying on the change-of-coordinates

principle for Mod(S).

The boundary of marked strata. In addition to its topological definition, C (S) can also

be interpreted as encoding the intersection pattern of pieces of the thin part of Teichmüller

space. It turns out that the admissible curve graph can also be viewed as capturing the

combinatorics of a partial bordification of (marked) strata.

We recall that an abelian differential is a holomorphic 1-form on a Riemann surface. The

moduli space of all abelian differentials of genus g forms a rank g (orbifold) vector bundle

ΩMg over the usual moduli space of genus g closed Riemann surfaces Mg. This bundle is

broken into pieces called strata, which parametrize those differentials with a fixed number

and order of zeros. Since strata parametrize Riemann surfaces with marked points, and

differentials are determined up to scaling by the order and position of their zeros, we may as

well think of strata as subvarieties of Mg,n, the moduli space of genus g Riemann surfaces

with n marked points. Strata are not always connected, but Kontsevich and Zorich classified

their connected components [KZ03]: there are always at most 3, at most one of which is

hyperelliptic, in that it consists entirely of hyperelliptic Riemann surfaces with point sets

that are invariant under the hyperelliptic involution (preserving orders).

Given a (non-hyperelliptic) stratum component H ⊂ Mg,n, one can construct a partial

bordification H̆ ⊂ Mg,n in which cylinders can be stretched into infinite poles but no other

degenerations are allowed. We can then “lift” this bordification to any component Hϕ

of the preimage of H in Tg,n to yield a bordification H̆ϕ ⊂ Tg,n. This should be thought

of as an analogue of how the augmented Teichmüller space “lifts” the Deligne–Mumford

compactification [HK14].

In Proposition 5.5 we show that the combinatorics of this bordification correspond to

the admissible curve graph; equivalently, Cadm(S, ϕ) can also be thought of as the “graph of
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cylinders” for a given (marked) stratum component (compare [CS22, Corollary 1.2]). Thus

Theorem A can also be viewed as a statement about the coarse geometry of (marked) strata.

One could also define a number of different graphs that capture the intersection pattern

of the boundary of the entire closure of Hϕ. The authors will consider the geometry of these

graphs in a future version of this paper.

Remark 1.1. Our restriction to non-hyperelliptic components is because the hyperelliptic

ones do not exhibit new phenomena. Indeed, hyperelliptic stratum components are essentially

strata of quadratic differentials on the sphere, which are in turn parametrized by their poles

and zeros. Thus we can understand compactifications of hyperelliptic stratum components

entirely in terms of the Deligne–Mumford compactification of M0,n, and the intersection

pattern of the boundary of T0,n is just the usual curve graph of an n-times punctured sphere.

Outline of paper. We begin in Section 2 by recalling some basic information on the framed

mapping class group and proving fundamental “change-of-coordinate” style lemmas. After

these preliminaries, we prove Theorem A in Sections 3 and 4. The former section records

Vokes’s construction of a model graph given a collection of witnesses, while in the latter we

build a quasi-isometry between the model and Cadm(S, ϕ). The final Section 5 discusses the

relevant background on strata and explains how to relate Cadm(S, ϕ) to their boundaries.
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2. Surfaces, curves, and framings

Let us first recall some basic surface-topological notions and set our notation for the

rest of the paper. Let S = Sb
g denote an orientatable surface with genus g and b boundary

components. We denote the boundary curves of S by ∂S. The complexity of S = Sb
g is

ξ(S) = 3g − 3 + b. By a curve on S we mean an isotopy class of an essential (i.e., non-

nulhomotopic), non-peripheral (i.e., not homotopic into ∂S), simple closed curve on S. An

arc on S is an isotopy class of essential, non-peripheral simple arcs with endpoints on ∂S

and with isotopy classes taken relative to ∂S. Curves and arcs are unoriented unless we say

otherwise. By a subsurface of S, we mean an isotopy class of an essential, non-peripheral,

closed subsurface of S. For two subsurfaces U and V , we say U ⊆ V if U and V can be

realized such that U is contained in V . We say two curves and/or subsurfaces are disjoint if

their isotopy classes can be realized disjointly. Otherwise, we say they intersect. A multicurve

on S is a collection of distinct, disjoint curves on S. Throughout the paper, we use lowercase

Latin letters to refer to curves, Greek letters to multicurves and arcs, and uppercase letters

to subsurfaces.
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Given two multicurves α, β on S, we let i(α, β) denote their geometric intersection number.

If α and β are oriented curves, then ⟨α, β⟩ will denote their algebraic intersection number. If

a multicurve α intersects a subsurface W ⊆ S, then α ∩W is the isotopy class (relative to

∂W ) of curves and arcs obtained by taking the intersection of W with a representative for α

that realizes i(α, ∂W ). Two arcs α1, α2 on the subsurface W are parallel if they are isotopic

by isotopies fixing ∂W setwise but not pointwise.

If α is a multicurve on S, then S\α will denote the closed subsurface obtained by removing

a small open neighborhood of each curve in α from S. Similarly, if W is a subsurface of S,

then S \W is the closed subsurface obtained by removing a small open neighborhood of W

from S. We denote the genus of a subsurface W ⊆ S by g(W ).

The mapping class group, Mod(S), is the group of homeomorphisms of S that fix ∂S

pointwise modulo isotopies that leave ∂S fixed. The mapping class group is generated by

Dehn twists: for any simple closed curve c, let let Tc denote the homeomorphism obtained

by cutting open S along c, twisting one of the boundary components of S \ c once to the left,

and then regluing.

2.1. Framings and winding numbers. A framing of a surface S is a trivialization of its

tangent bundle ϕ : TS
∼−→ S × R2. For surfaces of genus not equal to 1, the existence of

a framing requires S to have punctures and/or boundary. Throughout this paper we will

think of S as having boundary; our results also apply equally well to surfaces with punctures

after applying the “capping homomorphism” (see [CS22, Section 6.2] for a discussion in the

context of framed mapping class groups).

We are interested in the set of framings up to isotopy, allowing ϕ to vary on ∂S: this

corresponds to the notion of an “absolute framing” in [CS22]. Isotopy classes of framings can

be described by the discrete invariant of a “winding number function” as follows. Given any

C1 immersed curve γ : [0, 1] → S, the tangent framing (γ, γ′) gives a curve in TS ∼= S × R2.

Projecting into the second factor gives a loop in R2 \{0} and so one can measure the winding

number ϕ(γ) of γ′ about 0. This number is an invariant of the isotopy class of framing as

well as the isotopy class of γ (though not its homotopy class), and so to every framing ϕ we

have an associated winding number function of the same name

ϕ : S → Z,

where S denotes the set of isotopy classes of oriented simple closed curves. It is not hard

to show that the function ϕ is actually a complete invariant of the isotopy class of the

framing [RW14, Proposition 2.4], and so for the remainder of the paper we will conflate a(n

isotopy class of) framing and its associated winding number function.

These functions have two very important properties, which were first elucidated by

Humphries and Johnson [HJ89]. As a consequence, a framing is completely determined (up

to isotopy) by its values on a basis for homology.

Lemma 2.1 (Humphries–Johnson). Any winding number function ϕ associated to a framing

satisfies the following properties.

(1) (Twist-linearity) Let a, b ⊂ S be oriented simple closed curves. Then

ϕ(Ta(b)) = ϕ(b) + ⟨b, a⟩ϕ(a),
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where ⟨·, ·⟩ : H1(S;Z)×H1(S;Z) → Z denotes the algebraic intersection pairing.

(2) (Homological coherence) Let U ⊂ S be a subsurface with boundary components

c1, . . . , ck, oriented so that U lies to the left of each ci. Then

k∑
i=1

ϕ(ci) = χ(U),

where χ(U) denotes the Euler characteristic.

Suppose that S has boundary components ∆1, . . . ,∆k (oriented with the surface on their

left); then the signature of a framing ϕ is the tuple

sig(ϕ) := (ϕ(∆1), . . . , ϕ(∆k)) ∈ Zk.

A framing is said to be of holomorphic type if every ϕ(∆i) is negative; this terminology comes

from the fact that the horizontal vector fields of holomorphic abelian differentials give rise to

such framings (compare Section 5.1).

The boundary components ∆i span a k − 1 dimensional subspace of H1(S), so we can

construct all framings with a given signature by specifying the values on 2g homologically

independent curves [CS22, Remark 2.7]. One particularly nice configuration is as follows: a

collection of simple closed curves B = {a1, b1, . . . , ag, bg} on S is called a geometric symplectic

basis (GSB) if i(ai, bi) = 1 for all i and all other pairs of curves from B are disjoint.

2.2. Framed mapping class groups. The framed mapping class group FMod(S, ϕ) associ-

ated to a framing ϕ is the stabilizer of ϕ in Mod(S) up to isotopy. Equivalently, and more

usefully, f ∈ FMod(S, ϕ) if and only if it preserves all winding numbers, i.e.,

(f · ϕ)(a) := ϕ(f−1(a)) = ϕ(a)

for every a ∈ S. In light of Lemma 2.1, in order to check if an element f ∈ Mod(S) actually

preserves ϕ, it suffices to show that show that f preserves the ϕ–winding numbers of all

curves of a GSB.

Throughout the paper, a particularly important role will be played by the set of simple

closed curves with ϕ(a) = 0 (note that this does not depend on orientation); these curves are

said to be admissible. By twist-linearity (Lemma 2.1.1), Dehn twists in admissible curves are

always in FMod(S, ϕ), and in [CS22] it is shown (for g ≥ 5) that FMod(S, ϕ) is generated

up to finite index by admissible twists.

Since each orbit of Mod(S) on the set of framings has infinite size (this is an immediate

consequence of Lemma 2.1) and FMod(S, ϕ) is a stabilizer, it is an infinite-index subgroup.

Along the same lines, understanding the possible conjugacy classes of FMod(S, ϕ) for

different ϕ is equivalent to listing the Mod(S) orbits. To state this “classification of framed

surfaces” [Kaw18] (see also [RW14] for the relatively framed version), we first need to recall

the definitions of the Arf invariant and its genus 1 version; see [CS22, §2.2], [Kaw18, §2.4],
and [RW14, §2.4] for more detailed discussions.

Suppose first that g = g(S) ≥ 2 and that every ϕ(∆i) is odd. In this case, we say that ϕ

is of spin type. 1 Fix a geometric symplectic basis {a1, b1, . . . , ag, bg} on S. Then the Arf

1In this case, the framing induces a (2-)spin structure on the closed surface obtained by capping off all

boundary components, and the Arf invariant of the framing coincides with the parity of the spin structure.
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invariant of ϕ is defined to be

Arf(ϕ) :=

g∑
i=1

(ϕ(ai) + 1) (ϕ(bi) + 1) mod 2.

This invariant turns out to only be well-defined when each ϕ(∆i) is odd, and in this setting

it does not depend on our choice of GSB. If g = 1, then there is an Z-valued refinement of

the Arf invariant which we denote by

Arf1(ϕ) := gcd(ϕ(c), ϕ(∆1) + 1, . . . , ϕ(∆k) + 1 | c is a non-separating simple closed curve).

Theorem 2.2. Two framings ϕ and ϕ′ of S are in the same Mod(S) orbit if and only if

(g = 0) sig(ϕ) = sig(ϕ′)

(g = 1) sig(ϕ) = sig(ϕ′) and Arf1(ϕ) = Arf1(ϕ
′)

(g ≥ 2) sig(ϕ) = sig(ϕ′) and if ϕ and ϕ′ are of spin type, then Arf(ϕ) = Arf(ϕ′).

In particular, for genus at least 2 there are only ever at most 2 distinct conjugacy classes

of framed mapping class groups.

2.3. Framed change-of-coordinates. The standard change-of-coordinates principle for the

entire mapping class group roughly states that given two multicurves γ and δ, there is some

f ∈ Mod(S) taking γ to δ if and only if S \ γ and S \ δ have the same topological type and

are glued together in the same way. This technique is often used in surface topology to show

the existence of certain configurations of curves with prescribed intersection pattern and to

show the transitivity of the Mod(S) action on such configurations. Its proof is a corollary of

the classification of surfaces: one uses the classification to build a homeomorphism between

the complements then extends that to a self-homeomorphism of S.

In the framed setting, we can similarly use Theorem 2.2 to show the existence of configu-

rations with certain intersection pattern and winding number (compare [CS22, Proposition

2.5]). For example, we can quickly show that (sub)surfaces with genus always contain

admissible curves. Essentially the same statement appears as Corollary 4.3 of [Sal], but we

include a proof as we will repeatedly use this statement throughout the paper.

Lemma 2.3. For any framing ϕ on a surface S of positive genus, there is some simple

closed curve a ⊂ S with ϕ(a) = 0.

Proof. Fix a GSB {a1, . . . , bg} on S. Then by stipulating winding numbers on our GSB we

can build a framing ψ such that

• sig(ϕ) = sig(ψ)

• ψ(a1) = 0, and

• if g(S) = 1 then Arf1(ψ) = Arf1(ϕ), or

• if g(S) ≥ 2 and ϕ is of spin type then Arf(ψ) = Arf(ϕ).

Now by Theorem 2.2 there is some homeomorphism f ∈ Mod(S) taking ψ to ϕ, and the

curve f(a1) is our desired admissible curve. □

Along the same lines, one can show that S always admits a GSB with given winding

numbers so long as those winding numbers yield the correct Arf invariant; the proof is left

to the reader. See also the proof of the first part of [CS22, Proposition 2.15].
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Lemma 2.4. Let ϕ be a framing of a surface S of genus g ≥ 1 and fix any tuple of integers

(x1, y1, . . . , xg, yg) so that

• if g = 1, then gcd(x1, y1, ϕ(∆1) + 1, . . . , ϕ(∆n) + 1) = Arf1(ϕ),

• if g ≥ 2 and ϕ is of spin type, then
g∑

i=1

(xi + 1)(yi + 1) = Arf(ϕ) mod 2

• if g ≥ 2 and ϕ is not of spin type, then we impose no conditions on the tuple.

Then there is a GSB B = {a1, b1, . . . , ag, bg} on S so that ϕ(ai) = xi and ϕ(bi) = yi.

In particular, any surface of genus at least 2 contains nonseparating curves of arbitrary

winding number.

The classification of framed surfaces can also be used to easily obstruct transitivity of the

FMod(S, ϕ) action. For example, FMod(S, ϕ) does not act transitively on the set of curves

that separate off a genus 1 subsurface with one boundary component, even though those

curves all have the same topological type and same winding number. The reason is that the

induced framing on the subsurface may have different Arf1 invariant.

However, Theorem 2.2 does not imply transitivity on the set of multicurves of the same

topological type that induce homeomorphic framings on each subsurface. Indeed, suppose

that some ϕ(∆i) is even so that ϕ does not have an induced Arf invariant. If we consider

the set of multicurves γ = c ∪ d where c cuts off a genus 1 subsurface with one boundary

and d is an admissible curve on that subsurface, then the paragraph above implies that

FMod(S, ϕ) does not act transitively on this set, even though there is only one Mod(S \ γ)
orbit of framing on S \ γ. At issue is what happens when we try to glue together framings

on subsurfaces to a framing on the entire surface; this can be dealt with by using relative

framings and being careful about boundary conditions (compare the proof of Lemma 5.3

in [CS22]). Since such arguments require a fair amount of delicacy and are beyond what

we need in this paper, we will restrict ourselves to proving those transitivity results we will

need in the sequel.

Proposition 2.5. Let ϕ be a framing of a surface S of genus at least 3. Then FMod(S, ϕ)

acts transitively on the set of pairs of non-separating admissible curves of the same topological

type. That is, if γ, γ′ are pairs of non-separating admissible curves and there is some

g ∈ Mod(S) taking γ to γ′, then there is also some f ∈ FMod(S, ϕ) taking γ to γ′.

In particular, if ϕ is of holomorphic type then FMod(S, ϕ) acts transitively on the set of

all admissible curves.

Remark 2.6. When ϕ does not have holomorphic type, FMod(S, ϕ) does not necessarily

transitively on the set of all admissible curves, even of the same topological type. If ϕ is of

spin type and c is admissible, then the restriction of ϕ to each of the components of S \ c is
also of spin type and the Arf invariant of each piece provides an obstruction to transitivity

of the FMod(S, ϕ) action.

Before proving Proposition 2.5, we first record a useful lemma that allows us to adjust the

winding numbers of curves in a configuration without changing their intersection properties.

A similar statement appears as Corollary 4.4 of [Sal].



8 AARON CALDERON AND JACOB RUSSELL

Lemma 2.7. Let ϕ be a framing of a surface S and let c1, . . . , ck, d be a collection of simple

closed curves. Assume there is some subsurface T ⊂ S, disjoint from all of the listed curves,

such that either

• g(T ) ≥ 2, or

• g(T ) = 1 and Arf1(ϕ|T ) = 1.

Suppose also that there is some arc ε connecting d to T that is disjoint from all ci. Then for

any z ∈ Z, there is a simple closed curve dz so that ϕ(dz) = z and i(ci, dz) = i(ci, d) for all i.

Proof. Orient d so that the arc from d to T exits d from its left-hand side.

Suppose first that g(T ) = 2. Then by Lemma 2.4 there is a nonseparating curve e on T

with winding number −z − ϕ(d)− 1. Since d is not separated from T , we may concatenate ε

with an arc connecting ∂T to the left side of e and take the connect sum of d and e along

this composite arc. Let dz be the resulting curve; then by homological coherence (Lemma

2.1.2) we have that

ϕ(dz) + ϕ(d) + ϕ(e) = −1

and so dz is our desired curve. It clearly has the same intersection pattern as d with each ci
since we have only altered d away from ci (see also the proof of [Sal, Corollary 4.4]).

In the case that g(T ) = 1, our assumption on Arf1(ϕ|T ) implies (via Lemma 2.4) that

there is some GSB (a, b) on T with ϕ(a) = 1. Choose an arc from ∂T to b disjoint from a,

then take the connected sum of d with b along the concatenation of ε with this arc. This

results in a new curve d′ that has the same intersection pattern as d with each ci and meets

a exactly once. Twist-linearity (Lemma 2.1.1) now implies that by twisting around a we can

alter the winding number of d′ by an arbitrary amount to find our desired dz. □

One particularly important consequence is that we can complete any admissible curve to

a partial GSB while specifying the winding number of the transverse curve.

Corollary 2.8. For any surface of genus at least 2, any nonseparating admissible a, and

any z ∈ Z, there is a curve b with i(a, b) = 1 and ϕ(b) = z.

Proof. The subsurface S \ a has two boundary components with winding number 0 and so

Arf1(S \ a) = 1. Applying Lemma 2.4 we can pick some GSB on S \ a with coprime winding

numbers; let T denote the subsurface filled by this pair of curves. We can now pick any

curve b′ disjoint from T with i(a, b′) = 1 . Since b′ does not meet T and Arf1(ϕ|T ) = 1, we

can apply Lemma 2.7 to adjust ϕ(b′) at will. □

With these results in hand, we can now prove the desired transitivity statements.

Proof of Proposition 2.5. Obviously transitivity on single curves follows from the result for

pairs, but since the proof for pairs requires a bit of casework we will prove the result for

single curves first as a demonstration of our techniques.

Single curves. Suppose first that a, a′ ⊂ S are nonseparating and admissible. Complete

a to a GSB a = a1, b1, . . . , ag, bg of S. Using Corollary 2.8, there is some b′1 on S with

i(a′, b′1) = 1 and ϕ(b′1) = ϕ(b1). Now take the subsurface Y ′ filled by a′ and b′1 and consider its
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complement. If ϕ|S\Y ′ is of spin type, then the additivity of the Arf invariant [RW14, Lemma

2.11] implies that

Arf(ϕ|S\Y ′) = Arf(ϕ)− (ϕ(a′) + 1) (ϕ(b′1) + 1) =

g∑
i=2

(ϕ(ai) + 1) (ϕ(bi) + 1) mod 2.

Otherwise, it is not of spin type; in either case we can now apply Lemma 2.4 to find a GSB

a′2, b
′
2, . . . , a

′
g, b

′
g on S \ Y ′ with

ϕ(ai) = ϕ(a′i) and ϕ(bi) = ϕ(b′i) for all i.

By the usual change-of-coordinates principle (compare Lemma 2.3 of [Sal]), there is some

f ∈ Mod(S) taking a to a′, each ai to a
′
i, and each bi to b

′
i. Since f preserves the winding

numbers of the curves of a GSB, it preserves the winding numbers of all simple curves

(Lemma 2.1), and thus we see that f ∈ FMod(S, ϕ).

Nonseparating pairs. If g ≥ 4 and the admissible curves a1, a2 together do not separate

S, then we can just repeat our argument for transitivity on single admissible curves: extend

a1, a2 to an arbitrary GSB, use Corollary 2.8 and 2.4 to extend a′1, a
′
2 to a GSB with the

same winding numbers, and then use the transitivity of the mapping class group action on

GSBs to find some f (necessarily in FMod(S, ϕ)) taking one GSB to the other.

If g = 3 then we must be slightly more clever about how we choose our intial GSB

extending a1 since the complement of a1 ∪ a2 has genus 1 (and hence there are more possible

Mod(S) orbits). Suppose first that ϕ is of spin type. Using Corollary 2.8 twice, we can

choose disjoint curves b1 and b2, each meeting their respective ai and disjoint from the other,

so that

Arf(ϕ) + ϕ(b1) + ϕ(b2) = 0 mod 2.

In particular, this implies that if we let Y denote the (disconnected) subsurface obtained by

taking a regular neighborhood of a1 ∪ a2 ∪ b1 ∪ b2, then the contribution to Arf(ϕ) of ϕS\Y
must be 0, hence for any GSB (a3, b3) on S \ Y at least one of ϕ(a3) or ϕ(b3) must be odd.

Now we observe that

sig(ϕ|S\Y ) = (sig(ϕ),+1,+1)

and so Arf1(ϕ|S\Y ) is the gcd of an odd number and 2, i.e., is 1.

If ϕ is not of spin type then choose any disjoint b1 and b2, each meeting their respective

ai and disjoint from the other, and define Y similarly. Then since some ϕ(∆i) is even, the

signature of ϕ|S\Y contains both an even number and +1, and so we see that Arf1(ϕ|S\Y ) = 1.

Therefore, no matter whether ϕ is of spin type or not, we can choose our b1 and b2 so that

ϕ|S\Y has fixed Arf1, and so by Lemma 2.4 admits a GSB a3, b3 with ϕ(a3) = 0 and ϕb3 = 1.

We can now finish the proof by inserting a prime in all of the arguments above to get another

GSB on S with the same winding number data and then concluding as in the g ≥ 4 case.

Separating pairs of nonseparating curves. Finally, suppose that a1 ∪ a2 separates S

into two subsurfaces T and U . In this case, neither of the complementary components to

a1 ∪ a2 is of spin type, so if ϕ is of spin type then we will need be somewhat clever about

our choice of GSB to deal with the emergence of the Arf invariant.
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Pick an arbitrary curve meeting a1 and a2 exactly once. Since at least one of T or U has

genus at least 2, we can use Lemma 2.7 to turn this curve into an admissible b1 that also

meets each of a1 and a2 exactly once. Choose GSBs

BT := s1, t1, . . . , sg(T ), tg(T ) for T and BU := u1, v1, . . . , ug(U), vg(U) for U

that are disjoint from b1; then {a1, b1} ∪ BT ∪ BU is a GSB for S.

Since (a1, a2) and (a′1, a
′
2) are in the same mapping class group orbit, there is a correspon-

dence between their complementary components; let T ′ and U ′ denote the two components

of a′1 ∪ a′2 corresponding to T and U . Since neither component is of spin type (having a

boundary component with even winding number) or, if they have genus 1, have Arf1 = 1

with an admissible boundary component, Lemma 2.4 implies that both T ′ and U ′ admit

GSBs with any given tuples of winding numbers. We may therefore choose GSBs BT ′ and

BU ′ with the same winding numbers as those for BT and BU . To extend these to a GSB of

S, we just need to find an admissible curve disjoint from BT ′ ∪ BU ′ that meets a′1 and a′2
exactly once.

Suppose ϕ is of spin type. Then we see that for any choice of b′1 meeting a′1 exactly once

and disjoint from BT ∪ BU , we have

(ϕ(a1) + 1) (ϕ(b1) + 1) +
∑
g(T )

(ϕ(si) + 1) (ϕ(ti) + 1) +
∑
g(U)

(ϕ(ui) + 1) (ϕ(vi) + 1) = Arf(ϕ)

= (ϕ(a′1) + 1) (ϕ(b′1) + 1) +
∑
g(T ′)

(ϕ(s′i) + 1) (ϕ(t′i) + 1) +
∑
g(U ′)

(ϕ(u′i) + 1) (ϕ(v′i) + 1) mod 2

which simplifies to ϕ(b1) = ϕ(b′1) mod 2 by our choices of BT ′ and BU ′ . Thus ϕ(b′1) must be

even. Now choose a curve c on either T ′ or U ′ that

• is disjoint from BT ′ ∪ BU ′ ,

• meets b′1 exactly once, and

• bounds a surface homeomorphic to S1,2 together with a′1.

Such a c can be obtained, for example, by taking the boundary of a regular neighborhood

of u′1 ∪ v′1 and then connect summing that curve with a′1. See Figure 1. By homological

coherence (Lemma 2.1.2), it must be that ϕ(c) = ±2 (where sign depends on orientation).

Twist-linearity (Lemma 2.1.1) then implies that some twist of b′1 about c will be admissible.

Thus the configurations of curves

a1, b1, a2,BT ,BU and a′1, T
−ϕ(b′1)/2
c (b′1), a

′
2,BT ′ ,BU ′

have the same topological type, so there is a mapping class taking one to the other, and

since all of the corresponding curves have the same winding number, any such mapping class

must preserve ϕ.

If ϕ is not of spin type, then we can conclude by picking an arbitrary b′1 disjoint from

BT ′ ∪ BU ′ . We then note that since ϕ is not of spin type, then there is some ∆i with even

winding number. Choose c as before and let d be a curve disjoint from all of the listed curves

except b′1, obtained by taking the connect sum of a2 with this ∆i; by homological coherence

again, its winding number must be odd. See Figure 1. Thus, by twisting around c and d

we can change the winding number of b′1 by any amount (while keeping all other winding
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U ′T ′ a′1

a′2

b′1

c

∆

d

Figure 1. GSBs and auxiliary curves as in the proof of Proposition 2.5.

numbers fixed) and so in particular Tm
c T

n
d (b

′
1) is admissible for some m,n. We can then

conclude as in the spin case. □

3. The admissible curve graph and its geometric model

A graph of multicurves on a surface S is any graph whose vertices are multicurves on S.

The simplest and most influential example is the curve graph C (S). The curve graph has all

curves on S as vertices and edges between two curves if and only if they intersect the fewest

number of times possible for a pair of curves on S. If ξ(S) > 1 then edges correspond with

disjointness, and when ξ(S) = 1 the minimal intersection number is either 1 or 2.

We will focus on the following subset of the curve graph: given a framing ϕ of S, the

admissible curve graph, Cadm(S, ϕ), relative to ϕ is the subgraph of C (S) spanned by the

curves that are admissible with respect to ϕ.

Proposition 2.5 implies that the framed mapping class group FMod(S, ϕ) acts with finitely

many orbits on its vertices and edges (when ϕ is of holomorphic type, it acts with a single

orbit on vertices). As a consequence of Lemma 2.3, every vertex of C (S) is distance 1 from

a vertex of Cadm(S, ϕ) when g(S) ≥ 2. When g(S) ≥ 3, Lemma 2.3 also allows us to copy

Salter’s “hitchhiking argument” in the case of r-spin structures [Sal, Lemma 3.11] to show

Cadm(S, ϕ) is connected.

Lemma 3.1. If g(S) ≥ 3, then for any framing on S, Cadm(S, ϕ) is connected.

Proof Sketch. The graph of genus 1 subsurfaces (with edges for disjointness) is connected

[Put08]. Since each genus 1 subsurface contains an admissible curve, the paths in this graph

can be upgraded to a path in Cadm(S, ϕ). □

Given a graph of multicurves X , a subsurface W ⊆ S is a witness for X if every vertex of

X intersects W and ξ(W ) < 0. We let Wit(X ) denote the set of all witness for X . For the

admissible curve graph, the witnesses are all subsurfaces whose complement has no genus

and where the winding numbers of the boundary curves do not satisfy a particular set of

linear equations.

Lemma 3.2. Let S = Sb
g with g ≥ 3 and b ≥ 1. Fix a framing ϕ of S.
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(1) If Z ⊆ S is a genus 0 subsurface and z1, . . . , zk are the boundary components of Z,

oriented so that Z is to the left of each zi, then Z contains a nonperipheral admissible

curve if and only if there is no I ⊊ {1, . . . , k} such that∑
i∈I

ϕ(zi) = 1− |I|.

(2) A subsurface W of S is a witness for Cadm(S, ϕ) if and only if each curve in ∂W is

not admissible and each component of S \W is a genus 0 subsurface that does not

contain any admissible curves.

(3) If V,W ∈ Wit(Cadm(S, ϕ)) are disjoint, then each is a genus 0 subsurface that does

not contain any admissible curves, and there does not exist Z ∈ Wit(Cadm(S, ϕ))

that is disjoint from both V and W .

Proof. The first item is an immediate consequence of homological coherence and the fact

that every curve on a genus 0 surface is separating. The second item follows from the first

plus Lemma 2.3’s guarantee that every subsurface with genus contains an admissible curve.

The third item is an immediate consequence of the second item. □

Paralleling [Vok22], we now use the witnesses of a graph of multicurves to construct a

“model graph,” which is in some sense the largest graph of multicurves that has the same

witness set as the starting graph.

Definition 3.3. Let S be a collection of subsurfaces of S. We say S is a set of valid

witnesses if for all W ∈ S,

(1) W is connected;

(2) ξ(W ) ≥ 1;

(3) if Z is a connected subsurface with W ⊆ Z, then Z ∈ S;

Definition 3.4. Let S be a set of valid witnesses for the surface S. If S = ∅, define KS(S)

to be a single point. Otherwise, define KS(S) to be the graph so that:

• each vertex is a multicurve γ on S with the property that each component of S \ γ
is not an element of S;

• two multicurves γ and δ are joined by an edge if either

(1) γ differs from δ by either adding or removing a single curve, or

(2) γ differs from δ by “flipping” a curve in some subsurface of S, that is, δ is

obtained from γ by replacing a curve c ⊂ γ by a curve d, where c and d are

contained in the same component Yc of S \ (γ \ c) and are adjacent in C (Yc).

By construction, the set of witness for KS(S) is precisely S. Moreover, the vertex set of

KS(S) is the maximal collection of multicurves whose set of witnesses is S. Thus, if X is a

graph of multicurves with Wit(X ) = S, then the vertices of X are a subset of KS(S). In

the case of the admissible curve graph, this inclusion is Lipschitz.

Lemma 3.5. If S = Wit(Cadm(S, ϕ)), then the inclusion Cadm(S, ϕ) → KS(S) is 2-Lipschitz

Proof. If a, b are a pair of disjoint admissible curves, then a ∪ b is also a vertex of KS(S),

hence a, a ∪ b, b is a path of length 2 connecting a and b in KS(S). □
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Vokes studied KS(S) as a quasi-isometric model for graphs of multicurves. Specifically,

she showed that if X is a graph of multicurves on S with a cobounded action of Mod(S) and

no annular witnesses, then the inclusion X ↪→ KS(S) for S = Wit(X ) is a quasi-isometry.

The advantage of using KS(S) as a quasi-isometric model is that she showed that KS(S) is

a hierarchically hyperbolic space in a natural way. This means the coarse geometry of KS(S)

can be well understood using the subsurface projection machinery of Masur and Minsky and

the relations between the subsurfaces in S; see [BHS17b,BHS19,Vok22] for full details.

We note that while Vokes states her results in the case of an action of the full mapping

class group, the only actual use of the action is in establishing the quasi-isometry described

above. In particular, the proof in Section 3 of [Vok22] as written demonstrates that KS(S)

is a hierarchically hyperbolic space, even in the case where S is not invariant under the

mapping class group.

One consequence of Vokes’s hierarchically hyperbolic structure is that hyperbolicity of

the the graph is encoded in the disjointness of the witnesses.

Theorem 3.6 (Corollary 1.5 of [Vok22]). The graph KS(S) is hyperbolic if and only if S

does not contain a pair of disjoint subsurfaces.

4. A quasi-isometry with the model

Vokes’s proof of the quasi-isometry between graphs of multicurves and their models relies

on the action of the mapping class group in a fundamental way. Specifically, given any

connected graph of multicurves X that has no annular witnesses and has a cobounded action

by Mod(S), she uses the “change-of-coordinates” principle and curve surgery arguments to

build a quasi-isometry from KS(S) to X , where S is the set of witnesses of X .

In our setting, we only have access to the (weaker) framed versions of these techniques.

Moreover, there are infinitely many FMod(S, ϕ) orbits of curves and of witnesses, so we

cannot employ standard change-of-coordinates arguments of the form “make a choice for

each orbit, then propagate that choice around using the group action to get finiteness”

(e.g., [Vok22, Claim 4.3] or Lemma 4.4 below).

Instead of relying on change-of-coordinates, we build our quasi-isometry KS(S) →
Cadm(S, ϕ) by going through an intermediary graph G, which admits a coarsely Lipschitz

map Π onto Cadm(S, ϕ) (Lemma 4.5). One can then define a map Ψ from KS(S) to subsets

of G; while this map is not coarsely Lipschitz or even coarsely well-defined, the composition

Π ◦Ψ turns out to be (Proposition 4.11).

The utility of this approach is that G admits an action of the entire mapping class group, so

we can use standard change-of-coordinates arguments. A fruitful comparison is the “hitching

a ride” argument we used to show the connectivity of Cadm(S, ϕ) in Lemma 3.1.

For the remainder of the section, S = Sb
g will be a surface with g ≥ 3 and b ≥ 1 and

S will be the set of witnesses for Cadm(S, ϕ) with respect to a fixed framing ϕ. Since we

will only be considering theses graphs for the surface S, we will use Cadm and K to denote

Cadm(S, ϕ) and KS(S) respectively.

4.1. Coarse maps and quasi-isometries. Let X,Y be metric spaces. A map f : X → 2Y

is coarsely well-defined if f(x) has uniformly bounded diameter for every x ∈ X. It is coarsely
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Lipschitz if there are constants K ≥ 1 and C ≥ 0 so that

diamY (f(x) ∪ f(x′)) ≤ KdX(x, x′) + C

for every x, x′ ∈ X. In particular, note that coarsely Lipschitz maps are in particular

coarsely well-defined. Prototypical examples are the inclusion of a connected subgraph into

a connected graph, the subsurface projection map from the the marking graph to C (W )

where W ⊆ S is a subsurface, or the systole map that sends a point in Teichmüller space to

its hyperbolic systole(s).

When X is a graph, one can simply define a map f : X → 2Y on the vertices and assume

that the image of any point on an edge is the union of the images of the end points of that

edge. In this case, to show f is coarsely Lipschitz, it suffices to show that

(1) f(x) is uniformly bounded for all vertices x of X, and

(2) if x and x′ are two vertices joined by an edge of X, then diam(f(x) ∪ f(x′)) is

uniformly bounded.

Two =spaces are quasi-isometric, if there exists two coarsely Lipschitz map f : X → 2Y

and f : Y → 2Y so that dX(x, f ◦ f(x)) is uniformly bounded for all x ∈ X. In this case, f

is a quasi-isometry from X to Y and f is the quasi-inverse of f .

4.2. The genus-separating curve graph. We begin building our quasi-isometry from K
to Cadm by defining the intermediate graph G that we use throughout this section. We say

that a separating curve c ⊆ S is genus-separating if each component of S \ c has positive
genus.

Definition 4.1. The genus-separating curve graph G = G(S) is the graph whose vertices are

genus-separating curves, and where two vertices are connected by an edge if the corresponding

curves are disjoint.

Putman’s argument that the full separating curve graph is connected also shows that G is

connected [Put08].

Lemma 4.2. The graph G is connected so long as g(S) ≥ 3.

Since every subsurface with genus contains an admissible curve, we see that for any c ∈ G
both components of S \ c are not witnesses for Cadm. Thus G is a subgraph of K.

Remark 4.3. While we will not use this in the sequel, we can in fact relate the geometries

of G and K by considering their sets of witnesses. The witnesses for G are exactly those

subsurfaces that have genus 0 complements, which form a strict superset of the witnesses for

K (characterized in Lemma 3.2). Using the “factored space” construction from [BHS17a],

we can thus view K as being obtained from KWit(G)(S) by coning off regions corresponding

to the non-shared witnesses.

As for the usual curve graph, intersection number bounds distance in G.

Lemma 4.4. For each n ≥ 0 there exists N = N(n) ≥ 0 so that for any two genus-separating

curves c, d ∈ G, if i(c, d) ≤ n, then dG(c, d) ≤ N .
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Proof. By the change-of-coordinates principle in Mod(S), there exist finitely many pairs

{(ci, di)}ki=1 of genus-separating curves so that every pair of genus-separating curves that

intersect at most n times is in the Mod(S)–orbit of some (ci, di). Setting N = max{dG(ci, di) :
1 ≤ i ≤ k}, the fact that Mod(S) acts by isometries on G implies any two genus-separating

curves that intersect at most n times are at most N far apart in G. □

4.3. From genus-separating to admissible curves. Define a map

Π: G → 2Cadm

by sending a genus-separating curve to the collection of admissible curves disjoint from it.

This set is always non-empty by Lemma 2.3.

Lemma 4.5. The map Π is coarsely Lipschitz.

Proof. It suffices to check that the diameters of the images of vertices and edges are both

bounded.

Let c ∈ G be any genus-separating curve and let U, V denote the components of S \ c.
Let a be any admissible curve in Π(c), and assume without loss of generality that a ⊂ U .

Every admissible curve in V is distance 1 from a, and likewise every admissible curve in U is

disjoint from any curve in V . Thus Π(c) has diameter 2 as a subgraph of Cadm.

Now suppose c and d in G are disjoint; this implies that one of the (positive genus)

components of S \ c is nested inside a component of S \ d. In particular, this implies that

Π(c) and Π(d) overlap, and since each has bounded diameter their union does as well. □

The map Π is defined so that if a ∈ Cadm and c ∈ G with i(a, c) = 0, then

dCadm
(a,Π(c)) = 0.

Below, we prove a generalization of this fact that allows us to bound the distance between a

and Π(c) by bounding the geometric intersection number i(a, c).

Lemma 4.6. For any m ≥ 0, there exists M =M(m) ≥ 0 so that for any admissible curve

a and any genus-separating curve c with i(a, c) ≤ m, we have dCadm
(a,Π(c)) ≤M .

We will only ever apply this lemma with m = 2, but since the proof for general m is not

much harder we choose to include it here.

Proof of Lemma 4.6. If a is disjoint from c, then a ∈ Π(c) and we are done. Otherwise, we

will surger c along a to produce a new genus-separating curve c′ disjoint from c that intersects

a strictly fewer times. By Lemma 4.4, this will allow us to decrease the intersection number

of a and c at the cost of moving c a fixed distance in G. Since Π is a coarsely Lipschitz

map, this procedure moves the projection a uniformly bounded amount in Cadm, proving the

desired statement.

Since S has genus at least 3, there is at least one component Uc ⊂ S \ c of genus at least
2. Consider an arc α of a ∩ Uc. The regular neighborhood of c ∪ α forms a pair of pants Pα,

one of whose boundaries is c; label the other two by d and e. Because any strand of a ∩ Uc

that meets d or e must travel through Pα while avoiding α, any such strand must exit Pα

through c. Thus, we have

i(a, d) + i(a, e) ≤ i(a, c)− 2.
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If either d or e is separating, then the other one is either separating or homotopic to a

boundary curve of S (they cannot both be homotopic to a boundary curve as c is genus-

separating). Since Uc has positive genus, at least one of d and e is genus-separating; we then

take c′ to be whichever is, completing the proof in this case.

In the other case, d and e are both non-separating. Let Vc ⊂ Uc denote the connected

subsurface of Uc \ (d∪ e) not containing α. Choose an arc β in Vc connecting d and e that is

disjoint from a ∩ Vc. Such an arc always exist because either a ∩ Vc contains such an arc, or

it does not, in which case one can take an arbitrary arc from d to e and surger it along its

intersections with a ∩ Vc to make it disjoint; see Figure 2.

The curve c′ obtained from a regular neighborhood of d ∪ e ∪ β forms a pair of pants Pβ

with d and e. Since any arc of a that enters Pβ through c′ cannot intersect β, that arc must

exit through either d or e. Thus

i(c′, a) ≤ i(a, d) + i(a, e) < i(a, c).

Since c′ is constructed to cut off a genus g(Uc) − 1 ≥ 1 subsurface, we see that c′ is still

genus-separating and is clearly disjoint from c. This completes the proof. □

Vc

Uc

c d

e

β β β′

a ∩ Vcc′

d

e

α

Figure 2. On the left, the subsurfaces involved in the proof of Lemma

4.6. On the right, surgering an arbitrary arc β′ from d to e along a ∩ Vc to

obtain a disjoint arc β.

4.4. A quasi-inverse. We now construct a map Ψ that assigns vertices of K to sets of

genus-separating curves so that the composition Π ◦ Ψ is a quasi-inverse of the inclusion

Cadm → K. The idea to is assign a multicurve α ∈ K to the set of genus-separating curves

that intersect the components of S \ α in a particularly nice way. This is always possible by

the following lemma.

Lemma 4.7. For any multicurve α on S, there exists a genus-separating curve c so that for

each component Y of S \ α, we have exactly one of the following:

(1) c is disjoint from Y ,

(2) c ⊆ Y ,

(3) c ∩ Y is a single arc with both endpoints on the same curve of ∂Y , or
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(4) c ∩ Y is a pair of parallel arcs that both go from one curve y1 ∈ ∂Y to a different

curve y2 ∈ ∂Y .

Proof. If a component of S \ α has positive genus, then the lemma is true using a separating

curve cutting off that genus. Otherwise, the dual graph D of α on S must contain a cycle.

We can use the dual graph to build such a separating curve c as follows:

(1) Take any cycle v1, . . . , vn in the dual graph D that meets any vertex of D at most

once. Let ai be the curve of α/edge in the dual graph connecting vi to vi+1 (where

indices are taken mod n).

(2) On each subsurface Yi of S \ α corresponding to a vertex vi of the cycle, choose an

arc βi connecting ai−1 to ai.

(3) The concatenation of the βi is now a curve b that meets each ai exactly once.

(4) Set c to be a regular neighborhood of b ∪ an.
By construction c ∩ Yi is a pair of arcs parallel to βi for each i ̸= 1, n, and it follows by

inspection that c ∩ Y1 (and c ∩ Yn) is a single arc with both endpoints on a1 (and an−1,

respectively). See Figure 3. □

a1

a2

an

a1

a2

an

c

b

Figure 3. Building a genus-separating curve out of a cycle in the dual

graph.

In light of Lemma 4.7, we define a map

Ψ: K → 2G

by setting Ψ(α) to be the set of genus-separating curves c that satisfy the conclusion of

Lemma 4.7.

Our discussion in Remark 4.3 shows that this map is rather poorly behaved. Viewing K as

(quasi-isometric to) the cone-off of (the model KWit(G)(S) for) G, this map sends cone point

points to entire product regions. In particular, the diameter of Ψ(α) need not be bounded.

Nevertheless, we will show that the composition Π ◦Ψ is coarsely Lipschitz and is hence a

quasi-inverse of the inclusion Cadm → K.

The key technical step is the next lemma, which takes a component Y of S \ α and a

genus-separating curve c ∈ Ψ(α) and produces an admissible curve a that intersects c at

most 4 times and is disjoint from Y . This admissible curve provides an “anchor” that allows
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us to modify c inside the component Y without large changes in the eventual composition

Π ◦Ψ(α). It is in this lemma where we need the finer control over the genus-separating curve

in Ψ(α) ensured by Lemma 4.7 as opposed to defining Ψ(α) to be all genus-separating curves

that intersect each curve of α some fixed number of times.

Lemma 4.8. Let α be a multicurve in K and c ∈ Ψ(α). For each component Y of S \α that

c intersects, there exists an admissible curve aY that is disjoint from Y and has i(c, aY ) ≤ 4.

Proof. Let Y be a component of S \ α that c intersects. If any curve of α is admissible, then

c intersects that curve at most twice and we are done. This also allows us to proceed by

assuming that S \ α is disconnected: because each component of S \ α is not a witness, if

S \ α is connected then α must contain an admissible curve.

Since Y is not a witness for Cadm by the definition of K, some component Z of S \ Y
contains an admissible curve. If c is disjoint from Z, then c is disjoint from the admissible

curve on Z and again we are done. So suppose that c intersects Z; then c ∩ Z separates Z

since c is separating. Since c is genus-separating, if Z has positive genus then at least one

of the components of Z − (c ∩ Z) must also have genus. Applying Lemma 2.3, this implies

there is an admissible curve in Z that is disjoint from c whenever Z contains genus.

We can therefore concentrate on the case where Z has no genus. In this case, every

curve on Z is separating, and which curves of Z are admissible are determined by how they

separate the boundary components of Z (Lemma 2.1.2). Let A be a set of curves in ∂Z

so that any curve in Z partitioning ∂Z into A and ∂Z \ A must be admissible. We argue

below that one can always draw a curve a that cuts off the boundary components in A and

intersects c at most 4 times.

To facilitate this, we first show that c ∩ Z cuts Z into at most 3 components. Since c

intersects at most 2 components of ∂Y , it also intersects at most 2 components of ∂Z (and

intersects each component at most twice). If c intersects exactly one component of ∂Z, then

we are in case 3 of Lemma 4.7 and so c ∩ Z must be a single arc with both endpoints on

the same boundary component of Z; in this case Z − (c ∩ Z) has two components. When c

intersects two distinct components z1, z2 of ∂Z, then we are in case 4 of Lemma 4.7 and so

c ∩ Z is a pair of arcs c1, c2 so that either

• both endpoints of ci are on zi for each i ∈ {1, 2}, or
• c1, c2 are parallel arcs each running from z1 to z2.

In the first case, Z − (c∩Z) has either two or three components and in the second it has two.

To find an admissible curve on Z that intersects c at most 4 times, let Z1, Z2, Z3 be the

components of Z − (c ∩ Z), with Z3 being omitted in the case of two components. Without

loss of generality, assume ∂Z2 contains an arc of c ∩ Z in common with both ∂Z1 and ∂Z3

when there are three components. Partition the curves in A into 5 (possibly empty) sets:

A1, A2, A3 and B1, B2. The Ai are the subsets of curves in A that are contained in Zi for

each i, while B1 are the curve(s) that contains the endpoints of the arc in c ∩ Z shared by

∂Z1 and ∂Z2 and B2 is the same for ∂Z2 and ∂Z3 (when Z3 exists).

Order the curves in each Ai and Bi in any sequence, then join successive curves by disjoint

arcs in the following order, skipping any empty sets: A1, B1, A2, B2, A3. We further

stipulate that the arcs must be disjoint from c ∩ Z unless some set is empty, in which case

their intersection with c ∩ Z is allowed to be the difference of the indices of the Zi that the
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A1

A2 = ∅

B2 = ∅
B1

A3

Z1 Z2 Z3c ∩ Z

c ∩ Z

a

Figure 4. Building a curve that cuts off A, and is hence admissible. The

highlighted curves are in A. In this example, A2 and B2 are empty, so the

arc from B1 to A3 meets c ∩ Z exactly once.

two sets border. For example, if only A2 is empty then the arc from B1 to B2 must still be

disjoint from c, since both B1 and B2 border Z2, but if B1, A2, and B2 are empty then the

arc from A1 to A3 is allowed to meet c ∩ Z twice. Compare Figure 4.

A regular neighborhood of A together with these arcs produces a curve a that cuts off

all of the curves in A, and hence must be admissible. It remains to note that the arcs and

curves in the construction of a are all disjoint from c ∩ Z except for the Bi’s and arcs that

travel between different Zi’s (which exist only when one of the Bi’s is empty). In particular,

this means that a intersects c only in a neighborhood of the Bi or the above-mentioned arcs,

and only does so at most twice for each component of the construction. This proves Lemma

4.8. □

We now prove that Π ◦Ψ(α) has uniformly bounded diameter for each α ∈ K. The proof

will use Lemma 4.8 to anchor the image of Π ◦Ψ(α) while we modify the genus-separating

curves on the components of S \ α to reduce intersection numbers.

Proposition 4.9. There is an N ≥ 0 so that for any α ∈ K and c, d ∈ Ψ(α), there is

c′ ∈ Ψ(α) with

(1) i(c′, d) ≤ 2|χ(S)| and
(2) The diameter of Π(c) ∪Π(c′) in Cadm is at most N .

In particular, Π ◦Ψ(α) has uniformly bounded diameter for all α ∈ K.

Proof. Throughout the proof, we fix representatives of the isotopy classes of all of the curves

involved so that c and d are each in minimal position with respect to α, and so that no

points of c ∩ d lie on α. This allows us to give meaning to statements like “c and d intersect

on a component Y of S \ α” even though there is no canonical minimal position for triples

of isotopy classes of curves.

Having fixed representatives, the proposition will follow by inductively applying the

following claim.
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Claim 4.10. If Y is a component of S \ α on which c and d intersect, then there exists

cY ∈ Ψ(α) so that cY and d intersect at most twice on Y and cY agrees with c on S \ Y .

Proof. We will show that cY can be obtained by replacing c ∩ Y with some well chosen arcs

that intersect d ∩ Y at most twice. By construction, each of c ∩ Y and d ∩ Y is either a

single arc connecting a boundary component to itself (which necessarily separates Y ) or a

pair of parallel arcs connecting different boundary components (and neither of these arcs

can separate Y ).

We first handle the case where c ∩ Y is a pair of parallel arcs. Let c11, c
2
1, c

1
2, c

2
2 be the four

endpoints of c ∩ Y in Y so that c1i is joined by an arc of c ∩ Y to c2i . If d ∩ Y is a single

arc, then c1i and c2i are either on the same or different sides of d ∩ Y . In either case, we can

connect each c1i to its corresponding c2i with an arc γi so that γ1 and γ2 are parallel arcs and

i(γi, d) ≤ 1. If d ∩ Y is instead a pair of parallel arcs, let δ1, δ2 be the arcs of d ∩ Y . Now

Y \ δ1 is connected, but (Y \ δ1) \ δ2 has two components. Thus c1i and c2i are either on the

same or different sides of of δ2 in Y \ δ1. As before, this means we can connect each pair

c1i and c2i with an arc γi so that γ1 and γ2 are parallel, i(γi, δ2) ≤ 1, and i(δ1, γi) = 0. In

either case, let cY be the curve obtained from c be replacing c ∩ Y with γ1 ∪ γ2. Since c ∩ Y
and cY ∩ Y are both parallel arcs between the same boundary components of Y , we see that

S \ c is homeomorphic to S \ cY , and in particular cY is genus-separating. By construction,

it is also clear that cY ∈ Ψ(α), so we are done.

Now consider the case where c ∩ Y is a single arc. Since c ∩ Y separates Y , we orient

c and then label each boundary component of Y by “left” or “right” depending on which

side of c ∩ Y it lies on. Let gl and gr be the genus of the left and right sides of Y \ (c ∩ Y )

respectively. We will find cY by replacing c ∩ Y with an arc γ that separates Y into two

components, one with genus gl and all the left boundary components of Y and the other

with genus gr and all the right boundary components of Y (any such arc is essential on Y

since c ∩ Y is an essential arc and γ will separate Y in the same way as c). This ensures

S \ c is homeomorphic to S \ cY , which makes cY a genus-separating curve which is in Ψ(α)

by construction. Let c1, c2 be the end points of c ∩ Y in ∂Y .

d ∩ Y
p1
p2

γ2

γ1

Figure 5. The curves p1, p2 cobounding the pair of pants P . The arcs γ1
and γ2 cut S \ P into “left” and “right” sides.

If d ∩ Y is a single arc, let y be the curve of ∂Y that d intersects. The boundary of a

neighborhood of (d ∩ Y ) ∪ y is a pair of curves p1, p2 that cobound a pair of pants P with
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the boundary curve y. The complement Y \P has two components Z1, Z2 where Zi contains

pi as a boundary curve; see Figure 5.

Suppose that c also intersects the boundary curve y. On each Zi, we can draw an arc γi
with both endpoints on pi so that γi separates Zi into two components, one that contains

the left boundary components of Y that also live on Zi and the other that contains the right

boundary components. Moreover, we can choose the γi so that the sum of the genera on the

“left” sides of Zi \ γi is gl and the sum of the genera on the ‘right’ sides is gr. The γi also

separate pi into “left” and “right” arcs.

We can now complete γ1 ∪ γ2 to an arc on all of Y by adding arcs in the pair of pants P .

Select three disjoint arcs a, b1, b2 so that a joins one endpoint of γ1 to one endpoint of γ2
and each bi joins the other endpoint of γi to ci by an arc in P . These arcs can be chosen

so that a intersects d ∩ Y once, b1 is disjoint from d ∩ Y , and b2 intersects d ∩ Y at most

once. Moreover, we can choose these arcs so that the left arcs of pi are in one component of

P \ (a ∪ b1 ∪ b2) and the right arcs are in the other; see Figure 6. The desired arc γ is the

concatenation of γ1, γ2 and these arcs in P .

d ∩ Y d ∩ Y

a ab1 b1b2

b2
left left

right
right

p1 p1p2 p2

y y

c1 c1

c2

c2

Figure 6. The arcs a, b1, b2 one must add in the pair of pants P to complete

γ1 ∪ γ2 to γ.

The case when c does not intersect the boundary curve y is similar. In this case c intersects

a different boundary curve y′ ∈ ∂Y and without loss of generality, y′ ⊂ Z2. We draw γ1 as

we did in the previous case, but instead of γ2, we draw two arcs γ12 , γ
2
2 where γ12 connects c1

to p2 and γ22 connects c2 to p2 so that γ12 ∪ γ22 cuts Z2 into two pieces with the appropriate

boundary components and number of genus on the “left” and “right’; sides. We now finish

γ, by joining each end point of γi2 on p2 to one of the endpoint of γ1 on p1 by arcs in P that

intersect d ∩ Y exactly once and separate the left and right arc of p1, p2 to the correct sides.

Now suppose d∩Y is a pair of parallel arcs between two boundary component y1, y2 ∈ ∂Y .

There is a unique curve p ⊂ Y that forms a pair of pants P with y1 and y2 so that P contains

d ∩ Y ; this curve p is found by taking the boundary of a neighborhood of (d ∩ Y ) ∪ y1 ∪ y2.
Note that Y \P is a connected subsurface with the same genus as Y but one fewer boundary.

Assume first that both y1 and y2 are on the same side of c ∩ Y ; this implies c is disjoint

from y1 and y2. Since g(Y ) = g(Y \P ) and y1, y2 are on the same side of c∩Y , we can draw

an arc γ on Y \P with connects c1 to c2 and cuts Y into two components, one with gl genus

and all the “left” components of ∂Y and one with gr genus and all the “right” components.

Now assume that both y1 and y2 are on different sides of c ∩ Y (again this implies c is

disjoint from y1 and y2). Without loss of generality let y1 be on the left side of c and y2



22 AARON CALDERON AND JACOB RUSSELL

on the right. In this case we draw two arcs γ1, γ2 on Y \ P so that γ1 connects c1 to p, γ2
connects c2 to p, and γ1 ∪ γ2 separates Y \ P into “left” and “right” components where

the left component has gl genus and all the left boundary of Y except y1 and the right

component has gr genus and all the right boundary except y2. We complete γ1 ∪ γ2 to the

arc γ on Y by joining γ1 to γ2 by an arc in P that separates y1 and y2 to the correct side of

Y \ γ; this can be done so that the final arc has i(γ, d ∩ Y ) ≤ 2; see Figure 7.

d ∩ Y

left leftright right

y1 y1y2 y2

p p

c1 c2

γ

d ∩ Y

γ

Figure 7. The arc drawn in P to complete the arc γ. One the left, the

case where y1 and y2 are on different sides of c ∩ Y . On the right, the case

where c intersects y2.

Finally, assume that c intersects exactly one of y1 or y2. Without loss of generality, assume

c intersects y2 and y1 is on the left side of c. As in the previous cases, pick an arc γ0 on

Y \ P that has both endpoints on p and separates Y \ P into two components where the

“left” component has gl genus and contains all left boundaries of Y except y1 and the “right”

component has gr genus and contains all right boundaries. We complete γ0 to an arc γ on Y

by joining the endpoints of γ0 to c1 and c2 by arcs in P that separate y1 to the “left” side of

Y \ γ; this can be done so that the final arc has i(γ, d ∩ Y ) ≤ 2 ; see Figure 7.

We conclude by observing that in any of the three above cases, we have produced an arc

γ on Y with the same topological type as c ∩ Y but that intersects d at most twice on Y .

Surgering c along γ as before we produce the desired curve cY . □

To prove Proposition 4.9, let Y1, . . . Yk be the components of S \ α on which c and d

intersect. Applying Claim 4.10 to Y1, we get a genus-separating curve c1 ∈ Ψ(α) that

intersects d at most 4 times in Y1 and agrees with c outside of Y1. By Lemma 4.8, there is an

admissible curve a1 on S \Y1 that intersects c, and hence c1, at most twice. Applying Lemma

4.6, this implies that a1 is M -close to both Π(c) and Π(c1) in Cadm for some universal M .

Hence, Π(c) and Π(c1) are 2M -close to each other. Repeating this argument, we produce a

sequence of genus-separating curves c = c0, c1, . . . , ck in Ψ(α) so that Π(ci) and Π(ci+1) are

2M -close in Cadm and i(ck, d) is at most 2 times the number of components of S \ α—which

is at most |χ(S)|. The final curve ck is the desired curve c′.

We now establish the requisite diameter bounds. Since the length of the sequence from c to

c′ is bounded by |χ(S)|, each Π(ci) has uniformly bounded diameter in Cadm, and each Π(ci)

and Π(ci+1) are 2M -close, we conclude that Π(c) ∪Π(c′) has uniformly bounded diameter.

This gives (2).

Finally, c′ and d have uniformly bounded intersection number by construction, so by

Lemma 4.4 they have uniformly bounded distance in G. Since Π is coarsely Lipschitz (Lemma
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4.5), we see that Π(c′) ∪Π(d) also has uniformly bounded diameter. The last statement of

Proposition 4.9 now follows by the triangle inequality. □

We now show that the admissible curve graph Cadm is quasi-isometric to the model K.

Since the inclusion Cadm → K is simplicial and hence 1-Lipschitz, this statement is implied

by the following:

Proposition 4.11. The map Π◦Ψ: K → Cadm is a quasi-inverse to the inclusion Cadm → K.

Proof. We first check that for all a ∈ Cadm, the image Π ◦Ψ(a) is uniformly close to a in

Cadm. Since g(S) ≥ 3, there must exists a genus-separating curve c disjoint from a. Hence

c ∈ Ψ(a) and a ∈ Π(c). Thus a ∈ Π ◦Ψ(a) as desired.

We now show that Π ◦Ψ is coarsely Lipschitz; this will complete the proof of Proposition

4.11. We have already shown in Proposition 4.9 that the image of every vertex of K has

uniformly bounded diameter, so it suffices to do the same for every edge. That is, if α, α′ ∈ K
are two vertices joined by an edge, then we must show that

diam(Π ◦Ψ(α) ∪Π ◦Ψ(α′))

is uniformly bounded.

If the edge from α to α′ corresponds to adding a curve to α to achieve α′, then Ψ(α′) ⊆ Ψ(α)

by definition. This implies Π ◦Ψ(α′) ⊆ Π ◦Ψ(α); the desired diameter bound then follows

from Proposition 4.9.

Now assume the edge from α to α′ corresponds to a flip move. Let x ∈ α and x′ ∈ α′ so

that x is flipped to x′. If x and x′ are disjoint, then α ∪ x′ is a vertex of K as adding curves

to a vertex of K always produces a new vertex of K. Now α∪ x′ is joined by an edge to both

α and α′ as removing x′ produces α and removing x produces α′. The desired bound now

follows from the proceeding paragraph about add/remove edges.

If x and x′ are not disjoint, then the component Y of S \ (α \ x) that contains x has

ξ(Y ) = 1. If Y is not a witness, then α \ x = α′ \ x′ is a vertex of K that is joined by an

add/remove-edge to both α and α′. As before this establishes the bound.

If Y is a witness, then Lemma 3.2 requires S \ Y has no genus. Since ξ(Y ) = 1 and

g(S) ≥ 3, this is only possible if g(S) = 3 and Y is a 4-holed sphere where every curve in

∂Y is non-peripheral and non-separating on S. In this case, x and x′ intersect twice in the

4-holed sphere Y . Thus, flipping α to α′ corresponds to moving from the dual graph D for α

to the dual graph D′ for α′ by performing a “Whitehead move” where you collapse the edge

of D dual to x and then expand an edge dual to x′; see Figure 8. Since no curves in ∂Y are

separating or peripheral on S, the dual graph D contains a cycle C with an edge dual to x

so that when you perform the Whitehead move to produce D′, the cycle C becomes a cycle

C ′ of D′ that does not include the edge dual to x′. There is therefore a genus-separating

curve c built from C that will be disjoint from x′, which implies c ∈ Ψ(α) ∩Ψ(α′). Since

Π(c) will then be contained in Π ◦Ψ(α)∩Π ◦Ψ(α′), we have that diam(Π ◦Ψ(α)∪Π ◦Ψ(α′))

is uniformly bounded by Proposition 4.9. □

Corollary 4.12. Cadm is not Gromov hyperbolic.
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Y
x

x′

C C ′
α \ x

Figure 8. One the left, the subsurface Y where x is flipped to x′. One the

right, the Whitehead move on the dual graph corresponding to flipping x to

x′. The cycle C is sent to the cycle C ′ under this move.

Proof. Lemma 3.5 and Proposition 4.11 together show that Cadm is quasi-isometric to the

hierarchically hyperbolic space K. Since hierarchical hyperbolicity can be passed along

quasi-isometries, Cadm is also hierarchically hyperbolic. As Gromov hyperbolicity is also

a quasi-isometry invariant, it suffices to to verify that K is not Gromov hyperbolic. By

Corollary 3.6, K is not Gromov hyperbolic if and only if Cadm has a pair of disjoint witnesses.

Let ∆1, . . . ,∆b be the boundary curves of S. Without loss of generality, assume ϕ(∆i) ≥ 0

for i ∈ {1, . . . , k} and ϕ(∆i) < 0 for i ∈ {k + 1, . . . , b}. Let α be a multicurve consisting of

g + 1 non-separating curves a1, . . . , ag+1 so that S \ α is a pair of genus zero subsurfaces,

W+ and W−, where W+ contains ∆1, . . . ,∆k and W− contains ∆k+1, . . . ,∆b; see Figure 9.

Orient each curve of α so that W+ is to the left.

α

W+

W−

∆3

∆1 ∆2

Figure 9. The multicurve α whose complement is a a pair of witnesses for

Cadm.

By homological coherence (Lemma 2.1.2), we have that for any framing ψ of S,

g+1∑
i=1

xi +

k∑
j=1

ψ(∆j) = 1− g − k (1)

where xi = ψ(ai). On the other hand, we know from Lemma 3.2 that W+ contains a

(non-peripheral) ψ-admissible curve if and only if there is no subset C of its boundary

α ∪∆1 ∪ . . . ∪∆k so that ∑
c∈C

ψ(c) = 1− |C|. (2)

A similar condition tells us if W− contains any non-peripheral admissible curves.

Now since g of the curves of α are homologically independent, we see that for any

(x1, . . . , xg+1) ∈ Zg+1 so that (1) holds, there is a framing ψ of S so that ψ(ai) = xi for all
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i and ψ(∆j) = ϕ(∆j) for each j ∈ {1, . . . , n} (see [CS22, Remark 2.7]). Moreover, we can

choose xi not to satisfy (2) for any subset C of ∂W+ or the corresponding equations for

W− since these all linearly independent from (1). Thus W+ and W− are a pair of disjoint

witnesses for Cadm(S, ψ).

Set K =
∑

|ϕ(∆j)|. The choices in the previous paragraph can all be made explicitly

by choosing x1, . . . , xg all to be positive and larger than 2K and so that their differences

are all larger than 2K. Set xg+1 to satisfy (1), so it will necessarily be very negative. Then

for any subset C of ∂W+, the left-hand side of (2) has magnitude larger than K unless it

contains all of α. In this case, any curve separating off (a subset of) the ∆j appearing in

W+ must have negative winding number, which is in particular not zero. Thus W+ contains

no witnesses. The argument for W− is completely analogous but with signs flipped.

Finally, we note that in the case that ϕ is of spin type, we can also choose ψ to have the

same Arf invariant as ϕ by stipulating the winding numbers on the completion of a1, . . . , ag
to a GSB. Theorem 2.2 now provides f ∈ Mod(S) so that ϕ = f(ψ), and thus f(W+) and

f(W−) are the desired pair of disjoint witnesses for Cadm(S, ϕ). □

5. A partial boundary complex for strata

In this section, we explain how the admissible curve graph can be viewed as capturing

the combinatorics of a partial bordification of (marked) strata. For this section, we let Sg,n

donote the genus g surface with n marked points. Mg,n and Tg,n will denote the Moduli

and Teichmüller spaces of Sg,n

5.1. Framings and strata. Let us first recall some of the results of [CS22] on the relationship

between strata, markings, and framed mapping class groups.

A stratum of abelian differentials is a (quasi-projective) subvariety of the bundle of

holomorphic abelian differentials ΩMg on genus g Riemann surfaces defined by conditioning

the number and order of zeros. More explicitly, given any partition κ = (k1, . . . , kn) of 2g− 2

into positive integers, we let ΩMg(κ) ⊂ ΩMg denote the stratum parametrizing pairs (X,ω)

where X is a Riemann surface and ω is a holomorphic 1-form on X with n distinct zeros of

orders k1, . . . , kn. Since a holomorphic 1-form is entirely determined (up to global scaling by

C∗) by the order and position of its zeros, any stratum can be thought of as a C∗ bundle

over a subvariety of Mg,n. In the sequel, we will freely conflate a stratum and its image in

Mg,n; we trust this will not cause any confusion.

In order to understand the connected components of preimages of strata in Tg,n, one needs
to understand which mapping classes can be realized inside a stratum, that is, one needs to

understand the image of the map

ρ : π1(H) → π1(Mg,n) ∼= Mod(Sg,n)

of orbifold fundamental groups, where H is any stratum component. When H is hyperelliptic,

it is not hard to see that the image of ρ is (conjugate to) a hyperelliptic mapping class

group [LM14a,Cal20]. The main theorem of [CS22] characterizes the image of ρ for non-

hyperelliptic components.

Before stating the theorem, we observe that a differential ω has an associated horizontal

vector field that does not vanish outside the zeros of ω; we denote this by 1/ω.
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Theorem 5.1 (C.–Salter). Let H be a non-hyperelliptic stratum component and suppose

that g ≥ 5. Then the image of ρ is (conjugate to) the framed mapping class group associated

to the framing 1/ω.

We therefore introduce the following notation:

Definition 5.2. Suppose thatH is a non-hyperelliptic stratum component and let (X,ω) ∈ H.

Choose an arbitrary marking f : Sg,n → X and let ϕ denote the framing corresponding to

the vector field 1/f∗ω. Then set Hϕ to denote the subset of Tg,n parametrizing those marked

differentials (X ′, ω′, f ′) so that 1/(f ′)∗(ω′) is isotopic to ϕ.

Theorem 5.1 in particular implies that (for g ≥ 5) any such Hϕ is a connected component

of the preimage of H under the covering map Tg,n → Mg,n.

Another consequence is the equivalence between cylinders and admissible curves. Integrat-

ing ω induces a singular flat metric on X, and the core curve of any embedded Euclidean

cylinder has constant slope with respect to the horizontal vector field 1/ω, hence is admis-

sible with respect to the corresponding framing. Transitivity of the FMod(S, ϕ) action on

admissible curves (see Proposition 2.5) implies that every admissible curve is realized as a

cylinder on some differential in Hϕ.

Remark 5.3. In analogy with the fact that Mg is a K(π, 1) for the mapping class group,

Kontsevich conjectured that components of strata should be K(π, 1)’s for “some sort of

mapping class group” [KZ]. This is true for hyperelliptic components as ρ is (essentially)

injective, and components in genus 3 are indeed K(π, 1)′s [LM14b], but an understanding of

the fundamental groups of strata remains tantalizingly out of reach.

5.2. Curve graphs as nerves. Recall that the Deligne–Mumford compactification Mg,n of

the moduli space of Riemann surfaces is obtained by adjoining boundary strata corresponding

to (stable) nodal surfaces to Mg,n. Equivalently, it can also be obtained by taking the

completion of Mg,n with respect to the Weil–Petersson metric. A sequence of surfaces Xi

degenerates to the boundary if the (extremal or hyperbolic) length of an essential simple

closed curve goes to 0; if γ is a topological type of multicurve, then we use Mg,n(γ) to

denote the boundary stratum where γ is pinched.

One can do a similar thing at the level of Teichmüller space. For any multicurve γ,

let Tg,n(γ) denote the Teichmüller space of the open subsurface S \ γ. The augmented

Teichmüller space Tg,n is then obtained by adjoining all possible Tg,n(γ) to Tg,n, marking

S \ γ by the subsurface complementary to γ. Equivalently, Tg,n is also the Weil–Petersson

metric completion of Tg,n. This ensures, for example, that if Xi converges to a point X∞ in

Tg,n(γ) then the hyperbolic length of γ on Xi goes to 0, so Xi develops a long collar that

limits to a pair of cusps in X∞.

We direct the reader to [HK14] and its extensive bibliography for a thorough discussion

of the history and construction of these spaces.

Remark 5.4. It is useful (though not quite correct) to think of Tg,n as “covering” Mg,n.

There is a surjective map Tg,n → Mg,n, which when restricted to any stratum Tg,n(γ) is

a covering onto Mg,n(γ), but the overall map is not a covering. This is because Tg,n is

infinitely ramified around the boundary stratum Tg,n(γ) (and likewise Tg,n(γ) is infinitely
ramified around its boundary, etc).
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The usual curve graph (with vertices for simple closed curves and edges for disjointness)

is now the 1-skeleton of the nerve of the top-dimensional boundary strata of Tg,n. That is, it
has a vertex for each Tg,n(c) where c is a simple closed curve, and two vertices are connected

by an edge if the Weil–Petersson metric completions of Tg,n(c) and Tg,n(d) meet, which

happens if and only if the curves are disjoint (this is a consequence of the collar lemma).

Degenerating cylinders. In order to define a boundary graph for (marked) strata analogous

to the curve graph, we consider a (partial) bordification analogous to the augmented

Teichmüller space and the Deligne–Mumford compactification. To do this, consider a stratum

component H as a subvariety of Mg,n and then take its closure in Mg,n. Equivalently, one

could take the completion H of H with respect to the Weil–Petersson metric. This discussion

can also be carried out with markings; let Hϕ denote the closure of Hϕ in Tg,n (equivalently,

its Weil–Petersson completion).

The structure of ∂H and ∂Hϕ is determined by the so-called “incidence variety com-

pactification” (IVC) [BCG+18]. A point in the IVC consists of a “level graph” and a

“twisted differential” compatible with the level graph; forgetting the differential and remem-

bering only the underlying complex structure yields a surjective map from the IVC onto

H [BCG+18, Corollary 1.4]. It turns out that the IVC is highly singular, and in [BCG+19],

the IVC is refined into a moduli space of “multi-scale differentials” ΞH which has nicer

geometric properties (e.g., its boundary is a normal crossing divisor). A multi-scale differ-

ential is encoded by three pieces of data: an “enhanced level graph,” a twisted differential

compatible with the level graph and the enhancement, and a “prong matching.”

We will not give precise definitions of all of the relevant terms here, and instead direct

the reader to the original papers as well as [CMZ22, Section 3]. The only fact that is

relevant at the moment is that one of irreducible components of the boundary divisor of ΞH
corresponds to meromorphic differentials on a surface of genus g − 1 with two glued simple

poles (in the language of [BCG+19], these are 1-level graphs with a single horizontal edge).

In flat-geometric terms, this degeneration is obtained by taking an embedded cylinder on a

differential and then increasing its height while leaving its circumference and the rest of the

surface fixed. This increases the modulus of the cylinder to ∞, so the underlying Riemann

surfaces develop a node.

More generally, the boundary contains many (higher codimension) components corre-

sponding to pinching the core curves of multiple disjoint cylinders (equivalently, 1-level

graphs with multiple horizontal edges). Adjoining only these parts of ∂ΞH to H, we obtain

a partial bordification H̆ ⊂ Mg,n in which only cylinders are allowed to degenerate. Lifting

this to the marked stratum Hϕ we likewise get a partial bordification H̆ϕ ⊂ Tg,n.
We now define a graph C (H̆ϕ) that captures the intersection pattern of the boundary

components of Tg,n induced by H̆ϕ as follows: it has a vertex for each curve a so that H̆ϕ

meets Tg,n(a) and an edge between a and b if and only if H̆ϕ meets Tg,n(a∪ b). Equivalently,
C (H̆ϕ) has a vertex for every simple closed curve c that is a cylinder on some differential in

Hϕ and an edge between c and d if they can be simultaneously realized as disjoint cylinders

on a differential in Hϕ.

Since H̆ϕ is defined in terms of cylinders, it follows that every vertex of C (H̆ϕ) corresponds

to an admissible curve. In fact, it turns out this graph is just the admissible curve graph.



28 AARON CALDERON AND JACOB RUSSELL

Proposition 5.5. Let Hϕ be a marked non-hyperelliptic stratum component of genus ≥ 3

abelian differentials. Then C (H̆ϕ) = Cadm(S, ϕ).

Proof. We just need to prove that if a and b are disjoint admissible curves, then H̆ϕ meets

both Tg,n(a) and Tg,n(a ∪ b).
Let us first prove that H̆ϕ meets a boundary stratum corresponding to some admissible

curve. Let (X,ω) ∈ Hϕ; then since ω is holomorphic the corresponding flat surface contains

an embedded cylinder with core curve a′. By increasing the height of this cylinder while

leaving the rest of the surface fixed, we can degenerate our surface, pushing it into Tg,n(a′).
We now use the fact that FMod(S, ϕ) acts transitively on admissible curves (Proposition

2.5): there is some f taking a′ to a, and so since f stabilizes H̆ϕ we have that f(H̆ϕ) = H̆ϕ

meets f(Tg,n(a′)) = Tg,n(a).
The proof of the second statement is similar: the main difficulty is to find some pair of

admissible curves a′ and b′ with the same topological type as a and b together with some

(X,ω) ∈ Hϕ on which a′ and b′ are cylinders: thus H̆ϕ meets Tg,n(a′ ∪ b′). This can be done

by explicit construction (e.g., via the prototypes from [CS21, Section 6.3]), by plumbing a

meromorphic differential with 4 simple poles, glued together in 2 pairs [BCG+18, Proposition

4.4], or by applying the main result of [MUW21]. We can then conclude using Proposition

2.5 as above. □

The entire completion Hϕ of the marked stratum meets more than just admissible curves.

In order to study the intersection pattern of its boundary, one needs to also include curves

corresponding to “2-level graphs;” this has the effect of coning off regions of Cadm(S, ϕ). The

authors will address the geometry of this graph in a future version of this paper.
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[CMZ22] M. Costantini, M. Möller, and J. Zachhuber, The Chern classes and Euler characteristic of the

moduli spaces of Abelian differentials, Forum Math. Pi 10 (2022), Paper No. e16, 55.

http://arxiv.org/abs/1910.13492


HIERARCHICAL HYPERBOLICITY OF ADMISSIBLE CURVE GRAPHS 29

[CS21] A. Calderon and N. Salter, Higher spin mapping class groups and strata of Abelian differentials

over Teichmüller space, Adv. Math. 389 (2021), Paper no. 107926.

[CS22] , Framed mapping class groups and the monodromy of strata of abelian differentials, J.

Eur. Math. Soc. (2022), (to appear).

[FI05] B. Farb and N. V. Ivanov, The Torelli geometry and its applications: research announcement,

Math. Res. Lett. 12 (2005), no. 2-3, 293–301. MR 2150885

[Har81] W. J. Harvey, Boundary structure of the modular group, pp. 245–252, Princeton University Press,

1981.

[Hen20] S. Hensel, A primer on handlebody groups, Handbook of group actions. V, Adv. Lect. Math.

(ALM), vol. 48, Int. Press, Somerville, MA, [2020] ©2020, pp. 143–177. MR 4237892

[HJ89] S. Humphries and D. Johnson, A generalization of winding number functions on surfaces, Proc.

London Math. Soc. 58 (1989), no. 2, 366–386.

[HK14] J. H. Hubbard and S. Koch, An analytic construction of the Deligne-Mumford compactification

of the moduli space of curves, J. Differential Geom. 98 (2014), no. 2, 261–313.

[Iva97] N. V. Ivanov, Automorphisms of complexes of curves and of Teichmüller spaces, Progress in

knot theory and related topics, Travaux en Cours, vol. 56, Hermann, Paris, 1997, pp. 113–120.

MR 1603146

[Kaw18] N. Kawazumi, The mapping class group orbits in the framings of compact surfaces, Q. J. Math.

69 (2018), no. 4, 1287–1302.

[KZ] M. Kontsevich and A. Zorich, Lyapunov exponents and Hodge theory, Preprint, 1–16.

[KZ03] , Connected components of the moduli spaces of Abelian differentials with prescribed

singularities, Invent. Math. 153 (2003), no. 3, 631–678.

[LM14a] E. Looijenga and G. Mondello, The fine structure of the moduli space of abelian differentials in

genus 3, Geom. Dedicata 169 (2014), no. 1, 109–128.

[LM14b] , The fine structure of the moduli space of abelian differentials in genus 3, Geom. Dedicata

169 (2014), no. 1, 109–128.

[Min10] Y. N. Minsky, The classification of Kleinian surface groups. I. Models and bounds, Ann. of Math.

(2) 171 (2010), no. 1, 1–107. MR 2630036

[MM98] H. Masur and Y. N. Minsky, Geometry of the complex of curves I: Hyperbolicity, Invent. Math.

138 (1998), 103–149.

[MM00] , Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10

(2000), no. 4, 902–974. MR 1791145

[MS13] H. Masur and S. Schleimer, The geometry of the disk complex, J. Amer. Math. Soc. 26 (2013),

no. 1, 1–62. MR 2983005
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