
Math 191 Long Project: Braid Groups, Representations,
and Algebras

Nathan Cheng

May 7th, 2018

1 Introduction

The braid group on n-strands, denoted Bn, is a fundamental algebraic object that has
connections to many areas of math including topology, knot theory, and representation
theory. It is an algebraic object which encodes the combinatorial data about the ways one
can “braid” n parallel strings.

Somewhat recently, there has also been considerable interest in its connections to
topological quantum computing [4,5,7]. Setting aside the practical difficulties of
implementation, a physical system can theoretically implement a quantum computer if one
can show that it can encode a certain class of mathematical properties; particularly, if one
can construct a certain class of operators on a Hilbert space. Matrices of complex numbers
are the obvious choice, but other algebraic objects can also realize quantum computing if
one studies their representations (ways of embedding an object in the space of operators on
a vector space). Additionally, some of these alternative ways of realizing quantum
computing have turned out to be natural settings for certain implementations and
algorithms.

In the case of Bn, it has been shown by Kitaev (reference in [5]) that the braid group can be
used to encode data about a theoretical 2-dimensional particle called an anyon, for which
he also described a way in which it could realize a physical quantum computing system.
Furthermore, since Bn is so closely related to properties of knots (there is a correspondence
between braids and knots via braid closure), quantum algorithms for computing the values
of certain invariants arise very naturally in this setting. For instance, computing the Jones
polynomial of a knot is NP-hard, but values of the Jones polynomial can be approximated
in polynomial time by a quantum computer, and in the setting of anyons and Bn, the
relationship between the algorithm and the problem is more transparent.

In this report we will survey the representation theory of Bn, covering Hecke algebras,
Temperley-Lieb algebras, and the Jones representation. We will begin by covering some
preliminary concepts.

1

2 Representations

Operators on Hilbert spaces (a kind of vector space) are the basic building blocks for
modeling quantum mechanical systems. An operator on a vector space V is a map from
V → V . We will not be too concerned with the exact definition of Hilbert spaces, and will
simply think of them as vector spaces, but note that Hilbert spaces carry important
properties that general vector spaces do not, and that are essential to modeling quantum
mechanical systems.

Definition 2.1: Given a vector space V , we define GL(V) to be the set of all invertible
linear operators on V . If V = Sn, another way of notating GL(V) is GLn(S).

Example 2.2: Let V = R2. A 2× 2 matrix represents a linear operator on V . One can also
show that any linear operator on V can be expressed as a 2× 2 matrix. The invertible maps
are given by invertible matrices. Then GL2(R) is the set of all invertible 2× 2 matrices.

Note that GL(V) has a group structure under composition of maps since it always contains
the identity operator, and by definition every element is invertible. This observation is
important in our next definition.

Definition 2.3: Given a group G and a vector space V , we say that φ : G→ GL(V) is a
representation of G on V if it is a homomorphism from G to GL(V).

The motivation for this definition is to generalize the notion of representing a group as a
matrix group. The equivalent, abstract notion is embedding a group in the space of
operators on an abstractly characterized vector space.

However, operators useful for quantum computing are of a very specific type. Certain
operators, when applied to a state of a quantum system, preserve intuitions about
probability. These are exactly the unitary operators.

Definition 2.4: An operator U is called unitary if UU∗ = U∗U = I. A representation π
is called unitary if π(g) is a unitary operator for all g ∈ G.

Example 2.5: Let us consider unitary representations of Z on C. Note that GL(C) = C,
where C acts on C by scalar multiplication. The unitary operators in this case are elements
such that 1 = zz̄ = |z|2; in other words, values in the complex unit circle T. So we are
searching for homomorphisms from Z→ T. Let φ be such a homomorphism. Z has a
generator, so the homomorphism is entirely determined by φ(1). Let α = φ(1) ∈ T. A
unitary representation of Z on C is given by φ(n) = αn, where α can take on any fixed
value in T. Note that if α is an nth root of unity, then φ is a homomorphism of Z onto the
nth roots of unity.

Example 2.6: We ask whether there are any interesting representations of Bn. Without
proof, we propose that the following gives a representation of Bn. Let σ1, σ2, ..., σn−1 be the

2

canonical generators for Bn. Define φ on the generators by

φ(σi) =


Ii−1 0 0 0

0 (1− t) t 0

0 1 0 0

0 0 0 In−i−1


where Ik is the k × k identity block. Extend φ to all elements of Bn by extending the map
linearly. This gives a representation of Bn on (Z[t, t−1])n known as the unreduced Burau
representation (φ is a map from Bn → GLn(Z[t, t−1])).

Note that if we fix t ∈ C×, then φ induces a representation of Bn on Cn. Unfortunately, the
Burau representation is not unitary, nor is it unitary for any fixed t. However, a unitary
representation can be obtained from the unreduced Burau representation. Furthermore,
the Alexander polynomial, a well-known knot invariant, can be expressed using a
related representation known as the reduced Burau representation. But we will not
explore these topics. More results pertaining to the Burau representation can be found in
[1,2,3,4,6].

3 Algebras

There seems to be a bit of a structural imbalance in embedding a group into the space of
operators. A group is only endowed with one operation, while operators can be added and
composed and even scaled. Take, for instance, the Burau representation of B3 (Example
2.6). Then the images of σ1 and σ2 under φ are

φ(σ1) =


(1− t) t 0

1 0 0

0 0 1

 φ(σ2) =


1 0 0

0 (1− t) t

0 1 0


As a homomorphism, φ encodes the group operation of Bn as the composition of matrices
in the image. But

φ(σ1) + φ(σ2) =


(2− t) t 0

1 (1− t) t

0 1 1


is a perfectly well-defined object, and “feels” as though it should be the image of σ1 + σ2
under φ, if we want φ to have an analogous linearity. Of course, σ1 + σ2 is not yet a

3

well-defined object, but the idea of extending the additive structure of GL(V) motivates
the following definitions.

Definition 3.1: A bilinear product on a vector space V with underlying field K is a
binary operation · such that for all x, y, z ∈ V and a, b ∈ K, the following hold:

• (x+ y) · z = x · z + y · z

• x · (y + z) = x · y + x · z

• (ax) · (by) = (ab)(x · y)

Definition 3.2: An algebra over C is a vector space over C equipped with a bilinear
product. We call A a *-algebra over C if A is an algebra with a unary * operation from
A→ A, called an involution, which satisfies for all x, y ∈ A, k ∈ C

• (x+ y)∗ = x∗ + y∗

• (xy)∗ = y∗x∗

• 1∗ = 1

• (x∗)∗ = x

• (kx)∗ = kx∗

The analogy for involution is essentially that of complex conjugation.

Example 3.3: C[0, 1], the set of continuous functions from [0, 1]→ C, is a *-algebra. It is
well-known that C[0, 1] is a vector space under pointwise addition and scalar multiplication
of functions. If we further endow it with a pointwise product and pointwise conjugation
(i.e. f ∗ is the function such that f ∗(x) = f(x)), then C[0, 1] becomes a *-algebra.

Example 3.4: When H is a Hilbert space, GL(H) is an *-algebra. The product is
composition of operators, and conjugation is given by the Hermitian adjoint. Recall that
the Hermitian adjoint is defined via inner product, which Hilbert spaces have.

We can also define representations on algebras in an intuitive manner: simply requiring
homomorphisms that preserve the additive, multiplicative, and scalar structures in the
space of operators. A representation of a *-algebra also respects the involution, and such a
representation is called a *-representation. Note that in this case, we no longer require
the image of a representation to be contained in the invertible elements, but rather we only
require containment in the space of operators, denoted End(V).

With the goal of making groups into more natural structures for studying representations,
we define the group algebra, which is essentially a group with the natural algebraic
structure imposed.

4

Definition 3.5: The group algebra of G is denoted C[G], and consists of all finite formal
sums of the form ∑

g∈G agg, where ag ∈ C

We drop the domain of summation where it doesn’t cause confusion. All the operations are
the natural operations on formal sums, combined with the group operations. For
completeness, we document them here:

•
∑
agg +

∑
bgg =

∑
(ag + bg)g

• (
∑
agg)(

∑
bgg) =

∑
g∈G(

∑
h∈G ahbh−1g)g

• k(
∑
agg) =

∑
(kag)g for k ∈ C

• (
∑
agg)∗ =

∑
ag−1g

Under these operations, C[G] is a *-algebra.

Example 3.6: Let G = Z2 = {e, s}, where e is the identity and s is the generator. We will
illustrate the multiplication operation. Take the elements ie+ 4s and 1e+ (1 + i)s in C[G].
Then

(ie+ 4s)(1e+ (1 + i)s) = [i(1) + 4(1 + i)]e+ [i(1 + i) + 4(1)]s

= (5i+ 4)e+ (i+ 3)s
(1)

by applying the definition above. Note that this is equivalent to multiplying out the formal
sum and collecting terms:

(ie+ 4s)(1e+ (1 + i)s) = [i(1) + 4(1 + i)]e+ [i(1 + i) + 4(1)]s

= i(1)e2 + i(1 + i)es+ 4(1)se+ 4(1 + i)s2

= ie+ (i− 1)s+ 4s+ (4 + 4i)e

= (5i+ 4)e+ (i+ 3)s

(2)

This brings us to the main idea of this section.

Lemma 3.7: The unitary representations of G are in bijection with the *-representations
of C[G].

Proof : Let U be a unitary representation of G on a Hilbert space H. Define
πU : C[G]→ End(H) by πU(

∑
agg) =

∑
agU(g). That additivity, scalar multiplication,

and involution are preserved under πU is fairly easy. We will verify multiplication.

5

πU((
∑

agg)(
∑

bgg)) = πU(
∑

(
∑

ahbh−1g)g)

=
∑

(
∑

ahbh−1g)U(g)

= (
∑

agU(g))(
∑

bgU(g))

= πU(
∑

agg)πU(
∑

bgg)

(3)

So πU is a *-representation of C[G] on H.

Now suppose π is a *-representation of C[G] on H. Consider a map U : G→ End(H) given
by U(g) = π(1g). Then for all g, h ∈ G, we have

U(gh) = π(1(gh))

= π((1g)(1h))

= π(1g)π(1h)

= U(g)U(h)

(4)

Furthermore, this is a unitary representation, since

U(g)∗ = π(1g)∗

= π((1g)∗)

= π(1g−1)

= π(1g−1)

= U(g−1)

(5)

and so U(g)U(g)∗ = U(g)U(g−1) = U(gg−1) = U(1) = 1 (and likewise for U(g)∗U(g)).
From this, we can also conclude that U is in fact a map from G→ GL(H).

Remark: We have made many implicit assumptions about the topology of G and the
types of representations being considered. In the most general case, a similar statement
holds but we have to be careful about the topology we place on G, and the continuity and
non-degeneracy of the representations. For our purposes, since Bn is treated as a discrete
group (that is: the elements of Bn are essentially completed separated as points in a
topological space), things work out nicely, and we don’t have to take care of too many of
these details.

Lemma 3.7 tells us that studying the representation theory of G is equivalent to studying
the representation theory of C[G].

4 The Temperley-Lieb Algebra

Equipped with a nice idea, we are very excited to look at C[Bn]. But it turns out that
C[Bn] is an infinite dimensional object (that is: as a vector space, it has no finite basis

6

set). In general, our techniques for understanding finite dimensional objects are far more
robust than for understanding infinite dimensional objects. But not all is lost; looking at a
finite dimensional quotient of C[Bn] may prove a fruitful pursuit, since

Lemma 4.1: If φ : A→ B is *-homomorphism of *-algebras, and if π is a *-representation
of B on H, then π extends to a *-representation π̃ of A on H.

Proof : Define π̃ as π̃ = π ◦ φ. Composition of homomorphisms is a homomorphism, so π̃ is
a homomorphism of A into End(H), i.e. π̃ is a *-representation of A on H.

Lemma 4.1 suggests that if we can find a quotient space of C[Bn] with enough of the
original structure, then we may still be able to recover interesting representations of Bn.
We have a good candidate for this.

Definition 4.2: Let A be some fixed value in C where A is not a root of unity. Let
d = −A2 − A−2. The Temperley-Lieb algebra is given by the presentation

< u1, u2, ..., un−1 | uiuj = ujui if |i− j| ≥ 2,

uiui±1ui = ui,

u2i = dui >

(6)

and is denoted TLn(A).

Note that u1, u2, ..., un−1 are understood as generators of an algebra, so T ln(A) consists of
finite formal sums with coefficients in C and variables in words formed by the generators
under multiplication. The reason we require A to not be a root of unity is because this
presentation may not be well-defined if A is a root of unity. This ends up becoming
important later.

TLn(A) is a nicer algebra to work with, since it is finite dimensional.

Lemma 4.3: TLn(A) is finite dimensional.

Proof : Consider any finite word formed by the generators

uk1a1u
k2
a2
uk3a3 ...u

km
am

(7)

where ai ∈ {1, 2, ..., n− 1}, ki ∈ Z \ {0}. By the last relation in Definition 4.2 (u2i = dui),
called the Hecke relation, we can kill off any powers that are higher than 1 at the cost of
including a factor d. In other words, we can get our word into the form

Cu±1a1
u±1a2

u±1a3
...u±1am (8)

7

where C is some scalar coefficient. Now we show that we can collect all the u1 terms at the
left, so they can be combined into a single term. Restrict our attention to the part of the
word that contains a u1 that is not already at the left

...u±1ai
u±11 ... (9)

Now if |1− ai| = 0, then ai = 1 and the two terms can be combined and the entire word
can be shortened and then put back into the above form using the Hecke relation. If
|1− ai| ≥ 2 or the exponents do not match, then far commutativity (the first relation of
Definition 4.2) can be applied and the positions of the elements can be exchanged. If
|1− ai| = 1, then the second relation of Definition 4.2 applies. Note that the second
relation is equivalent to u±1ui = 1, so this again means that the entire word can be
shortened. In any case, either a term of u1 disappears or it can be moved to the left, so we
can eventually collect them all at the left and then reduce the exponent using the Hecke
relation. The same can be done for any ui using the process we just described, so our word
can eventually be put in the form

Cue11 u
e2
2 ...u

en−1

n−1 (10)

where ei ∈ {−1, 0, 1} (the option for 0 appearing in the case where ui never showed up in
the original word at all). We have just shown that every word generated by multiplication
of the generators is equivalent to a scalar multiple of a word of the above form. So the set
of all possible words of the above form (ignoring the coefficient C) will span the formal
sums in TLn(A). There are 3n−1 such words; in other words, we have a finite spanning set,
and hence TLn(A) is finite dimensional.

The next lemma, stated without proof, relates C[Bn] to TLn(A).

Lemma 4.4: An explicit homomorphism from C[Bn] to TLn(A) is given by the
Kauffman bracket 〈·〉 : C[Bn]→ TLn(A) defined by

〈σi〉 = A+ A−1ui (11)

An important property of TLn(A) is that it is isomorphic to some subalgebra of a matrix
algebra. We briefly describe an example to illustrate this.

Example 4.5: TL2(A) is isomorphic to the set of complex 2× 2 diagonal matrices.

Explicitly, we can send the element 1− 1
d
u1 to

[
1 0
0 0

]
and 1

d
u1 to

[
0 0
0 1

]
, and extending

linearly to all elements. One can verify that this is well-defined and gives a one-one
correspondence.

Definition 4.6: The Jones representation of Bn is its embedding in the matrix
subalgebra associated to TLn(A).

8

However, there is an issue with the Jones representation, which is that if we choose A to be
a root of unity, the matrix decomposition of TLn(A) is not always well-defined. But
choosing A to be a root of unity is often what we want, in accordance with the idea of
getting unitary representations for quantum computing. This can be fixed by passing to
yet another quotient known as the Temperley-Lieb Jones algebra. However, we will
not delve into this. For details on why TLn(A) fails to be well-defined and how to fix this,
please see [4].

5 Temperley-Lieb Algebra Diagrams

Our final discussion will be concerning a visual depiction of the Temperley-Lieb algebra
that is analogous to the physical interpretation of the braid groups as braided strands.

Definition 5.1: A diagram in TLn(A) is a square with n points on the top edge and n
points on the bottom edge marked, and each of these 2n points are connected via
non-intersecting lines. There may also be simple closed loops in the diagram.

It turns out that every element of TLn(A) can be expressed as a formal sum of diagrams.
As an example, the diagrams corresponding to the generators of TLn(A) are

Figure 1: Figure borrowed directly from [4]

We can multiply two diagrams by stacking the second on top of the first and rescaling to
get a square. If we multiply two generators ui, we get

Figure 2: Figure borrowed directly from [4]

9

Anticipating that u2i should equal dui, we say that a diagram with a simple closed loop is
equivalent to a diagram with that simple closed loop removed but with an extra factor of d
in front of the formal sum. In other words, we can exchange a simple closed loop for a
factor of d. This property is called d-isotopy.

These diagrams give a visual justification for using the terminology Kauffman bracket in
Lemma 4.4. Consider B3, then the Kauffman bracket of σ2 is 〈σ2〉 = A+ A−1u2. Note that
A is a shorthand for AI, where I is the identity diagram, which consists of 3 parallel
strands. Diagrammatically, this gives

Figure 3: Boundaries of the squares are omitted.

Then it becomes apparent that the Kauffman bracket as we’ve defined it actually encodes
the relation that defines the familiar bracket polynomial. Applying the Kauffman bracket
to σ2 is exactly how we would resolve the crossing in its braid closure σ̂2 if we were
computing its bracket polynomial. This relationship expresses the deeper connections
between the algebras we have constructed, the representations we are considering, and the
Jones polynomial.

6 Conclusion

At the end of the day, we have the following chain of maps

Bn → C[Bn]→ TLn(A)→Mn (12)

where Mn is the decomposition of TLn(A) into a matrix subalgebra. With a few extra
details, this turns out to be a sufficiently structure-rich object to theoretically implement a
quantum computer. Along the way, we have discussed some results in the representation
theory of braid groups, which is important in many areas of math and physics. We have
also described connections between the algebraic objects we are considering and the
topological objects they represent. We hope that this provides an interesting and correct
introduction to braid groups, representation theory, and algebras.

7 References

1. A. Beridze, P. Traczyk. Forks, Noodles and Burau Representation for n = 4. Journal
of Knot Theory and Its Ramifications (2017)

10

2. S. Bigelow. The Burau representation is not faithful for n = 5.
http://arxiv.org/pdf/math/9904100v2.pdf (1999)

3. Joan S. Birman. Braids, Links, and Mapping Class Groups. Annals of Mathematics
Studies, Vol. 82, Ch. 3, pg. 102-147 (1975)

4. Colleen Delaney, Eric C. Rowell, Zhengan Wang. Local Unitary Representations of
the Braid Group and Their Applications to Quantum Computing. Revista
Colombiana de Matemáticas, Vol. 50(2), pg. 211-276 (2016)

5. V.T. Lahtinen, J.K. Pachos. A Short Introduction to Topological Quantum
Computation. SciPost Phys. 3(021) (2017)

6. D. D. Long, M. Pato. The Burau representation is not faithful n ≥ 6 . Geometry and
Topology, Vol. 3, pg. 397–404 (1999)

7. J. K. Pachos. Introduction to Topological Quantum Computation. Lecture Notes in
Computer Science (Springer, Berlin, Heidelberg), Vol. 7938 (2013)

11

