Typos from Fortney

Please let me know if you find any typos and I will add them here.
Page 25 In the definition of the $a_{i j}$ at the bottom of the page, the last offset equation should read

$$
D f(x) \cdot e_{j}=\sum_{i=1}^{m} a_{i j} \tilde{e}_{i}=\left[\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\vdots \\
a_{m j}
\end{array}\right]
$$

Page 26 In the last three offset equations on the page, each $x_{i_{0}}$ should be replaced with $x_{j_{0}}$.
Page 45 In Definition 2.3.2, the first input $t_{0}+t a$ of f should be $x_{0}+t a$.
Pages 50-52 The notation switches between $\left.\frac{\partial f}{\partial x_{i}}\right|_{p}$ and $\left.\frac{\partial f}{\partial x_{i}}\right|_{p_{i}}$; it should always be the former. In particular, in the computation at the bottom of page 50 , each $\frac{\partial f}{\partial x_{i}}$ should be evaluated at $\left(x_{1}(0), \ldots, x_{n}(0)\right)$ (in the third line) or at p (in the fourth line).

Page 67 In Question 2.31, both ω and α indicate the same one-form.
Page 67 In Question 2.33, it isn't possible to evaluate $d f_{p}$ for some of the $f \mathrm{~s}$ of Question 2.32 (specifically (e), (g), (h), and (i), as those involve roots and ln, which cannot be applied to negative numbers). It also isn't possible to evaluate $d f\left[v_{p}\right]$ when $v_{p} \in T_{p} \mathbb{R}^{3}$ for (a)-(c) of Question 2.32, because in those cases $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Page 86 All discussion of counting the number of two-dimensional subspaces refers to the two-dimensional subspaces spanned by combinations of the standard basis vectors.

Page 91 In the first equation, $d x^{2}$ should be $d x_{2}$.
Page 91 In the formula for the wedge product of two arbitrary forms, the sum on the right hand side is over all $I \in \mathcal{I}_{k, n}$ and $J \in \mathcal{I}_{\ell, n}$.

Page 96 In the first line after the equations, "indice" should be "index."
Page 99 In the third line of the computation of $\iota_{v}(\alpha \wedge \beta)$ in the middle of the page, $d x_{p}$ should be $d x_{k}$.

Page 99 The last two lines on the page are missing some minus signs. They should read, after the equals sign:

$$
\begin{aligned}
= & \sum_{i=1}^{k-1}(-1)^{i-1} d x_{i}(v) \sum_{j=i+1}^{k}(-1)^{(j-1)-1} d x_{j}(u)\left(d x_{1} \wedge \cdots \widehat{d x_{i}} \cdots \widehat{d x_{j}} \cdots \wedge d x_{k}\right) \\
& +\sum_{i=2}^{k}(-1)^{i-1} d x_{i}(v) \sum_{j=1}^{i-1}(-1)^{j-1} d x_{j}(u)\left(d x_{1} \wedge \cdots \widehat{d x_{j}} \cdots \widehat{d x}_{i} \cdots \wedge d x_{k}\right)
\end{aligned}
$$

Page 176 The descriptor of Figure 5.33 should read "As an example, a generic one-form α on \mathbb{R}^{2} is shown in Figure 5.33."

Page 147 In Question 4.17, you should be asked to show

$$
d(\phi \wedge \psi)=d \phi \wedge \psi-\phi \wedge d \psi
$$

Page 149 Not exactly a typo, but a note: the result of Question 4.33 holds for \mathbb{R}^{n}, not just \mathbb{R}^{2}.

Page 228 In Question 6.27, α is a two-form, not a one-form.
Integration and orientations The formula

$$
\int_{R} f d x_{1} \wedge \cdots \wedge d x_{n}=\int_{\phi(R)}\left(\phi^{-1}\right)^{*}\left(f d x_{1} \wedge \cdots \wedge d x_{n}\right)
$$

does not work in general - it only works if ϕ "preserves orientation." If ϕ "reverses orientation," then we have to add a minus sign:

$$
\int_{R} f d x_{1} \wedge \cdots \wedge d x_{n}=-\int_{\phi(R)}\left(\phi^{-1}\right)^{*}\left(f d x_{1} \wedge \cdots \wedge d x_{n}\right)
$$

Similarly, when integrating a k-form over a k-manifold,

$$
\int_{\Sigma_{k}} \alpha=\int_{\phi\left(\Sigma_{k}\right)}\left(\phi^{-1}\right)^{*} \alpha
$$

only if ϕ preserves orientation (this requries choosing an orientation for $\Sigma_{k}!$), and

$$
\int_{\Sigma_{k}} \alpha=-\int_{\phi\left(\Sigma_{k}\right)}\left(\phi^{-1}\right)^{*} \alpha
$$

if ϕ reverses orientation.
Page 235 In the first line of the displayed equations at the bottom of the page, the integral with respect to x should be from zero to $y+2$, not from $y+2$ to zero. You can check this because the answer he gets for the integral is negative, while the function he's integrating is positive over the region R of integration.
Page 238-9 The formula $\int_{\phi(R)} f d u \wedge d v=\iint_{\phi(R)} f d u d v$ only works if $d u \wedge d v$ is a properly oriented volume form. In this case it's not, which we know because $\left(\phi^{-1}\right)^{*} d u \wedge d v=$ $-\frac{1}{2} d x \wedge d y$. So we can't compute

$$
\int_{\phi(R)} f d u \wedge d v=\iint_{\phi(R)} f d u d v
$$

instead we have to compute

$$
-\int_{\phi(R)} f d u d v
$$

Page 243 There is a sign error in this parameterization; the correct integrand is the negative of Fortney's.
page 253 In Example Two (b), the parameterization should be

$$
(\theta, \phi) \mapsto(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)
$$

