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Abstract. We prove that the ambient quasiconformal homogene-
ity constant of a hyperbolic planar domain which is not simply
connected is uniformly bounded away from 1.

We also consider a component Ω0 of a finitely generated Kleinian
group Γ. We show that if Ω0/Γ is compact, then Ω0 is uniformly
ambiently quasiconformally homogeneous, and that if Ω0 is not
simply connected and its quotient Ω0/Γ is non-compact, then it is
not uniformly quasiconformally homogeneous.

1. Introduction

An orientable hyperbolic manifold N is called K-quasiconformally
homogeneous if for any x, y ∈ N , there exists a K-quasiconformal
automorphism of N taking x to y. In earlier work [6], the authors
established that for any n ≥ 3 there exists Kn > 1 such that if N is
a K-quasiconformally homogeneous hyperbolic n-manifold, other than
Hn, then K ≥ Kn. It is natural to ask whether or not such a constant
can be found in dimension 2 (see, for example, [5]).

For planar domains, one can define a more restrictive notion of

quasiconformal homogeneity. An open set Ω ⊆ Ĉ is ambiently K-
quasiconformally homogeneous if, for all x, y ∈ Ω, there exists a K-

quasiconformal homeomorphism f : Ĉ → Ĉ such that f(x) = y and
f(Ω) = Ω. We will say that a planar domain Ω is uniformly ambiently
quasiconformally homogeneous if there exists some K such that Ω is
ambiently K-quasiconformally homogeneous. Sarvas [21] showed that
any ambiently K-quasiconformally homogeneous Jordan domain is a
quasidisk. As any Jordan domain is conformally homogeneous, we see
that, in general, ambient quasiconformal homogeneity is much stronger
than quasiconformal homogeneity.

Bonfert-Taylor and Taylor were partially supported by the National Science
Foundation grant DMS-0706754, Canary was partially supported by NSF grant
DMS-0554239, Martin was partially supported by the Marsden Fund of New
Zealand, and Wolf was partially supporte by NSF grant DMS-0505603.
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Our first main result shows that the ambient quasiconformal ho-
mogeneity constant is uniformly bounded away from 1 for hyperbolic
planar domains which are not simply connected. Notice that any K-
quasidisk (which is not round) is ambiently K-quasiconformally ho-
mogeneous, but not ambiently 1-quasiconformally homogeneous (see
Gehring-Palka [12] and Erkama [11]) so one cannot bound the con-
stant away from 1 in the simply connected case.

Theorem 1.1. There exists K0 > 1 such that if Ω is an ambiently K-
quasiconformally homogeneous hyperbolic planar domain which is not
simply connected, then K ≥ K0.

It is clear that for a planar domain whose complement is removable
for K-quasiconformal maps, K-quasiconformal homogeneity is equiv-
alent to ambient K-quasiconformal homogeneity. Recall that a closed

subset R of Ĉ is removable for L-quasiconformal maps if whenever

f : Ĉ−R → Ĉ is L-quasiconformal, then it admits a L-quasiconformal

extension to a map f̄ : Ĉ → Ĉ. Thus, we obtain the following corollary:

Corollary 1.2. If Ω is a hyperbolic, K-quasiconformally homogeneous

planar domain which is not simply connected, and Ĉ − Ω is removable
for L-quasiconformal maps then K ≥ min{K0, L}.

Iwaniec and Martin, Theorem 11.3 in [15], showed that given any

d < 1, there exists Ld > 1 such that any subset of Ĉ of Hausdorff di-
mension at most d is removable for Ld-quasiconformal maps. Thus, we
obtain a lower bound on the usual uniform quasiconformal homogeneity
constant for planar domain whose complements have small Hausdorff
dimension. (Recall that any closed subset of Ĉ of Hausdorff dimension
less than one is totally disconnected.)

Corollary 1.3. Given any d < 1, there exists Kd > 1 such that if Ω
is a hyperbolic K-quasiconformally homogeneous planar domain whose
complement has Hausdorff dimension at most d, then K ≥ Kd.

A result of Martio, Rickman and Vaisala [19] shows that sets of
zero capacity are quasiconformally removable (i.e. removable for K-
quasiconformal maps for all K). Moreover, Heinonen and Koskela [13]
show that spherically porous sets are quasiconformally removable. So,
we obtain:

Corollary 1.4. If Ω is a hyperbolic, K-quasiconformally homogeneous

planar domain and either Ĉ − Ω has zero capacity or is spherically
porous, then K ≥ K0.
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In a final section, we study quasiconformal homogeneity for compo-
nents of domains of discontinuity of Kleinian groups. We recall that
a Kleinian group Γ is a discrete subgroup of PSL2(C), regarded as

the group of conformal automorphisms of Ĉ, and that its domain of

discontinuity Ω(Γ) is the largest open subset of Ĉ on which Γ acts
properly discontinuously. A Kleinian group Γ is said to be analytically
finite if Ω(Γ)/Γ is of finite type. Recall that Ahlfors [1] proved that
every finitely generated Kleinian group is analytically finite and that
there exist examples of infinitely generated Kleinian groups that are
analytically finite.

We show that the quasiconformal homogeneity of a non-simply con-
nected component Ω0 of the domain of discontinuity of a finitely gener-
ated Kleinian group is determined entirely by the compactness, or lack
thereof, of the quotient Riemann surface Ω0/Γ. (In section 4 we will
establish a quantitative version of this result.)

Theorem 1.5. Suppose that Ω0 is a component of the domain of dis-
continuity of a non-elementary analytically finite Kleinian group Γ.

(1) If Ω0/Γ is compact, then Ω0 is uniformly ambiently quasicon-
formally homogeneous, and

(2) if Ω0/Γ is non-compact and Ω0 is not simply connected, then
Ω0 is not uniformly quasiconformally homogeneous.

If the limit set of the Kleinian group has Hausdorff dimension less
than 1, then Corollary 1.3 allows one to obtain lower bounds on the
quasiconformal homogeneity constant of the domain of discontinuity.
It follows immediately from work of Canary and Taylor [10] that if
the limit set of a finitely generated Kleinian group Γ has Hausdorff
dimension less than one and Ω(Γ)/Γ is compact, then Γ has a finite
index subgroup Γ0 which is a Schottky group (i.e. H3 ∪ Ω(Γ0)/Γ0 is
homeomorphic to a handlebody.) The domain of discontinuity of a
finitely generated Schottky group is known as a Schottky domain.

Corollary 1.6. If Ω is a K-quasiconformally homogeneous Schottky
domain whose complement has Hausdorff dimension at most d < 1,
then K ≥ Kd where Kd is the constant in Corollary 1.3.

We will use Theorem 1.5, see Example 4.1, to exhibit a uniformly
ambiently quasiconformally homogeneous domain whose complement
has infinitely many components, Hausdorff dimension 2 and measure
zero.
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Historical Remarks: Quasiconformal homogeneous domains were
first studied by Gehring and Palka [12]. Ambient quasiconformal ho-
mogeneity, and the stronger notion of quasiconformal bihomogeneity,
were first introduced by MacManus, Näkki and Palka [17], where it is
simply called quasiconformal homogeneity. (For further results on am-
bient quasiconformal homogeneity and bihomogeneity, see the paper
by Bonfert-Taylor and Taylor [7].)

Gehring and Palka, see Lemma 4.3 in Gehring-Palka [12], showed
that if the quotient of a component Ω0 of the domain of discontinuity
of a Kleinian group is compact, then Ω0 is uniformly quasiconformally
homogeneous. In fact, the argument they give also proves part (1) of
Theorem 1.5 and we will essentially follow their argument. Example
4.1 is inspired by Example 4.6 in [12].

Astala, Clop, Mateu, Orobitg and Uriarte-Tuero [2] have sharpened
the result of Iwaniec-Martin [15] to show that any set of σ-finite 2

K+1
-

dimensionsal Hausdorff measure is removable for K-quasiconformal
mappings. See section 13.5 of Astala-Iwaniec-Martin [3] for further
discussion of this and related issues.

Acknowledgements: The authors would like to acknowledge the sup-
port of the Banff International Research Station. The bulk of the re-
search in this paper was carried out as part of a Focussed Research
Group at Banff in March 2007.

2. Basic Facts

In this section, we develop the background material necessary to
establish our two main results, Theorems 1.1 and 1.5.

2.1. The ambient quasiconformal homogeneity constant. It is
natural to define the ambient quasiconformal homogeneity constant of
a uniformly ambiently quasiconformally homogeneous domain to be

Kamb(Ω) = inf{K > 1 | Ω is ambiently K−quasiconformally homogeneous}.

A normal family argument (see Lemma 2.1 in [6]) shows that this infi-
mum is achieved.

Lemma 2.1. If Ω is a uniformly ambiently quasiconformally homoge-
neous planar domain, then Ω is ambiently Kamb(Ω)-quasiconformally
homogeneous.

Similarly, we recall that if a hyperbolic manifold N is uniformly
quasiconformally homogeneous, then we can define
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K(N) = min{K > 1 | N is K−quasiconformally homogeneous}.

2.2. Bounded geometry. A key observation in the study of K-quasi-
conformally homogeneous hyperbolic manifolds is that they have bounded
geometry. If N is a hyperbolic n-manifold, then let l(N) = 2 infx∈M inj

N
(x)

and let d(N) = sup
x∈N

inj
N

(x), where inj
N

(x) denotes the injectivity
radius of N at the point x.

Theorem 2.2. (Theorem 1.1 in [6]) For all n and K > 1, there exists
m(n, K) > 0 such that if N is a K-quasiconformally homogeneous
hyperbolic n-manifold other than Hn, then

(1) d(N) ≤ Kl(N) + 2K log 4, and
(2) l(N) ≥ m(n, K).

This result has a few immediate corollaries for quasiconformally ho-

mogeneous planar domains. Recall that a compact set A in Ĉ is uni-

formly perfect if there exists K such that all annuli in Ĉ\A that separate
A have modulus at most K. For example, Pommerenke [20] showed
that the limit set of an analytically finite, non-elementary Kleinian
group is uniformly perfect (see also [8] and [16]).

Corollary 2.3. If Ω ⊂ Ĉ is a uniformly quasiconformally homogeneous

hyperbolic planar domain, and Λ = Ĉ − Ω, then

(1) Λ is uniformly perfect,
(2) Λ does not have isolated points, and
(3) if Ω is not simply connected, then Ω has infinitely generated

fundamental group.

Proof. By Theorem 2.2, there is a positive lower bound on the injectiv-
ity radius in Ω. The existence of such a bound is equivalent to uniform
perfectness of Ω’s complement, by Theorem 1 in [20]. This establishes
(1).

If Λ has an isolated point, then Ω would contain annuli with arbi-
trarily large moduli that separate Λ. This contradiction establishes
(2).

Recall that any complete non-compact surface having finitely gen-
erated non-trivial fundamental group, does not have bounded geome-
try, i.e. either it has points with arbitrarily large injectivity radius or
points with injectivity radius arbitrarily close to 0. Therefore, since
Ω is non-compact and has bounded geometry, it must have infinitely
generated fundamental group if it is not simply connected, which es-
tablishes (3). �
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2.3. Ambient conformal homogeneity. If an open set is ambiently
1-quasiconformally homogeneous, we say that it is ambiently confor-
mally homogeneous. One may combine Theorem 8.1 of Gehring-Palka
[12] with the main result of Erkama [11] to obtain a complete charac-
terization of ambiently conformally homogeneous domains.

Proposition 2.4. An open set Ω in Ĉ is ambiently conformally homo-

geneous if and only if Ω = Ĉ, Ω is a round disk, Ω is the complement

of a round circle in Ĉ or Ω is the complement of one or two points in

Ĉ.

2.4. Carathéodory convergence. We recall that a sequence {Ωn}

of open sets in Ĉ converges to an open set Ω ⊂ Ĉ in the sense of
Carathéodory if the following are satisfied:

(1) If C ⊂ Ω is compact, then there exists N such that C ⊂ Ωn if
n ≥ N , and

(2) if an open set U is contained in Ωn for infinitely many values of
n, then U ⊂ Ω.

This type of convergence is also known as kernel convergence. Notice
that we allow the limit Ω to be empty.

We recall that every sequence of planar domains has a subsequence
which converges in the sense of Carathéodory and that {Ωn} converges

to Ω in the sense of Carathéodory if and only if Λ = Ĉ − Ω is the

Hausdorff limit of the complements {Λn = Ĉ − Ωn}.

3. A lower bound on the ambient quasiconformal

homogeneity constant

In this section we give the proof of Theorem 1.1. We recall the
statement of the theorem for the reader’s convenience.

Theorem 1.1. There exists K0 > 1 such that if Ω is a uniformly am-
biently quasiconformally homogeneous hyperbolic planar domain which
is not simply connected, then

Kamb(Ω) ≥ K0.

We proceed by contradiction. We assume that there exists a sequence
{Ωn} of ambiently Kn-quasiconformally homogeneous planar domains
which are not simply connected such that lim Kn = 1. Then we nor-
malize appropriately and study the Carathéodory limit of a convergent
subsequence to obtain a contradiction. In particular, we note that the
proof does not yield an explicit estimate for K0.
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We may assume that ∞ ∈ ∂Ωn for all n, where ∂Ωn = Ωn − Ωn ⊂

Ĉ. Let αn be a homotopically non-trivial simple closed curve in Ωn.

Let Λn = Ĉ − Ωn and let An be the portion of Λn inside the region
enclosed by αn and let Bn be the portion of Λn − {∞} lying outside
the region enclosed by αn. Since ∞ is not an isolated point of Λn

(by Corollary 2.3), Bn is non-empty. Let an ∈ An and bn ∈ Bn be
points which minimize the (Euclidean) distance between An and Bn.
We may assume, by normalizing by a similarity of C, that an = −1 and
bn = 1. By construction An cannot intersect the open ball of radius 2
about 1, while Bn cannot intersect the open ball of radius 2 about −1.
Therefore, the intersection D of the open ball of radius 2 about 1 and
the open ball of radius 2 about −1 must be contained in Ωn.

An

αn

An nB
bn

an

D

=1

=-1

Decomposition of Λn

We now pass to a subsequence so that {Ωn} converges, in the sense
of Carathéodory to a planar domain Ω. Since D is open and contained
in Ωn for all n, we see that D ⊂ Ω. Since, 1, −1 and ∞ do not lie in
Ωn for any n, they must not lie in Ω either. In particular, −1, 1 ∈ ∂Ω.

We now claim that Ω is ambiently conformally homogeneous. Let
x, y ∈ Ω, then x, y ∈ Ωn for all large enough n (by the definition
of Carathéodory convergence). So there exists, for all large n, a Kn-

quasiconformal map fn : Ĉ → Ĉ such that fn(x) = y and fn(Ωn) = Ωn.
We can pass to a subsequence such that either

(1) lim fn = f and f is conformal, or

(2) fn converges, uniformly on compact subsets of Ĉ − {x0}, for

some point x0 ∈ Ĉ, to a constant map with image y

(see, for example, Corollaries 21.3 and 37.2 in Väisälä [24]).
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In case (2), either x0 6= 1 or x0 6= −1. Assuming that x0 6= 1, we

see that lim fn(1) = y which would imply that y ∈ Λ = Ĉ − Ω since
fn(1) ∈ Λn for all n and Λ is the Hausdorff limit of {Λn}. If x0 = 1,
then lim fn(−1) = y and again we conclude that y ∈ Λ. This is a
contradiction, so we must be in case (1).

In case (1) it remains to show that f(Ω) = Ω. If z ∈ Λ, then there
exists zn ∈ Λn such that lim zn = z (since Λ is the Hausdorff limit of
Λn). So, since fn(Λn) = Λn for all n, fn(zn) ∈ Λn and, again since
Λ is the Hausdorff limit of Λn, we see that f(z) = lim fn(zn) ∈ Λ.
Therefore, f(Λ) ⊂ Λ. But, we may similarly show that f−1(Λ) ⊂ Λ.
Since f is a homeomorphism, this implies that f(Ω) = Ω as desired.

Therefore, there exists a conformal map f : Ĉ → Ĉ such that f(x) = y
and f(Ω) = Ω. Since x and y were arbitrary elements in Ω, it follows
that Ω is ambiently conformally homogeneous.

Since Ω is ambiently conformally homogeneous, it has one of the

forms described in Proposition 2.4. Since Ĉ−Ω contains at least three
points, it follows that Ω must be a round disk or the complement of
a round circle. However, in either case ∂Ω must be a circle passing
through −1 and 1. But, any circle passing through 1 and −1 must
intersect D which is contained in Ω. This contradiction completes the
proof.

4. Quasiconformal homogeneity and Kleinian groups

In this section, we establish a quantitative version of Theorem 1.5
and use it to construct various examples of uniformly ambiently qua-
siconformally homogeneous domains.

Theorem 1.5.(Quantitative version) Suppose that Ω0 is a component
of the domain of discontinuity of an analytically finite Kleinian group
Γ.

(1) If Ω0/Γ is compact, let D denote the diameter of Ω0/Γ and

let L = l(Ω0)
4

= 1
2
infz∈Ω0

injΩ0
(z). Then Ω0 is ambiently K-

quasiconformally homogeneous where

K =
(
eL + 1

) 4D+2L

L

if Ω0 is not simply connected, and

K = e2D+2

if Ω0 is simply connected.
(2) if Ω0/Γ is non-compact and Ω0 is not simply connected, then

Ω0 is not uniformly quasiconformally homogeneous.
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Proof of Theorem 1.5: Let Ω0 be a component of the domain of dis-
continuity of an analytically finite Kleinian group Γ.

We first suppose that Ω0/Γ is compact. Notice that since ΛΓ is
uniformly perfect, there is a positive lower bound for injΩ0

(z), so L > 0.
There exists a compact convex fundamental domain F for the action of
Γ on Ω0 of diameter at most 2D (in the Poincaré metric on Ω0.) Let U
be a neighborhood of F in Ω0 of radius 2L. The argument in Lemma
2.6 in [6], which is itself an application of Lemma 3.2 of Gehring-Palka
[12], then implies that if x, y ∈ F , then there exists a K-quasiconformal

automorphism f : Ĉ → Ĉ such that f(x) = y and f is the identity on

Ĉ − U where

K =
(
eL + 1

)2( 2D

L
+1)

.

To be more precise, there exists a sequence of points x = x0, . . . , xn = y
in F such that d(xi−1, xi) < L and n ≤ 2D

L
+ 1. Lemma 2.5 in [6]

assures us that for all i we can construct a (eL + 1)2-quasiconformal

map fi : Ĉ → Ĉ which is the identity off the ball or radius 2L about xi

and fi(xi−1) = xi. The map f can then be taken to be fn ◦ · · · ◦ f1. In
the case that Ω0 is simply connected one may apply Lemma 2.5 from

[6] directly to construct a (eD + 1)2-quasiconformal map f : Ĉ → Ĉ

which takes x to y and is the identity off of the ball of radius 2D about
x in Ω0.

Now suppose that z, w ∈ Ω0. Then there exist elements α, β ∈ Γ
such that α(z) ∈ F and β(w) ∈ F . By the argument above there exists

a K-quasiconformal automorphism f : Ĉ → Ĉ such that f(α(z)) =
β(w) and f(Ω0) = Ω0. Then g = β−1 ◦ f ◦ α is a K-quasiconformal

automorphism of Ĉ such that g(Ω0) = Ω0 and g(z) = w. It follows that
Ω0 is ambiently K-quasiconformally homogenous. We have established
(1).

If Ω/Γ is not compact, then, since it has finite type, it contains a
subsurface C which is a canonical neighborhood of a cusp. To be more
explicit, C is homeomorphic to S1 × ∞ and the metric is given by
cdθ2 + e−2tdt2 for some c > 0. Let C̃ be a component of the pre-image
of C in Ω. If the covering of C by C̃ is finite-to-one, then the injec-
tivity radius of Ω (in its associated Poincaré metric) achieves values
arbitrarily close to 0 within C̃. (We note that this case cannot actually
occur when Γ is analytically finite, since Ω(Γ) is known to be uniformly
perfect.) Otherwise, C̃ is isometric to the universal cover of C, which
is a horodisk, and the injectivity radius of Ω obtains values arbitrarily
close to ∞ in C̃. Since the injectivity radius of a uniformly quasiconfor-
mally homogeneous surface, which is not simply connected, is bounded
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between two positive constants (see Theorem 2.2), it follows that Ω
is not uniformly quasiconformally homogeneous, which establishes (2).
This completes the proof of Theorem 1.5.

Theorem 1.5 provides many examples of ambiently quasiconformally
homogeneous domains which are not even homeomorphic to confor-
mally homogeneous domains. Schottky domains are one class of exam-
ples, but the following example indicate that the geometric behavior of
these domains can be much worse.

Example 4.1. There exists a uniformly ambiently quasiconformally

homogeneous domain Ω such that Ĉ − Ω has infinitely many compo-
nents, Hausdorff dimension 2, measure zero, and is not homeomorphic
to a Cantor set.

Construction of Example 4.1: We recall that a finitely generated Kleinian
group Γ is said to be a degenerate group if its domain Ω(Γ) of discon-
tinuity is connected and simply connected (and Γ does not contain an
abelian subgroup of finite index.) Let Γ1 and Γ2 be two degenerate
groups such that Ω(Γ1)/Γ1 and Ω(Γ2)/Γ2 are both compact. For each
i, let Fi be a compact, convex fundamental domain for the action of

Γi on Ω(Γi). We may conjugate Γ2 so that the closure of Ĉ − F1 is

contained in the interior of F2 and the closure of Ĉ − F1 is contained
in the interior of F2.

If we let Γ be the group generated by Γ1 and Γ2, then the Klein
Combination Theorem (see Theorem VII.A.13 or Theorem VII.C.2 in
Maskit [18]) implies that Γ is a Kleinian group, Ω(Γ) is connected and

Ĉ − Ω(Γ) has infinitely many components. Since Λ(Γ1) ⊂ Λ(Γ) is
not totally disconnected, we see that Λ(Γ) is not totally disconnected
and hence is not homeomorphic to a Cantor set. Moreover, Ω(Γ)/Γ is
compact and Γ is finitely generated, so Theorem 1.5 implies that Ω(Γ)
is uniformly ambiently quasiconformally homogeneous

It follows from Theorem 1 of Soma [22] that Γ is geometrically tame,
so one can apply work of Thurston [23] and Canary [9] to show that

Λ(Γ) = Ĉ − Ω(Γ) has measure zero. It is a consequence of work of
Bishop and Jones [4] that Λ(Γ) has Hausdorff dimension 2. Therefore,
Ω = Ω(Γ) has all the claimed properties.

Remark: Hjelle [14] exhibited simply connected ambiently quasicon-
formally homogeneous domains which are not quasidisks. We note that
domains of discontinuity Ω(Γ) of degenerate Kleinian groups (such that
Ω/Γ is compact) provide many such examples.
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