
Flat Structures, Teichmuller theory and Handle Addition for

Minimal Surfaces

Michael Wolf�

1 Introduction

The Weierstra� representation is a powerful tool bringing methods of complex analysis to bear on problems
of existence in minimal surface theory. It is particularily powerful in constructing minimal surfaces of low
genus and few ends, as the problem of ensuring that the resulting representation is well-de�ned (the so-
called \period problem") naturally translates into a problem in a low-dimensional moduli space, which
can then be solved either explicitly, or by use of techniques adapted to low-dimensional spaces, like the
intermediate value theorem (for one-dimensional spaces).

These latter methods see particular success in the handle-addition theorems of Chen-Gackstatter,
Karcher and others ([CG81], [CG82], [HMI90], [HW], [Kar88], [Kar89], [Kar91]). These results beg the
question as to how extensively and systematically one can continue to add handles to existing minimal
surfaces.

We describe here work with Matthias Weber 1 in which we show an inductive method that adds suc-
cessive handles (and ends) to known minimal surfaces, producing families of minimal surfaces of increasing
complexity. We might very informally state the result as

Theorem 1.0.1 (Handle Addition). (Weber-Wolf) For a number of classes of geometric descriptions
of surfaces, there exist families of minimal examples indexed by genus or by genus and number of ends.

The generality of the result is that the architecture of the proof and many of the components apply to a
number of widely varying classes of surfaces, while the particular class of surfaces only a�ects one (global)
choice within the proof.

We now describe the results more carefully, beginning with four sample theorems of the type of Theorem
1.0.1.

Theorem 1.0.2 (Adding Handles to Enneper). [WW98] For each g � 0, there is a complete minimal
surface Eg in E3 of genus g � 0 and one Enneper-type end with total curvature �2�(g + 1) and eight
symmetries.

This theorem has something of a long history: the original surface is due to Enneper [Enn69], and
then one and two handles were added by Chen-Gackstatter [CG82]. A surface with an Enneper-type end
and genus three was found by d'Espirito-Santo [San94], and then shortly afterwards, Thayer displayed
convincing numerical evidence of the existence of surfaces of this type for all genera g � 35 [Tha94]. For
arbitrary genus, the result above was independently obtained by Sato [Sat96].

Even though these surfaces are not embedded, they are perhaps still interesting: the surface Eg min-
imizes, among all complete immersed minimal surfaces of genus g, the degree of the Gauss map (i.e.
maximizes the total curvature). (by Jorge-Meeks [JI83] inequality). An example of these surfaces is drawn
in Figure 6.

�Partially supported by NSF grant DMS 9971563
1Many of the �gures in this paper, including all of the images of minimal surfaces, are due to Matthias Weber.
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Theorem 1.0.3 (Adding Handles and Ends to Costa). [WW] For all odd genera g, there is a complete
minimal surface CTg � E3 which is embedded outside a compact surface with boundary of genus g, with
g parallel (horizontal) planar ends and two catenoid ends. The symmetry group of CTg is generated by
reective symmetries about a pair of orthogonal vertical planes and a rotational symmetry about a horizontal
line.

These surfaces look like

Figure 1: The surface CT5 of genus 5 with �ve planar ends and two catenoid ends. One can imagine this
as being a desingularization of the intersection of �ve horizontal planes with a catenoid.

Here one might imagine that the original Costa surface results from desingularizing the intersection of a
horizontal surface with a (vertical) catenoid; analogously, these surfaces might result from desingularizing
the intersection of an odd number of planes with a catenoid.

We generalize these CTg surfaces as follows, imagining Drilling additional Holes to obtain surfaces
DHm;n.

Theorem 1.0.4 (Adding Handles to CTg surfaces). (i) For every pair of integers n � m � 1, there
exists a complete minimal surface DHm;n � E3 of genus m+n+1 which is embedded outside a compact set
with the following properties: it has 2n+ 1 vertical normals, 2m+ 1 planar ends, and two catenoid ends.
The symmetry group is as in Theorem A. (ii) For n < m, there is no complete minimal surface with those
symmetries of the type DHm;n (and 2n+1 vertical normals, 2m+1 planar ends, and two catenoid ends).

What is interesting about Theorem 1.0.4 is how it is consistent with the Ho�man-Meeks conjecture
(see [HK97]) that if there exists an embedded minimal surface of genus g with e ends, then g � e� 2. A
tabular form of Theorem 1.0.4 looks like

mnn 0 1 2 3 4 5 6
0 Costa Horgan M-W ? ? ? ?
1 � B-W + + + + +
2 � � + + + + +
3 � � � + + + +
4 � � � � + + +
5 � � � � � + +

This table shows existence (as a \+") and non-existence (as a \-") for surfaces of type (m;n). Here
\Costa" refers to the surface announced in [Cos84], \Horgan" refers to the surface discussed in [Web98],
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\M-W" refers to the surface discussed in [MW01], and \B-W"refers to the surface of Boix and Wohlgemuth
(see [BW]). The surface with m = n = 2 is shown in Figure 1, while the surface with m = 1; n = 2 is
shown in Figure 29 at the end of the article.

The techniques of Theorem 1.0.1 also apply to periodic surfaces; for instance, we can inductively add
handles to Scherk's doubly periodic surface. (See Figure 12.)

Theorem 1.0.5 (Adding Handles to Scherk's Doubly Periodic Surface). [WW01] For each g � 0,
there is a complete doubly-periodic minimal surface Sg in E3 , whose quotient has genus g � 0 and four
planar parallel ends, parallel to the ends of Scherk's doubly periodic surface S0.

Weber [Web00] has added handles to the surfaces [CHMI89] of Callahan-Ho�man-Meeks; again the
architecture of the proof is identical.

Theorem 1.0.6 (Adding Handles to Callahan-Ho�man-Meeks). [Web00] For each pair of integers
1 � m � n, there is a singly periodic complete minimal surface CHMm;n in E3 invariant under a translation
whose quotient has 2m planar ends, genus m+ n+ 1 and eight symmetries.

Figure 2: Weber's handle addition to the Callahan-Ho�man-Meeks surface

In this paper, we describe the proofs of these theorems, focusing for the sake of concreteness almost
exclusively on the case of the Enneper-ended examples of Theorem 1.0.2. After de�ning our notation and
recalling some background information in that notation in the next section, we give an overview of the
method in the third and fourth sections. In these �nal sections, we focus on each of the steps of the proof,
giving some, but not all, of the details of each of the steps of the proofs. Complete proofs may be found in
the referenced articles.

2 Background and Notation

2.1 The Weierstra� Representation

Our arguments are founded upon the Weierstra� representation. To set notation, recall that for a minimal
surface on whose underlying Riemann surface R we have a holomorphic function G and a holomorphic
form dh (not necessarily exact, despite the notation), the minimal immersion may be represented via a
map R ! E3 by

z 7! Re

Z z

�0

�
1
2

�
G� 1

G

�
dh; i2

�
G+ 1

G

�
dh; dh

�
:

For this surface, G will be the Gauss map (postcomposed with stereographic projection) and dh will
be the complexi�ed di�erential of the third coordinate in E3 .
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Examples: 1) Enneper's surface (1869) G = z, dh = zdz on R = C . The surfaces for Theorem 1.0.2
have one end asymptotic to the end of this surface.

Figure 3: The Classical Enneper Surface

2) Catenoid: G = z, dh = dz
z on C � f0g; top and bottom ends of the family for Theorem 1.0.3 are

asymptotically catenoids.

Figure 4: The catenoid

There are, of course, some restrictions on the possible Weierstra� data. To begin, we compute that the
metric on F (R) is

dsF (R) =

�
jGj+

1

jGj

�
jdhj; (2.1.1)

thus, to get a regular metric, we need compatible divisors for G and dh at regular points of the surface.
This is a pretty mild restriction, as it is all local.

The global problem for producing minimal surfaces is that of well-de�nedness: continuation around a
cycle must leave the map unchanged. Thus we require

Re

Z


1
2

�
G� 1

G

�
dh = Re

Z


i
2

�
G+ 1

G

�
dh

= Re

Z


dh = 0

(2.1.2)

for every cycle  � R.

4



Rephrasing: We prefer to work with the meromorphic data of two forms Gdh and 1
Gdh. Then we can

phrase the period problem as

Z


Gdh =

Z


1
Gdh

Re

Z


dh = 0

(2.1.3)

for every cycle  � R.

3 The Geometry of Orthodisks

How should one approach the \period problem"? More generally, how does one picture a period of a one-
form on a Riemann surface? For the type of problems we are considering, where the fundamental domain
of the desired minimal surface (with respect to the desired symmetry group) is a planar domain, we adopt
the perspective that a one-form on a Riemann surface provides for a singular Euclidean structure on the
surface.

This is but a global summary of some straightforward local computations. Locally, if � = f(z)dz is a
one-form on a Riemann surface R, then we can de�ne a line element ds� by

ds� = j�j = jf(z)jjdzj (3.0.4)

Then, away from the zeroes of �, the metric ds� has curvature

K =
�2

f(z)
@@logf(z) = 0 (3.0.5)

since f is meromorphic.
At a zero or pole p of �, by comparing the radius and circumference of small circle about the singularity

p, we �nd that if � = fzk + h:o:t:gdz, then ds� is isometric to a Euclidean cone with cone angle 2�(k +1)
at p.

3.1 Flat Structure Triples

Here's a motivating example (Thurston): Consider a parallelogram in the plane with the usual toral

identi�cations, and its two complementary regions 
0 and 
1 in Ĉ . Consider the one-form dz on each of
these regions.

Ω0

ΩOO

Figure 5: A parallelogram with identi�cations de�nes two tori, each with a one-form

With the identi�cations, each domain is a torus, say T0 and T1, respectively. The one-form dz restricts
to be the familiar non-vanishing holomorphic form on T0, but on T1, the one-form dz has a second order
pole at 1, and is regular elsewhere. Thus, this form corresponds to a Weierstra� P-function (multiplied
by the non-vanishing holomorphic one-form) on T1. The zero of this form occurs at the vertex of the
parallelogram { note the total cone angle there of 6�.
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Most signi�cantly, note that here we have two (typically di�erent) Riemann surfaces, each equipped
with a one-form so that under a natural correspondence of cycles, the periods of the one-forms are negatives
of one another (with the periods understood in terms of Euclidean geometry).

This device of pairs of at metrics representing pairs of Riemann surfaces and one-forms where the
Euclidean geometry of the pairs reects a relationship between the periods of the one-forms drives all of
our constructions.

As we noted in the introduction, when we discuss details in this paper, we will focus on the case of
the Enneper-ended surfaces of Theorem 1.0.2. So before going much farther, we now deduce the general
forms of the at structures required for these Enneper-ended surfaces Eg . Since we have the bene�t of a
computer simulation of some of these surfaces, we can use these images; in general, we would have some
image suggested at least by intuition.

Figure 6: The Chen-Gackstatter Surface with four handles

We begin our analysis using the �gure. First, note that this surface has reections in two vertical planes
(as well as one additional symmetry we will discuss somewhat later). Thus, its quotient by the group of
reections will be a planar domain which itself has a symmetry. Next, observe that there are nine points,
say H1; H2; : : : ; H9 on the central axis where the tangent plane is horizontal. Thus the form dh, which
is a component of the Weierstra� data, will have a zero at those points: we need to decide on the order
of the zero. The simulation Figure 6 leads us to imagine that this zero is simple, and so we will assume
that for the rest of the discussion { remember that at this stage, we are trying to set up a candidate space
for proving existence, and so we are free to assume anything we want about that surface we are trying to
prove exists. (The peril of this, of course, is that we can restrict our space of candidates too much, and so
exclude the actual minimal surface from consideration.) Since these points Hi are on the surface, we will
need the induced metric to be regular, and so, from formula 2.1.1, we require that the Gau� map G have
either a simple zero or a simple pole at those points.

We look once more at our simulation, and do not observe any other points with a horizontal tangent
plane, so we declare that the divisor of the surface is supported on the points Hi and the single end, say E,
where our surface is asymptotic to Enneper's original surface. Thus we can read o� the relevant Weierstra�
data at that point E from the coresponding data at the end of Enneper's surface: we declare that dh should
have a third order pole at E, while G should have a simple zero or pole, depending on how we orient the
surface.

With these considerations in mind, we can tabulate the Weierstra� data on the divisor of G (or dh) as
follows:
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ord dh ordG
H1 1 �1
H2 1 1
H3 1 �1
H4 1 1
H5 1 �1
H6 1 1
H7 1 �1
H8 1 1
H9 1 �1
E �3 1

Figure 7: Divisor data for the surface E4

All of these derivations of divisor data for a Weierstra� representation are quite standard in the theory
of minimal surfaces: our next goal is to simplify the appearance of the period problem by converting this
data into candidates for the at structures of the forms Gdh; 1

Gdh and dh. To do this, we go back to the
simulation and make one further observation: the surface meets the four vertical (symmetry) coordinate
planes in curves along which G is either purely real or purely imaginary, and for which dh is purely real
(this also involves a choice of stereographic projection for the Gau� map). Thus the forms Gdh and 1

Gdh
are either purely real or purely imaginary along those arcs. Thus the image of the one quarter of the
surface bounded by the vertical planes will develop onto a region bounded by a polygonal arc with either
purely real or purely imaginary line segments.

What are the angles that these segments meet at? Since the segments meet at one of the points Hi

or E, this is already determined by the divisor data in the table above. We convert this complex analytic
information to geometric data in the next table, using that the cone corresponding to a zero of order k has
an angle of 2�(k + 1).

ordGdh ord 1
Gdh \Gdh \

1
Gdh \dh

H1 0 2 �=2 3�=2 �
H2 2 0 3�=2 �=2 �
H3 0 2 �=2 3�=2 �
H4 2 0 3�=2 �=2 �
H5 0 2 �=2 3�=2 �
H6 2 0 3�=2 �=2 �
H7 0 2 �=2 3�=2 �
H8 2 0 3�=2 �=2 �
H9 0 2 �=2 3�=2 �
E �2 �4 ��=2 �3�=2 ��

Figure 8: Divisors and Cone angles for the forms Gdh and 1
Gdh

Here the last three columns give one-fourth of the total cone angle at the indicated point: we display just
one-fourth of the angle as the one-fourth of the surface we display includes just one-fourth of a neighborhood
of each of these points.

In every one of the situations we treat, we may assume that the surface is suÆciently symmetric so
as to guarantee that a fundamental domain is planar. Indeed, a drawback of our method is that it is not
immediately clear how to extend this method to the case wher the fundamental domain of the minimal
surface is non-planar surface, or even a topologically non-trivial planar surface. So, we focus for the rest
of the time on topological disks with at structures.
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De�nition 3.1.1. An orthodisk is a closed topological disk, with distinguished points on the boundary,
equipped with a both a Euclidean metric and with an isometric developing into E2 . The Euclidean metric
renders the intervals between the distinguished points as non-singular geodesics; we label these intervals by
their endpoints.

We typically blur the distinction between the orthodisk and its developed image in E2 .
We are almost in a position from which we can display the possible at structures for the formsGdh; 1

Gdh
and dh; we will of course now refer to these structures as the orthodisks for Gdh; 1

Gdh and dh. Before doing
that however, we note that in this particular situation, we �nd one more restriction from our simulation
which is particularily helpful: we see a straight line on the surface connecting the middle handle point H5

with the end E. We will thus require all of our forms to respect the symmetry across this line. With this
in mind, we claim that the developed image of the form Gdh looks like the domain to the upper left in the
�gure below.

Figure 9: Flat structures for Gdh for E4

Here we should imagine that when we label the vertices counter-clockwise: the �rst �nite vertex is H1,
the �nal �nite vertex is H9, and the end E is at in�nity. We see from the table just above that the angles at
the Hi are correct, and it is not much harder to decide that the angle at the in�nite end E is also correctly
represented. We have also imposed the symmetry about the line on the surface from H5 to E by requiring
a reective symmetry about the diagonal line in the diagram from H5 to E.

Finally, we remark that the process of deriving a domain, say 
Gdh, from a Riemann surface and the
one-form Gdh, is reversible. One begins with such a domain, and then takes a branched double cover
(branched over the vertices) over the double of the domain. The one-form dz pulls back to give the desired
form: Gdh in this case.

3.2 Representing the Period Problem

We now take up the problem of representing periods in these at structures. The basic observation is that
if we develop via a formula like

z(�) =

Z �

Gdh (3.2.1)

to obtain a domain, say 
Gdh in the z-plane as in Figure 9, then the Fundamental Theorem of Calculus
implies that we may represent the form Gdh in that domain 
Gdh as dz. But then, for an arc  on the
surface that develops into the plane as z(), we �nd that

Z


Gdh =

Z
z()

dz (3.2.2)
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and this last integral is simply the di�erence of the z-values of the endpoints of z().
With this in mind, we observe from the topology of the simulation in Figure 6 that any cycle on the

minimal surface E4 projects to be homologous to a sum of edges in the boundary @
Gdh. Thus, since
from the previous paragraph we have on 
Gdh the representation of Gdh = dz, we see that the periods of
Gdh are expressible as sums of the (complex) lengths of the sides (i.e the di�erence of the endpoints of the
segments as complex numbers).

Thus, the period condition, expressed analytically as

Z


Gdh =

Z


1

G
dh (3.2.3)

translates to a geometric condition that the complex length of an edge HiHi+1 in 
Gdh should be the
conjugate of the complex length of the corresponding edge HiHi+1 in 
 1

G
dh.

This brings us to an idiosyncrasy of our construction. We �nd it easier to construe our vertical planes
as being vertical coordinate planes so that 
Gdh has horizontal and vertical boundary edges. Also, then
the analogous domain 
 1

G
dh will also have horizontal and vertical boundary edges. But, in order to force

(3.2.3), we will then have to construe the real line in the �gure Figure 9 as being diagonal, parallel to the
line fy = xg.

From these considerations, we can use the domain 
Gdh and the table of cone angles of Figure 3.1
above to force a precise description of the domain 
 1

G
dh. Indeed, this is the domain in Figure 9 which is

complementary to 
Gdh; here since we keep the domain to the left of the boundary, we label the points in
an manner opposite to how we labelled them for 
Gdh, i.e. the �rst �nite point H1 is the corner at the top
right, while the last �nite point, H9 is the corner at the bottom left.

De�nition 3.2.1. A pair of similarly labelled orthodisks 
1 and 
2 are called conjugate if, after lifting
the canonical form dz from E2 to the surfaces S1 and S2 which (branched) doubly covers 
1 and 
2,
respectively, the periods of the forms are conjugate.

We observe that this condition can be veri�ed by considering arcs which connect corresponding boundary
edges of 
1 and 
2, as long as we keep in mind that these arcs are only one piece of an entire circle on the
surfaces Si.

It is now evident why the symmetry we imposed about the diagonal line from H5 to E is so useful:
because of that symmetry, the segments HiHi+1 and H9�iH10�i have the same length and opposite ori-
entation in both domains 
Gdh and 
 1

G
dh, and these oreintations are reversed for the 'complementary'

domain. The upshot is that these two orthodisks, 
Gdh and 
 1
G
dh, when drawn as in Figure 9 precisely �t

together so that the closure of their union is exactly C .
Where has the (horizontal) period problem (3.2.3) gone? We really haven't done anything { developing

one-forms into C cannot be anything beyond a psychological convenience { but we have displayed domains
where (3.2.3) is satis�ed. However, when we drafted these domains using the condition (3.2.3), we ignored
the conformal structure of the resulting domains. What we have accomplished in this process of describing
a pair of conjugate orthodisks 
Gdh and 
 1

G
dh is the transformation of the period problem into a:

Conformal Problem: Find two such conjugate domains 
Gdh and 
 1
G
dh which are conformal by a map

which takes vertices Hi and E to corresponding vertices Hi and E.

Solving this problem then solves the (horizontal) period problem, as we can begin with the conformal
structure common to both 
Gdh and 
 1

G
dh, and then take the branched cover of the double of either

domain to obtain a Riemann surface. Then the canonical one-forms dz on each domain lift to forms Gdh
and 1

Gdh on that Riemann surface which, by construction, satisfy (3.2.3).

Remark 3.2.2. We can also follow this process to produce a orthodisk, say 
dh corresponding to the
one-form dh. A surprising feature of the proofs of all the theorems in the introduction is that �nding a
domain 
dh appropriately conformal to 
Gdh and 
 1

G
dh which satis�es the period condition Re

R

dh = 0
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is automatic. In particular, in the case of the Enneper-ended surfaces Eg, this reects that such forms dh
are exact.

A more thorough discussion of orthodisks and Weierstra� data can be found in [WW].

3.2.1 Orthodisks for other minimal surfaces

We pause for a moment from our treatment of the orthodisks relevant to the Enneper-ended surfaces Eg

to display the geometries of orthodisks relevant for the study of other surfaces.
We begin by noting that when we compute the orthodisks for the \higher genus" Costa surfaces CTg ,

we get surfaces with more sheets and more branch points, as in the Figures 10 and 11. (Here branch points
are indicated by fat dots.)

P3 C2

H3 H2

H1

C1

P3 P1

P2

C2 H3

H2

H1

C1P2C2

C1 P1

P2 P3
P1

Figure 10: orthodisks for a genus three Costa surface

P1

P3

P5 C2

H5
H4

H3
H2

H1
C1

P1P3P5

P2

P4

C2 H5

H4
H3

H2
H1

C1P2P4C2

P1C1

P2

P3

P4

P5

Figure 11: orthodisks for a genus �ve Costa surface

The doubly periodic Scherk surfaces with handles (as in Figure 12) have orthodisks like those pictured
in Figure 13.
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Figure 12: the genus 4 doubly periodic Scherk

P1

P2

P2

P1

1

2

3
4

1

2
3

4

Figure 13: orthodisks for genus 4 doubly periodic Scherk

3.3 Moduli spaces of Conjugate Flat Structures

How are we to solve the conformal problem of the last subsection? The basic approach is to regard that
problem as a problem in the moduli spaces of pairs of conjugate orthodisks 
Gdh and 
 1

G
dh. In particular,

observe that the domain 
Gdh, because of the symmetry about the line H5E is determined by the edge
lengths of the segments HiHi+1 for i = 1; 2; 3; 4. The conformal structure (here we always mean by
\conformal structure" that the points Hi and E are distinguished) is also given by these numbers, up to
scaling. Thus the moduli space M4 of possible conformal structures of domains 
Gdh for the surface E4

is given as the simplex M4 = f(x1; x2; x3; x4)j
P

xi = 1; xi > 0g. As such domains immediately de�ne

 1

G
dh by construction (in this case, by taking the complementary domain in C ), we see that solving the

conformal problem in M4 is equivalent to producing the minimal surface E4.
Before outlining how we solve that conformal problem, we pause briey to explore these moduli spaces.

3.3.1 A singleton moduli space: The Costa surface DH0;0 (= CT0)

The Costa surface is the basic example of a complete �nite total curvature embedded minimal surface of
non-trivial topology. It is also the starting point for the investigations for the Theorem 1.0.3. Here, we
seek a torus with two catenoid ends (C1 and C2), one planar end P1 and one �nite point H1 with vertical
normal. We also assume our standard eight symmetries: reections about two orthogonal vertical planes
and a rotation about a horizontal line. (Previous existence and uniqueness proofs may be found in [Cos84]
and [HMI85])

As we did for the surface E4 in subsection 3.1, we can deduce the divisor data for the Weierstra� data
for this surface, assuming that the points occur on the boundary of a fundamental quarter of the surface
in the order C1 � P1 � C2 � H1. (Below we reproduce a computer image of a fundamental domain of
Costa's surface for the group generated by reections in the two vertical planes. This makes apparent the
conformal polygon, and the order of the special points on its boundary.)
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C1

P1

C2

H1

C2
P1

C1

Figure 14: One Quarter of Costa's surface

A table corresponding to 3.1 is given below; it computes the cone angles for the forms Gdh and G�1dh
on the putative conformal polygon for Costa's surface. These at structures are drawn below, assuming
again an additional symmetry about the line fy = �xg.

ordG ord dh ordGdh ord 1
Gdh \Gdh \

1
Gdh \dh

C1 # 1 �1 0 �2 �=2 ��=2 0
P1 " �3 1 �2 4 ��=2 5�=2 �
C2 # 1 �1 0 �2 �=2 ��=2 0
H1 # 1 1 2 0 3�=2 �=2 �

Figure 15: Divisors and (quarter) cone angles for Costa's surface

The crucial observation to make at this point is that any conformal quadrilateral with a symmetry
across a diagonal is conformally equivalent to a square.

C

P
1

P
1

P
1 2

C
2

C
2 C

1

C
1C

1

H
1

H
1

Figure 16: orthodisks for Gdh and 1
Gdh for Costa's surface

Thus we conclude that the moduli space of possible examples consists only of the singleton of a pair of
square tori, so the only element in the moduli space is a reexive pair. This establishes the existence of this
surface, by a proof that is somewhat distinct from the other proofs of existence of this surface ([Cos84],
[HK97]).

3.3.2 Empty moduli spaces: Catenoid with one handle

In this example, we try to construct a minimal surface with two catenoid ends and one handle; in addition,
here we will also require the eightfold symmetry present in all of our examples. Now, a well-known theorem
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of Schoen [Sch83] implies that any minimal surface of genus g � 1 with but two embedded catenoid ends
cannot exist; still this particular example provides for a simple introduction to our style of argument for
non-existence, so this problem is worth addressing from the orthodisk perspective. Now, it is clear from an
analysis of the orthodisks pictured below that such a surface cannot exist with 4-fold symmetry, because
there is no symmetric and conjugate pair: the periods from C1C2 to H1H2 are conjugate about the line
fy = �xg, while the periods from C2H2 to H1C1 are conjugate across the line fy = +xg.

C
1

C
1

C
2

C
2C

2

C
1

H
2

H
2

H
1H

1

Figure 17: Catenoid with a handle

A crucial part of Theorem 1.0.4 is the proof of the non-existence of a whole class of possible con�g-
urations, consistent with the Ho�man-Meeks conjecture. The technique we use there is mostly just an
iterative use of the technique we exhibit here for the non-existence of the one-handled catenoid.

3.3.3 The Horgan surface DH0;1

The second example of non-existence is called the Horgan surface (see [HK97]): to visualize it, start with
one plane and two handles, one growing upwards and another growing downwards { the necks of the handles
should be perpendicular to one another. Both handles connect to catenoid ends. One imagines the surface
to look almost as pictured in the following �gure:

Figure 18: The Horgan surface??

This pattern leads to a sequence of distinguished points on the boundary in the order

C1 � P � C2 �H2 �M �H1 � C1

where M denotes a (new type of) regular point where the symmetry lines cross. The orthodisks are as
follows:
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Figure 19: orthodisks corresponding to the Horgan surface

Recently, Weber [Web98] showed that this surface cannot exist by a method that is di�erent from
that used in our previous non-existence proofs. Here there is a non-trivial moduli space, but our general
existence proof fails at precisely one place for the case of this class of surface (we are unable to prove
\Properness of the Height Function").

4 Architecture of the Proof

4.1 Converting the Period Problem into a Conformal Problem

Our goal in this section is to outline the approach we use to prove the theorems stated at the outset of this
note.

While the details of the arguments are sometimes quite involved, the basic logic of the approach and
the ideas of the proofs are quite simple. Here, we outline the argument, as a step-by-step recipe. (For the
sake of making this section somewhat self-contained, we repeat some of the background we developed in
computing the orthodisks for E4.)
Step 1. Draw the Surface. The �rst step in proving the existence of a minimal surface is to work
out a detailed proposal. This can either be done numerically, as in the work of Thayer [Tha94] for the
Chen-Gackstatter surfaces Eg or in Boix and Wohlgemuth ([BW]) for the low genus surfaces of the classes
CTg { or it can be schematic, showing how various portions of the surface might �t together. Often, as
in the case of E4 above we need to narrow the list of possibilities, and so additional symmetries might
be assumed. Sometimes, there are quite a few combinatorial possibilities, and so, for each such class, we
might attempt to follow the recipe and see if any of the rest of recipe fails.
Step 2. Compute the Divisors for the Forms Gdh and 1

Gdh. From the model that we drew in
Step 1, we can compute the divisors for the Weierstra� data, which we earlier de�ned to be the Gauss
map G and the 'height' form dh. (Note here how important it is that the Weierstra� representation be
given in terms of geometrically de�ned quantities { for us, this gives the passage between the extrinsic
geometry of the minimal surface as de�ned in Step 1 and the conformal geometry and Teichm�uller theory
of the later steps.) Thus we can also compute the divisors for the meromorphic forms Gdh and 1

Gdh on the
Riemann surface (so far undetermined, but assumed to exist) underlying the minimal surface. Of course
the divisors for a meromorphic form (on a compact surface) determine the form up to a constant, so the
divisor information nearly determines the Weierstra� data for our surface. For the surface E4, this step
was completed in the Table 3.1.
Step 3. Compute the Orthodisks for the Forms Gdh and 1

Gdh required by the period con-
ditions. A meromorphic form on a Riemann surface de�nes a at singular (conformal) metric on that
surface: for example, from the form Gdh on our putative Riemann surface, we determine a line element
dsGdh = jGdhj. This metric is locally Euclidean away from the support of the divisor of the form and has
a complete Euclidean cone structure in a neighborhood of a zero or pole of the form. Thus we can develop
the universal cover of the surface into the Euclidean plane.

The orthodisks for the forms Gdh and 1
Gdh are not completely arbitrary: because the periods for the

pair of forms must be conjugate by formula (3.2.3), the orthodisks must develop into domains which have
a particular Euclidean geometric relationship to one another. This relationship is crucial to our approach,
so we will dwell on it somewhat (generalizing the discussion of section 3.2). If the map D : 
 �! E2 is
the map which develops the at structure of a form, say �, on a domain 
 into E2 , then the map D pulls
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back the canonical form dz on C �= E2 to the form � on 
. Thus the periods of � on the Riemann surface
are given by integrals of dz along the developed image of paths in C , i.e. by di�erences of the complex
numbers representing endpoints of those paths in C .

We construe all of this as requiring that the at structures develop into domains that are \conjugate":
if we collect all of the di�erences in positions of parallel sides for the developed image of the form Gdh
into a large complex-valued n-tuple VGdh, and we collect all of the di�erences in positions of corresponding
parallel sides for the developed image of the form 1

Gdh into a large complex-valued n-tuple V 1
G
dh, then these

two complex-valued vectors VGdh and V 1
G
dh should be conjugate. This is the at structure implication of

the period condition formula (3.2.3), here using that our situation allows that the periods of all cycles can
be found from di�erences of positions of parallel sides in a at structure. Thus, we translate the \period
problem" into a statement about the Euclidean geometry of the developed at structures. This we already
did for the surface E4 in section 3.

As we remarked earlier, the vertical period problem (Re
R
 dh = 0) will be trivially solved for the

surfaces we treat here.
Step 4. De�ne the moduli space of pairs of conjugate at domains. Now we work backwards.
We know the general form of the developed images (called 
Gdh and 
 1

G
dh, respectively) of orthodisks

associated to the forms Gdh and 1
Gdh, but in general, there are quite a few parameters of the orthodisks

left undetermined, even after we have assumed symmetries, determined the Weierstra� divisor data for
the models and used the period conditions (3.2.3) to restrict the relative Euclidean geometries of the pair

Gdh and 
 1

G
dh. Thus, there is a moduli space � of possible candidates of pairs 
Gdh and 
 1

G
dh: our

period problem (3.2.3) is now a conformal problem of �nding such a pair which are conformally equivalent
by a map which preserves the corresponding cone points. (Solving this problem means that there is a
well-de�ned Riemann surface which can be developed into E2 in two ways, so that the pair of pullbacks of
the form dz give a pair of forms Gdh and 1

Gdh with conjugate periods.)
[The condition of conjugacy of the domains 
Gdh and 
 1

G
dh often dictates some restrictions on the

moduli space, and even a collection of geometrically de�ned coordinates. We do not meet these in the
considerations of the surface Eg , but they are crucially relevant in the discussion of the surfaces CTg ,
where they enter into the proof of non-existence of some candidates. We saw a brief glimmer of this in our
discussion of the non-existence of the catenoid with a handle.]
Step 5. Solve the Conformal Problem using Teichm�uller theory. At this juncture, our minimal
surface problem has become a problem in �nding a special point in a product � of moduli spaces of complex
domains: we will have no further references to minimal surface theory. The plan is straightforward: we
will de�ne a height function H : � �! R with the properties:

1. (Reexivity) The height H equals 0 only at a solution to the conformal problem.

2. (Properness) The height H is proper on �. This ensures the existence of a critical point.

3. (Non-Critical Flow) If the height H at a pair (
Gdh;
 1
G
dh) does not vanish, then the height H is not

critical at that pair (
Gdh;
 1
G
dh).

The proof of the solution to the conformal problem then summarizes as follows: we restrict to a locus
Y on which we have the Non-Critical Flow Property. By Properness, the height function H is proper on Y ;
thus there is a critical point X on Y for H. The Non-Critical Flow then forces H(X) = 0, so by Reexivity,
the surface represented by X is a solution to our conformal problem, and hence also de�nes a solution to
the minimal surface problem.

We will see that Reexivity will be relatively straightforward, but Properness and Non-Critical Flow will
require some care. This is because in these latter two steps, we are forced to compare two at structures of
a domain (and their underlying conformal structures.) In the customary treatment of the period problem,
the diÆculty was in understanding periods of two one-forms on a single surface { here the periods of the
one-forms have been transmuted into a at structure on the Riemann surface, and so the basic diÆculty
of the original global problem emerges in relating the pair of orthodisks.
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How should we de�ne this height function? We need a �nite number of conformal invariants of 
Gdh

and 
 1
G
dh which

1. (Reexivity) form a complete set of conformal invariants, i.e. the two domains 
Gdh and 
 1
G
dh are

conformally equivalent if and only if the given set of conformal invariants agree,

2. (Properness) have computable/estimable asymptotics, and

3. (Non-Critical Flow) have computable derivatives.

The natural candidates for these invariants are the \Extremal Lengths" of curve systems, �rst de�ned
by Beurling and Ahlfors in the 1940's. (We discuss the rudiments of this subject below: see [Ahl66] or
[Oht70] for more details.)

Before plunging into a discussion of extremal lengths, we provide a context by just producing a height
function for the Enneper-ended surfaces Eg . In this discussion, the curves �i refer to the set of arcs in the
domain which have one endpoint on Hi�1Hi and another endpoint on Hi+1Hi+2 (where here we construe
H0 = E).

Γ

Γ

Γ

1

2

3

Figure 20: Curve systems for E4

Remark 4.1.1. In general, the decision about which curve systems to use is the one aspect of the proof
which is not yet automatic { presently, we do not have a good procedure for deciding from a pair of orthodisks
how to choose a system of curves for the height function which will allow for all three aspects of the proof
to work at once.

We de�ne the height as

H =
nX
i=1

H(�i) (4.1.1)

with

H(�i) =
�
Ext�i(
Gdh)� Ext�i(
 1

G
dh)
�2

+

�
e

1
Ext�i

(
Gdh) � e
1

Ext�i
(
 1

G
dh

)

�2

(4.1.2)

[Here, the idea is to compare corresponding extremal lengths on 
Gdh and 
 1
G
dh. We discuss the form

of each term when we discuss Properness.]

4.2 Background on Extremal Length

Before resuming our outline, we pause to recall some aspects of the notion of Extremal Length. The
de�nition of Extremal Length is very very exible. Consider a set � of curves on a Riemann surface R, and
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the setM = f� � 0g of (measurable) conformal metrics on that Riemann surface. We de�ne the Extremal
Length of � on R to be

ExtR(�) = sup
�2M

inf2�[`�()]
2

area�(R)
(4.2.1)

Here, `�() is the �-length of  and area� is the �-area of the Riemann surface R.
The idea is that this gives some notion of length that depends only on the underlying Riemann surface

R, and not on a choice of conformal metric on R.
Here are three useful observations that guide many of our choices { we will not refer to it explicitly in

the sequel, but it is crucial for some of the details of the arguments that we are omitting in this treatment.
First, as ExtR(�) is a supremum, we immediately obtain a lower bound for this invariant of extremal
length from any conformal metric in which we can estimate shortest lengths.

On the other hand, since � is usually taken to be a homotopy class of simple curves, we can characterize
the solution metric and thus obtain a di�erent de�nition of Extremal length. In particular, an easy length-
area argument (see [Ahl66]) shows that the solution metric for the curves in a h� l rectangle connecting
opposite sides is given by the standard at metric on that rectangle.

We can thus equivalently de�ne

ExtR(�) = inf
Rh�`�R

`

h
(4.2.2)

where the in�mum is over all h� l rectangles Rh�l embedded in R with horizontal curves in �.
This new de�nition, now in terms of an in�mum, allows us to obtain upper bounds for ExtR(�) by

mapping in appropriate rectangles (or annuli if the curves in � are closed).
Finally, as we can explicitly solve the extremal length problems for points on curves encircling boundary

points of a disk, we know estimates for how extremal length changes with in�nitesimal changes of data, as
well as under degeneration. Also, the formulae are invertible: given the extremal lengths of n � 3 cycles
encircling consecutive pairs of points, we can locate the n points.

This last fact allows us to conclude that for these pairs, say Z, of planar domains, we have H(Z) = 0
if and only if Z represents a conformal pair of conjugate domains.

4.3 Analysis of the Height Function

We now return to our outline of the proof of the theorem.

4.3.1 Step 5a. Reexivity.

Having de�ned the height function via the extremal lengths of the curves �i, for a good choice of �i, this
step of refelxivity is always immediate, at least for the case of a pair of domains 
Gdh and 
 1

G
dh which are

topological disks. (It is at present far from clear how to extend this architecture to the case of topologically
non-trivial orthodisks.) We simply recall from the previous subsection that to determine the position of n
boundary points of a disk, we require the extremal lengths of n� 3 distinct arcs encircling pairs of those
boundary points. Our height function is constructed so that it vanishes only when such a set of extremal
lengths for both domains agree.

4.3.2 Step 5b Properness.

We need to show that as one of the conformal structures, (underlying one of the orthodisks 
Gdh or 
 1
G
dh)

degenerates, then the height of the pair goes to in�nity. The subtlety here is that the asymptotic di�erences
in the extremal lengths of corresponding surfaces can be quite minute: our height function is speci�cally
created to blow up these small di�erences.

Our height function will measure di�erences in the extremal lengths Ext
Gdh(i) and Ext
 1
G
dh
(i).

Often, but not always, a geometric degeneration of the orthodisk of either 
Gdh or 
 1
G
dh will force one
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of the extremal lengths Ext�(i) to tend to zero or in�nity, while the other extremal length stays �nite
and bounded away from zero. This is a straightforward situation where it will be obvious that the height
function will blow up. A more subtle case arises when a geometric degeneration of the orthodisk forces both
of the extremal lengths Ext
Gdh(i) and Ext
 1

G
dh
(i) to simultaneously decay (or explode). In that case,

we begin by observing that there is a natural map between the vector < Ext
Gdh (i) > and the vector
< Ext
 1

G
dh
(i) >. This pair of vectors is reminiscent of pairs of solutions to a hypergeometric di�erential

equation, and we show, by a monodromy argument analogous to that used in the study of those equations,
that it is not possible for corresponding components of that vector to vanish or blow up at identical rates.
In particular, we show that the logarithmic terms in the asymptotic expansion of the extremal lengths near
zero have a di�erent sign, and this sign di�erence forces a di�erence in the rates of decay that is detected
by the height function, forcing it to blow up in this case. In the next paragraph, we give some of the crucial
details of this monodromy argument.

The Monodromy Argument. Let � be a moduli space of dimension at least 2 parametrizing pairs of
orthodisks X1 and X2 corresponding to given formal Weierstra� data as usual. Suppose  is a cycle in
the underlying conformal polygon which joins edges P1P2 and Q1Q2 which are parallel (and hence non-
adjacent) in the at structures. (In our applications,  will be one of the cycles used in the height function).
Denote by R1 the vertex before Q1 and by R2 the vertex after Q2 and observe that by assumption, R2 6= P1
and P2 6= R1. Introduce a second cycle � which connects R1Q1 with Q2R2.

P
1

P
2

R
1

Q
1

Q
2

R
2

γ
β

Figure 21: Local Picture for Monodromy Argument

We formulate our properness claim more precisely in the following two lemmas:

Lemma 4.3.1. Suppose that for a sequence pn 2 � with pn ! p0 2 @� we have that ExtX1(pn)() ! 0
and ExtX2(pn)() ! 0. Suppose furthermore that  is a cycle encircling a single edge which degenerates
geometrically to 0 as n!1 in X1(pn). Then

je1=ExtX1(pn)
() � e1=ExtX2(pn)

()j2 !1

Lemma 4.3.2. Suppose that for a sequence pn 2 � with pn ! p0 2 @� we have that ExtX1(pn)() !
1 and ExtX2(pn)() ! 1. Suppose furthermore that  is a cycle with an endpoint on an edge which
degenerates geometrically to 0 as n!1 in X1(pn). Then

jeExtX1(pn)
() � eExtX2(pn)

()j2 !1

Proof. We �rst prove Lemma 4.3.1, assuming for now a later Corollary 4.3.3.

Corollary 4.3.3. Either kF1()k �
log Æ
� kF1(�)k or kF1()k+

log Æ
� kF1(�)k is real analytic in Æ for Æ = 0.

In the �rst case, kF2()k+
log Æ
� kF2(�)k is real analytic in Æ, in the second kF2()k �

log Æ
� kF1(�)k.

Consider the conformal polygons corresponding to the pair of orthodisks. Normalize the punctures by
M�obius transformations so that

P1 = �1; P2 = 0; Q1 = �;Q2 = 1 (4.3.1)
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for X1 and
P1 = �1; P2 = 0; Q1 = �0; Q2 = 1 (4.3.2)

for X2. By the assumption of Lemma 4.3.1, we know that �; �0 ! 0 as n ! 1. We now apply the
monodromy Corollary 4.3.3 above to the curve �0e

it and conclude that either

jPer�(X1)j

jPer(X1)j
+

1

�
log � (4.3.3)

is single-valued in � while
jPer�(X2)j

jPer(X2)j
�

1

�
log �0 (4.3.4)

is single-valued in �0, or the same statement holds for the analogous quantities with opposite signs. Without
loss of generality, we can treat the �rst case.

Now suppose that �0 is real analytic (and hence single-valued) in � near � = 0. Then using that X1 and
X2 are conjugate implies that the absolute lengths of � in X1 and X2 are equal, as are those of ; hence

jPer�(X1)j

jPer(X1)j
=
jPer�(X2)j

jPer(X2)j
: (4.3.5)

Thus we see, after subtracting 4.3.4 from 4.3.3, that

log(��0(�)) (4.3.6)

is single-valued in � near � = 0 which contradicts that �; �0 ! 0.
Now Ohtsuka's [Oht70] extremal length formula states that for the current normalization of X1(pn) we

have
Ext() = O

�
j log �j�1

�
(4.3.7)

(see Lemma 4.5.3 in [WW98] and [Oht70]). We conclude that

je1=ExtX1(pn)
() � e1=ExtX2(pn)

()j = O

�
1

�
�

1

�0

�
(4.3.8)

which goes to in�nity, since we have shown that � and �0 tend to zero at di�erent rates. This proves Lemma
4.3.1.

The proof of Lemma 4.3.2 is very similar: for convenience, we normalize the points of the punctured
disks such that

P1 = �1; P2 = 0; Q1 = 1; Q2 = 1 + � (4.3.9)

for X1 and
P1 = �1; P2 = 0; Q1 = 1; Q2 = 1 + �0 (4.3.10)

for X2.
By the assumption of Lemma 4.3.2, we know that �; �0 ! 0 as n!1. We now apply the monodromy

Corollary 4.3.3 above to the curve 1 + �0e
it and conclude that

Per(X1)

Per�(X1)
+

1

�
log � (4.3.11)

is single-valued in � while
Per (X2)

Per�(X2)
�

1

�
log �0 (4.3.12)

is single-valued in �0. The rest of the proof is identical to the proof of Lemma 4.3.1.
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To prove this important Corollary 4.3.3, we will need asymptotic expansions of the extremal length
in terms of the Euclidean geometric invariants of the orthodisks. Though not much is known explicitly
about extremal lengths in general, for the cycles we always choose we can reduce this problem to an
asymptotic control of Schwarz-Christo�el integrals. Their monodromy properties allow us to distinguish
their asymptotic behavior by the sign of logarithmic terms.

We introduce some notation: Suppose we have an orthodisk such that the angles at the vertices alternate
between �=2 and ��=2 modulo 2�. Consider the Schwarz-Christo�el map

F : z 7!

Z z

i

(t� t1)
a1=2 � : : : � (t� tk)

ak=2 (4.3.13)

from a conformal polygon with vertices at ti to this orthodisk. Here we take each ai to be an odd integer.
Choose four distinct vertices ti; ti+1; tj ; tj+1 so that j � i (mod 2), ensuring that the edges titi+1 and
tjtj+1 are parallel in the orthodisk geometry. (See �gure below.) Introduce a cycle  in the upper half
plane connecting edge (ti; ti+1) with edge (tj ; tj+1) and denote by  the closed cycle obtained from  and
its mirror image across the real axis. Similarly, denote by � the cycle connecting (tj�1tj) with (tj+1tj+2)
and by � the cycle together with its mirror image.

ti ti+1 tj-1 tj tj+1 tj+2

γ
β
−

−

Figure 22: Cycles for analytic continuation

Now consider the Schwarz-Christo�el period integrals

F () =
1

2

Z


(t� t1)
a1=2 � : : : � (t� tk)

ak=2

F (�) =
1

2

Z
�

(t� t1)
a1=2 � : : : � (t� tk)

ak=2

(4.3.14)

as multivalued functions depending on the now complex parameters ti.

Theorem 4.3.4. Under analytic continuation of tj+1 around tj the periods change their values like

F ()! F () + 2F (�)

F (�)! F (�)
(4.3.15)

To see this note that the path of analytic continuation of tj+1 around tj gives rise to an isotopy of
C which moves tj+1 along this path. This isotopy drags � and  to new cycles we will call �0 and 0,
respectively.

Because the curve � is de�ned to surround tj and tj+1, the analytic continuation of tj around tj+1 of
merely returns � to �0. Thus, because �0 equals �, their periods are also equal. On the other hand, the
curve  is not equal to the new 'dragged' curve 0. To see this, note that the period of 0 is obtained by
developing the at structure of the doubled orthodisk along 0. To compute this at structure, observe the
crucial fact that because the exponents in (4.3.13) are halves of odd integers, the angles at the orthodisk
vertices are either �=2 or ��=2, modulo 2�; thus the angles of the doubled at structure equal �, modulo
2�. Thus the arc 0 develops into the union of the arc  along with the arcs � and �; in particular, we see
that the period of 0 equals the period of  plus twice the period of �.
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Now denote by Æ := tj+1� tj and �x all ti other than tj+1: we regard tj+1 as the independent variable.

Theorem 4.3.5. The function F ()� log Æ
�i F (�) is single-valued and holomorphic near Æ = 0.

Proof: By de�nition, the function is locally holomorphic near Æ = 0. By Theorem 4.3.4, it is single
valued.

Now for the properness argument, we are interested in the geometric coordinates for the moduli space
� { these are just the absolute values of the the periods. More precisely we are interested in

kF ()k := jReF ()j+ jImF ()j (4.3.16)

We translate the above statement about periods into a statement about their respective absolute values.
We consider two conjugate orthodisks parameterized by Schwarz-Christo�el maps F1 and F2 de�ned on

the same conformal polygon. Recall that we have constructed � and  to be either horizontal and vertical,
respectively, or vertical and horizontal, respectively.

With this preparation, we can now prove the technical result Corollary 4.3.3 about degeneration that
was the foundation for our properness argument.
Proof of Corollary 4.3.3: Recall that the above periods are linear combinations of the geometric coordinates
where the coeÆcients are just elements of f1;�1; i;�ig. Now by construction, Fj(�) is purely real or purely
imaginary; moreover, the direction of Fj(�) is �i times the direction of Fj(). This, together with Theorem
4.3.5, implies the �rst claim. Next, note that if we turn left at a vertex in the orthodiskX1, we will turn right
at the corresponding vertex in the conjugate orthodisk X2, and vice versa. Thus, if the directions of the
corresponding edges for  in corresponding orthodisks di�er by +i, then the directions of the corresponding
edges for � will di�er by a �i, and vice versa. This implies the second claim.

This last Corollary 4.3.3 is really the crux of the properness argument: it is the critical ingredient in
the proof of Lemma 4.3.1 and Lemma 4.3.2 that says that the extremal lengths of corresponding cycles
on a pair of degenerating orthodisk domains cannot be real-analytically related. We have constructed the
height function to exploit the precise di�erences in the orders of decay.

Remark 4.3.6. Properness does require a pair of interlocking simple cycles as above. In very low genus,
such pairs may not exist. This is exactly the (only) point at which a proof by our method fails to prove the
existence of the Horgan surface.

4.3.3 Steps 5c. and 5d., Non-Critical Flow and Regeneration.

We wish to show that if Z0 2 � is a pair of conjugate orthodisks in the moduli space �, then if H(Z0) 6= 0,
then we can embed Z0 in a family Zt � � so that d

dtH(Zt) 6= 0. There are two steps to this argument:
�rst we observe that if we �nd ourselves on a one-dimensional locus Y = Zt on which Ext
Gdh (i) =
Ext
 1

G
dh
(i) for every i with but one exception, then we can di�erentiate along that locus and �nd

d
dtH(Zt) 6= 0. In the second step, we produce the locus Y by induction: this is the essence of the \handle
addition" in the process. We begin in the next paragraph with the �rst step, and then conclude the
Non-Critical Flow step with a discussion of the inductive \regeneration" in the following paragraph.

Non-Critical Flow along Good Loci The domains 
Gdh and 
 1
G
dh have a remarkable property: for

many choices of cycles i, if Ext
Gdh (i) > Ext
 1
G
dh
(i), then when we deform 
Gdh so as to decrease

Ext
Gdh(i), the conjugacy condition forces us to deform 
 1
G
dh so as to increase Ext
 1

G
dh
(i). We can

thus always deform 
Gdh and 
 1
G
dh so as to reduce one term of the height function H.

To see this, suppose that we are so lucky as to �nd ourselves at a Z where only the one \height"
H(�1) 6= 0, i.e. we have equality of extremal lengths Ext
Gdh (�i) = Ext
 1

G
dh
(�i) of the \coordinate"

cycles �i for i 6= 1. As extremal length is given by conformally mapping the domain to a rectangle, we can
imagine each half of an orthodisk being foliated by the image (under the conformal map) of the horizontal
foliation of an appropriate rectangle. This is illustrated in the next Figure 23.
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Figure 23: The image of the horizontal foliation of a rectangle foliates one of the halves of an orthodisk
under a mapping by an appropriate conformal map. Typically, the rectangles required for 
Gdh and 
 1

G
dh

will be conformally distinct.

Note that the foliations on 
Gdh and 
 1
G
dh extend to a (singular) foliation on C. If Ext�1(
Gdh) >

Ext�1(
 1
G
dh), we deform as follows, noting that we can simultaneously decrease Ext�1(
Gdh) while in-

creasing Ext�1(
 1
G
dh).

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 24: Heuristically, pushing a side decreases one extremal length while increasing the other. [See the
bracketed remark below for a comment about how this heuristic is applied in the proof.]

(In fact, this situation only has to do with alternating left-right turns.) [Formally, we compute
d
dt Ext�1(
Gdh(t)), using well-known formulas [Gar87] about derivatives of extremal length functions on
Teichm�uller space and some of the elements of in�nitesimal Teichm�uller theory. In fact, when we do this
carefully, we see that the heuristic above often does not quite work as drawn { typically we push on a side
far away from the images of the corners of the rectangles.]

Remark 4.3.7. Here we should point out that while this process seems quite robust, in very low genus
(and in cases (see e.g. [WW] where the \good locus" Y is two-dimensional instead of one-dimensional),
the proofs of this step become a bit more involved. See for example [WW].
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Regeneration. In the process described in the previous step, an issue arises: we might be able to reduce
one term of the height function via a deformation, but this might a�ect the other terms, so as not to
provide for an overall decrease in height. We thus seek a locus Y in our moduli space where the height
function has but a single non-vanishing term, and all the other terms vanish to at least second order. If
we can �nd such a locus Y , we can ow (as described in the previous paragraph) along that locus to a
solution.

We �nd this desired locus by �rst considering the boundary @� of the closure � of the moduli space �:
this boundary has strata of moduli spaces �0 for minimal surface problems of lower complexity. Looking
ahead to a proof by induction, we assume that there is a solution X 0 of those lower complexity (either
genus or number of ends or both) problems represented on such a boundary strata �0 (with all of the
corresponding extremal lengths in agreement). Then we prove that there is a locus Y � � inside the
larger moduli space � (with Y limiting on X 0) which has the analogues of those same extremal lengths in
agreement. As a corollary of that condition, the height function on Y has the desired simple properties.

This inductive step is a crucial part of the \handle addition" program. We are unable to see our way
through the combinatorics of deforming the orthodisks at an arbitrary point Z 2 �g , and so we restrict
ourselves to a special sublocus built out of a lower genus solution.

Let us now explore some of the details of this step in the case of our example of the genus four surface
E4 with an end asymptotic to Enneper's surface. Here �4 is a three-dimensional simplex bounded by four
two-dimensional faces. Looking back at the �gure Figure 9, we recognize that each of the boundary faces
is represented by limits of orthodisks degenerating in a simple way: associate to each such boundary face,
say Fi, a �nite edge, say Ei in the Figure 9. Then, consider a family of orthodisks in which the length of
Ei is tending to zero, but the lengths of the other edges are converging to �nite and positive numbers. This
family converges to a point on Fi, and we see that it is natural to parametrize Fi by the projectivization
of the (positive and �nite) lengths of the remaining edges. (We could then proceed to the faces of higher
codimension in a similar manner, but this is not necessary for our purposes here.) We focus on the face
F1 obtained by (symmetrically) collapsing the edges H4H5 and H5H6.

This face F1 parametrizes conjugate pairs for the problem of �nding a genus three Enneper-ended
surface E3. We assume that there is such a solution, say X 0.

At this less complex solution X 0 in the moduli space F1 � �, we aim to undo the degeneration which
collapsed the two central edges to a point. In particular, we seek a path Y � � along which we retain the
essential properties of X 0 that

Ext�2(
Gdh) = Ext�2(
 1
G
dh) (4.3.17)

and
Ext�3(
Gdh) = Ext�3(
 1

G
dh): (4.3.18)

Geometrically, we aim to \cut a small corner" into a lower genus pair of orthodisks, and then readjust
the lengths of the larger sides so as to satisfy the conditions above. See Figure 25.

Figure 25: orthodisks for Gdh for E4
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By the implicit function theorem, to prove that this is possible, it is basically enough to show that X 0

is locally unique in the (�nite dimensional) lower genus moduli space F1. But consider a deforming X 0 by,
say, pushing an edge \into" 
Gdh. Thus we also push the corresponding edge \out of" 
 1

G
dh.

Once again, we are comparing the at geometries of 
Gdh and 
 1
G
dh to their underlying conformal

geometries; this time our interest is in how a prescribed in�nitesimal change in at geometry (corresponding
to a prescribed change in periods) a�ects the underlying conformal geometry. We study this using the
standard calculus from Teichm�uller theory [Ahl61]: tangent vectors to Teichm�uller space are represented
by Beltrami di�erentials, which are tensors of type dz
 @

@z that can be readily computed from a prescribed
deformation of structure like the \pushing into" or \pushing out of" an edge. (See e.g. [WW] for full
details.)

I
k

I
k-1

I
k+1

I
-k-1

Figure 26: We push the kth edge Ik and its reection I�k�1 into 
Gdh

Formally then, the �rst operation of \pushing in" corresponds to an in�nitesimal Beltrami di�erential
_�G on 
Gdh, and the second operation of \pushing out" corresponds to an in�nitesimal Beltrami di�erential
_� 1
G
on 
 1

G
dh. But asX

0 is a solution, we know that there is a conformal map w : 
Gdh ! 
 1
G
dh, and we can

compute, using the tensor type of a Beltrami di�erential together with the fairly explicit \staircase-like"
Euclidean geometry of 
Gdh and 
 1

G
dh (which then gives good control on the extension of w to @
Gdh),

that
w�( _� 1

G
) = � _�G: (4.3.19)

This equation (4.3.19) implies that any such deformation deforms the conformal structures of 
Gdh and

 1

G
dh in opposite directions, where here by directions we mean as tangent vectors to appropriate Teichm�uller

spaces.
Remarks:
1) The Non-critical Flow/Regeneration inductive step seems quite general. Thus, in some sense, the most
diÆcult period problem to solve is the low genus one. It is therefore signi�cant that Horgan does not exist,
as its existence might then have yielded existence of \k-handled Horgan".
2) We produced the face F1 by a process of allowing the orthodisks to degenerate: we (symmetrically)
collapsed the middle edges H4H5 and H5H6 of the structures in Figure 9. On the surfaces obtained by
taking a branched cover over the double of one of these structures, we would see lifts of the points H4,
H5, and H6 approaching one another (as measured in the at metric) along such a degenerating family.
Formally however, in terms of the underlying conformal structures, it does not make sense to speak of
points coalescing on Riemann surfaces; it is only proper to speak of curves pinching o� to form noded
surfaces. (Noded surfaces are complex spaces where each neighborhood is either biholomorphic to a disk
or biholomorphic to a domain fzw = t; jzj < �; jwj < �g in C 2 . The complements of the nodes (where
z = w = 0 above) are punctured Riemann surfaces, occasionally referred to as the regular components of
the noded surface.) In the case of the Enneper-ended surfaces, since the limit of a degenerating family of
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structures 
Gdh was a lower genus at structure of the type 
0Gdh, we \see" only one regular component
of the noded surface, as the limiting one-form on the other component is zero. This does not always hold
in handle addition; for example in the Costa-type surfaces of [WW], the degenerate structures appear to
be of the form of less complex structures, along with other very simple components. (See Figure 27 for the
limit of a degenerating family of the form Figure 10.) The regeneration step is then more complex than
the relatively simple \cutting of the corner" of Figure 25.
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Figure 27: The limit of a family of degenerating surfaces of the type 10.

Here, on the right hand side, the regular components of the noded surface appear either as lower
complexity orthodisks or as points, while on the left-hand side, the regular components which are not
lower complexity orthodisks appear as non-trivial bigons

5 Beyond Enneper-ended Surfaces

We end with a few comments about the adjustments requred to adapt the outline above to the surfaces of
the types in Theorems 1.0.3, 1.0.4 and 1.0.5, as well as deformations of those surfaces in continuous families.
Basically, the above argument goes through relatively unchanged for the surfaces of Costa type. Of course,
we need to choose the appropriate cycles and understand the impact of the orthodisks having several
sheets, but then the Reexivity and Properness proofs are identical to those for the Enneper-ended case.
The discussion of Non-Critical Flow and Regeneration are a bit di�erent however, as the degenerations of
these orthodisks are di�erent. In particular, when we regenerate, there are two parameters to add, and we
need to always solve a 2-dimensional ow problem.

An interesting feature of this is that given a surface of type (m;n), we can choose to regenerate in either
this two-parameter way, or in the way we discussed with respect to the Enneper-ended surfaces.

25



H
1

H
1

H
3

P
1

P
1

P
1

P
2

P
2

P
2

P
3

P
3

P
3

C
2

C
2

C
2

C
1

C
1C

1

Figure 28: Regenerating orthodisks for DHm;n, case m < n

This second method leads to surfaces like

Figure 29: The surface DH(1,2)
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This represents how we �ll in the superdiagonal entries in Table 1 described after Theorem 1.0.4.
Finally, we note that it is possible to deform the planar ends of the surfaces described in Theorem 1.0.4

into catenoid ends with speci�ed growth rates near zero. A new type of special point is introduced into
the orthodisk, but only mild modi�cations are required for the proofs.
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