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§1 Introduction.

Fix a Riemannian surface of negative curvature (N2, h), and a differentiable surface
M2

g of the same genus g that will host various structures. Also fix a diffeomorphism
f0 : M → N . It is well known ([ES], [A], [SY1], [Sa]) that to every complex structure σ
on M , there is a unique harmonic diffeomorphism f(σ) : M(σ) → (N, h) homotopic to
f0 : M → N ; one is led to consider what other, possibly ostensibly weaker, structures on
M might also determine harmonic maps from M to N homotopic to f0.

The goal of this paper is to show (Theorem 3.1) that a harmonic map f(σ′) : (M, σ′) →
(N, h) may be uniquely specified by the initial choice of a class of measured foliations
(representing the maximal stretch measured foliation for the harmonic map f(σ′)) rather
than an initial choice of complex structure: we observe that a measured foliation may be
considered to be a differential-topological object in contrast to the analytical object that
a complex structure σ represents.

Our proof has aspects of independent interest. In particular, in the proof of uniqueness
(§4), from a harmonic map f : (M2, σ) → (N, h) of a surface, we construct a naturally
associated equivariant (area) minimal map F : (M̃2, σ̃) → (Ñ , h̃)× (T, 2d) of the universal
cover into the product of the universal cover (Ñ , h̃) with a real tree (T, 2d). We show
(Theorem 4.3) that for two dimensional negatively curved targets (N2, h), that this mini-
mal map is stable; we also develop some of the necessary background of this construction
and result.

There are a number of contexts for our result. We begin by recalling the Hodge-like
theorem of Hubbard and Masur ([HM]; see [W5] for a Hodge-like proof) which states
that on a given Riemann surface R, to each measured foliation (F , µ) there exists a
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unique holomorphic quadratic differential Φ(F,µ) whose horizontal foliation is equivalent
to (F , µ); again, of course, the measured foliation is topologically defined, while the holo-
morphic quadratic differential is analytically defined. In our case, the maximal stretch
measured foliation is the horizontal stretch foliation of the holomorphic quadratic differ-
ential Φ(σ) = (f(σ)∗h)(2,0) on (M, σ) (all terms to be defined in §2) so that f(σ)∗Φ(σ) is a
quadratic differential on (N, h) satisfying some non-linear equation instead of the Cauchy-
Riemann equations. In fact, Tabak [Ta] has shown that these quadratic differentials are
precisely the solution space of a certain system of equations, so that {f(σ)∗Φ(σ) | σ ∈ Tg,
the Teichmüller space of genus g} are precisely the subsonic, ρ-holomorphic quadratic
differentials on (N, h): thus, we show here a Hubbard-Masur theorem for this class of
differentials.

The Hubbard-Masur theorem can be thought of as a statement about sections of the
cotangent bundle T ∗Tg of Teichmüller space, since T ∗Tg = Q, the bundle of holomorphic
quadratic differentials on Riemann surfaces. More precisely, the Hubbard-Masur theorem
says that each measured foliation (F , µ) defines a section σ(F,µ) : Tg → Q of Q over Tg

and that the family of sections {σ(F,µ) : [(F , µ)] ∈ MF (M)} foliate Q. Here we show that
the section sh : Tg → Q of Q defined by sh([σ]) = Φ(σ) meets each section σ(F,µ) in a
single point; moreover, it then follows from [W1; Theorem 3.1] that the family of sections
{sh | h a hyperbolic metric on N representing a unique point in Tg} also foliate Q, with
each leaf meeting each leaf of the Hubbard-Masur foliation in a single point.

We prove Theorem 3.1 by showing that the map µ : Tg → MF (M), defined by sending
[σ] ∈ Tg to the horizontal measured foliation of Φ(σ), is a homeomorphism. This we prove
in steps, by showing that the map µ is (i) continuous, (ii) surjective, and (iii) injective.
As noted above, some features of the proof are of independent interest, so we review them
now. The first step, continuity, is straightforward. To show surjectivity, we consider the
function E(σ)+2Lµ(σ) : Tg → R on Teichmüller space, where E(σ) refers to the energy of
the map f(σ) : (M, σ) → (N, h) and Lµ(σ) refers to the extremal length of the measured
foliation µ on the Riemann surface (M, σ). We find a complex structure σ for which the
maximal stretch foliation of w(σ) is µ at a critical point of E + 2Lµ. This step works
quite generally, yielding a more general existence theory than simply for two-dimensional
targets (N, h); we discuss the applications to higher dimensional compact targets and
geometrically tame hyperbolic three-manifolds in remarks at the end of §3.

The difficulty with showing injectivity is that, if [σ], [σ′] ∈ Tg have corresponding
harmonic maps f(σ) : (M, σ) → (N, h) and f(σ′) : (M, σ′) → (N, h) with equivalent
maximal stretch foliations on M , we may not be able to detect this equivalence (this
equivalence will be defined precisely in §2: for the purposes of this introductory section,
it suffices to observe that two measured foliations will be equivalent if one is the pullback
of the other by an ambient diffeomorphism) by local considerations. In effect, we get past
this obstacle by considering the images of the maximal stretch foliations on N .

More precisely, associated to a measured foliation on a Riemann surface R is a dual
real tree with an isometric action by π1R: this real tree is obtained by first lifting the
measured foliation (F , µ) on R to a measured foliation (F̃ , µ̃) on the universal cover R̃,
and then projecting (by, say, p : R̃ → (T, d)) the universal cover R̃ to the leaf space T
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equipped with the metric (p∗µ̃). In the case of a harmonic map f : R → (Nn, h), we
consider the maximal stretch measured foliation (F , µ), and as noted earlier, then the
map F = (f̃ , p) : R̃ → (Ñ , h̃)× (T, 2d) is minimal, and for N2 a negatively curved surface,
stable. To show uniqueness, we consider an energy function E∗ : Tg → R for equivariant
maps of surfaces (M̃, σ̃) into (Ñ , h̃) × (T, 2d) which is finite-valued and proper on Tg.
Moreover, E∗ has critical points only where the Hopf differential has maximal stretch
foliation (F , µ) with dual tree (T, d); the stability result above then provides that every
one of the critical points of E∗ must be a local minimum. As Teichmüller space is a cell,
Morse theory forces a unique minimum.

We organize our discussion as follows. In §2, we define our terms and notation. In
§3, we state our main result, Theorem 3.1, and begin its proof, showing continuity and
surjectivity of the map µ : Tg → MF . In §4, we first discuss this construction of minimal
maps F : R̃ → (Ñn, h̃) × (T, 2d) and then prove uniqueness.

The author appreciates useful conversations with and H. Masur, Y. Minsky, and B. Tabak,
as well as the extraordinarily careful reading and very useful criticism of the referee.
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§2 Definitions and notation.

2.1 Teichmüller Space, Measured Foliations. Let M denote a smooth surface of
genus g ≥ 2, and let M−1 = M−1(F ) denote the space of metrics ρ|dw|2 on M with
Gaussian curvature identically −1. The group Diffo of diffeomorphisms of M homotopic
to the identity acts on M−1 by pullback: if φ ∈ Diffo, then φ · ρ = φ∗ρ. We define
the Teichmüller space of genus g, Tg, to be the quotient space Tg = M−1/ Diffo, i.e.,
equivalence classes of metrics in M−1 under the action of Diffo.

A measured foliation (F , µ) on M is a singular foliation on M , where the singularities
are isolated and k-pronged, equipped with a measure on transverse arcs which is invariant
under translation along leaves (see [FLP] for more details). We define a space MF (M) of
equivalence classes of measured foliations by declaring that two measured foliations (F , µ)
and (F ′, µ′) are equivalent if F can be taken to F ′ by a measure preserving isotopy or
sequence of Whitehead moves.

2.2 Harmonic maps from surfaces. Let (M, σ|dz|2) and (N, h) denote M and N
equipped with smooth Riemannian structures; here z refers to a local conformal coordinate
on the surface M , and N is an arbitrary n-dimensional manifold. For a Lipschitz map
f : (M, σ|dz|2) → (N, h), we define the energy E(f ; σ, h) of the map w to be

E(f ; σ, h) =
∫

M

1
2
‖df‖2dv(σ)

=
∫

M

1
σ(z)

{‖f∗∂z‖2
h + ‖f∗∂z̄‖2

h}σ(z)dzdz̄

Evidently, while the total energy depends upon the metric structure of the target surface
(N, h), it only depends upon the conformal structure of the source.

A critical point of this functional is called a harmonic map. We will be interested in
the situation where we have fixed a homotopy class f0 : M → N of maps into the compact
target N with all sectional curvatures K(N) satisfying K(N) < 0. In that case, there
is a unique (if f∗(π1M) is non-abelian) harmonic map f(σ) : (M, σ) → (N, h) in the
homotopy class of f0; when, in addition, N is two dimensional and f0 is homotopic to a
diffeomorphism, we have that f(σ) is a diffeomorphism ([ES], [H], [SY1], [Sa]).

For harmonic maps f : (R, σ) → (N, h) from a Riemann surface R to a smooth target,
one can characterize the harmonicity of w in terms of conformal objects on R. The
pullback metric f∗h decomposes by type as

f∗h = 〈f∗∂z, f∗∂z〉h dz2 + (‖f∗∂z‖2
h + ‖f∗∂z̄‖2

h)σdzdz̄ + 〈f∗∂z̄, f∗∂z̄〉h dz̄2

= ϕdz2 + σe(f)dzdz̄ + ϕ̄dz̄2(2.2)

where e = 1
2
‖df‖2 is the energy density of the map f . It is easy to show (see [Sa])

that if f is harmonic then Φ = ϕdz2 is a holomorphic quadratic differential on R. Let
QD(R) = QD(σ) denote the 6g−6 dimensional real vector space of holomorphic quadratic
differentials on R.
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One associates to every holomorphic quadratic differential Φ on R a canonical (singular)
measured foliation (on the underlying differentiable surface M) in the following way. If at a
point p ∈ R, we have Φ(p) 6= 0, then by using the canonical coordinate ζ(z) =

∫ z

p

√
Φ(ζ)dζ

we write Φ = dζ2 in a neighborhood U 3 p. If we then write ζ = ξ + iη, then the
horizontal foliation FΦ,hor is given by the curves η = constant, and the transverse measure
µΦ,hor is given locally by setting, for γ ⊂ U , µΦ,hor(γ) =

∫
γ
|dη|. We can also define

another measured foliation (FΦ,ver, µΦ,ver) similarly using the lines {ξ = constant} and
µΦ,ver =

∫
γ
|dξ|. These measured foliations easily extend to neighborhoods of the points p

where Φ(p) = 0, where the foliations have k-pronged singularities.
We have described a natural map from QD(R) into MF (M) which associates to a

holomorphic quadratic differential its horizontal measured foliation. Hubbard and Masur
[HM] (see also Kerckhoff [Ke], Gardiner [G2] and [W4] (for an elementary harmonic maps
theoretic proof)) showed that this map is a homeomorphism onto all of MF (M).

In the case where Φ = dζ2 (locally) is determined as in (2.2) by the harmonic map f :
R → (N, h), the foliations FΦ,hor and FΦ,ver integrate the (singular) line fields determined
by the maximal and minimal stretch directions of the differential df : TR → (TN, h).

2.3 R-trees. Let (T, d) be a metric space. There is a natural definition of geodesic in
such a space: a geodesic between t0 ∈ T and t1 ∈ T is a path γt0t1 : [0, d(t0, t1)] → T
with the property that d (t0, γt0t1(t)) = t. The metric space (T, d) is a real tree if (i)
given t0, t1 ∈ T , there is a geodesic γt0t1 connecting the point t0 to the point t1, and
(ii) given a triple of points t0, t1, and t2 in T , the geodesics γt0t1 and γt0t2 agree on[
0, 1

2 {d(t0, t1) + d(t0, t2) − d(t1, t2)}
]
, i.e., geodesic triangles on T are homeomorphic to a

“Y ”.
For us, real trees will arise in the following way. Let (F , µ) be a measured foliation on the

surface M , and consider the lifted measured foliation (F̃ , µ̃) on the universal cover M̃ . The
leaf space T of the foliation has a natural metric dT defined so that dT (t0, t1) = µ(Γt0t1)
where Γt0t1 is a quasitransverse arc in M̃ joining a pre-image of t0 to a pre-image of t1. It
is easy to see that the metric space (T, d) is a real tree. Furthermore, there is a natural
projection p : M̃ → (T, d) along the leaves which pushes the transverse measure µ down
to d, i.e., d = p∗µ; we also observe that the action of the deck group π1M on M̃ descends
to an action by isometries on the real tree (T, d), and the map p is π1M equivariant.
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§3 Main Result; Continuity, and Existence Theory for dimensions 2 and higher.

3.1 Our main construction is the following. We begin with a homotopy class of maps
determined by f0 : M → N ; here N is of course, a surface. Then for each conformal
structure σ on M , there is a unique map fσ : (M, σ) → (N, h) in the homotopy class of
f0. By pulling back the metric h by fσ and decomposing the resulting tensor by type, we
obtain a quadratic differential Φ(σ) = Φ(σ)dz2 = (f∗

σh)2,0 ∈ QD(σ) which is holomorphic
with respect to the complex structure σ. Let (Fσ, µσ) ∈ MF (M) denote the horizontal
(maximal stretch) foliation of Φ(σ).

This construction amounts to a map µ : Tg → MF (M) which assigns to each class of
conformal structures [σ] ∈ Tg a class of measured foliations (Fσ, µσ). Our main result is

Theorem 3.1. The map µ : Tg → MF (M) is a homeomorphism.

Proof. We argue in three steps: the map µ is continuous, the map µ is surjective, and
the map µ is injective.

Step 1. The map µ is clearly continuous since all of the quantities involved in the
construction of µ vary continuously with [σ] ∈ Tg (cf. [EL]).

Step 2. We claim next that µ is a surjection. The arguments for this step hold in
greater generality than simply for 2 dimensional targets. Thus, for this step, we will
assume that N is a compact, negatively curved Riemannian manifold, and that f∗ is an
injection on the fundamental group. More general hypotheses are discussed in Remark 3.6.

To see the surjectivity, consider a measured foliation (F , ν) ∈ MF (M). By the
Hubbard-Masur theorem [HM], we know that given a conformal structure [σ] ∈ Tg, there
is a unique holomorphic quadratic differential Ψν,σ ∈ QD(σ) whose horizontal foliation re-
alizes (F , ν). Let Lν = ‖Ψν,σ‖σ where ‖ · ‖σ denotes the natural L1 norm on the Riemann
surface R = (M, σ); this construction then exhibits Lν as a (non-negative) real-valued
function Lν : Tg → R. Gardiner ([G1], [G2]) proved that Lν is differentiable on Tg and

(3.1) dLν(σ)[τ ] = 2 Re
∫∫
M

Ψν,στ ;

here τ is a Beltrami differential, and [τ ] represents its equivalence class (representing an
element of TσTg). Later, Gardiner and Masur [GM] showed that Lν ∈ C1(Tg).

Next we consider another C1 (non-negative) real-valued function E : Tg → R on
Teichmüller space given by the energy of a harmonic map. To construct this function,
we set E(σ) to be the energy of the harmonic map fσ : (M, σ) → (N, h) in the homotopy
class of f0. Again it is clear [EL] that E ∈ C1(Tg) and we compute

Lemma 3.2. ( [S], [T1], [T2]; see also [J; §6.4])

(3.2) dE(σ)[τ ] = −4 Re
∫∫

Φ(σ)τ.
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Remark. The author is unsure as to the precise history of this observation, having first
heard of it in lectures of R. Schoen [S] in the winter of 1983. It also appears in an article
[T1] of A. Tromba of approximately the same time. Here we provide a proof using the
notation and conventions of [G2]; it is the sign of derivative which most interests us.

Proof. Consider the energy of a map u : (M, σ) → (N, h) as a function of two variables
E(σ, u), the first variable referring to the conformal structure and the second variable
referring to the map. Then we have

E(σ + ετ) = E(σ + ετ, fσ+ετ).

Because the energy of a harmonic map is stationary with respect to variations of the map,
we find that

dE(σ)[τ ] =
∂

∂ε

∣∣∣
ε=0

E(σ + ετ, fσ)

and we compute ∂
∂ε

∣∣
ε=0

E(σ+ετ, fσ) = ∂
∂ε

∣∣
ε=0

∫
M

〈
fσ∗

∂
∂zε

, fσ∗
∂

∂zε

〉
h
+
〈
fσ∗

∂
∂z̄ε

, fσ∗
∂

∂z̄ε

〉
h

dzε∧dz̄ε

2i
where zε refers to a local coordinate, conformal with respect to the σ+ετ structure.

From the Beltrami equation ∂zε

∂z̄ = ετ ∂zε

∂z we evaluate the right hand side of the above to

=
∫∫

2
〈

fσ∗
∂

∂z
, −τ̄ fσ∗

∂

∂z̄

〉
+ 2

〈
fσ∗

∂

∂z̄
, −τfσ∗

∂

∂z

〉
dz ∧ dz̄

2i

where ∂
∂z

= ∂
∂z0

and ∂
∂z̄

= ∂
∂z̄0

= −4 Re
∫∫ 〈

fσ∗
∂

∂z
, fσ∗

∂

∂z

〉
τ

dz ∧ dz̄

2i

= −4 Re
∫∫

Φ(σ)τ
dz ∧ dz̄

2i
. �

Remark 3.3. Inasmuch as the signs of dLν(σ)[τ ] and dE(σ)[τ ] will be important, we
offer the following thought-experiment as evidence that the signs should be opposite.
We consider a cylinder C described as the planar region [0, L] × [0, 1] with the vertical
boundaries {0} × [0, 1] and {L} × [0, 1] identified. We suppose that there are additional
identifications of portions of the boundary components of C so that the identification space
is a closed Riemann surface R0. On this surface, we consider the holomorphic quadratic
differential q0 which is given on C−∂C as q0 = dz2 with horizontal measured foliation given
in the natural coordinates on C as (F , µ) = ({y = const}, |dy|). We consider deforming
R0 to a new Riemann surface Rε by replacing [0, L] in the construction by [0, L + ε];
we obtain a new quadratic differential qε. We find then that Lµ(Rε) = L + ε so that
d
dε

∣∣
ε=0

Lµ(Rε) > 0. On the other hand, if qε is the Hopf differential of a harmonic map
from Rε to N , then in lengthening the maximal stretch leaves {y = const} in deforming
from R0 to Rε, we have (after a computation which incorporates the change in area form)
decreased the portion of energy due to the maximal stretch (horizontal) direction at a cost
of a lesser increase in energy due to the minimal stretch (vertical) direction. We conclude
that d

dε

∣∣
ε=0

E(RL+ε) < 0.
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Proof of Step 2 (Surjectivity), continued: Consider the function E + 2Lν : Tg → R.
We observe that this function is C1; moreover, because both functions are non-negative,
after recalling the Schoen-Yau [SY2] argument that E : Tg → R is a proper function,
we find that E + 2Lν : Tg → R is also a proper function. (We sketch the argument of
Schoen and Yau: consider a sequence < [σn] > of points in Tg leaving every compact set.
If < [σn] > also leaves every compact set in the Moduli space Mg, then using Mumford’s
[Mu] observation that the hyperbolic injectivity radius of < [σn] > is not bounded away
from zero, we compute that the energy of the map fσn

: (M, σn) → (N, h) must grow
arbitrarily large. In the opposite case, where the hyperbolic injectivity radius of < [σn] >
is bounded away from zero, we use that any uniform bound on E(σn) would force the
maps fσn

to be equicontinuous, and thus a subsequence of the surfaces < [σn] > would
converge to an interior point of Tg.)

Since E + 2Lν : Tg → R is a proper C1 function, it must have a critical point in Tg,
that is, a conformal structure [σ] with the property that d(E + 2Lν)(σ)[τ ] = 0 for every
τ ∈ T[σ]Tg. Thus, using (3.1) and (3.2)

0 = d(E + 2Lν)(σ)[τ ]

= −4 Re
∫∫

Φ(σ)τdA(σ) + 2 · 2 Re
∫∫

Ψν,σ · τdA(σ)

= −4 Re
∫∫

(Φσ − Ψν,σ)τdA(σ)

(3.3)

for every τ ∈ T[σ]Tg.
Now (Φσ − Ψν,σ) is a holomorphic quadratic differential on (M, [σ]) and (3.3) asserts

that Φσ −Ψν,σ is orthogonal (in the natural pairing) to every equivalence class of Beltrami
differentials. It follows immediately from standard Ahlfors-Bers Teichmüller theory ([Ahl];
see also [G2]) that Φσ − Ψσ,ν = 0, or that Φσ ≡ Ψσ,ν . Thus since Ψσ,ν has horizontal
measured foliation (F , ν), we see that the Hopf differential Φσ for the harmonic map
fσ : (M, σ) → (N, h) has maximal stretch (horizontal) measured foliation (F , ν).

Remark 3.4. In the case where (F , ν) is the zero foliation, we are looking for a conformal
harmonic map; the argument above is then precisely the Schoen-Yau ([SY2]) argument
for the existence of a minimal surface in a geometrically finite negatively curved three-
manifold.

Remark 3.5. The above proof requires only the properness of the energy functional, and
so, in particular, works for any compact target of negative curvature. We conclude

Proposition 3.6. For (N, h) compact and negatively curved and (F , µ) ∈ MF (Mg) there
exists, in each homotopy class of maps f0 : Mg → (N, h) so that f0∗ is injective on π1M ,
a conformal structure [σ] ∈ Tg so that the maximal stretch foliation of the harmonic map
w(σ) : (M2

g , σ) → (N, h) is measure equivalent to (F , µ).
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Remark 3.6. If (N, h) is non-compact, or if f0∗ is not injective on π1M , then the proof
continues to hold in some special situations, for instance when (N3, h) is a convex co-
compact hyperbolic three-manifold, because the image of the harmonic maps will meet
only the (compact) convex hull. When, (N3, h) is geometrically infinite but geometrically
tame (see, e.g. [Th], [Bo] for definitions and important properties) then we can assert
the conclusion of Proposition 3.6 for all measured foliations (F , µ) which have non-zero
intersection numbers with the relevant ending laminations. This last remark is less im-
mediate, so we indicate an argument. In this case, we can find a family of conformal
structures 〈σn〉 leaving every compact set in Tg and maps fn : (M, σn) → (N, h) so that
E(σn, h; fn) is uniformly bounded but the sequence fn(M) leaves every compact set in
N . Thus, we do not claim that the energy function E : Tg → R is proper in this case.
Yet, we can consider the entire function E + 2Lν : Tg → R for a fixed measured foliation
(F , ν) which has non-trivial intersection number i(ν, e) 6= 0 the ending lamination e. We
consider a family of conformal structures σn tending to a projective measured foliation λ
on the Thurston boundary ∂ThTg of Teichmüller space (see [FLP], [W1] for details and
discussion). If i(λ, e) 6= 0, then one shows (see Minsky [Mi1]) that E(σn, h) → ∞. If, on
the other hand i(λ, e) = 0, then we must have i(λ, ν) 6= 0, and one argues that Lν(σn)
is unbounded. Despite this great abundance of harmonic maps with somewhat controlled
geometry, we have no guarantee of the existence of a complex structure whose maximal
stretch foliation is trivial, i.e., a minimal surface.
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§4 Minimal Suspensions and Uniqueness.

Step 3. In this section we show that µ is injective. The proof involves a construction
applicable to harmonic maps from surfaces to manifolds of arbitrary dimension which may
be of independent interest, and we devote the first subsection to generalities regarding
that construction, which we call the minimal suspension of a harmonic map. In the second
subsection, we specialize to case of surface targets, where stronger results are possible, and
in the third subsection, we apply these special results to prove the injectivity of µ.

4.1 Minimal Suspensions. Let R = (M, σ) denote a Riemann surface R with the
conformal structure σ, and let f : R → (Nn, h) be a harmonic map from R to an n-
manifold N . Let Φ = Φ(f, σ) denote the Hopf differential of this map and let (F , µ)
denote the maximal stretch measured foliation of Φ.

We can lift this situation to the universal cover R̃ of R, finding a π1M -equivariant lifted
map f̃ : R̃ → Ñ , equivariant Hopf differential Φ̃ and equivariant maximal stretch foliation
(F̃ , µ̃). As in Section 2.3, if we then project along the leaves of F̃ , we obtain a real tree T ,
and the transverse measure µ̃, being invariant under translations along the leaves, projects
to a metric d on the tree. The metric space (T, d) is acted upon isometrically by π1M ,
and the projection map p : R̃ → (T, d) is π1M equivariant.

Our principal interest is in a scaled tree (T, 2d): the effect of the factor of 2 will be
to compensate for factors arising in the classical definition of the Hopf differential, as
will soon become obvious. Then the projection p : R̃ → (T, d) is harmonic in either
the sense of Gromov-Schoen [GS] or of [W3]; in particular, off of the discrete point set
Φ̃−1(0), the projection p has the local form s = p(x, y) = y in local coordinates s on
T and z = x + iy for which Φ̃ = dz2 on R̃, and is trivially harmonic. The effect of
our normalization is that the Hopf differential for p is, in the local coordinates above,
1
4 (‖p∗∂x‖2 − ‖p∗∂y‖2 − 2i 〈p∗∂x, p∗∂y〉) = −1 as p∗∂y = 2∂s and p∗∂x = 0: we conclude
that the Hopf differential for p is (p∗2d)2,0 = −Φ̃.

This motivates us to form the product space (Ñ , h̃) × (T, 2d) and consider the π1M

equivariant harmonic map F = (f̃ , p) : R̃ → (Ñ , h̃) × (T, 2d). We see that the Hopf

differential of F is
[
(f, p)∗(h̃, 2d)

]2,0

= Φ̃ − Φ̃ = 0, so that the harmonic map F is also
conformal, hence is minimal.

Definition 4.1. We call the equivariant minimal map F : R̃ → (Ñ , h̃) × (T, 2d) the
minimal suspension of f : R → (N, h).

Conversely, we have the

Proposition 4.2. Let F : R̃ → (Ñ , h̃) × (T, 2d) be equivariant, conformal and harmonic
and let π1, π2 be the projections of (Ñ , h̃) × (T, 2d) onto the first and second factors,
respectively. Then πj ◦ F is harmonic and the Hopf differential of π1 ◦ F is the negative
of the Hopf differential of π2 ◦ F . Moreover, the Hopf differential for π2 ◦ F has minimal
stretch measured foliation which is equivariantly measure equivalent to (F̃ , µ̃).
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Proof. The maps πj ◦ F are harmonic because F is harmonic and πj are isometric sub-
mersions. The Hopf differentials are negatives of each other because F = (π1 ◦F, π2 ◦F ) :
R̃ → (Ñ, h̃) × (T, 2d) is conformal so has zero Hopf differential; we then check that the
Hopf differential of a product map is the sum of the Hopf differentials.

To prove that the Hopf differential for π2 ◦ F has minimal stretch foliation which is
measure equivalent to (F̃ , µ̃), we proceed as follows. We recall the theorem of Hubbard
and Masur [HM] which says that on the Riemann surface R, there is a unique holomorphic
quadratic differential Ψ whose vertical measured foliation is measure equivalent to (F , µ).
We lift Ψ to a differential Ψ̃ on R̃ and consider the projection π : R̃ → (T, 2d) given
by projecting along leaves of the vertical foliation of Ψ̃: observe that both π and π2 ◦ F

are equivariant harmonic maps from R̃ to (T, 2d). We consider the function D(z) =
dist(T,2d)(π2◦F (z), π(z)); it is not difficult to generalize the result that D(z) is subharmonic
from the case of smooth non-positively curved targets to the present case of (T, 2d) (see
[GS], [W3; Corollary 3.2]). But as D(z) is also equivariant, the function D(z) must achieve
its maximum on an interior point, and is therefore a constant. Consider two points z and
z′ on a leaf of the vertical foliation of Ψ̃ connected by a continuous path A within that
leaf. Then π(A) is a point, and as π2 ◦ F (A) is at a constant distance from the point
π(A), we have that π2 ◦ F (A) must lie in the totally disconnected subset of the tree of
points at a fixed constant distance from π(A). We conclude that π2 ◦ F (A) is a point, so
that z and z′ lie along a leaf of the minimal stretch foliation of the Hopf differential for
π2 ◦ F (A). Thus the minimal stretch foliation for π2 ◦ F agrees with the vertical stretch
foliation of Ψ̃, i.e., with F̃ . This forces the germs of the Hopf differential for π2 ◦F at the
zeros to agree with the germs of Ψ̃ at the zeros of Ψ̃; the ratio of the Hopf differential of
π2 ◦F to Ψ̃ is then equivariant, non-vanishing and real at Ψ̃−1(0), so we conclude that the
Hopf differential of π2 ◦ F is cΨ̃ with c ∈ R. To see that c = 1, consider the image of a
small horizontal arc B of the foliation of Ψ. The image of B under π is a small arc in T
and thus its image under π2 ◦ F is also a small arc translated a constant distance away:
since these images are isometric, we see that for a horizontal vector ∂x tangent to z at a
point z ∈ R̃, we must have ‖π∗∂x‖ = ‖π2 ◦F∗∂x‖, so that at that point z, we have (in the
obvious notation)

Ψ̃(z) =
1
4
(‖π∗∂x‖2 − ‖π∗∂y‖2 − 2i 〈π∗∂x, π∗∂y〉) =

1
4
‖π∗∂x‖2 =

1
4
‖(π2 ◦ F )∗∂x‖2

=
1
4
(‖(π2 ◦ F )∗∂x‖2 − ‖(π2 ◦ F )∗∂y‖2 − 2i 〈(π2 ◦ F )∗∂x, (π2 ◦ F )∗∂y〉

)
= ((π2 ◦ F )∗d)2,0(z).

Thus the Hopf differential for π2 ◦ F is Ψ̃, which has the prescribed vertical foliation.
(Indeed, as the minimal stretch foliation of π2 ◦F agrees with the vertical stretch foliation
of Ψ̃, we see that the singularities of these foliations coincide. The images of neighborhoods
of these singularities in the tree T are a constant distance away, but this is impossible for
valence k ≥ 3 vertices in a negatively curved tree, unless the distance D = 0. We conclude
that π2 ◦ F = π.) �
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4.2 Minimal Suspensions of Maps Between Surfaces. We now specialize to the case
where N is a surface (N2, h); we will have mild need of the additional assumption that
KN < 0. Thus Ñ × T is a 3-dimensional metric space. Our goal in this subsection is to
prove

Theorem 4.3. The minimal suspension F : R̃ → Ñ ×T is a stable minimal surface, and
strictly stable if the genus of R is at least 2.

Before we prove the theorem, we need to make a sensible definition of stability for a
surface F (R̃) in Ñ × T . To begin we observe that there are two types of local structures
for F near a point q ∈ R̃: if Φ̃(q) 6= 0, then for open sets O 3 q and V 3 f̃(q), the map F

factors as F = i ◦ F2 where F2 : O → (V, h̃)× (−ε, ε) is a map into a product Riemannian
3-manifold (not merely a three-dimensional metric space) and i : (V, h̃) × (−ε, ε) → Ñ ×
(T, 2d) is an isometric inclusion. Indeed, the image F2(O) is a smooth submanifold of
(V, h̃) × (−ε, ε), and so possesses a well-defined normal ~n(q) at every point F2(q). Thus,
for a deformation F t

2 of F2, one can define an infinitesimal normal displacement ṅ(q) =〈
~n(q), ∂

∂t

∣∣
t=0

F t
2(q)

〉
; in the notation we have suppressed the dependence on F 0

2 , but this
should cause no confusion in our applications. On the other hand, if Φ̃(q) = 0, then on
the open sets O and V , the map F factors as F = i◦Fk where Fk : O → (V, h̃)×T k where
T k is a k-pronged star (a bouquet of k ≥ 3 intervals), and i is an isometric inclusion.

Thus, any compactly supported deformation of F (R̃) (not necessarily equivariant) can
be taken to lie in a locally compact 3-space, as opposed to the more general (typically)
locally non-compact complex Ñ × T .

For our application, as well as for other applications, it suffices to consider deformations
of a restricted type. For the purpose of defining these admissable deformations, choose a
smooth conformal equivariant metric on R̃ and a small positive number δ0 > 0. Observe
that p(Bδ0(q)) is either an embedded interval in the tree T or a k-pronged subtree of
the tree T . (Here it is important to recognize that p(Bδ0(q)) can be a k-pronged subtree
without Φ̃(q) = 0: one only needs q sufficiently near Φ̃−1(0) for p(Bδ0(q)) to be more
complicated than an embedded interval.)

Recall that π2 : Ñ × T → T is the projection of Ñ × T onto the second factor.

Definitions 4.4. a) A deformation Ft : (−η, η) × R̃ → Ñ × T of a minimal suspension
F : R̃ → Ñ × T is strongly admissable if (i) F0 = F , (ii) Ft(q) is continuous in t and q,
and twice continuously differentiable in t and q off of the F0-preimages of the vertices of T ,
(iii) π2(Ft(q)) ∈ p(Bδ0(q)) and (iv) for q /∈ Φ−1(0) the infinitesimal normal displacement
ṅ(q) of Ft (well-defined by (i), (ii), (iii)) should satisfy ṅ(q) → 0 as q → Φ̃−1(0).

b) A deformation Ft : R̃ → Ñ × T of a minimal suspension F : R̃ → Ñ × T is
admissable if it satisfies criteria (i), (ii), and (iii) in the definition of strong admissability,
as well as (iv′) the infinitesimal normal displacement ṅ(q) satisfies |ζ(q)|k/2|ṅ(q)| → 0 as
q → q0 ∈ Φ̃−1(0) where k = ordq0 Φ̃ and ζ is a local uniformizer at q0.
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Definition 4.5. The minimal suspension F is (strictly) stable if the second variation of
area is (positive) non-negative for every (strongly) admissable equivariant one parameter
deformation Ft : R̃ → Ñ × T .

Remark 4.6. This definition of strong admissability may seem quite restrictive (and
hence the applicability of a stability condition quite narrow), but in fact, we will compute
in the next subsection that most of the deformations which most interest us are strongly
admissable and the rest are admissable. Moreover, it is easily seen from the computations
in the proof of Lemma 4.3 (see (4.2) and (4.3)) that if we did not insist on condition (iv) in
the definition of strong admissability, then we will have difficulty defining the infinitesimal
normal deformation of Φ̃−1(0): indeed, in local coordinates (x, y, s) for (V, h̃)×(−ε, ε), the
normal to F2 has the expression

~n =
−2(1 + |τ |2)
(1 − |τ |2)

∂

∂y
+

1
2

1 − |τ |
1 + |τ |

∂

∂s
.

where τ represents the Beltrami differential of the harmonic map f̃ : (M̃, σ) → (Ñ , h̃). At a
zero q of the Hopf differential Φ̃, we have |τ |(q) = 0. So consider one of the prongs P of the
maximal stretch foliation F̃ emanating from a zero q of Φ̃, and observe that neighborhoods
of points on this prong map to a well-defined arc AP through the k-pronged star p(Bδ0(q)).
But these normals along the prong P all have a component in the direction of (the image
of) AP (in Ñ × T ), and that component does not vanish as q′ ∈ P tends to q ∈ Φ̃−1(0).
But this means that there is no consistent choice of normal at q, as limits along different
prongs P evidently lead to different components along the tree direction Ñ × T .

On the other hand, we will find that the weaker condition (iv′) in the definition of (non-
strong) admissability will suffice to control the contribution to the second order change in
area of a neighborhood near Φ̃−1(0) where a normal vector ṅ is not consistently defined:
after an integration by parts, the stability integral will involve a damping factor of order
|ζ(q)|k−1 (where q → q0 ∈ Φ̃−1(0), k = ordq0 Φ̃ and ζ is a local uniformizer near q0) on
the boundary of a small |ζ|-disk around q0.

Our plan is to compute this stability integrand in a neighborhood V ⊂ R̃ away from
Φ̃−1(0). We choose coordinates z = x + iy so that Φ̃(z) = dz2: this forces the maximal
stretch foliation to be {y = const} with transverse measure |dy|. In those coordinates,
we compute that the metric on Ñ in the image of this neighborhood is ds2

( eN,h̃)
= (σ̃e +

2)dx2 + (σ̃e − 2)dy2 where e denotes the energy density of the map f̃ : (M̃, σ̃) → (Ñ , h̃).
Thus, we further compute (in coordinates (u, v, s) of the image F (V )) that

ds2
( eN,h̃)×(T,2d)

= (σ̃e + 2)du2 + (σ̃e − 2)dv2 + 4ds2(4.1)

F (x, y) = F2(x, y) = (x, y, y)(4.2)

~n =

(
0,

−2√
(σ̃e − 2)(σ̃e + 2)

,
1
2

√
σ̃e − 2
σ̃e + 2

)
(4.3)
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where ~n is the normal to the image F (R̃), and from (4.1) and (4.2) that the induced metric
on the target is

(4.4) γ = ds2
F ( eR)

= (σ̃e + 2)|dz|2.

Proof of Theorem 4.3. In view of Definition 4.5, it is enough to consider deformations
expressed as Ft(z) = F (z) + tg(z)~n + 0(t2) where g(z) vanishes on Φ−1(0). Thus, we may
use the classical stability condition; it is convenient to use the formulation of Schoen-Yau
[SY2, Proof of Theorem 5.1]

(4.5)
∫

F (R̃)

|∇γg|2 −
(

R − K +
1
2
Σh2

ij

)
g2dAγ ≥ 0

Here ∇γ refers to the gradient with respect to the induced metric γ on the target F (R̃),
the term R represents the scalar curvature of Ñ × T , the term K represents the Gaussian
curvature of F (R̃), the form dAγ is the area form for the metric γ, and (hij) is the second
fundamental form of the minimal surface F (R̃) (so that (hij) is symmetric and traceless).

It is then straightforward to compute the Christoffel symbols Γa
bc = 1

2gpa(∂cgbp+∂bgcp−
∂pgbc) for the metric ds2

Ñ×T
= gabduadub above, as well as the components of the second

fundamental form hij =
〈∇N×T

Xi ~n, Xj
〉

(i, j = 1, 2) where we set X1 = 1√
σe+2

∂x and

X2 = 1√
σe+2

(∂y + ∂s) on F (R̃). Our next computations being local, we will suppress
much of the notation designed to indicate lifts to universal covers.

We find that

h11 = −h22 = − 1
(σe − 2)1/2(σe + 2)3/2

(∂y(σe + 2))

h12 = h21 =
1

(σe − 2)1/2(σe + 2)3/2
(∂x(σe + 2)).

Thus

(4.6)
2∑

i,j=1

h2
ij =

2
(σe + 2)3(σe − 2)

|∇0σe|2

where ∇0 refers to the gradient with respect to the Euclidean metric |Φ| = |dz|2. Now, on
our neighborhood, the map F factors as i◦F2, where i is an isometric embedding, as in the
discussion preceeding Definitions 4.4. Thus near the F2-image of our neighborhood, the
range may be represented as a product manifold Ñ × (−ε, ε), so that the scalar curvature
is K eN : we conclude that in our coordinates

(4.7) R = K eN = −1
2

1
(σe− 2)(σe + 2)

(∂2
x + ∂2

y)(σe) +
(σe)|∇0(σe)|2

2(σe + 2)2(σe− 2)2
.
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Finally, given the information in (4.4), it is easy to find that

(4.8) KF ( eR) = −1
2

1
(σe + 2)2

(∂2
x + ∂2

y)(σe) +
|∇0σe|2

2(σe + 2)3
.

Combining (4.6), (4.7) and (4.8), we find

R − K +
1
2

2∑
i,j=1

h2
ij =

−2
(σe + 2)2(σe − 2)

(∂2
x + ∂2

y)(σe) +
(4σe − 4)

(σe + 2)3(σe − 2)2
|∇0σe|2.

Rewriting the second order terms we find that

R − K +
1
2

2∑
i,j=1

h2
ij = div0

[ −2∇0(σe)
(σe + 2)2(σe − 2)

]
+

(−6σe + 4)|∇0σe|2
(σe + 2)3(σe − 2)2

+
(4σe − 4)|∇0σe|2
(σe + 2)3(σe− 2)2

= div0

[ −2∇0(σe)
(σe + 2)2(σe − 2)

]
− 2σe|∇0σe|2

(σe + 2)3(σe − 2)2
.

We are therefore integrating the form‖∇γg‖2
F ( eR)

−
R − K +

1
2

2∑
i,j=1

h2
ij

 g2

 dAγ

=
{ |∇0g|20

σe + 2
−
(

div0

[ −2∇0(σe)
(σe + 2)2(σe − 2)

])
g2 +

2σe|∇0σe|2g2

(σe + 2)3(σe − 2)2

}
(σe + 2)dxdy

=
{
|∇0g|2 − div0

[−2(∇0(σe))g2(σe + 2)
(σe + 2)2(σe − 2)

]
− 2∇0(σe) · ∇0(g2(σe + 2))

(σe + 2)2(σe − 2)

+
2σe(σe + 2)|∇0σe|2g2

(σe + 2)3(σe − 2)2

}
dxdy

=
{∣∣∣ ∇0g − 2g∇0σe

(σe + 2)(σe− 2)

∣∣∣2 + div0

[
2g2∇0(σe)

(σe + 2)(σe− 2)

]}
dxdy.

We rewrite the terms more invariantly; first observe that

∇0(σe)
(σe + 2)(σe − 2)

= ∇0 log
σe − 2

(σe + 2)

= ∇0 log
e − 2|Φ|

σ

e + 2|Φ|
σ

= 2∇0 log
1 − |τ |
1 + |τ |

where we are using that τ = fz̄

fz
, Φ = σHτ̄ , and e = H + L where H = σ 1

2‖fz‖2
h and

L = σ 1
2‖fz̄‖2

h.
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Thus, we conclude‖∇γg‖2
F ( eR)

−
R − K +

1
2

2∑
i,j=1

h2
ij

 g2

 dAγ

=

{∣∣∣∣ ∇0g − 4g∇0 log
1 − |τ |
1 + |τ |

∣∣∣∣2 +div0

[
4g2∇0 log

1 − |τ |
1 + |τ |

]}
dxdy(4.9)

It is now straightforward to argue from (4.9) and (4.5) that a minimal suspension is
stable. First observe that as z → Φ̃−1(0), we have both |τ | = |Φ̃|/σH = O(|z|k) and by
admissability, g(z)2 = o(|z|k). Thus, g2∇0 log 1−|τ |

1+|τ | = o(|z|−1), and so we can integrate

(4.9) over the complement in R̃/Γ of small κ-neighborhoods of Φ̃−1(0) and obtain a non-
negative term from the first term in (4.9) and a boundary term that vanishes as κ → 0.
Thus, F is stable.

Next we claim that if the genus of R is at least 2 and the deformation strongly admiss-
able, then the map F is strictly stable. To see this we observe that if F were stable but
not strictly stable then we would have, locally,

(4.10) ∇0g = 4g · ∇0 log
1 − |τ |
1 + |τ | .

But then this forces

(4.11) g = c

[
1 − |τ |
1 + |τ |

]4
for a non-zero constant c. But if Φ(q) = 0, we have that |τ |(q) = 0 so that g(q) 6= 0. This
contradicts the admissability of the deformation, so that we must have strict inequality in
(4.5) unless Φ has no zeros. But, of course, as soon as the genus of R̃ is at least 2, the
holomorphic quadratic differential must have zeros, by the Riemann-Roch Theorem. �

For some later discussion (in section 4.3.2) concerning deformations in which high order
zeros decay into several lower order zeros, we record a more technical version of the last
paragraph of the above proof.

Corollary 4.7. For every admissable equivariant one-parameter deformation Ft : R̃ →
N × T of a minimal suspension F : R̃ → N × T , the second variation of area is positive
unless ṅ = c((1 − |τ |)/(1 + |τ |))4.

�
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Remarks 4.8. a) When R is a torus and N a flat torus, the situation is very simple.
The harmonic map f is an affine stretch and the minimal and maximal stretch foliations
are given by parallel geodesics (usually open) on both R (with the flat metric) and N .
Consider, at a point q ∈ R, a vector vm tangent to the minimal stretch foliation and an
orthogonal vector vM of the same length tangent to the maximal stretch foliation. The
harmonic map takes these vectors to orthogonal vectors on N of different lengths. Thus,
to make the map conformal, it would suffice to stretch the minimal stretch foliation so
that the image of vm had the same length as the image of vM . This is the effect of
the minimal suspension, which in this case merely stretches the minimal stretch foliation
by the appropriate amount by forcing the minimal stretch leaves to incline at a slope of
(‖f∗vM‖2 − ‖f∗vm‖2)1/2/‖f∗vM‖.

b) Of course, to apply Theorem 4.3, we need to show that a particular deformation
family we are considering is admissable. In our proof of uniqueness, this family will be a
certain family of maps induced by a path in Teichmüller space: the main technical result
of the next subsection is to show that this deformation family is admissable.

4.3 Proof of Uniqueness. Our plan for uniqueness is now the following. LetR = (M, σ)
denote a Riemann surface whose associated maximal measured foliation, in the sense of
section 3, is (F , µ), and let (T, 2d) denote the R-tree associated to (F , µ), in the sense of
subsections 2.3 and 4.1. We will consider, for each element [ρ] in the Teichmüller space
Tg, a map Fρ : (M̃, ρ̃) → (Ñ , h̃) × (T, 2d). The images Fρ(M̃) are a family of surfaces,
parametrized by Teichmüller space. Thus a path [ρt] ⊂ Tg through [ρ0] = [σ] ∈ Tg

determines a deformation of the minimal suspension Fρ0 = Fσ : R̃ → Ñ × T . Our
main technical goal in this section is to appropriately parametrize such a neighborhood of
Teichmüller space so that this deformation family is admissable or strongly admissable, in
the sense of Definitions 4.4. Then Theorem 4.3 (and in a non-generic case, Corollary 4.7)
will say that the (equivariant) area of Fρ has a unique local minimum at [ρ] = [σ]. We
then consider an associated equivariant energy function E[ρ] = E[Fρ] which will then also
have local minimum in Tg only at those conformal structures [ρ] for which the maximal
stretch measured foliation of Φρ is (F , µ). Uniqueness will then follow from an appropriate
Morse theory argument using that Teichmüller space is a cell.

4.3.1. To begin, consider a point [ρ] in Tg. We know that for each such point, there is a
unique harmonic map fρ : (M, ρ) → (N, h) in the prescribed homotopy class and a holo-
morphic quadratic differential Ψρ = Ψµ,ρ ∈ QD(ρ) whose horizontal measured foliation
is (F , µ); we see that the projection pρ : (M̃, ρ̃) → (T, 2d) along the horizontal leaves of
the lift Ψ̃ρ is harmonic. Then we can look at the product map Fρ = (f̃ρ, pρ) : (M̃, ρ̃) →
(Ñ , h̃) × (T, 2d). As before this map is harmonic, although, in general, it may not be
conformal. Still, we can measure the equivariant energy E∗ of the product map,

E∗ =
1
2

∫∫
fM/π1M

∑
j

‖Fρ∗ej‖2dAρ̃,
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(in the natural notation) which we can easily compute to be the function E∗ = E + 2Lµ

of §3. We summarize properties of this construction in

Proposition 4.9. E∗ : Tg → R is a C1 function on Tg, and at critical points ρ0 ∈ Tg of
E∗, we have that Fρ0 is minimal and E∗ = A(Fρ0), where A(Fρ0) denotes the equivariant
area. For general [ρ] ∈ Tg, E∗([ρ]) ≥ A(Fρ). Finally E∗ is a proper function on Tg.

Proof. The first statement is due to Gardiner and Masur [GM] using that E∗ = E +2Lµ;
formula (3.3) and the paragraph following it show that Fρ0 is conformal, hence minimal.
The conformality of Fρ0 shows that E∗ = A(Fρ0). The general inequality E∗([ρ]) ≥ A(Fρ)
follows from the arithmetic-geometric inequality. Finally, observe that the projection
π1 ◦Fρ : (M̃, ρ̃) → (Ñ, h̃) is the product of a harmonic map with an isometric submersion,
and consequently reduces energy density. Of course, π1 ◦ Fρ = f̃ρ, and so E∗ ≥ E(fρ);
however, Schoen-Yau [SY2] show that E(fρ) : Tg → R is a proper function on Tg, so that
E∗ is also. �

Our next goal is a proof of the uniqueness theorem; this will require several steps in
two cases.

4.3.2. Case 1. We consider first the (generic) case where (F , µ) has only simple singu-
larities which are not connected by leaves of the foliation. We begin with the

Lemma 4.10. The family of equivariant harmonic maps Fρt
: (M̃, ρ̃t) → (Ñ, h̃)× (T, 2d)

depending on a parameter t ∈ (−ε, ε) and where ρ0 is critical for E∗ : Tg → R induces a
deformation of Fρ0 which is strongly admissable in the sense of Definition 4.4, i.e., has a
trivial normal displacement at Ψ̃−1

eρ0
(0). Here T is the tree associated to (F , µ), and (F , µ)

has only simple zeros, unconnected by leaves of F .

Proof. We summarize the situation as follows. The family Fρt
= (w̃t, pt) is the product

map of a harmonic map w̃t : (M̃, ρ̃t) → (Ñ, h̃) from (M̃, ρ̃t) to (Ñ , h̃) and the harmonic
map pt : (M̃, ρ̃t) → (T, 2d) from (M̃, ρ̃t) to (T, 2d) which has the effect of realizing the
foliation (F , µ) on (M̃, ρ̃t), i.e. via the holomorphic quadratic differential Ψ̃t. Now, while
the actual harmonic map w̃t depends on the structure ρ̃t (i.e., upon the choice of represen-
tative in the Diffo-equivalence class [ρ̃t]), the image w̃t(Ψ̃) in N depends only on the class
ρ̃ ∈ [ρ̃t]. Thus, in analyzing the image Fρt

(M) in Ñ ×T , and in particular in estimating a
deformation away from Fρ0 near Ψ̃−1

ρ0
(0), we are interested in estimating the deformation

of the image under w̃t of the horizontal foliation of Ψ̃t. In fact, the lemma only discusses
the deformation of these images in a neighborhood of Ψ̃−1

ρ0
(0).

For the sake of clarity, we break the argument up into several steps. At first we will
consider a family of metrics ρt (and associated conformal structures [ρt]) on the fixed
differentiable surface M which depend differentiably on the parameter t ∈ (−ε, ε), and
we will assume that the zero set Ψ−1

t (0) is also differentiable in t. Then under this
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assumption we will consider a point ζ /∈ Ψ−1(0) and (i) estimate from below the h-
distance dh(wt(ζ), wt(Ψ−1(0)) from wt(ζ) to wt(Ψ−1(0)) and (ii) estimate from above the
t-derivative

(4.12)
d

dt

∣∣∣
t=0

d(T,2d)

(
pt(ζ), pt(Ψ−1(0))

)
.

Both of these estimates will be in terms of the value ζ. Of course, we are ultimately
interested in determining the size |ṅ(ζ)| of the normal displacement ṅ(ζ) as a function of
|ζ|. But formula (4.3) can be read to assert that the |ṅ(ζ)| is comparable near Φ̃−1(0) to
either its y- or its s-coordinates, and (4.12) is precisely the variation of (each of) these
coordinates. Then when we compare the results of the estimates (i) and (ii) above, we will
find that |ṅ(ζ)| = o(dh(w0(ζ), w0(Ψ−1(0))). This is precisely the requirement for strong
admissability in Definition 4.4.

Our second step will be to verify the assumption that the zero set Ψ−1
t (0) varies differ-

entiably in t on M .

Remarks 4.11. (i) It is mostly in this second step that we will need to alter the argument
for the case that Φ̃ has non-simple zeros: the rest of the argument will require only modest
changes.

(ii) Let us observe that ṅ(ζ) is well-defined for ζ /∈ Φ̃−1(0), even when the zeroes are
not simple. This is so because for ζ /∈ Φ̃−1(0), we can find an interval of time (−η(ζ), η(ζ))
and a radius δ(ζ) so that for t ∈ (−η(ζ), η(ζ)) we have pt(ζ) ∈ p0(Bδ(ζ)(ζ)), i.e., the image
of ζ under pt varies only in the original prong of the subtree p(Bδ0(ζ)), in the notation of
the paragraph preceeding Definitions 4.4 and 4.5. Thus, we can define d

dt

∣∣
t=0

Fρt
(ζ); note

here that we do not need to find a uniform interval of time (−η, η) to define the normal
ṅ(ζ). We will see in the next lemma that this is also sufficient information to conclude
from strict stability that E∗(Fρt

) > E(Fρ0).
(iii) In the first paragraph of the proof, we pointed out that while the harmonic map

w̃t depends on the conformal structure ρ̃t, and its coordinate expressions depend on the
choice of conformal coordinate zt, the image w̃t(Ψ̃) is well-defined. Nevertheless, in carry-
ing out our plan. it is much more convenient to compute in coordinates in the domain M
than it would be to compute in range coordinates; we will therefore compute in the do-
main coordinates, carefully normalizing these coordinates as we go so that no substantive
contributions are made from the choice of families of coordinates.

We now carry out the plan described above. We consider a point ζ in a coordinate
disk near q ∈ Φ̃−1(0), bearing in mind its Diffo-invariant interpretation as w̃t(ζ); we will
normalize our conformal coordinates zt so that zt(q) = 0 and |zt(ζ)| is both comparable
to dw∗h(z0(ζ), z0(q)) and has | d

dtzt(ζ)| bounded. Then since w̃t is conformal at ζ, and
uniformly quasiconformal on M̃ , we see that

(4.13) dh̃(w̃0(ζ), w̃0(q)) ≥ c[e(w̃0)(q)]|ζ| ≥ c1|ζ|.
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Thus, coordinate patch distances are comparable (an analogous argument for the opposite
inequality is clear) to Ñ -distances.

Next, we undertake the critical estimate of the variation of Fρt
(ζ). For this, it is

sufficient to compute (4.12). So we write

Ψt = (zt − a(t))dz2
t

in the (previously normalized) conformal coordinate zt; here Ψt has a simple zero at a(t)
and we take a(t) to be differentiable in t (per our initial italicized assumption to be justified
later) and a(0) = 0. All of these considerations take place in a fixed open set in M . Hence,
in our coordinates∥∥∥π2∗

[
d

dt

∣∣
t=0

Fρt
(ζ)
]∥∥∥ =

∣∣∣ d

dt

∣∣
t=0

d(T,2d)

(
pt(ζ), pt(Ψ−1

t (0))
) ∣∣∣

=
∣∣∣ d

dt

∣∣
t=0

∫ ζ

a(t)

Im
√

Ψt

∣∣∣
=
∣∣∣ d

dt

∣∣
t=0

∫ ζ

a(t)

Im
√

zt − a(t)dzt

∣∣∣
= O(|ζ|1/2)

d

dt
a(t).

(4.14)

It is thus apparent that ṅ(ζ) = o
(
dh̃(w̃0(ζ), w̃0(Ψ−1

0 (0))
)
, i.e., ṅ(ζ) = o(|ζ|) as required

by the definition of strong admissability, as long as ȧ(ζ) is bounded.
The second part of our plan was to show that ȧ(ζ) is bounded in this chart, or in a

chart differentiably near this chart. Now, to do this, we need only work on the compact
Riemann surface instead of on the universal cover. Indeed, the harmonic map to (N, h)
provides a canonical section of M−1 → Tg, i.e., we choose a conformal structure ρt on M
so that the identity map id : (M, ρt) → (N, h) = (M, ρ) is harmonic.

Then choose some family of curves (γ1, . . . , γ6g−6) which (i) are transverse to the hor-
izontal foliation of Φ, (ii) avoid neighborhoods of Φ−1(0), and (iii) are in free homotopy
classes whose transverse measures provide local coordinates for MF near [(F , µ)]. Let
Q → Tg be the bundle of holomorphic quadratic differentials over Teichmüller space, C
the universal curve which fibers over Teichmüller space as R : C → Tg and S : R∗Q → C
the pull back bundle of holomorphic quadratic differentials over C. Our discussion of the
previous paragraph provides for a canonical family in the base C corresponding to a neigh-
borhood in Tg. Moreover, we have a map I : R∗Q → R6g−6

+ given by q 7→
〈
Im
∫

γi

√
q
〉
:

here, the transversality of the curves γi permits us to make consistent choices of the square
root. It is easy to check that conditions (i) and (ii) provide that this map is differentiable;
the differential DI(Φ)

∣∣
S−1(M,σ)

at Φ has a restriction to the fiber of full rank because of
condition (iii). Thus, we may apply the implicit function theorem to obtain a differen-
tiable section E(F,µ) of S : R∗Q → C which has horizontal measured foliations equivalent
to (F , µ). This differentiability of E(F,µ) provides for the zeros of the section to vary
differentiably, which of course implies that ȧ(ζ) is bounded, as required.
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We continue to assume that (F , µ) has only simple zeros unconnected by leaves of F
and prove

Lemma 4.12. For t sufficiently small, E∗(ρt) > E∗(ρ0) for t 6= 0.

Proof. From the previous proof, we observe two facts: (i) Fρt
is C∞ off of a neighborhood

of the zeros of Φρt
(ii) the infinitesimal normal variation is O(|ζ|1/2) for ζ a conformal

coordinate centered at a zero of Φρ0 .
We consider the surface with boundary Mδ defined as the complement in M of δ-

neighborhoods of the zeros of Φρ0 , measured with respect to, say, the metric ρ0. We apply
the formulas (4.5), (4.9) to the Hessian for (equivariant) area on M̃δ: from formula (4.9),
we see that the result is a term which is positive (compare (ii) and (4.11)) and a boundary
term coming from applying Stokes’ theorem to the divergence term. Yet this boundary
term is a sum of terms of the form∫

∂Bδ

[
O(|ζ|1/2)

]2 ∂

∂n
log

1 − |τ |
1 + |τ |

which vanishes as δ → 0 (here |τ | = O(|ζ|)).
Finally, we observe that this induced normal field on M̃δ does not vanish identically,

for if it did, the map w̃t : (M̃, ρ̃t) → (Ñ , h̃) would induce an equivariant map G̃t :
Ft(M̃) → F0(M̃) which would then be infinitesimally conformal. But the image F0(M̃)
is equivariantly conformal to (M̃, σ̃), and, by the construction of (M̃, ρ̃t) in Teichmüller
space, is then conformally distinct, even infinitesimally, from (M̃, ρ̃t). But then, if we
assume in addition the contrary of the statement of the lemma, i.e. that E∗(ρt) = E∗(ρ0)
(using Lemma 4.9 to exclude E∗([ρt]) < E∗([ρ0])), then the path {[ρt]} would be a path of
critical points for E∗, forcing (M̃, ρ̃t) to be equivariantly conformal to Ft(M̃), by Lemma
4.9. Thus, (M, ρt) would be infinitesimally conformal to (M, σ), a contradiction.

Thus, applying (i) so that (4.5) represents the Hessian of area of Fρt
(Mδ), we see that

the area A(Fρt
(M)) satisfies

A(Fρt
(M̃)) > A(Fρ0(M̃)) + ct2

for some constant c > 0.
Of course, by the arithmetic-geometric inequality, since E∗(ρt) represents the (equivari-

ant) energy of Fρt
, we see that E∗(ρt) ≥ A(Fρt

(M̃)) so that E∗(ρt) > A(Fρ0(M̃)) + ct2 =
E∗(ρ0) + ct2; the last equality follows from the conformality of Fρ0 . �

Finally, we prove our uniqueness statement

Proposition 4.13. For every measured foliation (F , µ) with only simple zeros uncon-
nected by leaves of F , there is a unique conformal structure (M, σ) so that the Hopf
differential for the harmonic map fσ : (M, σ) → (N, h) has maximal stretch foliation
(F , µ).
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Proof. Existence was proved in §3. The present issue is uniqueness, and the idea is to
apply a qualitative Morse theory on Tg to the function E∗ : Tg → R.

By Proposition 4.9, any such conformal structure (M, σ) is a critical point of E∗. Sup-
pose that there are two such distinct structures (M, σ) and (M, σ′). Now E∗ is a proper C1

function on Tg, and so a variant (discussed next) of the classical “mountain pass lemma”
will then assert the existence of a critical point (M, σ′′) for E∗ which is not stable for E∗.
This then contradicts Lemma 4.12, proving the proposition.

A sufficiently general such mountain pass lemma may be found (Theorem II.1.12) in
Struwe’s book [St], where it is stated for Palais-Smale functions on some (possibly) infinite-
dimensional manifolds: it is easy to check that our present situation easily satisfies the
hypotheses. While it would be a bit distracting to reproduce the proof here, we recall
that we may locate (M, σ′′) as that point in Teichmüller space which satisfies the minimax
characterization

E∗(σ′′) = inf
γ∈G

sup
p∈γ

E∗(p)

where G = {γ ∈ C1([0, 1], Tg) : γ(0) = σ, γ(1) = σ′}. �

4.3.2. Case 2. In our proofs of Lemma 4.10, Lemma 4.12 and Proposition 4.13, we only
used the hypothesis that Φ̃ had only simple zeros to show that any deformation Fρt

of Fρ0

was strongly admissable, so that the Hessian of area was positive definite at ρ0 = σ. This
argument involved a computation of the order of vanishing of the normal ṅ at a zero of
Φ̃, which in turn was based on a computation of the smoothness of the Hubbard-Masur
section E(F,µ) of R∗Q → C corresponding to the measured foliation (F , µ), as well as a
formal differentiation of a family of transverse measures.

For the case of higher order zeros, the outline of the argument is unchanged, but the
technicalities become more complicated. The principal difficulty is that the map I : R∗Q →
R6g−6

+ to which we applied the implicit function theorem to in the previous case, may lack
a uniform C1 bound as a sequence Φn of holomorphic quadratic differentials with simple
zeros approaches a holomorphic quadratic differential Φ0 with higher order zeros.

To see that this is really our principal difficulty, it is instructive (and relevant) to proceed
with the proof, assuming for now the differentiability of the section E(F,µ), where (F , µ)
represents a foliation corresponding to a holomorphic quadratic differential Φ0 with higher
order zeros.

Away from the zeros of Φ0, we can consider our map pρt
: (M̃, ρ̃t) → (T, 2d) as locally

a differentiable family of harmonic functions. Thus d
(
pρt

(A), pρt
Φ̃−1

0 (0)
)

is differentiable
in t, for a fixed point A. We compute (in our normalized coordinates), still under our
assumption of the differentiability of E(F,µ) and in analogy to (4.14),

∥∥∥π2∗

[
d

dt

∣∣
t=0

Fρt
(ζ)
]∥∥∥ =

∣∣∣ d

dt

∣∣
t=0

∫ ζ

a(t)

Im
√

Ψt

∣∣∣
=
∣∣∣ d

dt

∣∣
t=0

∫ ζ

a(t)

Im
√

zk + Pk−2(z, t)dz
∣∣∣

(4.15)
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where Pk−2(z, t) is a polynomial of order k − 2 in z. Here we can assume that Ψt =
zk + tPk−2(z) because by ([HM, Theorem 3.2, see also Proposition 3.1]), the space of
degree k−2 polynomials contains the possible infinitesimal deformations of the local form
Ψ0, up to pullback by a diffeomorphism

Thus if the coefficients of Pk−2(z, t) are differentiable in t, as we are assuming for now
that they are, the right hand side is either O(log|(ζ)|) or O(|ζ|−k

2 +1) depending on whether
k = 2 or k 6= 2, respectively. But then, as this quantity (4.15) is comparable to |ṅ(ζ)|,
we see that |ṅ(ζ)||ζ| k

2 = o(1), as is required for an admissable deformation. By Theorem
4.3, then the minimal suspension is stable; finally, it is easy to check that the exceptional
case in Corollary 4.7 cannot occur for k ≥ 2, so that the second variation of area is even
positive.

Thus we are led to study the differentiablity of the section E(F,µ) over Tg more carefully.
This study is the bulk of the work of Hubbard and Masur ([HM]) in their argument for
the existence of a well-defined section E(F,µ), and we will be able to retrieve the estimates
we need from [HM].

We begin by observing that if we use a path in Tg to induce a deformation Ft : (−η, η)×
R̃ → Ñ×T we are not required to use, in our computation of ṅ, the differentiable structure
of that path that is induced by its embedding in Tg: it could well be that an exotic
differentiable structure could produce an infinitesimal deformation ṅ that is more tractable
for us than that induced by the standard differentiable structure (See [HM, Theorem 3.2]).
Put differently, a curve in Tg induces a family of surfaces in Ñ × T which we are free to
parametrize to our convenience. With that in mind, we recall that a principal technical
tool of [HM] is their construction of exotic (but convenient) differentiable structures for
spaces of deformations of holomorphic quadratic differentials with high multiplicities. (We
will need weaker results than those in [HM], as we will require only some diffentiability
along a curve in Tg instead of the existence of a (close to continuous) differential, and we
already know the existence of the section E(F,µ).) Indeed, in terms of these structures
([HM, Step 2 (p. 261); Proposition 4.11, Lemma 4.12 (p. 269) and the references therein;
as well as the example on p. 241 for motivation]) on curves in Tg, the section E(F,µ) will
be differentiable, and so our computations in the first full paragraph after (4.15) will be
valid.

Here is one way to produce this exotic differentiable structure, along the lines of [HM;
see p. 241]. Again, for the sake of clarity, we first treat a particular class of curves, and
then generalize to all the curves we need. Along a curve B ⊂ Tg (B = {ρt} to be chosen
more carefully in a moment) through [ρ0] lying under ([ρ0], Φ0), embed Q in Q × RN

by J : q 7→
(

q,
〈∫

γi
Im

√
q
〉6g−6

i=1

)
; here as in the first case, 〈γ1, . . . , γ6g−6〉 are curves

on M which (i) are transverse to the horizontal foliation of E(F,µ)([ρt]) near the zero
set of E(F,µ)([ρt]) (for [ρt] distinct from [ρ0]), and (ii) have measures which provide local
coordinates for MF near (F , µ). We give E(F,µ) the differentiable structure induced by its
embedding as a graph by J . In particular, away from [ρ0] along B in the (generic) set where
E(F,µ) has simple zeros, the map I : q 7→

〈
Im
∫

γi

√
q
〉

is differentiable at E(F,µ)([ρt]), and
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the effect of our parameterization by J is to force (away from ([ρ0], Φ0)) uniform bounds
both on ‖DI

∣∣
B

‖ and on ‖DI(Φ)
∣∣
S−1(M,ρ0)

‖−1: the implicit function theorem then
guarantees a uniform bound on DE(F,µ)[V ], away from [ρ0], where V is tangent to the
curve B at [ρt] ∈ B. This bound then extends to a bound, in the new differentiable
structure, on DE(F,µ)

∣∣
[ρ0]

[V ] (where V is again tangent to B at [ρ0], with tangent
vector defined by the new structure), as desired. We use this structure to undertake the
computations of (4.15); observe that in this exotic differentiable structure, the construction
guarantees that the vector field ṅ will not vanish, even if the conformal structure [ρt] of
the underlying surface does not change infinitesimally.

Now, the section E(F,µ) stratifies in terms of the number of zeroes and their orders.
In terms of this stratification, the arguments in Case 1 (section 4.3.2) were for [ρ0] an
interior point of the (single) principal stratum, and in the last paragraph we discussed
curves in the principal stratum which met another stratum at [ρ0]. In fact, for curves in
Tg through [ρ0] for which the complement of [ρ0] is contained in a single lower stratum,
the identical argument as for the last paragraph holds: we need only choose our curves
γi to be transverse to the foliation of E(F,µ)([ρt]), for [ρt] ∈ B. (These curves γi then
may possibly pass through the zero locus of E(F,µ)([ρt]), but we observe that this does
not affect the argument.)

We summarize the situation as follows: the discussion of the previous paragraphs shows
that for B a differentiable curve in Tg which is contained in a single stratum off of [ρ0],
we find that we can find a coordinate t on B so that B = {[ρt]} with

(4.16) A(Fρt
(M̃)) > A(Fρ0(M̃)) + ct2

where c depends on the curve B in Tg; here c varies continuously as the curve varies
continuously in the stratum. Now, inequality (4.16) holds for all such curves (with a
constant depending on the curve), and every point in a neighborhood of [ρ0] is contained
in one of these curves ([HM; §§IV.1, IV.5]); moreover, these curves have well-defined initial
directions corresponding to the infinitesimal strata ([HM; §§IV.1, IV.5], again), and the
space of initial directions for these curves is compact, while the space of strata is finite.
We conclude that (4.16) holds (for some constant c, and [ρt] along one of our curves) for
a neighborhood in Tg. This then proves the analogue of Lemma 4.12 for an arbitrary
foliation, while the analogue of Proposition 4.13 is then unchanged. This then completes
the proof of uniqueness, hence Theorem 3.1. �
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