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1. Introduction

The goal of this paper is to prove the following

Theorem 1.1. Let M be a three-dimensional closed hyperbolic manifold.

Then there does not exist a geometric foliation of M by closed minimal

surfaces of genus g > 1.

Of course, our first task will be to define the term geometric in the state-

ment of the result and also to explain the context. We begin with an ex-

planation of the statement: the theorem asserts that such a foliation cannot

occur as an instance of a time-dependent geometric flow, in the sense of say,

[HP99].

Indeed, we prove slightly more, in that we do not use the global structure

of the fibration. The main theorem is a special case of the following result.

Theorem 1.2. Let M be a three-dimensional hyperbolic manifold. Let S be

a closed surface of genus g > 1 in M , and let N be a neighborhood of S in

M . Then there does not exist a geometric foliation of N by closed minimal

surfaces of genus g > 1.

Remarks 1.3. (i) The manifold M in the theorem above does not need to

be closed. An example in section 5 shows that the necessity of the hypothesis

that S be closed.

(ii) The restriction on the genus of the surface S in Theorem 1.2 is somewhat

superfluous, as minimal surfaces are always saddle-shaped in their ambient

spaces: thus, a hyperbolic three-manifold induces on a minimal submanifold

a metric of curvature at most −1, forcing S to be of hyperbolic type.

(iii) Because Theorem 1.1 is an immediate corollary of Theorem 1.2, we see

that the exclusion of minimal geometric flows does not depend directly on

global dynamical qualities of the flow.
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Our definition of geometric foliation relates to the following perspective.

Of course, a foliation F of the three-manifold M denotes the decomposition

of the manifold M into leaves F ∈ F which are homeomorphic to S with

the following property: for every point p ∈M , there is a neighborhood U of

p so that U is covered by the image of a map F : (−ε, ε) × S → M , where

Ft = F ({t} × S), a leaf of F , is disjoint from other leaves Ft′ when t and t′

are distinct times.

Because the foliation has leaves of codimension one, it is possible to ar-

range the mappings F so that the pushforward vectors ν = F∗
∂
∂t are normal

to the image leaf Ft0 for each t0 ∈ (−ε, ε).
Then in this setting, a foliation F of M is geometric if the norm ‖ν‖ =

‖F∗ ∂∂t‖ depends only on the local geometry of the leaf Ft0 = F ({t0} × S),

i.e. ν depends only on the first and second fundamental forms of the leaves

of F .

Note that in the case where M is hyperbolic and the leaves of F are min-

imal (so that the principal curvatures are additive inverses of one another),

the condition that ν = ν(p) depends only on the first and second funda-

mental forms is equivalent to the existence of a function f = f(λ) so that

ν = ν(p) = ν(f(λ(p))) depends only on the size of the principal curvature

λ(p) of the leaf of F through p. Thus we may succinctly state the criterion

for a foliation to be geometric as follows.

Definition 1.4. Let M be a three dimensional hyperbolic manifold. We say

that M contains a locally geometric 1-parameter family of closed minimal

surfaces (or, more briefly, that the minimal foliation is geometric) if there

exists a closed surface S, a constant ε > 0 and an embedding

h : (−ε, ε)× S →M

such that

(i) the function h is C2 with respect to both t and p ∈ S.

(ii) for every t, each leaf ht(·) := h(t, ·) ⊂M is a minimal surface.

(iii) for any p ∈ S, the function f(t, p) =< (ht)∗(
∂
∂t), ~n > |t=0 only

depends on the principal curvature of S at p. One may write as

f(0, p) = f(0, ||A||2(p)) where ||A||2(p) is the square of the second

fundamental form of {0} × S at (0, p) in M .

(iv) For time t = 0, the function f(0, ·) : S → R does not vanish identi-

cally.

In particular, such a foliation would satisfy conditions (1.1) in [HP99,

Page 45] for a time-dependent (i.e. allowed to vary as the leaves vary)

geometric flow.
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Of course, this definition provides a strong restriction on the possible

foliations that are excluded by Theorem 1.1. On the other hand, the theorem

does rule out foliations defined by local geometric rules, even ones that

change from leaf to leaf.

1.1. The mathematical and historical context. Interest in the problem

of whether one could possibly foliate a closed hyperbolic three-manifold by

minimal surfaces dates back to a paper by Anderson, and in particular to a

conjecture he states [And83, Page 289] (see also [Cal03, Rub07, Uhl83]

for alternative expressions):

Conjecture 1.5 (Anderson). If M is a three-dimensional closed hyperbolic

manifold, then there does not exist a local 1-parameter family of closed min-

imal surfaces in M .

Since this conjecture was identified, there have been a few partial results.

Both Hass [Has15] and Huang-Wang [HW15] have found hyperbolic three-

manifolds which fiber over the circle but do not admit any minimal foliation.

The result in Theorem 1.1 represents something of a different approach to

the main problem in that the extra conditions it imposes are on the foliation

on any such manifold, rather than on (any foliation on) some particular class

of closed three-manifolds.

1.2. Method. Since the hypothesis we add to the conjecture is a restriction

on the foliation, naturally our proof of Theorem 1.2 relies on an analysis of

the equations governing the geometry of such foliations. We imagine the

foliation as determining a flow of minimal surfaces in a hyperbolic three-

manifold determined by a function of the local geometry of the minimal

surface at a point. Naturally, the geometry of the surface in a hyperbolic

three-manifold is determined by its first and second fundamental forms.

Those forms, on any particular minimal leaf, are constrained by Gauß’s

equation and the Simons equations. Most of our interest focuses on the

Simons equation on the second fundamental form.

On the other hand, that the foliation may be construed as a geometric

flow provides for a second equation governing the size of the flow vectors.

We then show that these two equations together preclude the existence of

the foliation. A brief analysis of this pair of equations results in restrictions

on the function s = ‖A‖2 (where A is the second fundamental form) and

its derivatives which are not satisfiable on a closed surface. As there are

geometric flows on open surfaces (see section 5), this last step necessarily

uses some topology of closed surfaces: in this case that is some elementary

Morse theory on the level sets of the function s in the setting where s is

analytic but the Hessian of s does not vanish identically.
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1.3. Organization. We present the Simons formula in section 2, and the

formula governing the flow in section 3. In section 4, we combine these

formulas to prove the main result. That section begins with the governing

equations providing a restriction on the geometric function φ: in particular

we show that the critical sets for the function s are level sets of s. We

then conclude with an analysis of how those critical sets might be defined

on a closed surface. We close in section 5 with some examples to show that

our restriction of the scope of the theorem to geometric foliations by closed

surfaces is necessary.

1.4. Acknowledgements. The authors appreciate several useful conversa-

tions with Zheng (Zeno) Huang on this work. The first author gratefully

acknowledges support from the U.S. National Science Foundation through

grant DMS 1564374. He also acknowledges support from U.S. National Sci-

ence Foundation grants DMS 1107452, 1107263, 1107367 RNMS: Geometric

structures And Representation varieties (the GEAR Network). The second

author is partially supported by China’s Recruitment Program of Global

Experts. And he also would like to thank the Department of Mathematics

at Rice University where this joint work was partially completed.

2. A Simons Identity

In this section we apply the Simons identity [Sim68] to our setting.

Let M be a three-dimensional hyperbolic manifold and S ⊂ M be an

immersed minimal surface. Let A be the second fundamental form of S in

M and let ∇ be the covariant derivative with respect to the induced metric

on S. Let T (S) and N(S) denote the tangent and normal bundles of S,

respectively; let Sym(S) denote the bundle of symmetric transformations

of T (S), and H(M) = Hom(N(S),Sym(S)) . We refer to [Sim68] for the

description of some of the objects we use below, in particular, the various op-

erators Ã ∈ Γ(Hom(N(S), N(S))), A
∼
∈ Γ(Hom(Sym(S), Sym(S))), and B ∈

Γ(Sym(S) ⊗ N(S)) related to the second fundamental form A ∈ Γ(H(S))

used in the next proposition, an adaptation of a computation of Simons

[Sim68].

Proposition 2.1.

∇2A = −2A− ||A||2A
where ||A||2 is the square of the norm of the second fundamental form A.

Proof. Since M is hyperbolic, in particular it is symmetric. So R
′
, defined

in [Sim68, Equation (4.2.1)], vanishes. The fundamental identity of Simons

[Sim68, Theorem 4.2.1] is

(2.1) ∇2A = −A ◦ Ã−A
∼
◦A+R(A).
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where we will soon recall the definition of R(A).

We next apply the argument in the proof of [Sim68, Theorem 5.3.1].

Since S ⊂ M is of codimension 1, from the definitions of Ã and A
∼

, we

obtain that

(2.2) A
∼
◦A = 0 and A ◦ Ã = ||A||2A.

The term R(A) in (2.1) is defined by [Sim68, Equation (4.2.2)]. We will

show below that

(2.3) R(A) = −2A.

Using this formula above, the conclusion then follows from (2.1), (2.2)

and (2.3).

Proof of (2.3). Recall that M has constant curvature −1. Hence, for

p ∈ S and v1, v2, v3 ∈ Tp(S) we have

(2.4) Rv1,v2v3 =< v1, v3 > v2− < v2, v3 > v1.

Let e1, e2 be an unit frame in Tp(S), w be the unit normal direction

of S in M at p and B(·, ·) be defined in [Sim68, Equation (2.2.2)]. Pick

x, y ∈ Tp(S). We use (2.4) to estimate the terms in [Sim68, Equation

(4.2.2)]. In our setting the dimension of the ambient manifold is 3 and the

submanifold S is of codmension 1. Now, Simons defines [Sim68, Equation

(4.2.2)] the operator R(A) via its action as

(2.5)

< R
w

(A)(x), y >=
∑2

i=1(2 < Rei,yB(x, ei), w > +2 < Rei,xB(y, ei), w >

− < Aw(x), Rei,yei > − < Aw(y), Rei,xei >

+ < Rei,B(x,y)ei, w > −2 < Aw(ei), Rei,xy >).

Since B(·, ·) is orthogonal to Tp(S) by the definition, by (2.4) we have

< Rei,yB(x, ei), w > = 0

< Rei,xB(y, ei), w > = 0

< Aw(x), Rei,yei > = < Aw(x), y > − < Aw(x), ei >< y, ei >

< Aw(y), Rei,xei > = < Aw(y), x > − < Aw(y), ei >< x, ei >

< Rei,B(x,y)ei, w > = < B(x, y), w >=< Aw(x), y >

< Aw(ei), Rei,xy > = < Aw(ei), x >< ei, y > − < Aw(ei), ei >< x, y >

= < Aw(x), ei >< ei, y > .

Substituting the equations above into (2.5) we obtain

< R
w

(A)(x), y > =
2∑
i=1

(− < Aw(x), y > + < Aw(x), ei >< y, ei >
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− < Aw(y), x > + < Aw(y), ei >< x, ei >

+ < Aw(x), y > −2 < Aw(x), ei >< ei, y >)

= −2 < Aw(x), y >

+

2∑
i=1

(< Aw(y), ei >< x, ei > − < Aw(x), ei >< ei, y >).

Since
2∑
i=1

< Aw(y), ei >< x, ei > = < Aw(y), x > and

2∑
i=1

< Aw(x), ei >< ei, y > = < Aw(x), y >,

we have

< R
w

(A)(x), y >= −2 < Aw(x), y > .

This then proves (2.3).

We interpret Proposition 2.1 into a form that will be more convenient for

us. Let ∆ be the Laplace operator with respect to the induced metric on S.

Theorem 2.2. Let S ⊂ M be an immersed minimal surface where M is

three dimensional hyperbolic and KS be the Gauss curvature of S. Then,

away from zeros of ||A|| we have

(2.6) ∆ log(||A||2) = −4KS = −2(2 + ||A||2).

Proof. We denote ||A||2 by s. From the chain rule and Proposition 2.1 we

have

∆s = 2 < ∇2A,A > +2 < ∇A,∇A >(2.7)

= −2(2 + s)s+ 2 < ∇A,∇A > .

Let {e1, e2, e3} be an unit frame at p ∈ S such that e3 is normal to S.

Then the second fundamental form A can be written as

A =
∑

1≤i,j≤2

hijwiwje3.

Since S is minimal, h11 + h22 = 0. Thus,

h11,k + h22,k = 0.

The Gauss-Codazzi equation gives that

hij,k = hik,j .
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Thus,

< ∇A,∇A > =
∑

1≤i,j,k≤2

h2
ij,k

= 4h2
11,1 + 4h2

11,2.

Let p ∈ S with s(p) 6= 0. We may assume that hij(p) = λiδij where λi
are principal curvatures. Then

< ∇s,∇s > = 4
∑

1≤k≤2

(
∑

1≤i,j≤2

hijhij,k)
2

= 4
∑

1≤k≤2

(λ1h11,k + λ2h22,k)
2.

Since h11,k + h22,k = 0 and λ1 + λ2 = 0, we have

< ∇s,∇s > = 4
∑

1≤k≤2

(λ1 − λ2)2h2
11,k

= 8s
∑

1≤k≤2

h2
11,k.

Thus,

(2.8) < ∇s,∇s >= 2s < ∇A,∇A > .

From (2.7)) and (2.8) we know that away from zeros of s,

∆s = −2(2 + s)s+
< ∇s,∇s >

s
.(2.9)

Thus, we have that away from zeros of s,

∆ log s =
∆s

s
− < ∇s,∇s >

s2
(2.10)

= −2(2 + s).

Since S ⊂M is minimal, the Gauss equation tells that

KS = −1− s/2.

Thus,

∆ log s = 4KS = −2(2 + s).(2.11)

Remark 2.3. If S is closed, the maximum principle together with Theorem

2.2 yields that the second fundamental form must vanish at some point in

S. It is well-known [Hop89] that the second fundamental form A can be

viewed as the real part of a holomorphic quadratic form on S. Thus, A has

only finitely many zeros if S is compact.
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3. An equation for a minimal foliation

In addition to equation (2.6), we will need an equation governing the size

of the flow vector: deriving that relationship is the goal of this section.

Let M be a three-dimensional hyperbolic manifold. Assume that there

exists a local one-parameter family of minimal surfaces in M . More pre-

cisely, let ε > 0, let S be a surface and suppose there exists a differentiable

embedding

h : (−ε, ε)× S →M

such that for every t, each leaf ht(·) := h(t, ·) ⊂ M is a (distinct) minimal

surface.

Denote h(0, S) by S for simplicity. Let ~n be the unit normal vector field

on S. Then there exists a positive function f ∈ C2(S) such that

(3.1) ((h0)∗(
∂

∂t
))⊥ = f · ~n.

where we have indicated by ⊥ the projection to the normal bundle to the

leaf.

Proposition 3.1.

∆f = (2− ||A||2)f.

Proof. We use the same notations as in [Sim68].

It follows from [Sim68, Theorem 3.3.1] that f · ~n is a Jacobi field. That

is,

(3.2) ∇2(f · ~n) = R(f · ~n)− Ã(f · ~n).

We next use that M has constant curvature −1. Hence, for p ∈ S and

v1, v2, v3 ∈ Tp(S) we have

(3.3) Rv1,v2v3 =< v1, v3 > v2− < v2, v3 > v1.

Let e1, e2 be an unit frame in Tp(S). It follows from [Sim68, Equation

3.2.1] and (3.3) that

R(f · ~n) =

2∑
i=1

(Rei,f~nei)
⊥(3.4)

=
2∑
i=1

(f~n− < ei, f~n > ei)
⊥

= 2f · ~n.

The term Ã in (3.4) is defined in [Sim68, Equation 2.2.5]. It follows from

[Sim68, Equation 2.2.7] that

Ã(f · ~n) = < Ã(f · ~n), ~n > ~n(3.5)
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= < Ã(~n), ~n > f · ~n
= ||A||2f · ~n

It follows from (3.2), (3.4) and (3.5) that

(3.6) ∇2(f · ~n) = (2− ||A||2)(f · ~n).

On the other hand, after extending e1, e2, ~n to vector fields E1, E2, N such

that they are pairwise orthogonal and ∇EiEj(p) = 0 and ∇EiN(p) = 0, it

then follows from [Sim68, Proposition 1.2.1] that, evaluated at p, we have

∇2(f · ~n) =

2∑
i=1

∇Ei∇Ei(f~n)(3.7)

= ∆(f) · ~n+ f · ∇Ei∇Ei(~n)

= ∆(f) · ~n.

In the last equality above we apply that at p,

< ∇Ei∇Ei(~n), ~n >= − < ∇Ei(~n),∇Ei(~n) >= 0.

Thus, it follows from (3.6) and (3.7) that

∆f = (2− ||A||2)f

as desired.

4. Proof of Theorem 1.2

In this section we will finish the proof of Theorem 1.2. We use the same

notations as in the previous sections.

Let M be a three-dimensional hyperbolic manifold and S be a closed

surface. Assume that

h : (−ε, ε)× S →M

is a local C2 family of minimal surfaces in M which is geometric. That is,

(i) h is C2 with respect to both t and p.

(ii) h is an embedding.

(iii) for every t, each leaf ht(·) := h(t, ·) ⊂M is a minimal surface.

(iv) for any p ∈ S, the function f(t, p) =< (ht)∗(
∂
∂t), ~n > |t=0 only

depends on the principal curvature of S at p. One may write as

f(0, p) = f(0, s(p)) where s(p) = ||A||2(p).

(v) For time t = 0, the function f(0, ·) : S → R does not vanish identi-

cally.

Recall that S = h0(S) and ∆ is the Laplace operator with respect to

the induced metric on S. Theorem 2.2 and Proposition 3.1 then assert that
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the following system of partial differential equations applies to a geometric

foliation of minimal surfaces in a hyperbolic three-manifold:{
∆ log s = −2(2 + s)

∆f = (2− s)f.
(4.1)

We will now show that this system admits no solutions under our as-

sumptions on the local structure of this hyperbolic manifold near a leaf of

the foliation.

First the chain rule gives that

∆f(0, p) = ∆f(0, s(p))(4.2)

=
∂2

∂s2
f(0, s) · ||∇s||2 +

∂

∂s
f(0, s) ·∆s.

So we have

∂2

∂s2
f(0, s) · ||∇s||2 +

∂

∂s
f(0, s) ·∆s = (2− s)f(0, s).(4.3)

Recall that Theorem 2.2 gives that

s · (∆s)− ||∇s||2 = −2s2(2 + s).(4.4)

Eliminating ∆s, we obtain

||∇s||2 =
s(2− s)f(0, s) + 2s2(2 + s) · ∂∂sf(0, s)

s · ∂2
∂s2
f(0, s) + ∂

∂sf(0, s)
(4.5)

at (t, s) such that s · ∂2
∂s2
f(t, s) + ∂

∂sf(t, s) 6= 0. We will refine this analysis

in the next lemma.

To that end, define C := {p ∈ S; ∇s(p) = 0} which is the set of critical

points of s in S. A direct consequence of (4.5) is

Lemma 4.1. The set C consists of level subsets of s : S → R≥0. More

precisely, assume that p ∈ C, then for any q ∈ S with value s(q) = s(p) we

have

q ∈ C.

Proof. We begin with the equation ∆f = (2 − s)f from (4.1). First s is

analytic on S because the second fundamental form A can be viewed as

the real part of a holomorphic quadratic form on S [Hop89]. By classical

Schauder theory for elliptic partial differential equations (see [GT01, Page

110] for details) we know that since f satisfies the elliptic PDE (4.1), the

solution f is also analytic. Set

φ1(s) := s(2− s)f(0, s) + 2s2(2 + s) · ∂
∂s
f(0, s)
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and

φ2(s) := s · ∂
2

∂s2
f(0, s) +

∂

∂s
f(0, s),

so that the real-valued functions φ1(s) and φ2(s) of s are the numerator and

denominator of (4.5).

Let p ∈ C. From (4.5) we know that φ1(s(p)) = 0.

Case-1. If φ2(s(p)) 6= 0, we are done, as (4.5) displays ||∇s||2 as a function

of only s (and f(s)): all points taking on a critical value of s are critical for

s.

Case-2. If φ2(s(p)) = 0, since both f and s are analytic, and since f does

not vanish identically (see Definition 1.4(iv)), the Taylor expansions at s(p)

may be written as

φ1(s) =
∑
k≥n1

ak(s− s(p))k where an1 6= 0, for some n1 ∈ N(4.6)

and

φ2(s) =
∑
k≥n2

bk(s− s(p))k where bn2 6= 0 for some n2 ∈ N.(4.7)

It is clear that ||∇s||2 is smooth on the minimal surface S, hence so is

||∇s||2 = φ1(s)
φ2(s) . In particular, we have

n1 ≥ n2.

Thus, from (4.5), (4.6) and (4.7) we now see that for any q ∈ S with

s(q) = s(p),

||∇s(q)||2 =
an1

bn2

if n1 = n2, and ||∇s(q)||2 = 0 if n1 > n2.(4.8)

That is, the set of critical points of s is a level subset of s.

Lemma 4.2. If C contains a smooth arc c, then for any p ∈ c,

s(p) = max
q∈S

s(q).

Proof. First by Remark (2.3) we know that s|c 6= 0 since c, as an arc, contains

a continuum, while the the set s−1(0) is the zero set of the holomorphic

quadratic differential on S defined as the complexification of A, whose zero

set is discrete. Let p ∈ c, X ∈ Tp(c) and Y ∈ Tp(S) such that {X,Y }
extends to a unit frame defined near p in Tp(S) and the vector field X is

tangent to that arc c. At p we have

∆s = XX(s)− (∇XX)(s) + Y Y (s)− (∇Y Y )(s).(4.9)

Since p ∈ c ⊂ C, we have that since (∇XX) is orthogonal to the arc c,

and c is critical for s, then we must have (∇XX)(s)(p) = 0. Similarly
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(∇Y Y )(s) = 0, again as p is a critical point for s. Lemma 4.1 then gives

that s|c ≡ s(p). So XX(s)(p) = 0. Thus,

∆s(p) = Y Y s(p).(4.10)

We thus conclude from (4.4), that for p ∈ C, we have

Y Y s(p) = ∆s(p) = −2s(p)(2 + s(p)) < 0.(4.11)

Now, by definition the arc c ⊂ C consists of critical points, so since the

field X is tangent to that arc c, we have

XXs(p) = 0, Xs(p) = 0 and Y s(p) = 0.(4.12)

It then follows from (4.11) and (4.12) that for any p ∈ C, the value s(p) is a

local maximum.

Moreover, by Lemma 4.1, for any p ∈ C the value s(p) is also a global

maximum: to see this, connect p to a global maximum by a path, say Γ,

whose initial point is at p and whose terminal point is the global maximum.

Then along the path Γ, because p is a local maximum for s, the value of s

first declines then attempts to rise to the value for the global maximum: the

intermediate value theorem then provides for a later first q ∈ Γ for which

s(q) = s(p). But at that level s(q), we have from (4.5) that q is again a

critical point for s. If that point q ∈ Γ is a saddle point, then the level set of

s through q contains an arc and hence is a local maximum by the argument

above. Iterating this argument yields that the maximum that s can achieve

on Γ is actually the value s(p), as claimed. The proof is complete.

Corollary 4.3. If p ∈ C, then either s(p) = 0 or s(p) = maxq∈S s(q).

Proof. First, the function s is real-analytic on S because the second funda-

mental form A can be viewed as the real part of a holomorphic quadratic

form on S [Hop89]. Secondly (4.11) shows that at critical points, we have

that the Hessian Hess s does not vanish identically. Hence, any arc in a

level subset of s is smooth (one may see [AP05] for more details). As noted

in the proof of Lemma 4.2, if p ∈ C, then if p is a saddle point, then the

s(p)-level set of s must contain a smooth arc, and hence s attains its global

maximum at p. Since s ≥ 0 but has zeroes at only the (finitely many) zeroes

of A (see Remark (2.3)), we see that the only critical values obtainable are

either global maxima or zeroes (global minima): these account for all the

critical points in C.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. First since S is a minimal surface in a three-dimensional

hyperbolic space, the Gauss equation gives that the Gauss curvature KS of
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S is less than −1. In particular S is a closed surface of genus g ≥ 2, which

is not simply connected.

On the other hand, let m = maxq∈S s(q). Since s is analytic on S (note

once again that the second fundamental form A can be viewed as the real

part of a holomorphic quadratic form on S [Hop89]), and because (4.11)

shows that at critical points we have that Hess s does not vanish identically,

it follows (see also [AP05, Lemma 3]) that the level set s−1(m) consists only

of a finite number of isolated points and a finite number of circles. Thus,

one may choose a neighbourhood V1 of s−1(m) such that V1 is a collection

of disks and annuli. Set

V2 = S \ {s−1(m)}.

From Corollary 4.3, the only critical points of s on V2 are (finite) zeroes

(absolute minima), so it follows from the standard Morse theory [Mil63]

that V2 is topologically trivial. That is, the opet set V2 is homeomorphic to

a two-dimensional disk. In particular, the Euler characteristic χ(V2) = 1.

Since S = V1 ∪ V2, we have that the Euler characteristic χ(S) may be

estimated by

χ(S) = χ(V1) + χ(V2)− χ(V1 ∩ V2)

= χ(V1) + χ(V2)

≥ 0 + 1

= 1.

Here the second equality follows from properties of the Euler characteristic

χ when one decomposes a surface into subsurfaces and that the intersection

V1 ∩ V2 is homotopic to a collection of circles, each of which contributes

zero to the sum. The inequality follows because V1 is a collection of finite

disks and finite annuli. We conclude that the orientable surface S must have

genus zero, contradicting the conclusion of our first paragraph.

5. A nontrivial example for minimal disk foliation in H3

The argument just above finishing the proof of Theorem 1.2 could be

construed to leave open the possibility of a geometric foliation by minimal

(topological) punctured spheres (i.e. disks). In this concluding section, we

exhibit a not-quite-trivial family, suggesting a sharpness to our result.

We begin by noting the trivial example: consider H3 as the upper half-

space with coordinate (x, y, z) endowed with the standard hyperbolic met-

ric ds2 = dx2+dy2+dz2

z2
. It is clear that the family {(t, y, z); y ∈ R, z ∈

R>0}t∈(−1
2
, 1
2

) is a foliation by minimal (actually totally geodesic) surfaces.
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Leaving this trivial example aside, we remark in the remainder of this

section on a different minimal foliation whose leaves are not totally geodesic.

We use the same notations as in [Kok97], whose example Example 7.2 in

[Kok97] we adapt for our purpose.

Consider the three-dimensional hyperbolic space (R3, ds2) with Fermi co-

ordinates (t, x, y) where

ds2 = dt2 + e−2t(dx2 + dy2).

Define

f : R2 × (0, 1) → (R3, ds2)

((u, v), t) 7→ (ρ(u), t ·
∫
e2ρ(u)du, v)

where ρ(u) solves the ODE

dρ

du
= (e−2ρ − t2e2ρ)

1
2 .

Kokubu [Kok97, Page 377] shows that for each t, the image {f((·, ·), t)},
denoted by Σt, is a minimal surface in (R3, ds2). Thus, the family Σt is a

minimal foliation. We will show that this minimal foliation is geometric and

none of the leaves is totally geodesic.

Fix t; then a direct computation gives that

∂f

∂u
= (

dρ

du
, te2ρ(u), 0) and

∂f

∂v
= (0, 0, 1).

Then,

<
∂f

∂u
,
∂f

∂u
> = (

dρ

du
)2 + e−2ρ(u) · (te2ρ(u))2 = e−2ρ(u)

<
∂f

∂u
,
∂f

∂v
> = 0

<
∂f

∂v
,
∂f

∂v
> = e−2ρ(u).

Thus, the induced metric ds2
Σt

on Σt is

ds2
Σt

= e−2ρ(u) · (du2 + dv2),

and the unit normal vector ~n of ds2
Σt

is

~n =
(−t, dρdu , 0)√

t2 + e−2ρ(u)( dρdu)2
= e2ρ(u) · (−t, dρ

du
, 0).

A direct computation gives that the Gauss curvature K(Σt) of ds2
Σt

is

K(Σt) = −1− t2e2ρ(u).
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Since t ∈ (0, 1), we have Σt is not totally geodesic in (R3, ds2).

As usual, let s = |A|2 be square of the norm of the second fundamental

form A of Σt in (R3, ds2). The Gauss equation gives that

s = |A|2 = 2 · (−1−K(Σt)) = 2t2e2ρ(u).

The derivative of Σt in the t-direction is

∂f

∂t
= (0,

∫
e2ρ(u)du, 0).

Then,

<
∂f

∂t
, ~n >= e−2ρ

∫
e2ρ(u)du · e2ρ(u) dρ

du
=

∫
e2ρ(u)du · (e−2ρ − t2e2ρ)

1
2 ,

which is denoted by F (u, t).

Since ρ is increasing with respect to u and s = 2·(−1−K(Σt)) = 2t2e2ρ(u),

we may also write F (u, t) as F (s, t) which is a function only depending on

s and t. Hence,

(
∂Σt

∂t
)⊥ = F (s, t) · ~n.

Therefore, the family Σt is a geometric minimal foliation whose leaves are

not totally geodesic.
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