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Introduction. The �rst major goal of this paper is to prove the existence of complete
minimal surfaces of each genus p > 1 which minimize the total curvature (equivalently, the
degree of the Gau� map) for their genus. The genus zero version of these surfaces is known
as Enneper's surface (see [Oss2]) and the genus one version is due to Chen-Gackstatter
([CG]). Recently, experimental evidence for the existence of these surfaces for genus p � 35
was found by Thayer ([Tha]); his surfaces, like those in this paper, are hyperelliptic surfaces
with a single end, which is asymptotic to the end of Enneper's surface.

Our methods for constructing these surfaces are somewhat novel, and as their devel-
opment is the second major goal of this paper, we sketch them quickly here. As in the
construction of other recent examples of complete immersed (or even embedded) mini-
mal surfaces in E3, our strategy centers around the Weierstra� representation for minimal
surfaces in space, which gives a parametrization of the minimal surface in terms of mero-
morphic data on the Riemann surface which determine three meromorphic one-forms on
the underlying Riemann surface.

The art in �nding a minimal surface via this representation lies in �nding a Riemann
surface and meromorphic data on that surface so that the representation is well-de�ned,
i.e., the local Weierstra� representation can be continued around closed curves without
changing its de�nition. This latter condition amounts to a condition on the imaginary
parts of some periods of forms associated to the original Weierstra� data.

In many of the recent constructions of complete minimal surfaces, the geometry of the
desired surface is used to set up a space of possible Weierstra� data and Riemann surfaces,
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and then to consider the period problem as a purely analytical one. This approach is very
e�ective as long as the dimension of the space of candidates remains small. This happens
for instance if enough symmetry of the resulting surface is assumed so that the moduli
space of candidate (possibly singular) surfaces has very small dimension { in fact, there
is sometimes only a single surface to consider. Moreover, the candidate quotient surfaces
(for instance, a thrice punctured sphere) often have a relatively well-understood function
theory which serves to simplify the space of possibilities, even if the (quite di�cult) period
problem for the Weierstra� data still remains.

In our situation however, the dimension of the space of candidates grows with the
genus. Our approach is to �rst view the periods and the conditions on them as de�ning
a geometric object (and inducing a construction of a pair of Riemann surfaces), and to
then prove analytically that the Riemann surfaces are identical, employing methods from
Teichm�uller theory.

Generally speaking, our approach is to construct two di�erent Riemann surfaces, each
with a meromorphic one-form, so that the period problem would be solved if only the
surfaces would coincide. To arrange for a situation where we can simultaneously de�ne a
Riemann surface, and a meromorphic one-form on that surface with prescribed periods,
we exploit the perspective of a meromorphic one-form as de�ning a singular 
at structure
on the Riemann surface, which we can develop onto E2.

In particular, we �rst assume su�cient symmetry of the Riemann surface so that the
quotient orbifold 
at structure has a fundamental domain in E2 which is bounded by a
properly embedded arc composed of 2p + 2 horizontal and vertical line segments with
the additional properties that the segments alternate from horizontal segments to vertical
segments, with the direction of travel also alternating between left and right turns. We
call such an arc a 'zigzag'; further we restrict our attention to `symmetric zigzags', those
zigzags which are symmetric about the line fy = xg (see Figure 1).

A crucial observation is that we can turn this construction around. Observe that a
zigzag Z bounds two domains, one, 
NE(Z), on the northeast side, and one, 
SW(Z), on
the southwest side. When we double each of these domains and then take a double cover
of the resulting surface, branched over each of the images of the vertices of Z, we have
two hyperelliptic Riemann surfaces, RNE(Z) and RSW(Z), respectively. Moreover, the
form dz when restricted to 
NE(Z) and 
SW(Z), lifts to meromorphic one-forms !NE(Z)
on 
NE(Z) and !SW(Z) on 
SW(Z) both of whose sets of periods are integral linear
combinations of the periods of dz along the horizontal and vertical arcs of Z.

Then, suppose for a moment that we can �nd a zigzag Z so that 
NE(Z) is conformally
equivalent to 
SW(Z) with the conformal equivalence taking vertices to vertices (where
1 is considered a vertex). (We call such a zigzag re
exive.) Then RNE(Z) would be
conformally equivalent to RSW(Z) in a way that ei�=4!NE(Z) and e�i�=4!SW(Z) have
conjugate periods. As these forms will represent gdh and g�1dh in the classical Weier-

stra� representation X = Re
R
(12

�
g � 1

g

�
, i

2

�
g + 1

g

�
, 1) dh, it will turn out that this

conformal equivalence is just what we need for the Weierstra� representation based on
!NE(Z) and !SW(Z) to be well-de�ned.

This construction is described precisely in x3.
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We are left to �nd such a zigzag. Our approach is non-constructive in that we consider
the space Zp of all possible symmetric zigzags with 2p+ 2 vertices and then seek, within
that space Z, a symmetric zigzag Z0 for which there is a conformal equivalence between

NE(Z0) and 
SW(Z0) which preserves vertices. The bulk of the paper, then, is an analysis
of this moduli space Zp and some functions on it, with the goal of �nding a certain �xed
point within it.

Our methods, at least in outline, for �nding such a symmetric zigzag are quite standard
in contemporary Teichm�uller theory. We �rst �nd that the space Zp is topologically a
cell, and then we seek an appropriate height function on it. This appropriate height
function should be proper, so that it has an interior critical point, and it should have the
feature that at its critical point Z0 2 Zp, we have the desired vertex-preserving conformal
equivalence between 
NE(Z0) and 
SW(Z0).

One could imagine that a natural height function might be the Teichm�uller distance
between RNE(Z) and RSW(Z), but it is easy to see that there is a family Zt of zigzags,
some of whose vertices are coalescing, so that the Teichm�uller distance between RNE(Zt)
and RSW(Zt) tends to a �nite number. We thus employ a di�erent height function D(�)
that, in e�ect, blows up small scale di�erences between RNE(Zt) and RSW(Zt) for a family
of zigzags fZtg that leave all compacta of Zp.

We discuss the space Zp of symmetric zigzags, and study degeneration in that space in
x4. We show that the map between the marked extremal length spectra for RNE(Z) and
RSW(Z) is not real analytic at in�nity in Zp, and thus there must be small scale di�erences
between those extremal length spectra. We do this by �rst observing that both extremal
lengths and Schwarz-Christo�el integrals can be computed using generalized hypergeomet-
ric functions; we then show that the well-known monodromy properties of these functions
lead to a crucial sign di�erence in the asymptotic expansions of the Schwarz-Christo�el
maps at regular singular points. Finally, these sign di�erences are exploited to yield the
desired non-analyticity.

Our height function D(Z) while not the Teichm�uller distance between RNE(Z) and
RSW(Z), is still based on di�erences between extremal lengths on those surfaces, and in ef-
fect, we follow the gradient 
ow dD on Zp from a convenient initial point in Zp to a solution
of our problem. There are two aspects to this approach. First, it is especially convenient
that we know a formula ([Gar]) for d[Ext[
](R)] where Ext[
](R) denotes the extremal
length of the curve family [
] on a given Riemann surface R. This gradient of extremal
length is given in terms of a holomorphic quadratic di�erential 2�[
](R) = dExt[
](R)
and can be understood in terms of the horizontal measured foliation of that di�erential
providing a `direction �eld' on R along which to in�nitesimally deform R as to in�nitesi-
mally increase Ext[
](R). We then show that grad D(�) ��

Z
can be understood in terms of

a pair of holomorphic quadratic di�erentials on RNE(Z) and RSW(Z), respectively, whose
(projective) measured foliations descend to a well-de�ned projective class of measured fo-
liations on C = 
NE(Z) [ Z [ 
SW(Z). This foliation class then indicates a direction in
which to in�nitesimally deform Z so as to in�nitesimally decrease D(�), as long as Z is not
critical for D(�). Thus, a minimum for D(�) is a symmetric zigzag Z0 for which 
NE(Z0)
is conformally equivalent to 
SW(Z) in a vertex preserving way. Second, it is technically
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convenient to 
ow along a path in Zp in which the form of the height function simpli�es.

In fact, we will 
ow from a genus p � 1 solution in Zp�1 � @Z along a path Y in Zp to
a genus p solution in Zp. Here the technicalities are that some Teichm�uller theory and
the symmetry we have imposed on the zigzags allow us to invoke the implicit function
theorem at a genus p� 1 solution in @Z to �nd such a good path Y � Zp. Thus, formally,
we �nd a solution in each genus inductively, by showing that given a re
exive zigzag of
genus p� 1, we can 'add a handle' to obtain a solution of genus p.

We study the gradient 
ow of the height function D(�) in x5.
Combining the results in sections 4 and 5, we conclude

Main Theorem B. There exists a re
exive symmetric zigzag of genus p for p � 0 which
is isolated in Zp.

When we interpret this result about zigzags as a result on Weierstra� data for minimally
immersed Riemann surfaces in E3, we derive as a corollary

Main Theorem A. For each p � 0, there exists a minimally immersed Riemann surfaces
in E3 with one Enneper-type end and total curvature �4�(p+1). This surface has at most
eight self-isometries.

In x6, we adapt our methods slightly to prove the existence of minimally immersed
surfaces of genus p(k � 1) with one Enneper-type end of winding order 2k � 1: these
surfaces extend and generalize examples of Karcher ([Kar]) and Thayer ([Tha]), as well as
those constructed in Theorem A.

While we were preparing this manuscript several years ago we received a copy of a
preprint by K. Sato [S] which also asserts Theorem A. Our approach is di�erent than that
of Sato, and possibly more general, as it is possible to assign zigzag con�gurations to a
number of families of putative minimal surfaces. We discuss further applications of this
technique in a forthcoming paper [WW].

The authors wish to thank Hermann Karcher for many hours of pleasant advice.
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x2. Background and Notation.

2.1 Minimal Surfaces and the Weierstra� Representation. Here we recall some
well-known facts from the theory of minimal surfaces and put our result into context.

Locally, a minimal surface can always be described by Weierstra� data, i.e. there are
always a simply connected domain U , a holomorphic function g and a holomorphic 1-form
dh in U such that the minimal surface is locally given by

z 7! Re

Z z

�

1
2(g � 1

g )dh
i
2(g +

1
g )dh

dh

For instance, g(z) = z and dh = dz
z
will lead to the catenoid, while g(z) = z and dh = zdz

yields the Enneper surface.
It is by no means clear how global properties of a minimal surface are related to this

local representation.
However, two global properties together have very strong consequences on the Weier-

stra� data. One is the metrical completeness, and the other the total (absolute) Gau�ian
curvature of the surface R, de�ned by

K :=

Z
R

jKjdA = 4� � degree of the Gau� map

We will call a complete minimal surface of �nite absolute Gau�ian curvature a �nite
minimal surface.

Then by a famous theorem of R. Osserman, every �nite minimal surface (see [Oss1,
Oss2, Laws]) can be represented by Weierstra� data which are de�ned on a compact
Riemann surface R, punctured at a �nite number of points. Furthermore, the Weierstra�
data extend to meromorphic data on the compact surface. Thus, the construction of such
surfaces is reduced to �nding meromorphic Weierstra� data on a compact Riemann surface
such that the above representation is well de�ned, i.e. such that all three 1-forms showing
up there have purely imaginary periods. This is still not a simple problem.

From now on, we will restrict our attention to �nite minimal surfaces.
Looked at from far away, the most visible parts of a �nite minimal surface will be the

ends. These can be seen from the Weierstra� data by looking at the singularities Pj of the
Riemannian metric which is given by the formula

(2.0) ds =

�
jgj+ 1

jgj
�
jdhj

An end occurs at a puncture Pj if and only if ds becomes in�nite in the compacti�ed
surface at Pj .

To each end is associated its winding or spinning number dj , which can be de�ned
geometrically by looking at the intersection curve of the end with a very large sphere
which will be close to a great circle and by taking its winding number, see [Gack, J-M].
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This winding number is always odd: it is 1 for the catenoid end 3 for the Enneper end.
There is one other end of winding number 1, namely the planar end which of course occurs
as the end of the plane, but also as one end of the Costa surface, see [Cos1]. For �nite
minimal surfaces, there is a Gau�-Bonnet formula relating the total curvature to genus
and winding numbers: Z

R

KdA = 2�

0@2(1� p)� r �
rX

j=1

dj

1A
where p is the genus of the surface, r the number of ends and dj the winding number of
an end. For a proof, see again [Gack, J-M].

From this formula one can conclude that for a non planar surface
R
R
jKjdA � 4�(p+1)

which raises the question of �nding for each genus a (non-planar) minimal surface for
which equality holds. This is the main goal of the paper.

The following is known:

p = 0: The Enneper surface and the catenoid are the only non-planar minimal surfaces
with K = 4�, see e.g. [Oss2].

p = 1: The only surface with K = 8� is the Chen-Gackstatter surface (which is de�ned
on the square torus), see [CG, Lop, Blo].

p = 2: An example with K = 12� was also constructed in [CG]. Uniqueness is not known
here.

p = 3: An example with K = 16� was constructed by do Esp��rito-Santo ([Esp]).
p � 35: E. Thayer has solved the period problem numerically and produced pictures of

surfaces with minimal K.
Note that all these surfaces are necessarily not embedded: For given genus, a �nite

minimal surface of minimal K could, by the winding number formula, have only either one
end of Enneper type (winding number 3) which is not embedded or two ends of winding
number 1. But by a theorem of R. Schoen ([Sch]), an embedded �nite minimal surface
with only two ends has to be the catenoid. Hence if one looks for embedded minimal
surfaces, one has to allow more K. For the state of the art here, see [Ho-Ka].

If one allows even more total curvature and permits non-embeddedness, some general
methods are available, as explained in [Kar].

2.2. Zigzags. A zigzag Z of genus p is an open and properly embedded arc in C composed
of alternating horizontal and vertical subarcs with angles of �=2, 3�=2, �=2, 3�=2; : : : ; �=2
between consecutive sides, and having 2p + 1 vertices (2p + 2 sides, including an initial
in�nite vertical side and a terminal in�nite horizontal side.) A symmetric zigzag of genus
p is a zigzag of genus p which is symmetric about the line fy = xg. The space Zp of genus
p zigzags consists of all symmetric zigzags of genus p up to similarity; it is equipped with
the topology induced by the embedding of Zp �! R2p which associates to a zigzag Z the
2p-tuple of its lengths of sides, in the natural order.

A symmetric zigzag Z divides the plane C into two regions, one which we will denote
by 
NE(Z) which contains large positive values of fy = xg, and the other which we will
denote by 
SW(Z). (See Figure 1.)
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De�nition 2.2.1. A symmetric zigzag Z is called re
exive if there is a conformal map
� : 
NE(Z)! 
SW(Z) which takes vertices to vertices.

Examples 2.2.2. There is only one zigzag of genus 0, consisting of the positive imaginary
and positive real half-axes. It is automatically symmetric and re
exive.

Every symmetric zigzag of genus 1 is also automatically re
exive.

2.3. Teichm�uller Theory. For M a smooth surface, let Teich (M) denote the Teich-
m�uller space of all conformal structures on M under the equivalence relation given by
pullback by di�eomorphisms isotopic to the identity map id: M �! M . Then it is well-
known that Teich (M) is a smooth �nite dimensional manifold if M is a closed surface.

There are two spaces of tensors on a Riemann surface R that are important for the
Teichm�uller theory. The �rst is the space QD(R) of holomorphic quadratic di�erentials,
i.e., tensors which have the local form � = '(z)dz2 where '(z) is holomorphic. The
second is the space of Beltrami di�erentials Belt(R), i.e., tensors which have the local
form � = �(z)d�z=dz.

The cotangent space T �[R](Teich (M)) is canonically isomorphic to QD(R), and the

tangent space is given by equivalence classes of (in�nitesimal) Beltrami di�erentials, where
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�1 is equivalent to �2 ifZ
R

�(�1 � �2) = 0 for every � 2 QD(R):

If f : C ! C is a di�eomorphism, then the Beltrami di�erential associated to the
pullback conformal structure is � = f�z

fz
d�z
dz
. If f� is a family of such di�eomorphisms

with f0 = identity, then the in�nitesimal Beltrami di�erential is given by d
d�

��
�=0

�f� =�
d
d�

��
�=0

f�
�
�z
. We will carry out an example of this computation in x5.2.

A holomorphic quadratic di�erential comes with a picture that is a useful aid to one's
intuition about them. The picture is that of a pair of transverse measured foliations,
whose properties we sketch brie
y (see [FLP], [Ke], and [Gar] for more details). We next
de�ne a measured foliation on a (possibly) punctured Riemann surface; to set notation, in
what follows, the Riemann surface R is possibly punctured, i.e. there is a closed Riemann
surface R, and a set of points fq1; : : : ; qmg, so that R = R� fq1; : : : ; qmg.

A measured foliation (F ; �) on a Riemann surface R with singularities fp1; : : : ; plg
(where some of the singularities might also be elements of the puncture set fq1; : : : ; qmg)
consists of a foliation F of R�fp1; : : : ; plg and a measure � as follows. If the foliation F is
de�ned via local charts �i : Ui �! R

2 (where fUig is a covering of R�fp1; : : : ; plg) which
send the leaves of F to horizontal arcs in R2 , then the transition functions �ij : �i(Ui) �!
�j(Uj) on �i(Ui) � R2 are of the form �ij(x; y) = (h(x; y); c � y); here the function h
is an arbitrary continuous map, but c is a constant. We require that the foliation in a
neighborhood (in R) of the singularities be topologically equivalent to those that occur at
the origin in C of the integral curves of the line �eld zkdz2 > 0 where k � �1. (There are
easy extensions to arbitrary integral k, but we will not need those here.)

We de�ne the measure � on arcs A � R as follows: the measure �(A) is given by

�(A) =

Z
A

jdY j

where jdY j is de�ned, locally, to be the pullback jdY jUi
= ��i (jdyj) of the horizontal

transverse measure jdyj on R2 . Because of the form of the transition functions �ij above,
this measure is then well-de�ned on arcs in R.

An important feature of this measure (that follows from its de�nition above) is its
\translation invariance". That is, suppose A0 � R is an arc transverse to the foliation
F , with @A0 a pair of points, one on the leaf l and one on the leaf l0; then, if we deform
A0 to A1 via an isotopy through arcs At that maintains the transversality of the image of
A0 at every time, and also keeps the endpoints of the arcs At �xed on the leaves l and l0,
respectively, then we observe that �(A0) = �(A1).

Now a holomorphic quadratic di�erential � de�nes a measured foliation in the following
way. The zeros ��1(0) of � are well-de�ned; away from these zeros, we can choose a

canonical conformal coordinate �(z) =
R z p

� so that � = d�2. The local measured
foliations (fRe � = constg, jdRe �j) then piece together to form a measured foliation known
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as the vertical measured foliation of �, with the translation invariance of this measured
foliation of � following from Cauchy's theorem.

Work of Hubbard and Masur ([HM]) (see also alternate proofs in [Ke], [Gar] and [Wo]),
following Jenkins ([J]) and Strebel ([Str]), showed that given a measured foliation (F ; �)
and a Riemann surface R, there is a unique holomorphic quadratic di�erential �� on R
so that the horizontal measured foliation of �� is equivalent to (F ; �).

Extremal length. The extremal length ExtR([
]) of a class of arcs � on a Riemann
surface R is de�ned to be the conformal invariant

sup
�

`2�(�)

Area(�)

where � ranges over all conformal metrics on R with areas 0 < Area(�) < 1 and `�(�)
denotes the in�mum of �-lengths of curves 
 2 �. Here � may consist of all curves
freely homotopic to a given curve, a union of free homotopy classes, a family of arcs with
endpoints in a pair of given boundaries, or even a more general class. Kerckho� ([K])
showed that this de�nition of extremal lengths of curves extended naturally to a de�ntion
a extremal lengths of measured foliations.

For a class � consisting of all curves freely homotopic to a single curve 
 � M , (or
more generally, a measured foliation (F ; �) we see that Ext(�)(�) (or Ext(�)(�)) can be
construed as a real-valued function Ext(�)(�): Teich(M) �! R. Gardiner ([Gar]) showed
that Ext(�)(�) is di�erentiable and Gardiner and Masur ([GM]) showed that Ext(�)(�) 2 C1

(Teich(M)). [In our particular applications, the extremal length functions on our moduli
spaces will be real analytic: this will be explained in x4.5.] Moreover Gardiner computed
that

dExt(�)(�)
��
[R]

= 2��

so that

(2.1)
�
dExt(�)(�)

��
[R]

�
[�] = 4Re

Z
R

���:

Teichm�uller maps, Teichm�uller distance. (This material will only be used in an ex-
tended digression in x5.5) Recall that points in Teichm�uller space can also be de�ned to
be equivalence classes of Riemann surface structures R on M , the structure R1 being
equivalent to the structure R2 if there is a homeomorphism h : M ! M , homotopic to
the identity, which is a conformal map of the structures R1 and R2.

We de�ne the Teichm�uller distance d(fR1g; fR2g) by

dTeich(fR1g; fR2g) = 1

2
log inf

h
K(h)

where h : R1 ! R2 is a quasiconformal homeomorphism homotopic to the identity on
M and K[h] is the maximal dilatation of h. This metric is well-de�ned, so we may
unambiguously write R1 for fR1g.
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An extraordinary fact about this metric is that the extremal maps, known as Teich-
m�uller maps, admit an explicit description, as does the family of maps which describe a
geodesic.

Teichm�uller's theorem asserts that if R1 and R2 are distinct points in Tg, then there
is a unique quasiconformal h : R1 ! R2 with h homotopic to the identity on M which
minimizes the maximal dilatation of all such h. The complex dilatation of h may be
written �(h) = k �q

jqj for some non-trivial q 2 QD(R1) and some k, 0 < k < 1, and then

dTeich(R1;R2) =
1

2
log(1 + k)=(1� k):

Conversely, for each �1 < k < 1 and non-zero q 2 QD(S1), the quasiconformal homeo-
morphism hk of R1 onto hk(R2), which has complex dilatation k�q=jqj, is extremal in its
homotopy class. Each extremal hk induces a quadratic di�erential q0k on hk(R1), with
critical points of q and q0k corresponding under hk; furthermore, to the natural parameter
w for q near p 2 S1 there is a natural parameter w0k near hk(p) so that

Rew0k = K1=2Rew and Imw0k = K�1=2 Imw;

where K = (1+ k)=(1� k). In particular, the horizontal (and vertical) foliations for q and
q0k are equivalent.

The map hk is called the Teichm�uller extremal map determined by q and k; the dif-
ferential q is called the initial di�erential and the di�erential qk is called the terminal
di�erential. We can assume all quadratic di�erentials are normalized in the sense that

jjqjj =
Z
jqj = 1:

The Teichm�uller geodesic segment between S1 and S2 consists of all points hs(R1) where
the hs are Teichm�uller maps on R1 determined by the quadratic di�erential q 2 QD(R1)
corresponding to the Teichm�uller map h : R1 !R2 and s 2 [0; k�(h)k1].

Kerckho� [K] has given a characterization of the Teichm�uller metric dTeich(R1;R2) in
terms of the extremal lengths of corresponding curves on the surfaces. He proves

(2.2) dTeich(R1;R2) =
1

2
log sup




ExtR1
(
)

ExtR2
(
)

where the supremum ranges over all simple closed curves on M .
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x3. From Zigzags to minimal surfaces.

Let Z be a zigzag of genus p dividing the plane into two regions 
NE and 
SW. We
denote the vertices of 
NE consecutively by P�p; : : : ; Pp and set P1 =1. The vertices of

SW however are labeled in the opposite order Qj := P�j and Q1 =1. We double both
regions to obtain punctured spheres SNE and SSW whose punctures are also called Pj and
Qj . Finally we take hyperelliptic covers RNE over SNE, branched over the Pj , and RSW

over SSW, branched over the Qj , to obtain two hyperelliptic Riemann surfaces of genus
p, punctured at the Weierstra� points which will still be called Pj and Qj . The degree 2
maps to the sphere are called �NE : RNE ! SNE and �SW : RSW ! SSW.

Example 3.1. For a genus 1 zigzag, the Riemann surfaces RNE and RSW will be square
tori punctured at the three half-period points and the one full-period point.

Now suppose that the zigzag Z is re
exive. Then there is a conformal map � : 
NE !

SW such that �(Pj) = Qj . Clearly � lifts to conformal maps � : SNE ! SSW and
� : RNE !RSW which again take punctures to punctures.

The surface RNE will be the Riemann surface on which we are going to de�ne the
Weierstra� data. The idea is roughly as follows: If we look at the Weierstra� data for the
Enneper surface, it is evident that the 1-forms gdh and 1

gdh have simpler divisors than

their linear combinations which actually appear in the Weierstra� representation as the
�rst two coordinate di�erentials. Thus we are hunting for these two 1-forms, and we want
to de�ne them by the geometric properties of the (singular) 
at metrics on the surface for
which they specify the line elements, because this will encode the information we need to
solve the period problem.

To do this, we look at the 
at metrics on RNE and RSW which come from the following
construction. First, the domains 
NE and 
SW obviously carry the 
at euclidean metric
(ds = jdzj) metrics. Doubling these regions de�nes 
at (singular) metrics on the spheres
SNE and SSW (with cone points at the lifts of the vertices of the zigzags and cone angles of
alternately � and 3�=2). These metrics are then lifted to RNE and RSW by the respective
covering projections.

The exterior derivatives of the multivalued developing maps de�ne single valued holo-
morphic nonvanishing 1-forms !NE on RNE and !SW on RSW, because the 
at metrics on
the punctured surfaces have trivial linear holonomy. Furthermore, the behavior of these
1-forms at a puncture is completely determined by the cone angle of the 
at metric at the
puncture. Indeed, in a suitable local coordinate, the developing map of the 
at metric
near a puncture with cone angle 2�k is given by zk. Hence the exterior derivative of the
developing map will have a zero (or pole) of order k � 1 there. Note that these consider-
ations are valid for the point P1 as well if we allow negative cone angles. All this is well
known in the context of meromorphic quadratic di�erentials, see [Str].

Examples 3.2. For the genus 0 zigzag, we obtain a 1-form !NE on the sphere RNE with
a pole of order 2 at P1 which we can call dz and a 1-form !SW on the sphere RSW with
a zero of order 2 at P0 and a pole of order 4 at P1 which then is z2dz.

For a symmetric genus 1 zigzag, !NE will be closely related to the Weierstra� }-function
on the square torus, as it is a 1-form with double zero in P0 and double pole at P1.

11



Furthermore, !SW is a meromorphic 1-form with double order zeroes in P�1 and fourth
order pole at P1 which also can be written down in terms of classical elliptic functions.

In general, we can write down the divisors of our meromorphic 1-forms as:

(!NE) =

(
P 2
0 � P 2

�2 � P 2
�4 � : : : � P 2

�(p�1) � P�21 p odd

P 2
�1 � P 2

�3 � : : : � P 2
�(p�1) � P�21 p even

(!SW) =

(
Q2
�1 �Q2

�3 � : : : �Q2
�p �Q�41 p odd

Q2
0 �Q2

�2 �Q2
�4 � : : : �Q2

�p �Q�41 p even

(d�NE) = P0 � P�1 � P�2 � : : : � P�p � P�31

Now denote by � := e��i=4 �!NE; � := e��i=4 ���!SW and dh := const �d�NE, where we
choose the constant such that � � � = dh2 which is possible because the divisors coincide.
Now we can write down the Gau� map of the Weierstra� data on RNE as g = �

dh
, and we

check easily that the line element (2.0) is regular everywhere on RNE except at the lift of
P1.

One can check that the thus de�ned Weierstra� data coincide for the re
exive genus
0 and genus 1 zigzags with the data for the Enneper surface and the Chen-Gackstatter
surface.

We can now claim

Theorem 3.3. If Z is a symmetric re
exive zigzag of genus p, then (RNE; g; dh) as above
de�ne a Weierstra� representation of a minimal surface of genus p with one Enneper-type
end and total curvature �4�(p+ 1).

Proof. The claim now is that the 1-forms in the Weierstra� representation all have purely
imaginary periods. For dh this is obvious, because the form dh is even exact and so all
periods even vanish. Because of (g � 1

g )dh = � � � and i(g + 1
g )dh = i(� + �) this is

equivalent to the claim that � and � have complex conjugate periods. To see this, we �rst
construct a basis for the homology on RNE and then compute the periods of � and � using
their geometric de�nitions.

To de�ne 2p cycles Bj on RNE, we take curves bj in 
NE connecting a boundary
point slightly to the right of Pj+1 with a boundary point slightly to the left of Pj for
j = �p; : : : ; p � 1. We double this curve to obtain a closed curve Bj on SNE which
encircles exactly Pj and Pj+1. These curves have closed lifts Bj to RNE and form a
homology basis. Now to compute a period of our 1-forms, observe that a period is nothing
other than the image of the closed curve under the developing map of the 
at metric which
de�nes the 1-form. But this developing map can be read o� from the zigzag | one only
has to observe that developing a curve around a vertex (regardless whether the angle there

12



is �
2 or 3�2 ) will change the direction of the curve there by 180�. Doing this yieldsZ

Bj

� =

Z
Bj

e��i=4 � !NE = 2e��i=4 � (Pj � Pj+1)Z
Bj

� =

Z
Bj

e��i=4 � ��!SW =

Z
�(Bj)

e��i=4 � !SW = 2e��i=4 � (Qj �Qj+1)

= 2e��i=4 � (P�j � P�j�1)

which yields the claim by the symmetry of the zigzag.
Finally, we have to compute the total absolute curvature of the minimal surface. By

the de�nition of the Gau� map we have

(g) =

(
P+1
0 � P�1�1 � P+1

�2 � : : : � P�1�p � P1 p odd

P�10 � P+1
�1 � P�1�2 � : : : � P�1�p � P1 p even

and thus deg g = p+ 1 which implies
R
R
KdA = �4�(p+ 1) as claimed. �

Remark 3.4. We close by making some comments on the amount of symmetry involved
in this approach. Usually in the construction of minimal surfaces the underlying Riemann
surface is assumed to have so many automorphisms that the moduli space of possible
conformal structures is very low dimensional (in fact, it consists only of one point in many
examples). This helps solving the period problem (if it is solvable) because this will then
be a problem on a low dimensional space. In our approach, the dimension of the moduli
space grows with the genus, and the use of symmetries has other purposes: It allows us to
construct for given periods a pair of surfaces with one 1-form on each which would solve
the period problem if only the surfaces would coincide. Indeed we observe

Lemma 3.5. The minimal surface of genus p constructed below has only eight isometries,
and at most eight conformal or anticonformal automorphisms that �x the end, indepen-
dently of genus.

Proof. Observe that as the end is unique, any isometry of the minimal surface �xes the
end. As the isometry necessarily induces a conformal or anti-conformal automorphism, it is
su�cient to prove only the latter statement of the lemma. Because of the uniqueness of the
hyperelliptic involution, this automorphism descends to an automorphism of the punctured
sphere which �xes the image of in�nity and permutes the punctures (the images of the
Weierstra� points). As there are at least three punctures, all lying on the real line, we
see that the real line is also �xed (setwise). After taking the re
ection (an anti-conformal
automorphism) of the sphere across the real line, which �xes all the punctures, we are left
to consider the conformal automorphisms of the domain 
NE. Finally, this domain has
only two conformal symmetries, the identity and the re
ection about the diagonal. The
lemma follows by counting the automorphisms we have identi�ed in the discussion. �
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x4. The Height Function on Moduli Space.

4.1 The space of zigzags Zp and a natural compacti�cation @Z. We recall the
space Zp of equivalence classes of symmetric genus p zigzags constructed in Section 2.2;
here the equivalence by similarity was de�ned so that two zigzags Z and Z 0 would be
equivalent if and only if both of the pairs of complementary domains (
NE(Z);
NE(Z

0))
and (
SW(Z);
SW(Z 0)) were conformally equivalent. Label the �nite vertices of the zigzag
by P�p; : : : ; P0; : : : ; Pp. Thus, we may choose a unique representative for each class in Zp

by setting the vertices P0 2 fy = xg, Pp = 1, P�p = i and Pk = iP�k for k = 0; : : : ; p;
here all the vertices P�p; : : : ; Pp are required to be distinct. The topology of Zp de�ned in
Section 2.2 then agrees with the topology of the space of canonical representatives induced
by the embedding of Zp ! Cp�1 by Z 7! (P1; : : : ; Pp�1). With these normalizations and
this last remark on topology, it is evident that Zp is a cell of dimension p� 1.

We have interest in the natural compacti�cation of this cell, obtained by attaching a
boundary @Zp to Z. This boundary will be composed of zigzags where some proper consec-
utive subsets of fP0; : : : ; Ppg (and of course the re
ections of these subsets across fy = xg)
are allowed to coincide; the topology on Zp = Zp [ @Zp is again given by the topology on
the map of coordinates of normalized representatives Z 2 Zp 7! (P1; : : : ; Pp�1) 2 Cp�1.

Evidently, @Zp is strati�ed by unions of zigzag spaces Zk
p of real dimension k, with

each component of Zk
p representing the (degenerate) zigzags that result from allowing k

distinct vertices to remain in the (degenerate) zigzag after some points P0; : : : ; Pp have
coalesced. For instance Z0

p consists of the zigzags where all of the points P0; : : : ; Pp have

coalesced to either P0 2 fy = xg or P1 = 1, and the faces Zp�2
p are the loci in Zp where

only two consecutive vertices have coalesced.

Observe that each of these strata is naturally a zigzag space in its own right, and one
can look for a re
exive symmetric zigzag of genus k + 1 within Zk

p .

4.2 Extremal length functions on Z. Consider the punctured sphere SNE in x3, where
we labelled the punctures P�p; : : : ; P0; : : : ; Pp, and P1 and observed that SNE had two
re
ective symmetries: one about the image of Z and one about the image of the curve
fy = xg on 
NE. Let [Bk] denote the homotopy class of simple curves which encloses
the punctures Pk and Pk+1 for k = 1; : : : ; p � 1 and [B�k] the homotopy class of simple
curves which encloses the punctures P�k and P�k�1 for k = 1; : : : ; p� 1. Let [
k] denote
the pair of classes [Bk] [ [B�k]. Under the homotopy class of maps which connects SNE
to SSW (lifted from � : 
NE ! 
SW, the vertex preserving map), there are corresponding
homotopy classes of curves on SSW, which we will also label [
k].

Set ENE(k) = ExtSNE([
k]) and ESW(k) = ExtSSW([
k]) denote the extremal lengths of
[
k] in SNE and SSW, respectively.

Let T symm
0;2p+2 denote a subspace of the Teichm�uller space of 2p + 2 punctured spheres

whose points are equivalence classes of 2p+2 punctured spheres (with a pair of involutions)
coming from one complementary domain 
NE(Z) of a symmetric zigzag Z. This T symm

0;2p+2 is
a p�1 dimensional subspace of the Teichm�uller space T0;2p+2 of 2p+2 punctured spheres.

Consider the map ENE : T symm
0;2p+2 ! R

p�1
+ given by SNE 7! (ENE(1); : : : ; ENE(p� 1)).

14



Proposition 4.2.1. The map ENE : T symm
0;2p+2 ! R

p�1
+ is a homeomorphism onto Rp�1

+ .

Proof. It is clear that ENE is continuous. To see injectivity and surjectivity, apply a
Schwarz-Christo�el map SC : 
NE ! fIm z > 0g to 
NE; this map sends 
NE to the
upper half-plane, taking Z to R so that SC(P1) = 1, SC(P0) = 0, SC(P1) = 1 and
SC(P�k) = �SC(Pk). These conditions uniquely determine SC; moreover ENE(k) =
2ExtH2(�k) where �k is the class of pairs of curves in H2 that connect the real arc
between SC(P�k�2) and SC(P�k�1) to the real arc between SC(P�k) and SC(P�k+1),
and the arc between SC(Pk�1) and SC(Pk) to the arc between SC(Pk+1) and SC(Pk+2).
Now, any choice of p�1 numbers xi = SC(Pi) for 2 � 1 � p uniquely determines a point in
T symm
0;2p+2, and these choices are parametrized by the extremal lengths ExtH2(�k) 2 (0;1).

This proves the result. �

Let QDsymm(SNE) denote the vector space of holomorphic quadratic di�erentials on
SNE which have at worst simply poles at the punctures and are real along the image of Z
and the line fy = xg.

Our principal application of Proposition 4.2.1 is the following

Corollary 4.2.2. The cotangent vectors fdENE(k) j k = 1; : : : ; p � 1g (and fdESW(k) j
k = 1; : : : ; p� 1g) are a basis for T �SNET

symm
0;2p+2, hence for QDsymm(SNE).

Proof. The cotangent space T �SNET
symm
0;2p+2 to the Teichm�uller space T symm

0;2p+2 is the space
QD(SNE) of holomorphic quadratic di�erentials on SNE with at most simple poles at the
punctures. A covector cotangent to T symm

0;2p+2 must respect the re
ective symmetries of the

elements of T symm
0;2p+2, hence its horizontal and vertical foliations must be either parallel or

perpendicular to the �xed sets of the re
ections. Thus such a covector, as a holomorphic
quadratic di�erential, must be real on those �xed sets, and hence must lie in QDsymm(SNE).
The result follows from the functions fENE(k) j k = 1; : : : ; p � 1g being coordinates for
T symm
0;2p+2. �

4.3 The height function D(Z) : Z ! R. Let the height function D(Z) be

(4.1) D(Z) =

p�1X
j=1

�
exp

�
1

ENE(j)

�
� exp

�
1

ESW(j)

��2
+ [ENE(j)� ESW(j)]2 :

We observe thatD(Z) = 0 if and only if ENE(j) = ESW(j), which holds if and only if SNE is
conformally equivalent to SSW. We also observe that, for instance, if ENE(j)=ESW(j) � C0

but both ENE(j) and ESW(j) are quite small, then D(Z) is quite large. It is this latter
fact which we will exploit in this section.

4.4 Monodromy Properties of the Schwarz-Christo�el Maps. Here we derive the
facts about the Schwarz-Christo�el maps we need to prove properness of the height func-
tion.

Let t = (0 < t1 < t2 < : : : < tp) be p points on the real line. We put t0 := 0; t1 := 1
and t�k = �tk. Then the Schwarz-Christo�el formula tells us that we can map the upper
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half plane conformally to a NE-domain such that the ftig are mapped to vertices by the
function

f(z) =

Z z

0

(t� t�p)
1=2(t� t�p+1)

�1=2 � � � (t� tp)
1=2dt

and to a SW-domain by

g(z) =

Z z

0

(t� t�p)
�1=2(t� t�p+1)

+1=2 � � � (t� tp)
�1=2dt

Note that the exponents alternate sign. We are not interested in normalizing these
maps at the moment by introducing some factor, but we have to be aware of the fact that
scaling the tk will scale f and g.

Now introduce the periods ak = f(tk+1) � f(tk) and bk = g(tk+1) � g(tk) which are
complex numbers, either real or purely imaginary. Denote by

T := ft : ti 2 C ; tj 6= tk 8j; kg;
the complex-valued con�guration space for the 2p + 1-tuples ftg. It is clear that we can
analytically continue the ak and bk along any path in T to obtain holomorphic multi-valued
functions.

Lemma 4.4.1. Continue ak analytically along a path in T de�ned by moving tj anti-
clockwise around tj+1 and denote the continued function by ~ak, similarly for bk. Then we
have

~ak =

8><>:
ak if k 6= j � 1; j + 1

ak + 2ak+1 if j = k + 1

ak � 2ak�1 if j = k � 1

with analogous formulas holding for ~bk.

Proof. Imagine that the de�ning paths of integration for ak was made of 
exible rubber
band which is tied to tk tk+1. Now moving tj will possibly drag the rubber band into some
new position. The resulting curves are precisely those paths of integration which need to
be used to compute ~ak. If j 6= k � 1; k + 1, the paths remain the same, hence ~ak = ak.
If j = k + 1, the rubberband between tk and tk+1 is pulled around tk+2 and back to
tk+1. Hence ak changes by the amount of the integral which goes from tk+1 to tk+2, loops
around tk+2 and then back to tk+1. Hence the �rst part contributes ak+1. Now, for the
second part of the path of integration, by the very de�nition of the Schwarz-Christo�el
maps we know that a small interval through tk+2 is mapped to a 90� hinge, so that a
small in�nitesimal loop turning around tk+2 will be mapped to an in�nitesimal straight
line segment. In fact, locally near tk+2 the Schwarz-Christo�el map is of the form z 7! z1=2

or z 7! z3=2. Therefore we get from the integration back to tk+1 another contribution of
+ak+1. The same argument is valid for j = k � 1 and for the bk. �

Now denote by � := tk+1 � tk and �x all tj other than tk+1: we regard tk+1 as the
independent variable.
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Corollary 4.4.2. The functions ak � log �
�i ak+1 and bk � log �

�i bk+1 are holomorphic in �
at � = 0.

Proof. By Lemma 4.4.1, the above functions are singlevalued and holomorphic in a punc-
tured neighborhood of � = 0. It is easy to see from the explicit integrals de�ning ak, bk,
ak+1 and bk+1 that the above functions are also bounded, hence they extend holomorphi-
cally to � = 0. �

Now for the properness argument, we are more interested in the absolute values of the
periods than in the periods themselves: we translate the above statement about periods
into a statement about their respective absolute values. This will lead to a crucial di�erence
in the behavior of the extremal length functions on the NE{ and SW regions.

Corollary 4.4.3. Either jakj� log �
� jak+1j or jakj+ log �

� jak+1j is real analytic in � for � = 0.

In the �rst case, jbkj+ log �
� jbk+1j is real analytic in �, in the second jbkj � log �

� jbk+1j.
Remark. Note the di�erent signs here! This re
ects that we alternate between left and
right turns in the zigzag.

Proof. If we follow the images of the tk in the NE-domain, we turn alternatingly left and
right, that is, the direction of ak+1 alternates between i times the direction of ak and �i
times the direction of ak.

This proves the �rst statement, using corollary 4.4.2. Now if we turn left at Pk in the
NE domain, we turn right in the SW domain, and vice versa, because the zigzag is run
through in the opposite orientation. This proves the second statement. �

From this we deduce a certain non-analyticity which is used in the properness proof.
Denote by sk; tk the preimages of the vertices Pk of a zigzag under the Schwarz-Christo�el
maps for the NW- and SW-domain respectively. We normalize these maps such that
s0 = t0 = 0 and sn = tn = 1. Introduce �NE = sk+1 � sk and �SW = tk+1 � tk. We can
now consider �NE as a function of �SW:

Corollary 4.4.4. The function �NE does not depend real analytically on �SW.

Proof. Suppose the opposite is true.We know that either jbkj + log �SW
�

jbk+1j or jbkj �
log �SW

� jbk+1j depends real analytically on �SW, hence on �NE, so we may assume with

no loss in generality that jbkj + log �SW
� jbk+1j depends real analytically on �SW. Then by

Corollary 4.4.3, we see that jakj � log �SW
� jak+1j depends analytically on �NE, hence by

assumption on �SW. Hence B(�SW) := jbkj
jbk+1j

+ log �SW
� and A(�NE) := jakj

jak+1j
� log �NE

�

depends real analytically on �SW and �NE, respectively. But

jbkj
jbk+1j =

jakj
jak+1j

by the assumption on equality of periods, so

B(�SW)� log �SW
�

= A(�NE) +
log �NE
�

:
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But then log(�SW�NE)
� = B(�SW)�A(�NE) is analytic in �NE. Of course, the product �SW�NE

is analytic in �NE and non-constant, as �SW�NE tends to zero by the hypothesis on extremal
length. But then log(�SW�NE) is analytic in �NE, near �NE = 0, which is absurd. �

Remark. Note that the Corollary remains true if we consider zigzags which turn alter-
natingly left and right by a (�xed) angle other than �=2. This will only a�ect constants
in Lemma 4.4.1 and Corollaries 4.4.2, 4.4.3. In Corollary 4.4.4, we need only that the
coe�cients of log � are distinct, and this is also true for the zigzags with non-orthogonal
sides. We will use this generalization in section 6.

4.5 An extremal length computation. Here we compute the extremal length of curves
separating two points on the real line. This will be needed in the next section. We do
this �rst in a model situation: Let � < 0 < 1 and consider the family of curves � in
the upper half plane joining the interval (�1; �) with the interval (0; 1). For a detailed
account on this, see [Oht], p. 179{214. He gives the result in terms of the Jacobi elliptic
functions from which it is straightforward to deduce the asymptotic expansions which we
need. Because it �ts in the spirit of this paper, we give an informal description of what is
involved in terms of elliptic integrals of Weierstra� type.

It turns out that the extremal metric for � is rather explicit and can be seen best by
considering a slightly di�erent problem: Consider the family �0 of curves in S2 encircling
only � and 0 thus separating them from 1 and 1. Then the extremal length of �0 is twice
the one we want.

Lemma 4.5.1. The extremal metric in this situation is given by the 
at cone metric on
S2 � f�; 0; 1;1g with cone angles � at each of the four vertices.

Proof. Directly from the length-area method of Beurling, or see [Oht]. �

This metric can be constructed by taking the double cover over S2 � f�; 0; 1;1g,
branched over �; 0; 1;1 which is a torus T , which has a unique 
at conformal metric
(up to scaling). This metric descends as the cone metric we want to S2 � f�; 0; 1;1g.
This allows us to compute the extremal length in terms of certain elliptic period integrals.
Because the covering projection p : T ! S2 is given by the equation p0

2
= p(p� 1)(p� �)

we compute the periods of T as

(4.2) !i =

Z

i

dup
u(u� 1)(u� �)

where 
1 denotes a curve in �0 and 
2 a curve circling around � and 0. We conclude that
the extremal length we are looking for is given by

Lemma 4.5.2.

(4.3) Ext(�) = 2
j!1j2

det(!1; !2)
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Proof. see [Oht] �

Alternatively,

(4.4)
!2
!1

= �
R �
0

dup
u(u�1)(u��)R 1

0
dup

u(u�1)(u��)

This is as explicit as we can get.
It is evident from formulas (4.2), (4.3), and (4.4) that Ext(�) is real analytic on T0;4,

hence on T
symm
0;2p+2 .

Now we are interested in the asymptotic behavior of the extremal lengths Ext(�) as
�! 0.

Lemma 4.5.3.

Ext(�) = O

�
1

log j�j
�

Proof. The asymptotic behavior of elliptic integrals is well known, but it seems worth
observing that all the information which we need is in fact contained in the geometry.
For a more formal treatment, we refer to [Oht, Rain]. The period !1 is easily seen to be
holomorphic in � by developing the integrand into a power series and integrating term by
term; explicitly we can obtain

!1(�) = 2�

�
1 +

1

4
�+

9

32
�2 +

25

128
�3 + : : :

�
but all we need is the holomorphy and !1(0) 6= 0. Concerning !2, the general theory of
ordinary di�erential equations with regular singular points predicts that any solution ! of
the o.d.e. has the general form

! = c1
�
log(�)!1(�) + �f1(�)

�
+ c2!1(�)

with some explicitly known holomorphic function f1(�).
From a similar monodromy argument as in the above section 4.4 one can obtain that

!2(�)� i

�
log(��)!1(�)

is holomorphic at � = 0 which is simultaneously a more speci�c but less general statement.
Nevertheless this can already be used to deduce the claim, but for the sake of completeness
we cite from [Rain] the full expansion:

!2(�) =
i

�
(log(��)!1(�) + �f1(�))� 4i log 2

�
!1(�)
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with the expansion of �f1(�) given by

�f1(�) =
1X
n=1

(a)n(b)n
(n!)2

(H(a; n) +H(b; n)� 2H(1; n))�n

Here

(a)n := a(a+ 1) � : : : � (a+ n� 1)

H(a; n) =
1

a
+

1

a+ 1
+ � � �+ 1

a+ n� 1
a = 1=2

b = 1=2

From this, one can deduce the claim in any desired degree of accuracy. �

Now we generalize this to 4 arbitary points t1 < t2 < t3 < t4 on the real line and to the
family � of curves connecting the arc t1t2 to the arc t3t4.

We denote the cross ratio of t1, t2, t3, t4 by (t1 : t2 : t3 : t4) which is chosen so that
(1 : � : 0 : 1) = �).

Corollary 4.5.4. For t2 ! t3, we have

Ext� = O

�
1

� log j(t1 : t2 : t3 : t4)j
�

Proof. This follows by applying the M�obiustransformation to the ti which maps them to
1; �; 0; 1. �

Remark. Here we can already see that to establish properness we need to consider points
ti such that t2 ! t3 while t1 and t4 stay at �nite distance away.

4.6 Properness of the Height Function. In this section we prove

Theorem 4.6.1. The height function D(Z) is proper on Z, for p > 2.

Proof. Let Z0 be a zigzag in the boundary of Z . We can imagine Z0 as an ordinary
zigzag where some (consecutive) vertices have coalesced. We can assume that we have a
cluster of coalesced points Pk = Pk+1 = : : : = Pk+l but Pk�1 6= Pk and Pk+l 6= Pk+l+1
(here k � 0 and k + l � p).

We �rst consider the case where k � 1, taking up the case k = 0 later. Denote
the family of curves connecting the segment Pk�1Pk with the segment Pk+lPk+l+1 (and
their counterparts symmetric about the central point P0) in the NE domain by �NE and
in the SW domain by �SW and their extremal lengths in 
NE (
SW; resp:) by Ext�NE
(Ext�SW; resp:). Now recall that the height function was de�ned so that

D(Z) �
p�1X
j=1

�
exp

�
1

ENE(j)

�
� exp

�
1

ESW(j)

��2
:
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where the extremal length were taken of curves encircling two consecutive points. To prove
properness it is hence su�cient to prove that at least one pair ENE(j); ESW(j) approaches
0 with di�erent rates to some order for any sequence of zigzags Zn ! Z0. Suppose this is
not the case. Then especially all ENE(j); ESW(j) with j = k; : : : ; k+l approach zero at the
same rate for some Zn ! Z0. Now conformally the points tk; : : : ; tk+l+1 are determined
by the extremal lengths ENE(j) and ESW(j) so that under the assumption, Ext�NE and
Ext�SW approach zero with the same rate. Thus to obtain a contradiction it is su�cient
to prove that

e1=Ext�NE � e1=Ext �SW

is proper in a neighborhood of Z0 in Z. Such a neighborhood is given by all zigzags Z
where distances between coalescing points are su�ciently small. Especially, the quantity
� := jPk � Pk+j j is small.

To estimate the extremal length, we map the NE{ and SW domains of a zigzag Z in
a neighborhood of Z0 by the inverse Schwarz-Christo�el maps to the upper half plane
and apply then the asymptotic formula of the last section, using that the asymptotics for
a symmetric pair of degenerating curve families agree with the asymptotics of a single
degenerating curve family.

Denote by �NE and �SW the di�erence tk+1 � tk of the images of Pk+1 and Pk for
NE and SW respectively. Because the Schwarz-Christo�el map is a homeomorphism on
the compacti�ed domains, the quantities �NE and �SW will go to zero with �, while the
distances tk�1�tk and tk+1�tk+l+1 are uniformly bounded away from zero in any compact
coordinate patch. Hence by Corollary 4.5.4���e 1

Ext �NE � e
1

Ext�SW

���
=

�����O
�

1

j(tk�1 : tk : tk+1 : tk+l+1)NEj
�
�O

�
1

j(tk�1 : tk : tk+1 : tk+l+1)SWj
� �����

= O(
1

�NE
)� O(

1

�SW
)(4.5)

On the other hand, by corollary 4.4.4, we know that �NE cannot depend analytically on �SW
so that one term will dominate the other and no cancellation occurs. Finally all occuring
constants are uniform in a coordinate patch and �NE depends there in a uniform way on
�. This proves local properness near Z0 in this case and gives the desired contradiction.

In the case where Pk = 0; :::; Pk+l are coalescing (here k+ l < p), we use the other terms
in the height function, i.e. the inequality

(4.6) D(Z) �
p�1X
j=0

[ENE(j)�ESW(j)]2

It is a straightforward exercise in the de�nition of extremal length (see lemma 4.5.1) that,
since 
k+l�1 and 
k+l intersect once (geometrically), and the point Pk+l+1 converges to a
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�nite point distinct from Pk; :::; Pk+l, we can conclude that ENE(k + l) = O( 1
ENE(k+l�1)

)

and ESW(k + l) = O( 1
ESW(k+l�1) ). (Here we use the hypothesis that p > 2 in the �nal

argument to ensure the existence of a second dual curve.) Yet an examination of the
argument above (see also Corollary 4.4.4, especially) shows that ENE(k + l � 1) vanishes
at a di�erent rate than ESW(k + l � 1), hence ENE(k + l) grows at a di�erent rate than
ESW(k + l). This term alone then in inequality (4.6) shows the claim. �
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x5. The Gradient Flow for the Height Function.

5.1. To �nd a zigzag Z for which D(Z) = 0, we imagine 
owing along the vector �eld
gradD on Z to a minimum Z0. To know that this minimum Z0 represents a re
exive
zigzag (i.e., a solution to our problem), we need to establish that, at such a minimum Z0,
we have D(Z) = 0. That result is the goal of this section; in the present subsection, we
state the result and begin the proof.

Proposition 5.1. There exists Z0 2 Z with D(Z0) = 0.

Proof. Our plan is to �nd a good initial point Z� 2 Z and then follow the 
ow of � gradD
from Z�; our choice of initial point will guarantee that the 
ow will lie along a curve Y � Z
along which D(Z)

��
Y
will have a special form. Both the argument for the existence of a

good initial point and the argument that the negative gradient 
ow on the curve Y is only
critical at a point Z with D(Z) = 0 involve understanding how a deformation of a zigzag
a�ects extremal lengths on SNE and SSW, so we begin with that in subsection 5.2. In
subsection 5.3 we choose our good initial point Z�, while in subsection 5.4 we check that
the negative gradient 
ow from Z� terminates at a re
exive symmetric zigzag. This will
conclude the proof of the main theorems.

5.2. The tangent space to Z. In this subsection, we compute a variational theory for
zigzags appropriate for our problem. In terms of our search for minimal surfaces, we recall
that the zigzags (and the resulting Euclidean geometry on the domains 
NE and 
SW)
are constructed to solve the period problem for the Weierstra� data: since we are left to
show that the domains 
NE and 
SW are conformally equivalent, we need a formula for
the variation of the extremal length (conformal invariants) in terms of the periods.

More particularly, note again that what we are doing throughout this paper is relating
the Euclidean geometry of 
NE (and 
SW, respectively) with the conformal geometry of

NE (and 
SW, resp.) The Euclidean geometry is designed to control the periods of the
one-forms !NE (and !SW) and is restricted by the requirements that the boundaries of

NE (
SW, resp.) have alternating left and right orthogonal turns, and that 
NE and

SW are complementary domains of a zigzag Z in C. Of course, we are interested in the
conformal geometry of these domains as that is the focus of the Main Theorem B.

In terms of a variational theory, we are interested in deformations of a zigzag through
zigzags: thus, informally, the basic moves consist of shortening or lengthening individual
sides while maintaining the angles at the vertices. These moves, of course, alter the con-
formal structure of the complementary domains, and we need to calculate the e�ect on
conformal invariants (in particular, extremal length) of these alterations; those calcula-
tions involve the Teichm�uller theory described in section 2.3, and form the bulk of this
subsection. We list the approach below, in steps.

Step 1) We consider a self-di�eomorphism f� of C which takes a given zigzag Z0 to
a new zigzag Z�: this is given explicitly in x5.2.1, formulas 5.1. (There will be two
cases of this, which will in fact require two di�erent types of di�eomorphisms, which we
label f� and f

�
� ; they are related via a symmetry, which will later bene�t us through an

important cancellation.) These di�eomorphisms will be supported in a neighborhood of a
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pair of edges; later in Step 4, we will consider the e�ect of contracting the support onto
increasingly smaller neighborhoods of those pair of edges.

Step 2) In�nitesimally, this deformation of zigzag results in in�nitesimal changes in the
conformal structures of the complementary domains, and hence tangent vectors to the
Teichm�uller spaces of these domains. As described in the opening of x2.3, those tangent
vectors are given by Beltrami di�erentials _�NE (and _�SW) on 
NE (and 
SW) and it is
easy to compute _�NE (and _�SW) in terms of

�
d
d�
f�
�
�z
and

�
d
d�
f��
�
�z
. This is done explicitly

in x5.2.1, immediately after the explicit computations of f� and f
�
� .

Step 3) We apply those formulas for _�NE and _�SW to the computation of the derivatives
of extremal lengths (e.g. d

d�

��
�=0

ENE(k), in the notation of x4). Teichm�uller theory (x2.3)
provides that this can be accomplished through formula (2.1), which exhibits gradient
vectors dExtNE(k) as meromorphic quadratic di�erentials �NE

k (and �SW
k ) on the sphere

SNE (and SSW, resp.) As we described in x2.3, Gardiner [Gar] gives a recipe for construct-
ing these di�erentials in terms of the homotopy classes of their leaves. We describe these
di�erentials in x5.2.2.

Step 4) We have excellent control on these quadratic di�erentials along the (lift of the)
zigzag. Yet the formula (2.1) requires us to consider an integral over the support of the
Beltrami di�erentials _�NE and _�SW. It is convenient to take a limit of

Z
�NE(k) _�NE;

and the corresponding SW integral, as the support of _�NE is contracted towards a single
pair of symmetric segments. We take this limit and prove that it is both �nite and non-
zero in x5.2.3: the limit then clearly has a sign which is immediately predictable based
on which segments of the zigzag are becoming longer or shorter, and how those segments
meet the curve whose extremal length we are measuring. The main di�culty in taking the
limits of these integrals is in controlling the appearance of some apparent singularities: this
di�culty vanishes once one invokes the symmetry condition to observe that the apparent
singularities cancel in pairs.

We begin our implementation of this outline with some notation. Choose a zigzag Z;
let Ik denote the segment of Z connecting the points Pk and Pk+1. Our goal is to consider
the e�ect on the conformal geometries of SNE and SSW of a deformation of Z, where Ik
(and I�k�1, resp.) move into 
NE: one of the adjacent sides Ik�1 and Ik+1 (I�k�2 and
I�k, resp.) is shortened and one is lengthened, and the rest of the zigzag is unchanged.
(See Figure 2.)
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Figure 2

5.2.1. In this subsection, we treat steps 1 and 2 of the above outline. We begin by
de�ning a family of maps f� which move I� into 
NE; we presently treat the case that Ik
is horizontal, deferring the vertical case until the next paragraph.

With no loss in generality, we may as well assume that Ik+1 is vertical; the more
general case will just follow from obvious changes in notations and signs. We consider
local (conformal) coordinates z = x+iy centered on the midpoint of Ik (i.e., the horizontal
segment abutting Ik at the vertex Pk of Ik nearest to the line fy = xg.) In particular,
suppose that Ik is represented by the real interval [�a; a], and de�ne, for b > 0 and � > 0
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small, a local Lipschitz deformation f� : C! C

(5.1a)

f�(x; y) =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

�
x; �+ b��

b y
�
; f�a � x � a; 0 � y � bg = R1�

x; �+ b+�
b y
�
; f�a � x � a;�b � y � 0g = R2�

x; y +
�+ b��

b
y�y

� (x+ � + a)
�
; f�a� � � x � �a; 0 � y � bg = R3�

x; y � �+ b��
b
y�y

� (x� � � a)
�
; fa � x � a+ �; 0 � y � bg = R4�

x; y +
�+ b+�

b
y�y

� (x+ � + a)
�
; f�a� � � x � �a;�b � y � 0g = R5�

x; y � �+ b+�
b
y�y

�
(x� � � a)

�
; fa � x � a+ �;�b � y � 0g = R6

(x; y) otherwise

where we have de�ned the regions R1; : : : ; R6 within the de�nition of f�. Also note that
here Z0 contains the arc f(�a; y) j 0 � y � bg [ f(x; 0) j �a � x � ag [ f(a; y) j �b � y �
0g.

RR R

R RR

3 1

625

a+δa-a

b

-b

-a- δ

4

Figure 3
Of course f� di�ers from the identity only on a neighborhood of Ik; so that f�(Z0) is

a zigzag but no longer a symmetric zigzag. We next modify f� in a neighborhood of the
re
ected (across the y = x line) segment I�k�1 in an analogous way with a map f�� so
that f�� � f�(Z) will be a symmetric zigzag. (Here f�� is exactly a re
ection of f� if k > 1.
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In the case k = 1, we require only a small adjustment for the fact that f� has changed one
of the sides adjacent to the segment P�1P0, both segments of which lie in supp(f�� � id).)

Our present conventions are that Ik is horizontal; this forces I�k�1 to be vertical and
we now write down f�� for such a vertical segment; this is a straightforward extension of
the description of f� for a horizontal side, but we present the de�nition of f�� anyway, as
we are crucially interested in the signs of the terms. So set

(5.1b) f�� =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

�
�+ b��

b
x; y
�
; f0 � x � b;�a � y � ag = R�1�

�+ b+�
x ; y

�
; f�b � x � 0;�a � y � ag = R�2�

x� �+ b��
b
x�x

� (y � � � a); y
�
; f0 � x � b; a � y � a+ �g = R�3�

x+
�+ b��

b
x�x

� (y + � + a); y
�
; f0 � x � b;�a� � � y � �ag = R�4�

x� �+ b+�
b
x�x

� (y � � � a); y
�
; f�b � x � 0; a � y � a+ �g = R�5�

x+
�+ b+�

b
�x

� (y + � + a); y
�
; f�b � x � 0;�a� � � y � �ag = R�6

(x; y) otherwise

:

Note that under the re
ection across the line fy = xg, the regions R1 and R2 get taken
to R�1 and R�2, but R4 and R6 get taken to R�3 and R�5, while R3 and R5 get taken to R�4
and R�6, respectively.

Let �� =
(f�)�z
(fe)z

denote the Beltrami di�erential of f�, and set _� = d
d�

��
�=0

��. Similarly,

let ��� denote the Beltrami di�erential of f�� , and set _�� = d
d�

��
�=0

��� . Let _� = _�+ _��. Now
_� is a Beltrami di�erential supported in a bounded domain in C = 
NE[Z0[
SW around
Z0, so it restricts to a pair ( _�NE; _�SW) of Beltrami di�erentials on the pair of domains
(
NE;
SW). Thus, this pair of Beltrami di�erentials lift to a pair ( _�NE; _�SW) on the pair
(SNE; SSW) of punctured spheres, where we have maintained the same notation for this
lifted pair. But then, as a pair of Beltrami di�erentials on (SNE; SSW) � T symm

0;2p+2, the pair

( _�NE; _�SW) represents a tangent vector to Z � T symm
0;2p+2 at Z0. It is our plan to evaluate

dD( _�NE; _�SW) to a precision su�cient to show that dD( _�NE; _�SW) < 0. To do this, we
compute dExt([
]) for relevant classes of curves [
].

We begin by observing that it is easy to compute that _� =
�
d
d�

��
�=0

f�
�
�z
evaluates near

Ik to
(5.2a)

_� =

8>>>>>>>>>>><>>>>>>>>>>>:

1
2b ; z 2 R1

� 1
2b ; z 2 R2

1
2b [x+ � + a]=� + i (1� y=b) 1

2d = 1
2b� (�z + � + a+ ib); z 2 R3

� 1
2b [x� � � a]=� � i (1� y=b) 1

2� =
1
2b� (��z + � + a� ib); z 2 R4

� 1
2b [x+ � + a]=� + i (1 + y=b) 1

2� =
1
2b� (��z � � � a+ ib); z 2 R5

1
2b [x� � � a]=� � i (1 + y=b) 1

2� =
1
2b� (�z � � � a� ib); z 2 R6

0 z =2 supp(f� � id)

:
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We further compute

(5.2b) _�� =

8>>>>>>>>><>>>>>>>>>:

� 1
2b ; R�1

1
2b ; R�2
1
2b� (i�z � � � a� bi) R�3
1
2b� (�i�z � � � a+ bi) R�4
1
2b� (�i�z + � + a� bi) R�5
1
2b� (i�z + � + a+ bi) R�6

Of course, this then de�nes the pair ( _�NE; _�SW) by restriction to the appropriate neigh-
borhoods. In particular, _�NE is supported in the (lifts of) the regions R1, R4, R6, R

�
1, R

�
3

and R�5 while _�SW is supported in the (lifts of) R2, R3, R5, R
�
2, R

�
4 and R�6.

5.2.2. We next consider the e�ect of the variation d
d�

��
�=0

f� upon the conformal geome-
tries of SNE and SSW. We compute the in�nitesimal changes of some extremal lengths
induced by the variation d

d�

��
�=0

f�.
For [
] a homotopy class of (a family of) simple closed curves, the form dExt(�)([
]) 2

T �(�)T
symm
0;2p+2 is given by an element of QDsymm(�). We describe some of these quadratic

di�erentials now; this is step 3 of the outline.
To begin, since the holomorphic quadratic di�erential �NE

k = �NE

k

= dExtSNE([
k]) is

an element of QDsymm
0;2p+2(SNE), it is lifted from a holomorphic quadratic di�erential  NE

k on

NE whose horizontal foliation has nonsingular leaves either orthogonal to and connecting
the segments I�k�2 and I�k or orthogonal to and connecting the segments Ik and Ik+2.
(The foliation is parallel to the other segments of Z, and the vertices where the foliation
changes from orthogonality to parallelism lift to points where the di�erential �NE

k has a
simple pole.)

Now the segments Ik 2 
NE corresponds under the map � : 
NE ! 
SW to the segment
I�k�2 2 
SW; similarly, I�k�2 2 
NE corresponds to Ik 2 
SW. Thus dExtSSW 2
QDsymm

0;2p+2(SSW) is lifted from a holomorphic quadratic di�erential  SW
k whose horizontal

foliation has nonsingular leaves orthogonal to and connecting the segments I�k�2 and
I�k and orthogonal to and connecting Ik and Ik+2, in an analogous way to  NE

k . Now the
foliations have characteristic local forms near the support of the divisors of the di�erentials,
and so the foliations of �NEk (and �SWk ) determine the divisors of these di�erentials. We
collect this discussion, and its implications for the divisors, as

Lemma 5.2. The horizontal foliations for  NE
k and  SW

k extend to a foliation of C =

NE [ Z0 [ 
SW, which is singular only at the vertices of Z. This foliation is parallel to
Z except at I�k�2, I�k, Ik and Ik+2, where it is orthogonal. The di�erential �NEk (and
�SWk ) have divisors

(�NEk ) = P 2
0P

2
1(P�k+1P�kP�k�1P�k�2)

�1(Pk�1PkPk+1Pk+2)
�1 = (�SWk ) if k > 1

(�NE1 ) = P 2
1(P�3P�2P�1P1P2P3)

�1 = (�SW1 )

where Pj refers to the lift of Pj 2 Z to SNE and SSW, respectively.
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5.2.3. Let �NE denote a meromorphic quadratic di�erential on SNE (symmetric about
the lift of fy = xg) lifted from a (holomorphic) quadratic di�erential  NE on (the open
domain) 
NE; suppose that �NE represents the covector dExt�([
]) in T �SNET

symm
0;2p+2 for

some class of curves [
]. Formula (2.1) says that

(5.3)
d

d�

����
�=0

ExtS�
NE
([
]) = 2Re

Z
SNE

�NE _�NE = 4Re

Z

NE

 NE _�NE

where S�NE is the punctured sphere obtained by appropriately doubling f�(
NE).

The formula (5.3) is the basic variational formula that we will use to estimate the
changes in the conformal geometries of 
NE and 
SW as we vary in Z. However, in order
to evaluate these integrals to a precision su�cient to prove Proposition 5.1, we require
a lemma. As background to the lemma, note that _�NE and _�SW depend upon a choice
of small constants b > 0 and � > 0 describing the size of the neighborhood of Ik and
I�k�1 supporting _�NE and _�SW; on the other hand, a hypothesis like the foliation of  NE

is orthogonal to or parallel to Ik and I�k�1 concerns the behavior of  NE only at Ik
and I�k�1 (i.e., when b = � = 0). Thus, to use this information about the foliations in
evaluating the right hand sides of formula (5.3), we need to have control on Re

R

NE

 NE _�NE
as b and � tend to zero. This is step 4 of the outline we gave at the outset of section 5.2.

Lemma 5.3. limb!0;�!0Re
R

NE

 NE _�NE exists and is �nite and non-vanishing. More-

over, if  NE has foliation either orthogonal to or parallel to Ik [ I�k�1, then the sign of
the limit equals sgn ( NE _�NE(q)) where q is a point on the interior of Ik [ I�k�1.

Proof. On the interior of Ik [ I�k�1, the coe�cients of both  NE and _�NE have locally
constant sign; as we see from  NE being either orthogonal or parallel to Z and symmetric,
and from the form of _�NE in (5.2a) and (5.2b). We then easily check that the sign of the
product  NE _�NE is constant on the interior of Ik [ I�k�1, proving the �nal statement of
the lemma.

The only di�culty in seeing the existence of a �nite limit as b + � ! 0 is the possible
presence of simple poles of �NE at the lifts of endpoints of Ik [ I�k�1.

To understand the singular behavior of  NE near a vertex of the zigzag, we begin by
observing that on a preimage on SNE of such a vertex, the quadratic di�erential has a
simple pole. Now let ! be a local uniformizing parameter near the preimage of the vertex
on SNE and � a local uniformizing parameter near the vertex of Z on C. There are two
cases to consider, depending on whether the angle in 
NE at the vertex is (i) 3�=2 or (ii)
�=2. In the �rst case, the map from 
NE to a lift of 
NE in SNE is given in coordinates by

! = (i�)2=3, and in the second case by ! = �2. Thus, in the �rst case we write �NEk = cd!
2

!

so that  NE
k = �4=9c(i�)�4=3d�2, and in the second case we write  NE

k = 4cd�2; in both
cases, the constant c is real with sign determined by the direction of the foliation.

With these expansions for  NE
k and  SW

k , we can compute dExt([
k])[ _�]; of course, this
29



quantity is given by formula (2.1) as

dExtSNE [(
k])[ _�] = 2Re

Z
SNE

�k _�

= 4Re

Z

NE

 k _�

= 4Re

 Z
R1[R0

1

+

Z
R4[R�

3

+

Z
R6[R�

5

!
 k _�:(5.4)

Clearly, as b + � ! 0, as j _�j = O
�
max

�
1
b
; 1
�

��
, we need only concern ourselves with the

contribution to the integrals of the singularity at the vertices of Z with angle 3�=2.
To begin this analysis, recall that we have assumed that Ik is horizontal so that Z has

a vertex angle of 3�=2 at Pk+1 and P�k�1. It is convenient to rotate a neighborhood of
I�k�1 through an angle of ��=2 so that the support of _� is a re
ection of the support of
_�� (see equation (5.1)) through a vertical line. If the coordinates of supp _� and supp _��

are z and z�, respectively (with z(Pk+1) = z�(P�k�1) = 0), then the maps which lift
neighborhoods of Pk+1 and P�k�1, respectively, to the sphere SNE are given by

z 7! (iz)2=3 = ! and z� 7! (z�)2=3 = !�:

Now the poles on SNE have coe�cients cd!
2

! and �cd!�2!� , respectively, so we �nd that

when we pull back these poles from SNE to 
NE, we have  NE(z) = � 4
9c dz

2=!2 while

 NE(z�) = �4
9c dz

2=(!�)2 in the coordinates z and z� for supp _� and supp _��, respectively.
But by tracing through the conformal maps z 7! ! 7! !2 on supp _� and z� 7! !� 7! (!�)2,
we see that if z� is the re
ection of z through a line, then

1

(!(z))2
= 1=!�(z�)2

so that the coe�cients  NE(z) and  NE(z�) of  NE =  NE(z)dz2 near Pk+1 and of

 NE(z�)dz�2 near P�k�1 satisfy  NE(z) =  NE(z�), at least for the singular part of the
coe�cient.

On the other hand, we can also compute a relationship between the Beltrami coe�-
cients _�(z) and _��(z�), in the obvious notation, after we observe that f�� (z

�) = �f�(z).
Di�erentiating, we �nd that

_��(z�) = _f�(z�)z�

= � _f(z)z�

= ( _f(z))z

= _f(z)z

= _�(z):
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Combining our computations of  NE(z�) and _�(z�) and using that the re
ection z 7! z�

reverses orientation, we �nd that (in the coordinates z� = x� + iy� and z = x + iy) for
small neighborhoods Nkappa(Pk+1) and Nkappa(P�k�1) of Pk+1 and P�k�1 respectively,

Re

Z
supp _�\Nkappa(Pk+1)

 NE(z) _�(z)dxdy + Re

Z
supp _��\Nkappa(P�k�1)

 NE(z�) _�(z�)dx�dy�

= Re

Z
supp _�\Nkappa(P )

 NE(z) _�(z)�  NE(z�) _�(z�)dxdy

= Re

Z
supp _�\Nkappa

 NE(z) _�(z)� [ NE(z) +O(1)] _�(z)dxdy

= O(b+ �)

the last part following from the singular coe�cients summing to a purely imaginary term
while _� = O

�
1
b
+ 1

�

�
, and the neighborhood has area b�. This concludes the proof of the

lemma. �

5.3 A good initial point for the 
ow. In this subsection, we seek a symmetric zigzag
Z� of genus p with the property that ENE(k) = ESW(k) for k = 2; : : : ; p � 1. This will
greatly simplify the height function D(Z) at Z�. Our argument for the existence of Z�

involves the

Assumption 5.4. There is a re
exive symmetric zigzag of genus p� 1.

Since Enneper's surface can be represented by the zigzag of just the positive x- and
y- axes, and we already have represented the Chen-Gackstatter surface of genus one by a
zigzag in x3, the initial step of the inductive proof of this assumption is established.

The e�ect of the assumption is that on the codimension 1 face of @Z consisting of
zigzags with P�1 = P0 = P1, there is a degenerate zigzag Z�0 with ENE(k) = ESW(k) for
k = 2; : : : ; p� 1. Our goal in this subsection is the proof of

Lemma 5.5. There is a family Z�t � Z of non-degenerate symmetric zigzags with limit
point Z�0 where each zigzag Z�t satis�es ENE(k) = ESW(k) for k = 2; : : : ; p� 1.

Proof. We apply the implicit function theorem to a neighborhood V of Z�0 = (Z�0 ; 0)
in @Z � (��; �), where we will identify a neighborhood of Z�0 in Z with a neighborhood
U of Z�0 in @Z � [0; �). So our argument will proceed in three steps: (i) we �rst de�ne
our embedding of U into V , (ii) we then show that the mapping � : (Z; t) 7! (ENE(2) �
ESW(2); : : : ; ENE(p� 1)�ESW(p� 1)) is di�erentiable and then (iii) �nally we show that
d�
��
@Z�f0g

is an isomorphism onto Rp�2. The �rst two steps are essentially formal, while

the last step involves most of the geometric background we have developed so far, and is
the key step in our approach to the gradient 
ow.

For our �rst step, normalize the zigzags in U (as in section 4.1) so that P�p = i and
Pp = 1 and for Z in U near Z�0 , and let (t(Z); a2(Z); : : : ; ap�1(Z)) denote the Euclidean
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lengths of the segments hI0; I1; : : : ; Ip�2i. Then for Z 2 U , let Z have coordinates ( (Z); t)
where  (Z) 2 @Z has normalized Euclidean lengths a2(Z); : : : ; ap�1(Z). It is easy to see

that  : U ! @Z is a continuous and well-de�ned map.
Next we verify that the map � is di�erentiable. We can calculate the di�erential D�

��
U

by applying some of the discussion of the previous subsection 5.2. For instance, the
matrix D�

��
U
(Z) can be calculated in terms of dENE(k)

��
Z
[ _�] where _� corresponds to

an in�nitesimal motion of an edge of Z, as in formula (5.3). Indeed we see that as �! 0,
all of the derivatives d(ENE(k)�ESW(k))[ _�] are bounded and converge: this follows easily
from observing that the quadratic di�erentials �k are bounded and converge as �! 0 and
then applying formulas (5.3) and (5.2). In fact, when supp _� meets the lift of I0 [ I�1,
the same argument continues to hold, after we make one observation. We observe that we
can restrict our attention to where we are sliding only the segments I1; : : : ; Ip�1 (and their
re
ections) and not I0 (and I�1), as the tangent space is p � 1 dimensional; thus these
derivatives are bounded as well.

This is all the di�erentiability we need for the relevant version of the implicit function
theorem.

Finally, we show that d�
��
Z�

0

: TZ�

0
Zp�1 ! Rp�2 is an isomorphism. To see this it is

su�cient to verify that this linear map d�
��
Z�

0

has no kernel. So let v 2 TZ�

0
Zp�1, so that

v =

p�1X
i=1

ci _�i

where ci 2 R and _�i refers to an in�nitesimal perturbation of Ii and I�i�1 into 
NE (in
the notation for zigzags in Zp: for Z

�
0 , we have that I0 and I�1 have collapsed onto P0.

Suppose, up to looking at �v instead of v, that some ci > 0, and let fijg be the subset
of the index set f1; : : : ; p � 1g for which cij > 0. We consider the (non-empty) curve

system � of arcs connecting Iij to the interval PpP1 and I�ij�1 to P1P�p, let 'v denote
a Jenkins-Strebel di�erential associated to this curve system. By construction, sgn 'v is
constant on the interior of every interval, and 'v > 0 on the interior of Ii if and only if
the index i 2 fijg.

Thus, by Lemma 5.3 and formula (5.2), we see that both

(5.5a) dExt�(
NE)[v] =

p�1X
i=1

ci

Z
Ii

'v _�i > 0

and from formulas (5.2) and (5.3), using that the horizontal (and vertical) foliation(s) of
'v extend to 
SW, that

(5.5b) dExt�(
SW)[v] =

p�1X
i=1

ci

Z
Ii

'v _�i < 0:

Thus

(5.6) d (Ext�(
NE)� Ext�(
SW)) [v] > 0:
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Now suppose that d�
��
Z�

0

[v] = 0. Then by the de�nition of �, we would have that

dExt�(
NE)[v] = dExt(
SW)[v], and since hExt�i(
NE)i provides local coordinates in
Teichm�uller space, we would see that the Teichm�uller distance between 
NE and 
SW

would in�nitesimally vanish. But that would force Ext
NE(�) � Ext
SW(�) to vanish to
�rst order, which contradicts our computation (5.5).

We conclude that d�
��
Z�

0

is an isomorphism, so that the implicit function theorem yields

the statement of the lemma. �

5.4 The 
ow from the good initial point and the proofs of the main results. We
now consider one of our \good" zigzags Z�t 2 Zp and use it as an initial point from which
to 
ow along � gradD(Z) to a re
exive symmetric zigzag.

Let Y � Zp denote the set of genus p zigzags for which Ext
NE(�i) = Ext
SW(�i) for
i = 2; : : : ; p�1. As extremal length functions are in C1(T symm

0;2p+2) by Gardiner-Masur [GM],

we see that Y is a piecewise C1 submanifold of Zp. (We shall note momentarily that in our
case, these extremal length functions are real analytic.) We consider the height function
D restricted to the set Y.

Lemma 5.6. D
��
Y
is proper and is critical only at points Z 2 Y � Z for which D(Z) = 0.

Proof. The properness of D
��
Y
follows from the properness of D, as shown in x4. We

next show that if D(Z) 6= 0 for Z 2 Y, then there exists a tangent vector v 2 TZZ for
which dD[v] < 0, and for which d (Ext
NE(�i)� Ext
SW(�i)) [v] = 0 so that v lies tangent
to a fragment of Y and in�nitesimally reduces the height D.

Indeed, we observe that

D
��
Y
=

��
exp

1

ENE(1)

�
�
�
exp

1

ESW(1)

��2
+
�
ENE(1) �ESW(1)

�2
as the other terms vanish.

Now, observe that Z is a real analytic submanifold of the real analytic product manifold
T symm
0;2p+2 � T symm

0;2p+2, being de�ned in terms of periods of a pair of holomorphic forms on the
underlying punctured spheres. Next we observe that ENE(j) and ESW(j) are, for each j,
real analytic functions on T symm

0;2p+2 with non-degenerate level sets. To see this note that
the extremal length functions correspond to just the energy of harmonic maps from the
punctured spheres to an interval, with the required analyticity coming from Eells-Lemaire
[EL], or directly from 4.5; the non-degeneracy follows from Lemma 5.3, if we apply any
_� of the form (5.2) to the zigzag (this will be developed in more detail in the following
paragraph). Thus, the set Y acquires the structure of a real analytic submanifold properly
embedded in Z. As Y is one-dimensional near Z0, it is one-dimensional (with no boundary
points) everywhere.

Now, for Z 2 Y � Z which is not a zero of D, we have for any tangent vector _� the
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formula

dD[ _�] = 2

�
exp

�
1

ExtSNE
([
1])

�
� exp

�
1

ExtSSW
([
1])

��
�
� exp

�
1

ExtSNE
([
1])

�
(ExtSNE([
1]))

�2 dExtSNE([
1])[ _�]

+ exp

�
1

ExtSSW
([
1])

�
(ExtSSW([
1]))

�2 dExtSSW([
1])[ _�]

�
+ [ExtSNE([
1])� ExtSSW([
1])] (dExtSNE([
1])[ _�]� dExtSSW([
1])[ _�])

Then if we evaluate this expression for, say, _� being given by lifting an in�nitesimal move
of just one side as in formulas (5.1) and (5.2), we �nd by an argument similar to that for
inequalities (5.5) and (5.6) that dD[ _�] 6= 0. This concludes the proof of the lemma. �

Conclusion of the proof of Proposition 5.1. We argue by induction. The union
of the positive x- and y-axes, is re
exive via the explicit map z 7! iz3; this veri�es the
statement of the proposition for genus p = 0. There is also a unique re
exive zigzag for
genus p = 1, after we make use of the permissible normalization P1 = 1; we can verify that
both SNE and SSW are square tori, as in the �rst paragraph of x3. In general, once we are
given a re
exive symmetric zigzag of genus p � 1, we are able to satisfy Assumption 5.4,
so that Lemmas 5.5 and 5.6 guarantee the existence of a one-dimensional submanifold
Y � Z along which the height function is proper. A minimum Z0 for this height function
is critical for D along Y, and hence satis�es D(Z0) = 0 by Lemma 5.6. �

As the discussion of subsection 4.3 shows that if D(Z0) = 0, then Z0 is re
exive, we
conclude from Proposition 5.1 the

Main Theorem B. There exists a re
exive symmetric zigzag of genus p for p � 0 which
is isolated in Zp.

Proof of Main Theorem B. The local uniqueness follows from inequality (5.6) and the
argument following it. �

Our main goal then follows.

Proof of Main Theorem A. By Main Theorem B, there exists a symmetric re
exive
zigzag of genus p. By Theorem 3.3, and Lemma 3.4 from this zigzag we can �nd Weierstra�
data for the required minimal surface.

5.5 A remark on a di�erent height function. In this subsection, we try to give some
context to the methods we adopted in Sections 4 and 5 by considering an alternate and
perhaps more natural height function.

De�ne a new height function

H(Z) = fdTeich(RNE;RSWg2:

Certainly H(Z) = 0 if and only if Z is re
exive. Moreover, here the gradient 
ow is much
easier to work with, at least locally in Zp. Indeed, we observe
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Lemma 5.7. H(Z) = 0 if and only if Z is critical for H(�) on Zp.

Sketch of Proof. Clearly H(Z) � 0 and H is C1 (even real analytic by the proof of
Lemma 5.5) on Zp � T symm

0;2p+2 � T symm
0;2p+2, so if H(Z) = 0, then Z is critical for H on Zp.

So suppose that H(Z) 6= 0. Then RNE is not conformally equivalent to RSW, so we
can look at the unique Teichm�uller map in the homotopy class [� : SNE ! SSW] (see the
opening of x3).

From the construction of SNE, SSW and � from 
NE, 
SW and �, we can draw many
conclusions about the Teichm�uller di�erentials q 2 QDsymm(SNE) and q

0 2 QDsymm(SSW).
For instance, the foliations are either perpendicular or parallel to the image of Z on SNE
and SSW, and by the construction of the Teichm�uller maps, there are zeros in the lift of an
interval Ik on SNE if and only if there is a corresponding zero in the lift of �(Ik) on SSW.
Moreover, there is a simple pole at a puncture on SNE if and only if there is a simple pole
at a corresponding puncture on SSW.

Finally, we observe that q has only simple poles and as the foliation of q is symmetric
about both the images of Z and the line fy = xg, we see that there cannot be a simple
pole at either the lift of P0 or 1. Yet by Riemann-Roch, as there are 4 more poles than
zeros, counting multiplicity, there must be a pair of intervals Ik [ I�k�1 whose lift has no
zeros of q (and whose image under � of lift has no zeros of q0 2 QDsymm(SSW)).

Observe next that Kerckho�'s formula (2.2) says that the horizontal measured foliation
(Fq; �q) of q extremizes the quotient on the right hand side of 2.2. However, consider a
deformation (5.1) on our zero-free intervals Ik [ I�k�1. By Lemma 5.3 and formula (5.3)
we see that either

dExtSNE(�q)[ _�] > 0 and dExtSSW(�q)[ _�] < 0

or
dExtSNE(�q)[ _�] < 0 and dExtSSW(�q)[ _�] > 0:

In either case, we see from Kerckho�'s formula that dH
��
Z

[ _�] 6= 0, and so Z is not
critical. �

So why use our more complicated height function? The answer lies in formula (4.2),
which combined with Kerckho�'s formula (2.1) shows that H(�) : Zp ! R is not a proper
function on Zp. Thus, the backwards gradient 
ow might 
ow to a re
exive symmetric

zigzag, or it may 
ow to @Zp. A better understanding of this height function H on Z
would be interesting both in its own right and if it would lead to a new numerical algorithm
for �nding minimal surfaces experimentally.

35



x6. Extensions of the Method: The Karcher-Thayer Surfaces.

Thayer [T], following work of Karcher [K], de�ned Weierstra� data (depending upon
unknown constants) for a family of surfaces Mp;k of genus p(k � 1) with one Enneper-
type end of winding order 2k � 1. In this notation, the surfaces of genus p described in
Theorem A are written Mp;2. Karcher [K] has solved the period problem for the surfaces
M0;k and M1;k for k > 2 and Thayer has solved the period problem for M2;k for k > 2.
He has also found numerical evidence supporting the solvability of the period problem for
p � 34, k � 9. Here we prove

Theorem C. There exists a minimally immersed surface Mp;k of genus p(k�1) with one
Enneper-type end with winding order 2k � 1.

Proof. We argue in close analogy with our proof of Theorem A (k = 2). Let Zp;k denote
the space of equivalence classes of zigzags with 2p + 1 �nite vertices and angles at the
vertices alternating between �=k and 2k�1

k �. We double the complementary domains 
k
NE

and 
k
SW of Z to obtain cone-metric spheres with cone angles of alternating 2�=k and

2�=k(2k� 1). We then take a k-fold cover of those spheres, branched at the images of the
vertices of the zigzag on the cone-metric spheres, to obtain Riemann surfaces Rk

NE and
Rk

SW. By pulling back the form dz from 
k
NE and 
k

SW, we obtain, as in Section 3, a pair
of forms � = gdh and � = g�1dh on which we can base our Weierstra� representation. As

before, we set dh = d�, where � is the branched covering map � : Rk
NE ! bC, so that dh

is exact; as before, the periods of � and � are constructed to be conjugate, as soon as the
zigzag is re
exive, and the induced metric (2.0) is regular at the lifts of the �nite vertices
of the zigzag.

To see that we can �nd a re
exive zigzag within Zp;k, we observe that by the remark at
the end of section 4.4, the same real non-analyticity arguments of Section 4.4 carry over
to the present case, once we replace the �=2 and 3�=2 angles with �=k and �=k(2k � 1)
angles. All of the rest of the arguments of Section 4 carry over without change and we
conclude that the height function D(Z) is proper on Zp;k.

For the gradient 
ow, we can write down deformations along the zigzag analogous to
formula (5.1) (it is su�cient just to conjugate the maps in 5.1 by a map which shears the
original zigzag with vertex angles �=2 and 3�=2 to a zigzag with angles �=k and 2k�1

k
�)

and then check that the proof of Lemma 5.3 continues to hold. The rest of the arguments
in Section 5 carry over unchanged to the present case. Thus we �nd a re
exive symmetric
zigzag in Zp;k via the proof of Theorem B. The present theorem then follows. �

Remark. Of course, the arguments in the last two paragraphs of the proof of Theorem
C apply equally well to zigzags of arbitrary alternating angles � and 2�� �, so one might
well ask why we do not generalize the statement of Theorem C even farther. The answer
lies in that while the Teichm�uller theory of sections 4 and 5 extends to zigzags with non-
orthogonal angles, the discussion in section 3 of the transition from the zigzags to regular
minimal surfaces only extends to the zigzags described in the proof of Theorem C. For
instance, we of course require a �nitely branched cover over a double of the zigzag in order
to get a surface of �nite genus, so we must restrict our attention at the outset to zigzags
with rational angles. However, if the smaller angle should be of the form � = r

s�, we
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�nd that an s-sheeted cover of the double of a zigzag would be forced to have an induced
metric (2.0) which was not regular at the lifts of the �nite vertices.
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