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An embedded genus-one helicoid

By Matthias Weber, David Hoffman and Michael Wolf*

Abstract

There exists a properly embedded minimal surface of genus one with one
end. The end is asymptotic to the end of the helicoid. This genus one helicoid is
constructed as the limit of a continuous one-parameter family of screw-motion
invariant minimal surfaces—also asymptotic to the helicoid—that have genus
equal to one in the quotient.
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1. Introduction

1.1. An embedded genus-one helicoid. We prove the existence of a prop-
erly embedded minimal surface in R3 with finite topology and infinite total
curvature.1 It is the first such surface to be found since 1776, when Meusnier
showed that the helicoid was a minimal surface [30]. Our surface has genus
one and is asymptotic to the helicoid.

We exhibit this minimal surface as a geometric limit of periodic embedded
minimal surfaces. The periodic surfaces, H

k
, indexed by k ≥ 1, are invariant

under a cyclic group of screw motions generated by σk. Here σk is the rotation
by 2πk about the vertical axis followed by a vertical translation by 2πk. Thus,
for fixed k, the quotient surface has two topological ends and genus one. The

1A surface is said to have finite topology if it is homeomorphic to a compact surface with
a finite number of points removed.
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limit is taken as k → ∞; a compact set in the limit surface He1 is increas-
ingly well-approximated (as k → ∞) by corresponding pieces of fundamental
domains of H

k
/σk.

The requirement to prove embeddedness was the main motivation of our
work. We prove that embeddedness is inherited from the embeddedness of the
approximating simpler (periodic) surfaces, using that in this particular mini-
mal surface setting, the condition of being embedded is both open and closed
on families. This method of proving embeddedness for surfaces defined using
the Weierstrass representation contrasts with previous methods: here the char-
acteristic of being embedded follows naturally from the property holding for
simpler surfaces, while previously one proved embeddedness by ad hoc meth-
ods, for instance by cutting the surface into disjoint graphs (see, for example
[21], [22]).

Recent work of Traizet-Weber [37] suggests that, ultimately, the embed-
dedness of this genus-one helicoid derives from the embeddedness of the helicoid
itself. In particular, families of complete embedded minimal surfaces of finite
genus degenerate to the singular union of catenoids and planes. Traizet and
Weber realized that for families of symmetric screw-motion-invariant embed-
ded minimal surfaces with helicoidal ends, there is a similar phenomenon: the
families degenerate to a formal union of helicoids identified at their ends (three
helicoids in the case under consideration in this paper). Traizet and Weber
then prove that regeneration is possible; i.e. there is a family of periodic sur-
faces H

k
for k > 1

2 (but near k = 1/2) that desingularizes triples of embedded
helicoids identified at their ends, with the embeddedness of the surfaces in the
family inherited from the embeddedness of the original helicoids.

A second important feature is that we approximate a surface of finite
topology (and finite symmetry group) by surfaces of infinite topology (and
infinite symmetry group). We believe this is the first example of such a con-
struction resulting in the existence of a new surface.

The third feature is that we construct the Weierstrass data of these ap-
proximating minimal surfaces in terms of flat singular structures on the tori
corresponding to the quotients. The salient feature to note is that the defining
flat structures have singularities corresponding to the two ends2 with cone an-
gles of ±2πk. Thus, as the size of the twist tends to infinity, the cone angles also
tend to infinity, with the limit surface—our genus-one helicoid— represented
in terms of flat cone metrics with an infinite cone angle. This corresponds to
the Weierstrass data for a helicoid, whose Gauss map has an essential singu-
larity at the end. This required the development of a theory of singular flat
structures that admits infinite cone angles.

2There is an additional cone point (with cone angle 6π) in these structures at a vertical
point.



350 MATTHIAS WEBER, DAVID HOFFMAN AND MICHAEL WOLF

Figure 1: The helicoid and the He1 of [18]

Recently, Meeks and Rosenberg [29] have shown that the helicoid is the
unique simply connected, properly embedded (nonplanar) minimal surface in
R3 with one end. The method of proof uses in an essential manner the work
of Colding and Minicozzi [7], [8], [9], [10] concerning curvature estimates for
embedded minimal disks and geometric limits of those disks. (Colding and
Minicozzi have recently shown [6] that a complete and embedded minimal
surface with finite topology in R3 must be proper.) These results together
with the present work and numerical work of Traizet [36] and Bobenko [3]
(see Section 1.3) suggest that there may be a substantial theory of complete
embedded minimal surfaces with one end, infinite total curvature and finite
topology. For complete embedded surfaces of finite total curvature, the theory
is surveyed in [16].

1.2. The main theorem. In 1993 Hoffman, Karcher, and Wei [18] con-
structed a surface, He1 ⊂ R3, which they called the genus-one helicoid.

It has the following properties:

(1) (i) He1 is a properly immersed minimal surface;

(ii) He1 has genus one and one end asymptotic to the helicoid;

(iii) He1 contains a single vertical line (the axis) and a single horizontal
line.

We will take the liberty of referring to any surface with the properties (1)
as a genus-one helicoid, and of denoting such a surface by He1 . We emphasize
at this point that we do not include embeddedness in the list of properties
required by (1).

The He1 in [18] was constructed by solving the period problem for a
Weierstrass Representation (see (5)–(8)) chosen to force the surface to satisfy
conditions (1).

Computer-generated images of thisHe1 , and computational estimates pro-
duced by first solving the period problem numerically and then triangulating
the approximate surface, showed beyond reasonable doubt that this He1 was
embedded; nevertheless, a noncomputional proof has been elusive. (It is known
that any He1 must be embedded outside of a compact set. See Proposition 1.)
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We prove

Theorem 1. There exists an embedded He1.

We believe that the surface we have found is the same one constructed by
Hoffman, Karcher and Wei. In fact, we believe

Conjecture 1. There is a unique embedded He1.

Note that Conjecture 1 does not assert that there is a unique He1 and
that it is an embedded surface. This does not appear to be true, as Bobenko
[4] has given strong computational evidence for the existence of an He1 that
is immersed but not embedded.

Condition (1.ii) implies that any He1 has finite topology and infinite total
curvature. The helicoid—a surface swept out by a horizontal line rotating at
a constant rate as it moves up a vertical axis at a constant rate—is clearly
properly embedded and has finite topology (in fact it is simply connected).
Since it is singly periodic and evidently not flat, it has infinite total curvature.

1.2.1. The place of an embedded He1 in the global theory of minimal
surfaces. That complete minimal surfaces in R3 with finite total curvature
must have finite topology is a consequence of Osserman’s theorem3 ([33], [16]).
Finite topology does not imply finite total curvature for complete minimal
surfaces in R3—as the example of the helicoid shows—but Collin’s solution
of the generalized Nitsche Conjecture [11] implies that a properly embedded
minimal surface in R3 of finite topology with more than one end must have
finite total curvature. One is naturally led to the following questions.

Let S be a properly embedded minimal surface of finite topology with
infinite total curvature and one end :

(2.i) In addition to the helicoid, what are the other examples?

(2.ii) Is the end of every S asymptotic to the end of the helicoid?

(2.iii) Is the helicoid the unique simply connected S?

In [20], one of the authors (DH) and John McCuan considered properly
immersed minimal ends that are conformally equivalent to a punctured disk,
upon which the Weierstrass data dg/g and dh both have a double pole. (This
condition is satisfied by the helicoid.) They also assume that dh has no residue
at the puncture. (This condition must hold if the end appears on a properly
immersed minimal surface of finite topology with one end such as an He1 ,
because dh is holomorphic away from the puncture.) They show that if the

3Osserman’s theorem states that a complete minimal surface with finite total curvature in
R3 is conformally diffeomorphic to a compact Riemann surface from which a finite number
of points have been removed. Moreover, the Gauss map and coordinate one-forms of such a
surface extend meromorphically to the punctures.
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end contains a vertical and a horizontal ray, then the end is embedded, and it
is asymptotic to the helicoid. Specifically,

Proposition 1 ([20]). Let E be a complete minimal annular end that is
conformally a punctured disk, upon which both dg/g and dh have a double pole
and dh has no residue. If E contains a vertical ray and a horizontal ray then
that end is asymptotic to a helicoid. In particular, a subend is embedded.

This proposition allows us to construct Weierstrass data for an He1 that
meets the conditions of the Proposition and then be assured that the resulting
surface, if it exists (i.e. if the period conditions for the Weierstrass data are
satisfied), must have an embedded helicoidal end.

In terms of the context for question (2.i)–(2.iii), the techniques of [20]
were used and extended by Hauswirth, Perez and Romon [15] to study em-
bedded minimal surfaces of finite type,4 a strengthening of the condition of
finite topology. They prove that questions (1.3ii) and (1.3iii) have affirmative
answers if one makes the additional assumption that the minimal surface S
has finite type. Meeks and Rosenberg [28] showed that the answer to (2.iii)
is “yes” under the assumption that S is also singly periodic. They assume
neither bounded curvature nor finite total curvature of the quotient surface.
As mentioned in Section 1.1, Meeks and Rosenberg [29] recently resolved (2.iii)
in the affirmative.

Concerning (2.i), there is evidence that there are higher genus examples.
Traizet [36] (unpublished) devised a computer program to generalize the Weier-
strass representation in [18] to higher genus and compute and solve the period
problem numerically. This yielded convincing numerical evidence of a genus-
two helicoid, analogous to the surface described in Theorem 3. For genus three
and genus four, Bobenko also has produced examples computationally. See
also Figures 2 and 3 below.

1.3. He1 as the limit of a family of screw-motion-invariant, embedded
minimal surfaces. The starting point of our investigation is the singly periodic
genus-one helicoid.

Theorem 2 ([17], [19]). There exists a properly immersed, singly peri-
odic minimal surface H1, whose quotient by vertical translations:
(3.i) has genus one and two ends;

(3.ii) is asymptotic to a full 2π-turn of a helicoid ;

(3.iii) contains a vertical axis and two horizontal parallel lines.

Furthermore, any surface satisfying conditions (i)–(iii) is embedded.

4A minimal surface has finite type, if it is conformally a compact Riemann surface with a
finite number of points removed, and the Weierstrass data dg/g and dh extend meromorphi-
cally to the punctures.
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Figure 2: Images of higher genus examples of translation-invariant surfaces
with genus two (left) and three (right) in the quotient. They satisfy the other
geometric conditions of (4). These images were computed by Martin Traizet.
There is at the time of writing no proof that these surfaces exist. See however,
the recent work of Traizet and Weber [37].

Figure 3: A computed image of a conjectured genus-two analog of He1 . It
satisfies all the other conditions of Theorem 1, also computed by Traizet.

See Figure 4 and the left column of Figure 5 for images of H1 . The
fundamental domain of the surface can be imagined as a modification of one
full turn of the helicoid, a region bounded by two parallel horizontal lines that
are identified in the quotient. The modification consists of sewing in a handle
at mid-level. In fact,

Proposition 2. H1 is the unique singly periodic minimal surface satis-
fying the conditions (3.i)–(3.iii) of Theorem 2.

It was observed by Karcher that the proposition follows from the proof of
the existence of H1 in [19], together with a fundamental result of Weber about
rhombic tori [41]. This is discussed in Section 3. (See Proposition 8.)

In 1993, Hoffman, Karcher and Wei, realized that H1 could be conceived
as the limit of a one-parameter family of deformations of Karcher’s genus-one
modification of Scherk’s doubly periodic minimal surface. (See [18], [17] for
details.) Soon after, Hoffman and Wei imagined thatH1 could also be deformed
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Figure 4: Singly periodic genus-one helicoid, H1 .

in a manner suggested by the symmetries of the helicoid. The helicoid is not
only invariant under a vertical translation by 2π, it is also invariant under
vertical screw motions σk: for any real number k, the isometry σk is defined to
be rotation by 2πk around the vertical axis followed by a vertical translation
by 2πk. For k ≥ 1, imagine a periodic minimal surface, H

k
, invariant under a

vertical screw motion σk and satisfying the following conditions.

(4) The quotient of H
k

by σk:

(i) has genus one and two ends;

(ii) is asymptotic to a portion of the helicoid that has twisted through an
angle of 2πk;

(iii) contains a vertical axis and two parallel horizontal lines.

See Figure 5.

Hoffman and Wei defined a Weierstrass representation that was amenable
to numerical solution of the period problem. The twist angle 2πk was not
specified in advance and was a calculated function of parameters that specified
the conformal type of the rhombus and the location of geometrically specified
points. After normalization to make the Gauss curvature equal to −1 at the
intersection of the axis and the middle horizontal line, they observed (see
Figure 5) that the handle rapidly stabilizes and the surface quickly approaches
a helicoid away from the handle [23]. This reinforced the hope that He1 could
be produced as the limit of the H

k
and that embeddedness could be proved

in this manner. However, the form of the Weierstrass representation was not
well-suited for proving either existence of the H

k
, or continuous dependence

on k.
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Figure 5: Left column. The surface H1 ; on top, one quarter of the fundamental
domain of H1 modulo σ1; in the middle, one full fundamental domain contain-
ing four copies of the region above; on the bottom, two fundamental domains.
Middle column: The surface H

k
for k ∼ 1.25, with images that correspond to

those in the first column. Right column: The surface H
k

for k ∼ 2.5, with
images corresponding to the top and middle images of the other two columns.

The limit of these surfaces as k → ∞, if it existed in a geometric sense,
should be an He1 . More important, if it could be shown that the family
depended continuously on k, then the embeddedness of H1 would be inherited
by the H

k
. It was hoped that, under controlled circumstances, embeddedness

could be shown to pass to the limit He1 .
We show that this can be done.

Theorem 3. For every k > 1, there exists a complete, σk-invariant, prop-
erly embedded minimal surface, H

k
, whose quotient by σk satisfies conditions

(4). As k →∞, a limit surface exists and is an embedded He1 , i.e. a properly
embedded minimal surface satisfying conditions (1).

1.4. The ideas behind the proof of Theorem 3. Let ω be a meromorphic
one-form on a Riemann surface R. The developing map dev : R → D ⊂ C
given by p →

∫ p
p0
ω maps R onto a domain in the complex plane. If z is the

variable in C, then ω = dev∗(dz) and the periods of ω can be measured by
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subtraction in C. For example, the statement that a period of ω is real on a
cycle γ ⊂ R is equivalent to the statement that the endpoints of dev(γ) lie on
the same horizontal line in D ⊂ C. If (g, dh) are Weierstrass data on R for
a minimal surface M , we can use the developing map dev for the one-forms
gdh, 1

gdh and dh to produce domains in D ⊂ C that together with the metric
|dz| are called singular flat structures. These metrics correspond to the metrics
|gdh|, etc. on R which are flat with isolated cone points at the zeros and poles
of the one-form in question.

We will reverse this process. By specifying a domain D ⊂ C we will
declare that (D, dz) is the image under the developing map of one of the
geometrically relevant one-forms on all or part of the underlying Riemann
surface of a minimal surface M (e.g., gdh := dev∗(dz) on dev−1(D)). We can
do this in such a way that gdh, 1

gdh and dh solve the period problems for
the Weierstrass data and force desired symmetries. What remains is to show
that this can be done in such a way that the underlying conformal structures
coincide. Thus we transform a problem of killing periods into a problem of
matching conformal structures.

Weber realized that the Weierstrass data {g, dh} for H1 of Theorem 2 de-
fined one-forms gdh and (1/g)dh that differed by a scale factor and a transla-
tion. He used this to show that the horizontal-period problem (12) completely
specifies the conformal structure of the quotient of H1 modulo translations
[39]. Moreover, he noticed that the |gdh| flat structure of the underlying torus
had a particularly simple and elegant representation as a planar domain with
identifications. (See Figure 12, Sec. 3.3.) This allowed for a relatively simple
reconstruction of the singly periodic example H1.

Singular flat structures can be joined together along straight lines to pro-
duce new flat structures. This modifies not only the underlying conformal
structure but also the associated one-forms. By sewing in a cone of angle
2π(k − 1) (see Example 2 in Sec. 2) into the singular flat structure used to
define gdh for H1 we produce candidate flat structures for Hk (See Figure 24,
Sec. 4.1.) The position of the vertex of the cone gives a real parameter d > 0.
(For k = 1 we do not sew in a cone, but the choice of d determines the place-
ment of the ends.) We know from Theorem 2 and Proposition 8 that, for
k = 1, there is a unique solution to the vertical period problem and it is the
embedded example H1 . For each (k, d) ∈ [1,∞) × (0,∞), the construction
gives a candidate structure on each of which dh is determined up to a scale
factor and the horizontal period problem is solved. These structures depend
smoothly on (k, d).

For each fixed k, we have a single free parameter d. This free parameter
is used to satisfy the vertical period condition as follows: First, we realize
that the flat structure |dh| of dh can be understood qualitatively as a planar
domain (see Figure 16 right, Sec. 3.4). Second, for the parameter values at
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their limits, we are able to determine |dh| explicitly which allows us to apply
the intermediate value theorem (see the images on the far right of Figures 17
and 19, Sec. 3.4). This solves the vertical period problem for each fixed k.

Of course we need more than simply a single solution for each k: we need a
continuous family C of solutions that begins at the point (1, d1) corresponding
to H1 , and crosses each k = const. line segment in the (k, d) rectangle. Each
point, (k, d), on this curve will then define a properly immersed minimal surface
satisfing the conditions (4).

To do this, we note that a period of dh for each (k, d)-structure defines
a real analytic function, h = h(k, d) = Re

∫
Γ dh (for an appropriate Γ) whose

zeros are what we seek: if h = 0 for some (k, d), then the corresponding
(k, d)-flat geometric structure defines a properly immersed minimal surface H

k

satisfying conditions (4). Then, to find this curve C, we first compactify the
“moduli space” of (k, d)-structures, adding in degenerate structures for the
loci k = ∞, d = 0 and d = ∞ in a manner compatible with the topology of
[1,∞]×[0,∞]. We then show that the height function h is continuous on the full
compact rectangle [1,∞]×[0,∞] (i.e., h extends continuously to the loci defined
by d = 0,∞ and k = ∞). This has the advantage that the signs of h on the
degenerate surfaces (k, 0) and (k,∞) are evident and opposite, and so the inter-
mediate value theorem provides for a solution (k0, d) ∈ C for each choice of k0 ∈
(1,∞). More precisely, there must be a curve C on which h = 0 because this
curve separates the neighborhoods of the boundary components {d = 0} and
{d = ∞} on which h has opposite signs. Finally, a maximum-principle argu-
ment then shows that the embeddedness of H1 implies that all the H

k
, k > 1,

on this curve C are embedded.
The (k, d)-structures are defined for k =∞ by sewing in an infinite cone.

Thus, any structure (∞, d) corresponds to a potential He1 , which will exist
provided h(∞, d) = 0; the endpoint of C on the locus {k =∞} is then such a
point. Thus we obtain a limit flat structure that defines an He1 and we argue
that, as a limit of a family {Hk} of embedded surfaces, the surface He1 is also
embedded.

1.5. An outline of the paper. In Section 2 we review the Weierstrass rep-
resentation and the associated period problem for minimal surfaces invariant
under a screw motion. We introduce cone metrics and establish existence and
uniqueness results for them necessary for our work. A short review of extremal
length is presented. The helicoid is presented from both the point of view of
the Weierstrass representation and of singular flat structures (cone metrics).

Section 3 is devoted to the singly periodic genus-one helicoid, H1 , of The-
orem 2. In Section 3.1, we give a derivation of the Weierstrass data for this
surface under the geometric assumptions of Theorem 2. In Section 3.2, we
state the results of [19] about the existence of H1 , i.e. the solution of the pe-
riod problem. The rest of Section 3 is devoted to an alternate construction of
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candidate data and solution of the period problem for H1 using singular flat
structures.

Section 4 generalizes the cone metric construction of Weierstrass data
for H1. We produce analogous Weierstrass data for the surfaces H

k
of Theo-

rem 3. This involves three singular flat structures corresponding to the one-
forms gdh, 1

gdh and dh. These structures are naturally indexed in a rectangle
P by two real variables which control the twist angle and the conformal type of
the underlying punctured tori. These structures are generalized to the bound-
ary of P by introduction of cone metrics that are natural limits of the candidate
cone metrics in the interior. One of the limits involves letting the cone angle
tend to infinity; this is what we expect for the genus-one helicoid He1 .

Section 5 is devoted to the proof that the structures behave continuously
on the extended rectangle P. In particular, the vertical period —a well-defined
real number for each structure in the interior—actually extends to a continuous
function on the closed extended rectangle. We refer to this function as the
height function. The surfaces H

k
correspond to the zero locus of this function

on the interior of the rectangle.
In Section 6, we prove the first part of Theorem 2 by showing that there

is a continuous family of surfaces H
k

which begins with H1 and is defined
for all k ≥ 1. We do this by an intermediate-value-theorem argument using
the height function on P. We then show that the limit structure as k → ∞
produces an He1 . Embeddedness of this He1 is then established by using the
fact (Section 3.2) that H1 is embedded and an argument that embeddedness
propagates along the curve of H

k
structures.

In the appendices, we give an alternate Weierstrass representation of the
surfaces H

k
using theta functions, and we present a proof of the existence and

uniqueness results for the cone metrics that come up in Section 2.
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this paper, we are able to do this in a concrete manner, realizing directly
Rosenberg’s idea, but in a way he did not imagine. (See Section 4.)

2. Minimal surfaces, cone metrics and the geometry of H
k

2.1. General background. We begin with the Weierstrass representation
of a minimal surface in R3. Details can be found in [16] or [33].

Let S be an oriented minimal surface in R3. The metric on S induced by
the immersion is analytic and allows us to consider S as a Riemann surface.
We write M for this Riemann surface. The immersion X : M →R3 is by
definition conformal. Minimality of S is equivalent to the anticonformality of
the Gauss map N : M → S2, which in turn is equivalent to the conformality of
g := σ ◦N where σ is stereographic projection to the extended complex plane.

Minimality is also equivalent to the harmonicity of the conformal immer-
sion X. In particular, if f̂ is a linear function on R3 (a coordinate function
for example) then f̂ is harmonic on M . Let f̂∗ be the (locally well-defined)
harmonic conjugate of f̂ . Then f := f̂ + if̂∗ is a locally defined holomorphic
function and df is a globally well-defined one-form on M . In particular, we
define the one-form dh to be the exterior derivative of the h = x3 + ix3

∗, where
X = (x1, x2, x3). We will refer to dh as the “height differential”.

The Weierstrass representation allows one to write the conformal parametr-
ization X in terms of g and dh:

(5) X(p) = Re
∫ p

p0

Φ, where Φ =
(

1
2

(g−1 − g),
i

2
(g + g−1), 1

)
dh.

The immersion will be regular provided the induced metric

(6) ds =
1
2

(
|gdh|+ |1

g
dh|
)

is nowhere zero. This requires the zeros of dh to coincide with (and have
the same order as) the zeros and poles of g (points where the Gauss map is
vertical).

The integral formula (5) can be used to construct minimal surfaces. Given
a Riemann surface M , a meromorphic function g, and a holomorphic one-
form η, on M , the integral (5) – with η substituted for dh – defines a conformal
and harmonic mapping of M into R3 whose image is a minimal surface. The
mapping will be regular, provided |gη|+|1gη| 6= 0. The stereographic projection
of the Gauss map of this surface will be g and the one-form η will be equal to
the holomorphic one-form dh that is constructed above from h = x3. When
constructing minimal surfaces by specifying “Weierstrass data,” that is, when
specifying M , g and η, we will use the notation dh for η.
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The Weierstrass representation is, in general, multivalued. In order for
(5) to be single-valued on M , it is necessary and sufficient that

Re

∫
α

Φ = 0

for all closed cycles α on M . Using (5), this can be rewritten as

∫
α
gdh−

∫
α
(1/g)dh= 0 (Horizontal Period Condition)(7)

Re

∫
α
dh= 0 (Vertical Period Condition).(8)

In dealing with periodic minimal surfaces N , it is often useful—and some-
times necessary— to work with g and dh on the Riemann surface of the quo-
tient of N by translations or screw motions. We will be dealing with singly
periodic surfaces invariant under screw motions; without loss of generality, we
may assume that the translational part of the screw motion is vertical, and
that the axis of the screw motion is the x3-axis. Let M denote the Riemann
surface of the quotient surface under the screw motion σk. The Weierstrass
representation (5) defines an immersion of M̃ , the universal cover of M , into
R3. Screw-motion invariance means that there is a basis [αi] for the homol-
ogy of M such that if A[αi] is the deck transformation associated to [αi], then
X ◦A[αi] = X or X ◦A[αi] = σkX.

2.2. The helicoid. The helicoid, H, is a singly periodic minimal surface
swept out by horizontal lines moving at a constant speed up the x3-axis while
rotating at constant speed. (See Figure 1.) It is invariant under any vertical
screw motion around the x3-axis, in particular vertical translation by 2π. In
the quotient ofH by σk, the screw motion with twist angle 2πk, the Weierstrass
data on M = C− {0} can be chosen to be

(9) g = izk and dh =
kidz

z
.

When k is not an integer, the Gauss map on the quotient is multivalued, and
so is g. From the Weierstrass representation (5) we have

2(x1 + ix2) =
∫

1
g
dh−

∫
gdh = zk − z−k,

x3 = −k · arg(z).

The only relevant cycle is represented by a circle α around the origin.
Hence X ◦ A[α] = σkX, when α is oriented in a clockwise direction. The
Riemann surface upon which dh is well-defined is the Riemann surface of
w = ln(z), i.e. C. The globally defined function z = ew on C allows the
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expression of the Weierstrass data for the helicoid in a univalent manner:
g = iew, dh = −idw. This gives a global representation on C of H. Note
that in the representation on the quotient surface, C−{0}, there are two ends
(one at 0, the other at ∞) at which g has a simple zero and a simple pole,
respectively, while dh has a simple pole at both ends. In the global represen-
tation, there is a single end at infinity where g has an essential singularity and
dh has a double pole.

Since we will be using the helicoid as a model, we restate the well-known
facts above in terms of cone metrics.

2.3. Flat cone metrics. Consider, for k > 0, the cone Ak, described as an
identification space

Ak = {(r, θ)|0 ≤ r < 1, |θ| ≤ πk}/ ∼,
where ∼ identifies the top and bottom edges and collapses the left-hand edge:
(r,−πk) = (r, πk) and (0, θ) = (0, 0). Via the identification (r, θ) → z = reiθ,
we may regard Ak as a possibly multisheeted “sector” with vertex at the origin
0 ∈ C and edges identified. Away from the origin, the sector Ak inherits the
flat metric |dz| on the plane. This metric is the metric of a flat cone with
vertex at the origin. We observe that a neighborhood of the vertex is isometric
to a neighborhood of the vertex of another identification space Ak′ if and only
if k = k′: this is because the circumference of a circle of radius ε linking the
distinguished point of Ak has length 2πkε.

We extend this definition of Ak to k = 0 by taking A0 to be the identifi-
cation space of {z ∈ C||Im z| ≤ 1,Re z ≤ 0}, where we identify the boundary
rays by a vertical translation and consider the distinguished point (the vertex)
to be a point that compactifies the left end of the cylinder.

A neighborhood of the vertex of Ak is topologically (and conformally) a
disk. Consider the map w : D→ Ak from the disk D to a neighborhood of the
distinguished point given by z = wk for k 6= 0, and z = logw, when k = 0. We
can pull back the metric on Ak to D:

|dz| = |kwk−1dw|.

z = 0 z =∞
dh ∞ ∞
g 0k ∞k

gdh 0k−1 ∞k+1

1
gdh ∞k+1 0k−1

Figure 6: The divisors of g, dh, gdh and 1
gdh for the heliciod

modulo σk, a vertical screw motion with twist angle 2πk.
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In particular, we see that a metric ds = |wαdw| on the disk D defines a metric
isometric (up to a scale factor, which is unimportant in the present discussion)
to one in a neighborhood of the distinguished point on Ak, with k = α + 1.
In particular, we may define for k = 0 the metric |dww | on the unit disk, and
consider it to be a flat cone with cone angle zero at the vertex.

We now extend the range of definitions of these local neighborhoods to all
k ∈ R by working with these flat singular metrics defined on the disk D.

Definition 1. Cones and cone points with cone angle 2πk, k ∈ R. The
cone Ck is defined to be the disk D with the metric given up to scaling by
|wk−1dw| on {w : |w| < 1}. The origin is the cone point of the cone Ck.

Note that when k = 1, this formula is the standard regular metric |dw| on
the w−disk. We will adopt the convention of not referring to the origin in C1

as a cone point but as a regular point. Also note that the metric |wk−1dw| on
the (compactified) exterior of D defines a metric with vertex at infinity that is
isometric to C−k. This follows immediately from pulling the exterior domain
back to D by w → 1

w and pulling back the metric to the disk.
We will need to consider infinite cones of a specific type.

Definition 2. An exponential cone of simple type. The cone Ce is the disk
D with the metric |e 1

w
dw
w2 |. The origin is the cone point of Ce.

Note that the metric in the definition of Ce is the pullback of the metric
|ewdw| on the (compactified) exterior of the unit disk. Therefore we may
(equivalently) consider Ce to be the (compactification of the) exterior of the
unit disk with metric |ewdw| and cone point at ∞.

The following definition is nearly standard (see [38]): our extension allows
the presence of cone points with negative cone angles and exponential cone
points of simple type.

Definition 3. Flat cone metric. Let M be an oriented surface and let
{p1, . . . , pn} be a discrete set of points of M . A flat cone metric on M is a
metric on M so that every point on M has a neighborhood as follows:

(1) Regular points. If q /∈ {p1, . . . , pn}, then q has a neighborhood that is
isometric to a neighborhood in the Euclidean plane.

(2) Cone points. Every point pi in the distinguished set has a neighbor-
hood that is isometric to a neighborhood of the vertex in either Ck or Ce. In
the first case, the point pi is a cone point with finite cone angle and in the
second case, it is a cone point with cone angle of simple exponential type.

The definition naturally requires transition maps between neighborhoods
to be Euclidean isometries. This defines a conformal, hence complex, structure
on M − {p1, . . . , pn}. Further, deleted neighborhoods of the cone points are
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clearly conformally punctured disks, so that the Riemann surface structure on
M−{p1, . . . , pn} then extends naturally to a Riemann surface structure on M .

The simplest example of a cone metric is the extended complex plane with
metric |dz|. There is a single cone point at infinity with cone angle −2π. More
generally, consider a compact Riemann surface M and ω a meromorphic one
form on M . Define the metric ds = |ω|. Since log|ω| is harmonic, the Gauss
curvature of the metric is zero: K = −∆ log |ω|

2|ω|2 = 0, valid away from the poles
and zeros of ω. A zero (resp. pole) of order k of ω represents a cone point with
cone angle 2π(k + 1) (resp. 2π(−k + 1)) of the metric |ω|. This is evident by
looking at local expansions but it is useful to show this by use of the developing
map F given by

F (p) =
∫ p

a
ω : M − {p1, . . . , pn} → C,

where {p1, . . . , pn} are the zeros and poles of ω. Values of F at a point p differ
by periods of ω so we can pull back the flat metric on C to a well-defined flat
metric on M − {p1, . . . , pn}. (This gives another way to show that the metric
is flat away from the poles and zeros of ω.) Near pi, the surface M has a local
chart in which ω takes the form ω = zkidz. If ki 6= −1, then we can explicitly
integrate to obtain that

F (z) =
zki+1

ki + 1

near p. Thus, pi is a cone point with cone angle 2π(ki + 1).
In the previous paragraph, a cone metric was defined via metric expres-

sions. As we shall see in Examples 2 and 3 below, they can also be pieced
together from pieces of flat cones like Ck or Ce. The two methods of construc-
tion are related via the developing map. It is important to our approach to be
able to pass freely between the two descriptions.

There is a natural version of the Gauss-Bonnet formula for cone metrics
on a surface M with finite cone angles. Let γi be a small circle around pi,
i = 1, . . . , n. Then

⋃n
i=1 γi bounds a connected flat surface, M ′, whose Euler

characteristic is 2 − 2g − n, where g = genus(M). Each γi has total geodesic
curvature on M ′ equal to −2πki. The Gauss-Bonnet formula for M ′ gives

(10)
n∑
i=1

ki = n+ 2(g − 1).

We will see in Proposition 3 below that there is an extension of this necessary
condition to the case of cone metrics with exponential cone points of simple
type.

Example 1. The cone metrics Sk. First let k > 0, and let M be the
extended complex plane and ω = zk−1dz. The cone points of M with cone
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metric |ω| are 0 and ∞ with cone angles 2πk and −2πk, respectively. From a
constructive point of view, for k ∈ (0, 1), let Sk be the infinite sector of angle
2πk, with edges identified. When k = 1, let S1 be the extended complex plane,
equipped with the metric |dz|. This surface has a single cone point of cone
angle −2π at∞. When k > 1, consider that sector to be a multiple covering of
C−{0}, with metric |dz|. If z is the variable in that plane, then for w = 1

kz
k,

we have ω = dw. Note that Sk and S−k are isometric with z → 1/z producing
the isometry. Finally, for k = 0, we set the metric ω = dz

z , and S0 is an infinite
cylinder.

Given two flat cone metrics, we can perform surgery to produce a third
one. Let M1 and M2 be cone metrics and let Li ⊂ Mi, i = 1, 2, be geodesics
(straight lines) of the same length that do not pass through (but may terminate
at) cone points. Join M1 to M2 along the Li by identifying opposite edges of
M1 − L1 to M2 − L2 in a manner that produces a surface with orientation
consistent with the orientations of M1 and M2.

The end points of the lines on the joined surface will, in general, be cone
points with cone angles equal to the sums of the angles at the corresponding
cone points of the Mi.

Example 2. Sewing an Sk into a cone metric, k > 0. Let M be a cone
metric and L a straight line in M of infinite length, beginning at a point p
of positive cone angle 2πkp and terminating at a cone point, q, of nonpositive
cone angle 2πkq. Sew in Sk to M along L by matching the positive real axis in
Sk — joining 0 to ∞ — to L with 0 matched to p. The resulting cone metric
will have cone points at p and q of cone angles 2π(kp + k) and 2π(kq − k),
respectively (in addition to any other cone points of M).

This is an example of the process of grafting of projective structures (see
e.g. [26] and [14].) See Figure 24, where Sk−1 is grafted onto a flat torus. In
that example, kp = 1 and kq = −1.

Example 3. Removing an Sk from a cone metric. Let M be a cone
metric, p ∈ M a point with cone angle 2πkp with kp ≥ k > 0, and L1 and L′1
two rays of infinite length in M that satisfy the following properties: L1 makes
an angle of 2πk with L′1 at p; the lines L1 and L′1 terminate at the same point
q ∈ M ; the union L1 ∪ L′1 bounds a simply connected region. Remove that
region from M , with L1 identifying L′1. The region removed is an Sk (a fact
that can be seen easily or deduced from Proposition 4 below). The resulting
cone metric has cone points at p and q of cone angles 2π(kp−k) and 2π(kq+k)
respectively.

2.3.1. Existence and uniqueness of cone metrics. The next two proposi-
tions show that cone metrics are essentially determined by their cone points,
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and that the Gauss-Bonnet condition (10) and its natural extension (11) are
the only obstructions to existence. Here we aim to extend work of Troyanov
[38] on cone metrics with positive and finite cone angles to the cases where the
cone angles may be negative or of simple exponential type.

Proposition 3. Let M be a compact Riemann surface,{p1 . . . pr . . . , pr+`}
a collection of distinct points, r > 0, ` ≥ 0. Suppose {a1 . . . ar} is a collection
of real numbers satisfying (11)

(11)
r∑
j=1

aj = −(2− 2genus(M)) + r + 2`.

Then there exists a cone metric on M with finite cone points pj with cone
angles aj , j = 1 . . . r, and exponential cone points pk, 0 ≤ k ≤ ` of simple type.

In order to state the uniqueness theorem for cone metrics we must intro-
duce the following definition.

Definition 4. Two exponential cone points of simple type with local repre-
sentations |e 1

w
dw
w2 | and |e 1

z
dz
z2 | are asymptotically isometric provided dw

dz (0) = 1

Proposition 4. A cone metric on a compact Riemann surface with cone
points with finite cone angles is determined up to scaling by the location of the
cone points and their cone angles. The same result is true if one or more of
the cone points is an exponential cone point of simple type, provided that the
corresponding cone points are asymptotically isometric.

The proofs of these propositions are given in Appendix B.
The hypothesis of “asymptotically isometric” cone points in Proposition 4

is necessary as the following example shows.

Example 4. Cone metrics with the same cone points and cone angles are
not necessarily scalar multiples of one another. Consider on S2 = C∪{∞} the
family of cone metrics given by

µβ =
∣∣ z + 1
z − 1

· z + 2
z − 2

eβzdz
∣∣,

β > 0. All of the cone metrics µβ have cone points at ±1, ±2, and ∞ with
cone angles −4π at z = 1 and z = 2, cone angles + 4π at z = −1 and z = −2,
and an exponential cone point of simple type at ∞. From the definition of
µβ it is evident that the cone point at ∞ of µβ1 is asymptotically isometric to
the cone point at ∞ of µβ2 if and only if β1 = β2. For any choice of β, since
µβ|z = µβ|z̄, any segment of the real axis is a geodesic. (In fact, the real axis is
a length-minimizing geodesic between the cone points∞ and −2 (and between
−2 and −1) but we will not need to use this observation.) Even though the



366 MATTHIAS WEBER, DAVID HOFFMAN AND MICHAEL WOLF

cone points and angles are the same for all β > 0, we will show that these
metrics are not all scalar multiples one of the other. Define

f(β) =
∫ −2

−∞
µβ and g(β) =

∫ −1

−2
µβ.

It is straightforward to show that

0 < g(β) ≤ e−β − e−2β

β
,

which implies that limβ→0 g(β) ≤ 1. Since limt→−∞ t+1
t−1

t+2
t−2 = 1 and eβt > 1

2 for
t > − log 2

β , it follows that limβ→0 f(β) =∞. Now suppose that the conclusion
of Proposition 4 is true for the metrics µβ. Then

µβ = c(β)µ1

for some positive, real-valued function c(β). Moreover, since f(β) is the length
of (−∞,−2) in the µβ metric and g(β) is the length of (−2,−1) in the µβ
metric, we would have

f(β)
f(1)

= cβ =
g(β)
g(1)

.

But we have shown that f(β) diverges as β → 0, and that g(β) is bounded as
β → 0. Hence, it is not possible that all the µβ metrics agree up to a scalar
stretch factor.

2.4. The exponential cone as the limit of Sk as k →∞. In our construction
of the surfaces H

k
in Section 4, we will sew the cone metrics Sk into a torus and

let k →∞, with the expectation that the limit corresponds to the creation of
an exponential cone point of simple type. We will show here that the limit of
Sk as k →∞ (in an appropriate sense of limit) is a cone metric on the sphere
with one exponential cone point of simple type.

Let z be the variable on Sk (considered as a multisheeted sector with
|θ| ≤ kπ in the z = reiθ-plane), and let z = z(w) = (1 + w

k )k. The metric |dz|
on Sk with cone points at 0 and∞ is isometric to the cone metric |(1+w

k )k−1dw|
on C−{−k}, whose cone points at w = −k and w =∞ have cone angles 2πk
and −2πk, respectively. As k →∞, these metrics on C−{−k} tend to |ewdw|
uniformly on compact subsets.

We understand convergence of metric spaces here as relative to a fixed
base point; in this case, we take the origin as the fixed point for each Sk. Note
that this point corresponds to z = 1. The point w = 1 corresponds to a point
in Sk that is converging in the |dz| metric to e. Then the uniform convergence
of the metrics on compacta, and the choice of the origin as fixed for all k,
means that we may regard the point w = 1 ∈ C as the limit of a bounded
sequence of points pk in Sk.
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Consider the annulus in C that is centered at the origin and has inner
radius 1 + 1

2 and outer radius k− 1
2 . This annulus separates the pair of points

{0, 1} from the pair of points {−k,∞}. The modulus of this annulus (see
Definition 6) is equal to 1

2π log 2
3(k − 1

2), which goes to infinity with k. From
this it follows from Proposition 5 in Section 2.5 that the extremal length of the
class of curves that separate these pairs of points goes to zero as k →∞. This
shows that the points −k and ∞ “coalesce” as k → ∞. What we mean by
this is explained in the next subsection in Remark 2. We consider two types
of limits of the spaces {Sk}: the conformal limit of the punctured Riemann
surfaces C−{−k,∞} and the (metric) limit of the metric spaces Sk. The
analysis above shows that the conformal limit is C∪{∞} with a distinguished
point at∞, and the metric limit is |ewdw| uniformly on compacta. This implies
that, metrically, the spaces Sk limit on the sphere C∪{∞} with a single cone
point of simple exponential type at ∞.

Remark 1. (i) Pulling back the metric on Sk to the strip |Imζ| < k by the
map z = log ζ, one can consider the metric |eζdζ| on the strip to be a repre-
sentation of Sk with cone points at Reζ = −∞ and Reζ = +∞ corresponding
to the cone points 0 and ∞ in the “z model” of Sk. As k → ∞, the metric
converges to |eζdζ| on the entire complex plane. The argument using extremal
length can be repeated here to show that the strips converge to a cone metric
with one cone point at infinity.

(ii) We note here that there is a difference between the exponential cone
points and the cone points with finite cone angle. In any cone metric, cone
points with finite positive cone angles have neighborhoods where the metric
is precisely equivalent to the metric on a Euclidean cone, so that every curve
from a regular point to such a cone point has finite length. However, every
curve that goes from a regular point to a cone point with a finite, nonpositive
cone angle has infinite length. In particular, a cone metric with all cone angles
finite defines a complete metric space on the underlying Riemann surface with
the nonpositive cone points removed; each such point corresponds to an end
and the metric-space topology is identical to the topology of the underlying
punctured Riemann surface.

The situation is not the same in the presence of cone points of simple
exponential type. Consider the extended complex plane with metric |eζdζ|, a
cone metric with one cone point of simple exponential type at ∞. Horizontal
curves of the form {t + iy0| t < t0} have finite length while those of the form
{t + iy0| t > t0} have infinite length. If the point at infinity is removed, the
metric is not complete. If it is left on the surface, then the metric is complete
but defines a topology that is not the same as the topology of the Riemann
sphere: for example, the sequence of positive integers eventually leaves any
neigborhood of ∞.
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2.5. Preliminaries on extremal length. We will make use of arguments
using extremal lengths, and so we record the basics of this subject in this
subsection.

Extremal length assigns a conformal invariant ExtR(Γ) to a set of curves
Γ on a Riemann surface R. A flexible tool for distinguishing conformal struc-
tures, extremal length is especially useful when the set of curves Γ is the free
homotopy class of a simple closed curve. For such a class of curves, there are
two equivalent definitions of the extremal length Ext(Γ), with one definition
naturally suggesting lower bounds and the other definition naturally suggest-
ing upper bounds. We can often use this principle to obtain good estimates
(see e.g. [32]) for the asymptotics of ExtR(Γ) in many situations under which
R degenerates, sending ExtR(Γ) to zero or infinity.

We begin with the general definition.

Definition 5 (Analytic). Let Γ be a set of curves on a Riemann surface R.
Then

ExtR(Γ) = sup
ρ

infγ∈Γ[`ρ(γ)]2

Area(ρ)
,

where the supremum is taken over measurable conformal metrics ρ|dz|2 on R,
the notation `ρ(γ) =

∫
γ

√
ρ refers to the ρ-length of a curve γ ∈ Γ on R, and

Area(ρ) =
∫∫
R ρ is the ρ-area of R.

Example 5. Let R be the annulus A(r1, r2) = {r1 < |z| < r2} in the plane,
and let Γ consist of all curves freely homotopic to the core curve {|z| = r1+r2

2 } ⊂
A(r1, r2). Then a simple length-area argument [1] shows that ExtR(Γ) =

2π
log(r2/r1) .

Definition 6. The number 1
2π log(r2/r1) is known as the modulus mod

A(r1, r2) of the annulus A(r1, r2).

This leads to the second definition of extremal length in the case that Γ
is a free homotopy class of curves, all of whose members are freely homotopic
to a simple closed curve on R.

Definition 7 (Geometric). The extremal length ExtR(Γ) of a curve sys-
tem Γ ⊂ R is defined to be

ExtR(Γ) = inf
A⊂R

1
modA

where the infimum is taken over all conformal embeddings of annuli A into R
which take the core curve of A into some γ ∈ Γ.

It is an important result (see [35]) that

Proposition 5. The geometric and analytic definitions of extremal length
coincide.



AN EMBEDDED GENUS-ONE HELICOID 369

Naturally, if we are interested in lower bounds for extremal length, we
compute infγ∈Γ[`ρ(γ)]2/Area(ρ) for a specific conformal metric ρ on R, and
obtain a lower bound on ExtR(Γ). On the other hand, if we are interested in
upper bounds, we compute the modulus of some specific annulus embedded in
R with core curve homotopic to Γ, and obtain an upper bound on ExtR(Γ).

Remark 2. In many of our applications, we will wish to show that a se-
quence of pairs of points, say {pn, p′n}, “coalesce” to a single point p∞. Con-
formally, this means that the set Γ, of curves which encircle pn and p′n, have
arbitrarily small extremal length, i.e. the neck linking a neighborhood of pn
and p′n is pinching off as n → ∞. In this case, by the geometric definition of
extremal length, it is then enough to show that there is a sequence of annuli
An with modAn →∞ so that An can be conformally mapped into R in a way
that disconnects a disk containing pn and p′n from the rest of R.

2.6. The helicoid in terms of cone metrics. We conclude the background
discussion by presenting the helicoid from the point of view of cone metrics.
From (9), we have for the helicoid, H, modulo the screw motion σk:

gdh = kzk−1dz,
1
g
dh =

−kdz
zk+1

on C−{0} with ends at 0 and ∞. We may consider these forms to be defined
on the cone metrics Sk and S−k respectively. They are related by the inversion
z → 1

z , so we may consider them both to be defined on the same domain. This
is precisely the local expression of the form that produces the metrics on Sk
and S−k defined in Example 1 in Section 2.3.

We may run this discussion backwards to construct H/σk from cone met-
rics. Both Sk and S−k are defined on the extended plane. We may develop
(isometrically) both of these metrics onto the Euclidean plane. If we pull back
the naturally defined one-form, say dw, from that Euclidean plane to the orig-
inal extended plane, we obtain two one-forms we may use to define gdh and
1
gdh, respectively. Straightforward integration of (5) gives, as in Section 2.2,
x1 + ix2 = 1

2(zk − z̄−k). Moreover,

dh2 = gdh · 1
g
dh = −k

2dz2

z2
,

so that dh = ±ikdz
z ; thus we may recover the third component of H/σk from

these data. Also
g2 = gdh/(

1
g
dh) = −z2k,

so the Gauss map g = ±izk may also be recovered from this data.
We showed in the previous section that Sk converges, as k → ∞, to a

cone metric with a single exponential cone point of simple type. Following the
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Figure 7: A fundamental domain of H1 can be imagined qualitatively as a
region of the helicoid bounded by two horizontal lines between which the he-
licoid turns by an angle of 2π and in the middle of which there is a handle.
Illustrated here is one-half of the fundamental domain; this half is on the side
of the vertical plane that contains the vertical axis and the two horizontal lines.
The other half of the fundamental domain is produced by reflection through
the vertical axis. The boundary lines, top and bottom, are identified in the
quotient as a single line. The only other line, besides the vertical axis, that
survives the surgery necessary to insert the handle is a horizontal line in the
middle, at the level of the handle. The normal symmetry line L is not illus-
trated here but can be easily visualized as the horizontal line perpendicular to
the vertical and horizontal line through the center point. (See [23].)

procedure there gives a global representation of the limit of the cone metric
representation for H

k
/σk, yielding a representation of the defining Weierstrass

data of the helicoid by gdh = ezdz and 1
gdh = −e−zdz.

2.7. Symmetries of the H
k
. We conclude this section with a derivation

of the symmetry properties and the conformal structure of the surfaces H
k

modulo σk. We assume properties (i)–(iii) of (4), which are the defining prop-
erties of the H

k
, whose existence is asserted by Theorem 3. The results of this

subsection are collected in the lemma at the end of the discussion.
From the assumptions (4), we know that the periodic surface is invariant

under a vertical screw motion, σk, of angle 2πk, and that it contains a verti-
cal axis. By the Schwarz Reflection Principle, which states that if a minimal
surface contains a straight line then it is invariant under 180◦-degree rotation
about that line, the surface is invariant under 180◦-degree rotation about the
vertical axis. In each fundamental domain (a region of the surface that gen-
erates the whole surface by the action of σk), there are by assumption, two
parallel horizontal lines. It is easy to see that—under the assumption that
the surface is singly periodic but not doubly or triply periodic—the horizontal
lines meet the vertical axis. To see this, recall that successive reflection in two
distinct lines in R3 results in a Euclidean motion with the following proper-
ties: its translational component is in the direction of the segment of shortest
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length between the lines; its rotational component has this direction as axis
and rotation angle equal to twice the angle between the lines. If either line
does not intersect a third, say vertical, axis, then the surface is invariant under
a Euclidean motion with a nonzero horizontal translational component. Since
we have assumed the existence of a vertical translation T , this contradicts our
assumption of single-periodicity. In addition, if there were another nonhori-
zontal line on the surface, then the surface would be invariant under a screw
motion along the line connecting the vertical axis to that fourth line: thus the
surface would be invariant under a nonvertical screw motion, which is also a
contradiction.

Consider two consecutive horizontal lines, L0, L1, on the surface with
L0 above L1. The pair of lines L0, σkL0 bounds a domain, say S, and by
hypothesis L1 must be the only horizontal line in the interior of S. Let µi
denote reflection in the line Li. If µ1L0 lies strictly below σkL0, then µ1L0 = L1

or L0 = µ1L1 = L1, a contradiction. If µ1L0 lies strictly above σkL0, then
µ1L0 and σkL1 lie in the interior of σkS and therefore must be the same line.
We then have µ1L0 = σkL1, or L0 = µ1σkL1, a contradiction since µ1σkL1

lies in the interior of σ−1
k S. Thus µ1L0 = σkL0. In particular, L0 and L1 are

separated by a vertical distance πk. Moreover since µ1σk is an orientation-
reversing symmetry of our surface that fixes L0, it follows that µ1σk = µ0,
that is, µ1 = µ0, mod σk.

Successive reflection in the vertical axis and a horizontal line on the surface
that meets the axis at a point p, produces a reflection in the horizontal line
through p that is normal to the surface at p. Call this line L. Reflection in
L is referred to as a normal symmetry of the surface. Modulo σk, this is the
same symmetry no matter which horizontal line is chosen.

Reflection in the vertical axis is an involution of the minimal surface,
which leaves height unchanged and fixes pointwise the vertical axis. Its fixed-
point set on the quotient surface consists precisely of those points that get
mapped to the vertical axis, a connected set. The normal symmetry around L
fixes a point on the vertical axis and leaves the vertical axis invariant. In the
quotient surface, the normal symmetry fixes two points on the vertical axis, the
points where the horizontal lines meet the vertical axis: this follows because
the normal symmetry acts as an isometry on the segment of the vertical axis in
one fundamental domain of the surface. Hence as it inverts this segment about
the point where the line L meets the axis, it fixes exactly that intersection
point and the (end)point at distance 2πk along the segment.

By hypothesis, the quotient surface is a torus, and we may model it as
the region bounded by a parallelogram in the complex plane, with opposite
edges identified. (When we refer to a ”parallelogram,” we will mean the closed
region bounded by a quadrilateral with opposite sides parallel, or, depending
on the context, the Riemann surface of genus one produced by identifying the
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opposite edges of its boundary.) The normal symmetry fixes two points on the
vertical axis. Without loss of generality, we assume that one of those points
corresponds to the center of the parallelogram. We label the center O.

On the torus, there is a holomorphic one-form with no zeros. Up to scaling,
this one-form is equal to the one-form that descends to the parallelogram from
the one-form dz on the complex plane. We will also refer to this one form as dz.
Let ρ be the involution on the quotient surface that is induced by the normal
symmetry. Let r be 180◦-rotation about the center of the parallelogram, also
an involution of the torus. Both ρ∗(dz) and r∗(dz) are zero-free holomorphic
one-forms and so must agree up to a scalar multiplicative factor. Since they
are involutions that fix the center point, r∗(dz) = −dz = ρ∗(dz) at that point.
Hence r∗(dz) = ρ∗(dz) everywhere, which implies that ρ = r.

Let µv be the (anticonformal) involution of the parallelogram correspond-
ing to the involution of the quotient surface produced by reflection in the verti-
cal axis. We know that the fixed-point set of µv is a connected curve that passes
through the center of the parallelogram. We look at the action of µv near the
center point of the parallelogram. If W is the line through the center point of
the parallelogram that is tangent to the fixed-point set of µv, let rW be reflec-
tion across W in the complex plane. At the center, µ∗v(dz) = λ(dz) = r∗W (dz),
for some complex number λ, |λ| = 1. As in the previous paragraph, we can
conclude µ∗v(dz) = r∗W (dz) and hence that µv = rW near the center, hence
everywhere. In particular, we have shown that reflection in the line W is an
involution of the parallelogram. This implies that the parallelogram is either
a rhombus with a diagonal on W , or a rectangle with a side parallel to W .
But we know that the fixed-point set of µv is connected, which implies that
the parallelogram is a rhombus.

Rotate the rhombus if necessary so that the diagonal on W is a vertical
line segment. We will refer to this diagonal as the vertical diagonal. Reflection
in the other diagonal of the rhombus is equal to µh := µv ◦ ρ, and so must
correspond to the reflection in the horizontal lines of the quotient surface. Since
this diagonal represents both lines and since the lines diverge, the punctures
at the ends must appear on this diagonal. We will denote the end punctures
by E1 and E2. Because r leaves {E1, E2} invariant—in fact, it interchanges
E1 and E2—they must be symmetrically placed with respect to O.

The careful reader will note that we have specified O to correspond to
one of the two points where a horizontal line on the surface meets the vertical
axis. The rotation r by 180◦-degrees about O fixes four points; the center, the
vertex, and the two half-periods. Since r corresponds to the normal symmetry,
and r ◦µv corresponds to reflection in the horizontal lines, the two off-vertical-
axis fixed points of r must lie on the same horizontal line. Without loss of
generality, we may assume that it is this horizontal line that crosses the axis
at O. We collect the above discussion as
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Lemma 1. The defining properties (4)(i)–(iii) of the surfaces H
k

of The-
orem 3 imply that

(iv) The horizontal lines on H
k

meet the vertical axis. Two successive hor-
izontal lines are separated by a vertical distance of πk. Composition of
rotation about two successive lines is a vertical screw motion σk, which
descends to the identity transformation on H

k
/ σk. Rotation by 180◦

about one of the horizontal lines is a symmetry of the surface that de-
scends to an involution of quotient surface, and that involution does not
depend on the choice of horizontal line.

(v) Rotation by 180◦ about the vertical axis is a symmetry of H
k
. The compo-

sition of this rotation with rotation about a horizontal line on the surface
is rotation by 180◦ around a line orthogonal to the axis and the horizon-
tal line. These order-two symmetries—referred to as a normal symme-
tries—induce the same involution on the quotient surface of H

k
/σk.

(vi) The quotient surface of H
k
/σk has the conformal structure of a rhombic

torus with two punctures. Without loss of generality, we may assume this
rhombus: is conformally modelled by the domain bounded by a rhombus
in the plane with opposite edges identified ; and is oriented so that the one
of the diagonals is vertical, the other horizontal ; the vertical diagonal is
mapped into the vertical axis; the horizontal diagonal is mapped onto the
horizontal lines of H1. In particular, the two punctures—corresponding
to ends—occur on the horizontal line, and they are symmetrically placed
with respect to the origin. They separate it into segments mapped to the
two different horizontal lines.

(vii) On the rhombus, the reflection µv in the vertical axis corresponds to 180◦-
rotation about the axis of H

k
. The reflection µh in the horizontal diagonal

corresponds to 180◦-rotation around a horizontal line of H
k
. The 180◦-

rotation, r = µvµh, about the center, O, of the rhombus corresponds to
the normal symmetry of the quotient surface. Two of the fixed points of r,
namely O and the vertex of this rhombus, correspond to the two points
in the quotient of H

k
/σk where the horizontal lines cross the vertical

axis. The two other fixed points of r lie at the half-period points and
correspond to two off-axis fixed points of the normal symmetry. These
points lie at the same height as one of the on-axis fixed points: without
loss of generality, we may assume that they lie at the same height as the
point correponding to O.

3. The singly periodic genus-one helicoid

We give a new proof of the existence of the surface H1 of Theorem 2 in
Section 1.3. The alternative construction presented here is due to Weber [39],
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Figure 8: The conformal structure of Hk/σk is a rhombic torus punctured in
two points. The vertical diagonal (represented here by a vertical dashed line)
corresponds to the vertical axis. The horizontal diagonal corresponds to two
horizontal lines, represented here by two line segments of different thicknesses.
The thinner one crosses the vertical diagonal at the center of the rhombus.
The thicker one crosses the vertical diagonal at the vertex. Note that in the
computed image of the surface there are two thick horizontal lines, one on
top, the other on the bottom. In the quotient, these are the same line. The
symmetries of the rhombic torus—reflection in the vertical diagonal and the
horizontal diagonal—correspond to Schwarz reflection in the vertical axis and
the horizontal lines on Hk/σk, respectively. The thin and thick horizontal line
segments in the rhombus meet at two points corresponding to the punctures in
the torus. These punctures correspond to the ends of Hk/σk. The two circles
that surround the puncture points at the ends correspond to the two helicoidal
edges in the computed image.

and is key to the proof of the existence of the H
k

of Theorem 3 in Sections
4 and 5. It is in this section that the transformation of the problem from an
analysis of forms and functions on Riemann surfaces to geometric manipula-
tion of singular flat structures is most clearly displayed. The existence and
embeddedness of H1 was originally proved in [19].

In 3.1, we derive necessary conditions for the Weierstrass data of H1 that
are sufficient to specify them uniquely. Together with a real parameter that
gives us the underlying rhombic torus, this determines not only the Riemann
surface structure of the quotient surface but also the Weierstrass data g (up
to a unitary multiplicative factor) and dh (up to a positive real multiplicative
factor). (Geometrically, the surface is determined up to a rotation about the
vertical axis and a scaling in R3. If we make the reasonable assumption that
the horizontal lines on the surface are parallel to the x2−axis, and that the
translational symmetry of the surface is generated by a vertical translation of
length 2π, then the Weierstrass data are completely determined.)

In Section 3.2, we formulate the period problem for H1 and state the
main results of [19], namely that there exists a choice of parameters that solve
the period problem. Any such choice produces a minimal surface that has all
the required properties of Theorem 2 in Section 1.3, including the property of
embeddedness. It is instructive to prove the existence of H1 using the methods
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here because of the relevance of the methods to the construction of the surfaces
H
k

in Section 4.
In Sections 3.3–3.4 we present an alternative proof of the results of Theo-

rem 2 (excluding embeddedness). We begin in Section 3.3 by showing that the
properties of the Weierstrass data derived in Section 3.1 uniquely determine
the rhombic torus. This means that there is in fact only one parameter in
the Weierstrass data: the position of the ends. Next we construct this spe-
cial torus, which we call T1 , by cone-metric methods. This method actually
determines not only the torus but also the one-form gdh. For any placement
of the ends on T1 , we use a symmetry construction to produce a candidate for
(1/g)dh for which the horizontal period problem is automatically solved. In
Section 3.4, we then show that there is a placement of the ends for which the
vertical period problem is also solved.

3.1. The Weierstrass data: derivation from geometric assumptions. We
want a singly periodic, properly immersed, minimal surface with the properties
3(i)–3(iii) of Theorem 2 in Section 1.3. Namely, H1 modulo translations has
the properties stated in (3):

(i) H1 has genus one and two ends,

(ii) H1 is asymptotic to a full 2π-turn of a helicoid, and

(iii) H1/σ1 contains a vertical axis and two horizontal parallel lines.

See Figure 4, Section 1, for an image of this surface.
We will now assume that such a surface exists and derive its Weierstrass

data.

3.1.1. The Gauss map and the placement of the ends. The total curvature
of the quotient surface, M =H1/σ1, is 2π(χ(M) − W (M)), where χ(M) is
the Euler characteristic of M and W (M) is the total winding number at the
punctures [24]. We know that M is a twice-punctured torus so that χ(M) =
−2; further, each end is, by assumption, asymptotic to a single full turn of the
helicoid, and so W (M) = 2. Hence, the total curvature of M is equal to −8π.
This implies that the the degree of the Gauss map is equal to two.

The assumption (iii) that each end is asymptotic in the quotient to a
single full turn of the helicoid forces us to assume, according to (9), that
the Gauss map is vertical at the ends. Let g be the stereographic projection
of the Gauss map, defined on the underlying Riemann surface. Since the
degree of the Gauss map is two, there must be one other point where g = 0
and one other point where g = ∞. According to Lemma 1,(vi)and (vii),
the underlying Riemann surface may be modelled by a rhombic domain, and
reflection in the diagonals of that rhombus correspond to rotation by 180◦

about the lines on H1 . These rotations are orientation-reversing and preserve
verticality. Therefore, the reflections in the diagonal preserve verticality and
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so must leave the collection of poles and zeros of g invariant. If g has a zero
or pole that is not on the diagonals of the rhombus, then it has at least two
zeros and two poles not on the diagonals, in addition to the two ends that
are located on the horizontal diagonal. This implies that the degree of g is at
least three, contradicting the fact that the degree of g is two. Hence the other
points where g = 0 or g =∞ lie on the diagonals. Since the vertical diagonal
corresponds to the vertical axis, we require the Gauss map to be horizontal
there: |g| = 1 on the vertical diagonal. We conclude that the other two vertical
points of the Gauss map lie on the horizontal diagonal.

Label the ends E1 and E2 and the vertical points V1 and V2. Since reflec-
tion in the vertical diagonal corresponds to the orientation-reversing symmetry
of rotation about the vertical axis, a symmetry that preserves verticality of the
Gauss map, the pair of ends and the pair of vertical points must be symmet-
rically placed with respect to the center, O, of the rhombus.

For the remainder of Section 3, we will assume that the length of the
horizontal diagonal is two, that O is placed at the origin of C, and that E1

lies to the left of O. Then we may write

E1 = −b, E2 = b,

V1 = −a, V2 = a,

for some real numbers, 0 < a, b < 1, the strict inequality is required in order
to have two ends and two vertical points. Also, we require a 6= b to prevent
the ends from coinciding with the finite points. Without loss of generality, we
may also assume that the surface is oriented so that g(E1) =∞ (and therefore
g(E2) = 0).

Either g(V1) = ∞ and g(V2) = 0 or g(V1) = 0 and g(V2) = ∞. Applying
Abel’s theorem to g yields |a − b| = 1 in the first case and a + b = 1 in the
second case. The first case is impossible because 0 < a, b < 1. Therefore
g(V1) =∞ and g(V2) = 0 and

a+ b = 1.

We have now determined the divisor of g. (See Figure 9). The points Ei, Vi
are symmetrically placed with respect to the quarter points of the horizontal
diagonal. (For any degree-two elliptic function, the branch points are symmet-
rically placed with respect to the zeros and poles of the function.) Also, the
branch points must be symmetric with respect to the symmetries of the sur-
face. We conclude from this that the quarter points of the horizontal diagonal
are branch points of g and that there are two symmetrically placed branch
points of g on the vertical diagonal: in fact they are also the quarter points.

We will assume that the surface is rotated so that its normal vector at O
is (1, 0, 0): that is, g(O) = 1. This rotation makes the horizontal lines parallel
to the x2−axis.
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E1 V1 V2 E2

dh ∞ 0 0 ∞
g ∞ ∞ 0 0
gdh ∞2 ∗ 02 ∗
1
gdh ∗ 02 ∗ ∞2

Figure 9: The divisors of g, dh, gdh and 1
gdh.

Remark 3. At this point, our specification of Weierstrass data depends
on the choice of rhombic torus and a choice of b between 0 and 1 to place the
ends Ei. We will see in Section 3.1.2 that dh is determined by these choices.
We note that we have not specified whether or not a < b, i.e. whether or not
the vertical points lie on the line that passes through the image of O. We do
not at this point have the freedom to assume one way or the other. It turns
out that, in fact, a < b, and the Vi lie closer to O than do the Ei. This is the
result of a computation (see Proposition 6, Statement 3) that shows that the
period problem cannot be solved if b > a.

3.1.2. The one-form dh. The expression (6), for the induced metric on
M show that dh has simple zeros at the vertical points Vi. Because we want
the ends to be helicoidal, we require dh to have simple poles at the ends Ei.
(See Section 2.2 and Figure 6.) The one-form dh can have no other poles or
zeros. Hence we know the divisor of dh. Because we require the horizontal
diagonal to be mapped into horizontal lines, dh must be purely imaginary on
the horizontal diagonal. This determines dh up to a real scalar factor, which
corresponds to scaling the surface in R3.

3.2. The period problem. In Section 3.1, we specified a Weierstrass rep-
resentation for H1 which was forced by the geometric conditions 4(i)–(iii) of
Theorem 2 in Section 1.3. The underlying torus is rhombic and the ends are
placed on one of the diagonals. The divisors of g and dh are determined. The
situation is encapsulated in Figure 9. The function g is then completely de-
termined by the condition that g = 1 at the center of the rhombus, and the
one-form dh is determined up to a real scaling (We could of course determine
that factor by the condition imposed by Theorem 2 and (5), that Re

∫
dh = 2π

on the vertical diagonal, but we do not do that at this time.)
We still have to impose the period conditions (7) and (8). In Figure 11,

the indicated cycles B and β, together with their reflections in the vertical
axis, generate a homology basis for M . The nonzero translational period we
require to produce a singly periodic surface will be evident on the cycle β that
surrounds an end. By the symmetry we have imposed upon the Weierstrass
representation, we need only consider these two cycles. The horizontal and
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Figure 10: One quarter of a fundamental domain of H1 modulo translation is
illustrated on the right. It is bounded by a vertical line segment, two horizontal
line segments, a portion of a curve that approximates part of a turn of a helix,
and a closed loop that is a closed cycle on the quotient torus. On the right
the associated region of a rhombic torus is drawn, the desired image of which
is the minimal surface on the left. Corresponding curves in the two images are
similarly labelled. Note that the curve B is drawn to pass through a fixed point
of 180◦-rotation about the center of the rhombus. On the minimal surface, this
point is a fixed point of the normal symmetry described in Lemma 1(vii) of
Section 2.7.

E1 V1 V2 E2

−b −a
β

B
E2

O a b

Figure 11: The rhombus model for the underlying Riemann surface of the
quotient surface of H1 modulo translations is drawn on the left. The vertical
points, Vi and the horizontal points, Ei, on the horizontal diagonal are included.
The cycles β and B, illustrated on the right, and their reflections in the vertical
diagonal, generate a homology basis for the punctured torus.
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vertical period conditions for H1 can be written as follows:

(12)
∫
B
gdh =

∫
B

1
g
dh, and

(13) Re
∫
B
dh = 0.

3.2.1. Existence of H1. The following result, translated into the terminol-
ogy used here, is proved in [19].

Proposition 6 ([19]). Every regular, complete, periodic minimal sur-
face satisfying the conditions of Theorem 2 (stated in (3)) may be represented
by Weierstrass data that satisfies all of the conditions described in the table of
Figure 9 in Section 3.1. Conversely,

1. For any rhombic torus and any b ∈ (0, 1), there exist Weierstrass data
{g, dh} on a rhombic torus with ends and vertical points determined by
the choice of b as in Section 3.1.1, whose divisors are specified in the
table of Figure 9. The Weierstrass integral (5) produces a multivalued,
regular, minimal and complete immersion of this punctured torus into
R3 with all the required symmetry properties of Lemma 1;

2. The immersion described in Statement 1 above will be singly periodic if
and only if the Weierstrass data satisfy (12) and (13). The translational
period T is determined to be the vertical vector (0, 0, c) where

±c =
∫
β
dh = 2πiResEidh;

3. The period conditions (12) and (13) cannot be satisfied unless 1
2 < b < 1.

In particular, 1− b = a < b. Thus it is necessary that the vertical points,
Vi, be located (as illustrated in Figure 9) closer to the center, O, than the
end points Ei.

This proposition is proved in Section 1 of [19]: see page 259. How Theo-
rem 2 is proved from Proposition 6 we outline in the following remark.

Remark 4. One can establish the existence of H1 in two steps. These are
carried out in Section 2 of [19].

Rhombic tori may be parametrized by a single real variable, say ρ. On
such a torus, a choice b ∈ (0, 1) determines the placement of the ends and the
Weierstrass data (g, dh) satisfying the specifications in the table of Figure 9.
This is the content of Statement 1 of Proposition 6. In the first step, it is
shown that there is an open interval, I, of values of ρ so that, outside of I, no
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choice of b will satisfy the vertical period condition (13), and inside of I, there
exists a unique choice of b = b(ρ) for which (13) is satisfied. Moreover b(ρ)
depends smoothly on ρ.

Equation (12) can be considered to define a smooth function F (ρ, b) =∫
B gdh−

∫
B

1
gdh, whose zeros occur at Weierstrass data that satisfy the hori-

zontal period condition. In the second step it is shown that f(ρ) = F (ρ, b(ρ))
changes sign on I, and hence has at least one zero. This gives the existence of
an H1 in Theorem 2.

Embeddedness of H1 is proved by a separate argument (in Section 3 of
[19]) as is almost always the case in these matters. See [13] for an alternative
argument.

In the next section, it will be shown that the form of the Weierstrass
data and the horizontal period condition determine the conformal structure.
Putting that together with the Remark above will show that the singly periodic
genus-one helicoid is unique. See Proposition 8.

3.2.2. The rhombic torus T1 and the uniqueness of H1. We assume that
the Weierstrass data for H1 has divisors described in Figure 9 and that the
zeros and poles are symmetrically placed along a diagonal of a rhombus. Note
that the divisors of gdh and 1

gdh each have one double zero and one double pole
(with no residue) on a diagonal, and no other zeros or poles. Since the torus
is a group, it follows that the divisors of gdh and 1

gdh differ by a translation.
Hence

gdh = ct∗
(

1
g
dh

)
,

for some translation, t, of the torus and nonzero constant c. Then, for any
closed curve α on the torus, we have

(14)
∫
α
gdh = c

∫
α
t∗
(

1
g
dh

)
= c

∫
t−1(α)

1
g
dh = c

∫
α

1
g
dh,

the last equality following because the form 1
gdh has no residue. If {α1, α2} is

a basis for the homology of the torus, then

r :=

∫
α1
gdh∫

α2
gdh

=

∫
α1

1
gdh∫

α2

1
gdh

.

The horizontal period condition (7)∫
αi

gdh =
∫
αi

1
g
dh

now implies that r = r̄, i.e. r is real. If we modify gdh by multiplication by a
constant—if necessary—to make

∫
α1
gdh real, then

∫
α2
gdh must also be real.

Weber [41] notes that this simple condition characterizes the underlying
rhombic torus.
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Proposition 7 ([41]). There exists a unique rhombic torus carrying a
one-form η with the following properties: the form η has a double zero and a
double pole (with no residue) on a diagonal, no other poles or zeros, and all
periods real.

Definition 8. We will use the symbol T1 to refer to the rhombic torus of
Proposition 7.

Proposition 7 can be used to prove (see also the recent article [2] by
Alarcon-Ferrer-Mart́ın)

Proposition 8 ([25]). H1 is unique.

Proof. In Lemma 1, we showed that the geometric conditions of Theo-
rem 2 in Section 1.3 implied that the quotient surface of any H1 had to be a
rhombic torus upon which the one form gdh satisfied the conditions on η in
Proposition 7. Therefore any H1 has a quotient whose underlying Riemann
surface is the unique rhombic torus of Proposition 7.

In Remark 4, we showed that all possible H1’s lie on a smooth curve
parametrized by a variable ρ that is in one-to-one correspondence with the
underlying rhombic conformal structures. Therefore, there is at most one H1.
That there is at least one example is the content of Theorem 2 (whose proof
is outlined in the same Remark 4).

Remark 5. The rhombic torus T1 is the torus C modulo the lattice gen-
erated by {1, eiθ1}, where θ1 ≈ 1.7205 [23].

3.3. The cone metric construction of H1. In Section 3.1, and in Lemma 1,
various conditions for the Weierstrass data of H1 were derived using geometric
and analytic arguments. In Section 3.2, we stated the period problem for
H1 . In this section, we give a cone-metric derivation of the Weierstasss data,
the most important feature of which is that it solves the horizontal period
problem (12) by construction. It does not use Proposition 6 of Section 3.2,
which depends on the analysis and estimates of [19].

3.3.1. The cone-metric construction of T1 and Weierstrass data for H1.
We will construct the torus T1 in a manner that produces, at the same time, a
candidate for the one-form gdh.

A torus may be constructed by identification of opposite edges of a paral-
lelogram. Consider the region bounded by a parallelogram with vertices 0, 1,
τ and 1 + τ in C. The one-form dz on C induces a holomorphic one-form on
the torus. For the cycles on this torus that correspond to the edges 0, 1 and
0, τ , the periods of this one-form are clearly visible in the construction; they
are the complex numbers 1 and τ .
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−1 1

Figure 12: On the left: a rhombus removed from the extended complex plane.
Identification of the opposite sides of the remaining set produces a Riemann
surface of genus one that is also a rhombic torus. On the right: a degenerate
rhombus is removed from the extended plane. Identification of opposite sides
produces a nondegenerate rhombic torus. The one-form dζ on the extended
complex plane has a double pole at infinity. On the torus constructed, the
one-form dζ descends to define a one-form with a double pole at the point
corresponding to ∞ and a double zero at the vertex point of the removed
rhombus. The periods of this induced form on the edge cycles of the excised
rhombus are given by the complex numbers defined by the edges themselves.
In the case of the torus on the right, these periods are real.

Instead of the region bounded by the parallelogram, consider its comple-
ment in the extended ζ-plane. Identify opposite boundary edges; again, this is
topologically a torus. We have flat charts given by

∫
dζ away from the vertex

point. On this torus, with the induced flat metric from the plane, the vertex
is a cone point with cone angle 6π. (See Section 2.3 for a discussion of cone
points and cone metrics.) Allowing a slight abuse of notation, we will write dζ
for the induced one-form and |dζ| for the associated metric on the torus. In
this language then, the form dζ must have a double zero at the vertex point
and, of course, it has a double pole at infinity. The periods of dζ along the
cycles corresponding to the edge vectors of the parallelogram are 1 and τ .

Recall that we desire to produce T1 , a rhombic torus carrying a one-form
with a double pole, a double zero and real periods as in Proposition 7. If
we construct the torus from the point-of-view of the previous paragraph, we
are forced to choose both the edge vectors of our parallelogram to be real.
Even though such a “parallelogram” is degenerate, the construction produces
a topological torus with a flat structure given by |dζ|, which has isolated conical
singularities. Therefore it has a regular conformal structure.

Essentially, we are slitting the plane (without loss of generality, along
[−1, 1]), choosing c ∈ [0, 1), and connecting the region above (below) [−1,−c]
with the region below (above) [c, 1] by identifying these boundary segments.
Only for the choice of c = 0 will the torus be rhombic; reflection in the imagi-
nary axis provides an involution with a connected fixed point set. The rhombic
torus so constructed carries a one-form descended from dζ, with one double
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E1 V1

O
V2 E2

e1 =∞

e2

v2

O

v1

Figure 13: The slit model for the rhombic torus has two distinguished points, e1

and v2. We may identify the slit model with a rhombus so that the imaginary
axis is identified with the horizontal diagonal. Labelling the points on the
rhombus corresponding to e1 and v2 in the same manner, but with upper-case
letters, we may translate the rhombus horizontally to place the center, O, of
the rhombus to the right of E1 and to the left of E2. The points V1 and E2 are
defined to be the points on the horizontal diagonal symmetric (with respect to
O) to V2 and E1, respectively.

pole and one double zero on a diagonal, no other zeros or poles, and all periods
of this one-form are real. Because the sum of the residues of any one-form is
zero and there is only one pole, this form dζ has no residue at its pole. This
torus satisfies the requirements of Proposition 7, and therefore must be the
unique T1 .

We will take dζ as a candidate for gdh on T1 , and we will refer to this
presentation of T1 as the slit model.

Remark 6. In the construction of tori by removal of the interior of a paral-
lelogram, P , from the plane, it is important to note that the torus constructed
is not, in general, conformal to the torus produced by taking the interior of P
and identifying opposite sides. This is clear in the limit case of T1 , constructed
by removal of a slit from the extended plane; the torus T1 is a nondegenerate
rhombic torus conformal to the one produced by C /{1, eiθ1} with, according to
Remark 5, θ1 ∼ 1.7205. It is true, however, that removing the square from the
extended plane produces the square torus; the torus produced is both rhombic
and rectangular and such a torus must be square.

We now relate the slit model of T1 to the rhombic model, which we will
take, as in Section 3.1, to be the region bounded by a rhombus whose diagonals
are parallel to the coordinate axes. (See Figure 13, left.) We will scale the
rhombus so that the length of the horizontal diagonal is equal to two. The
slit model and the rhombic model are conformally diffeomorphic. We choose
a conformal map from the slit model to the rhombus—in terms of Figure 13,
a mapping from the domain on the right to the domain on the left—that
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takes the imaginary axis of the slit model onto the horizontal diagonal of the
rhombus: both of these lines are symmetry lines of the conformal structure.
We will do this in such a manner as to have the standard vertical orientation
of the imaginary axis in the slit model correspond to the standard left-to-right
orientation of the horizontal diagonal. The conformal diffeomorphism between
the slit model and the rhombic model is now completely determined up to the
action of a translation on the rhombus, which with our normalization must be a
horizontal translation. Therefore, the conformal diffeomorphism is determined
up to composition on the left by a horizontal translation.

We label by v2 the vertex point in the slit model and refer to the point at
infinity in the slit model as e1. We want the pullback of dζ from the slit model
to correspond to the one-form gdh on the rhombic model. This pullback will
have a double pole at the inverse image of the point at infinity and a double
zero at the inverse image of the vertex point in the slit model. Since the double
pole of gdh occurs at the end where g = ∞ (that is at E1) and the double
zero of gdh must occur at V2, we see that the inverse image of v2 is V2 and
the inverse image of e1 is E1. In Section 3.1, we saw that we could assume
without loss of generality that E1 lies to the left of the center of the rhombus.
Without loss of generality we restrict ourselves to conformal diffeomorphisms
with this property.

As in Section 3.1, we define E2 and V1 to be the points on the horizontal
diagonal symmetric—with respect to O— to E1 and V2, respectively. We may
again write

E1 = −b, E2 = b,

V1 = −a, V2 = a

for some real numbers a, b with 0 < a, b < 1, a 6= b. Abel’s theorem applied
to gdh requires a + b = 1. We do not know at this point whether or not we
may assume that a < b. This does follow from the estimate of [19] discussed in
Remark 4 but as we shall see, we can achieve our result without this external
reference.

We will adopt the convention that the points on the slit model that are
labelled by letters in lower case will have corresponding points on the rhombus
labelled by the same letter in upper case.

Remark 7. As discussed in Section 3.1, it does not make geometric sense
to allow a or b to take on the values 0, 1/2 or 1. There are three possibilities:
a = 0 and b = 1; a = 1 and b = 0; a = b = 1/2. In the first two cases, the
ends coincide, while in the third case each end coincides with a vertical point
on the surface; in all three cases, the data are incompatible with our geometric
assumptions. However, it does make analytic sense to allow this to happen.
The pullback of dz will define a one-form on the rhombus with one double pole
and one double zero. In the cases where a = 0 or a = 1, the pole occurs at
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the center or at the vertex point. In the case where a = 1/2, the pole and zero
occur at the half-period points on the horizontal diagonal.

3.3.2. The definition of 1
gdh and the solution of the horizontal period

problem. Let t be the translation of the torus in the rhombic model that is
induced by the translation in the plane satisfying t(E1) = E2 (and therefore
t(V1) = V2). In terms of our normalization, t is the translation on the torus
induced by the translation in C by 2b, where E1 = −b. (Note that by Abel’s
Theorem, this translation 2b can be written as 2b = 2(1− a) = 2− 2a, and so
an equivalent translation is by −2a. We will use this observation in the proof
of Proposition 9.) We define

1
g
dh := t∗(gdh).

The one-forms gdh and (1/g)dh have the divisors as specified in Figure 9, and
they automatically satisfy the horizontal period condition (12). To see this,
recall that the periods of gdh are real by construction and, by (14),∫

αi

1
g
dh =

∫
αi

t∗(gdh) =
∫
t−1(αi)

gdh =
∫
αi

gdh.

It is important to observe that while we have one free parameter to define
gdh—essentially the parameter a defined in Section 3.1 that places the point
V2—the choice of 1

gdh is determined by the horizontal period condition (12).
We now seek a choice of a for which the vertical period condition (13) is
satisfied. This condition requires us to integrate dh over a specified cycle on
the rhombus. To find a value of a that satisfies (13) we first need to define dh
in terms of gdh and 1

gdh and to verify that it has the desired symmetries.

3.3.3. The Weierstrass data {g,dh} and the symmetries of dh. Since
dh2 = gdh · 1

gdh and g2 = gdh
1
g
dh

, we can use these forms to determine g and

dh —up to sign— by taking a square root. The one-form dh defined in this
manner will have simple zeros at the Vi and simple poles at the Ei, precisely
what is required by the divisor diagram in Figure 9.

To prove the existence of H1, we must find a choice of the value a so
that the one-forms gdh and 1

gdh determined by this choice yield a candidate

dh = ±
√
gdh · 1

gdh that satisfies the vertical period condition (13). (We discuss
below how the sign is determined.) We solve this problem in Section 3.4. First,
we establish some expected but important properties of any dh defined in the
manner just described.

Lemma 2. (i) The one-form dh, considered as a one-form on the rhombus,
is imaginary on the horizontal diagonal and real on the vertical diagonal.
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(ii) Let µv and µh be reflection in the vertical diagonal and the horizontal
diagonal, respectively, and let ρ be 180◦-rotation about O, the center of the
rhombus. Then

−ρ∗dh = −µ∗hdh = µ∗vdh = dh.

By saying that a one-form is real or imaginary on a curve we mean that
evaluation of the one-form on tangent vectors to that curve produces real or
imaginary values. Lemma 2 does not depend on our choice of sign of dh. We
will make the choice of sign according to the following geometric consideration.
According to the lemma, the form dh is real along the vertical diagonal, where
it is never zero. We choose the sign of dh so that dh is positive on upward-
pointing vectors tangent to the vertical diagonal.

It follows immediately from Lemma 2 above and our choice of sign of dh
that:

Corollary 1. The involutions µv, µh, and ρ are isometries of the cone
metric |dh|. In particular, the fixed point sets of the reflections (the vertical
and the horizontal diagonals) develop into straight lines under the developing
map

p→
∫ p

O
dh.

The developed image of the horizontal diagonal is a vertical line. The developed
image of the vertical diagonal is a horizontal line, and the upper half of the
vertical diagonal develops to the positive x-axis (i.e., the image of p develops to
the right on a horizontal line as one moves up the horizontal diagonal from O).

Proof of Lemma 2. In the slit domain, the one-form gdh is given by dζ:
here we set ζ = ξ + iη. On the rhombus, the one-form gdh is produced by
pulling back dζ from the slit domain. The imaginary axis in the slit domain
corresponds to the horizontal diagonal in the rhombus model: it is the devel-
oped image under gdh of the horizontal diagonal. (See Figure 13.) Along the
imaginary axis in the slit domain, dζ is imaginary: dζ( ∂

∂η ) = i.
If we parametrize the horizontal diagonal from left to right by s, then the

point s on the rhombus develops to a point iη = if(s) on the imaginary axis
in the slit model, for some real-valued function f(s) with f ′(s) > 0. Then at s:

gdh

(
d

ds

∣∣
s

)
= f ′(s)dζ|if(s)

(
∂

∂η

)
∈ iR.
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Since on the rhombus (1/g)dh = t∗(gdh), where t is a horizontal translation,
we can write

1
g
dh

(
d

ds

∣∣
s

)
= t∗(gdh)

(
d

ds

∣∣
s

)
= (gdh)

(
t∗
d

ds

∣∣
s

)
= (gdh)

(
d

ds

∣∣
t(s)

)
∈ iR+.

But then

dh2

(
d

dt
,
d

dt

)
= gdh

(
d

dt

)
(1/g)dh

(
d

dt

)
is negative. Therefore dh( dds) is imaginary along the horizontal diagonal.

Recall that dh = ±
√
gdh · (1/g)dh has simple zeros at the points V1 and

V2, and simple poles at the points E1 and E2. Also, the pair of points E1 and
E2 and the pair of points V1 and V2 are each interchanged by the reflection
µv in the vertical diagonal. Therefore, µ∗vdh is a meromorphic one-form whose
poles and zeros match those of dh. Hence, up to a nonzero scale factor, the
form µ∗vdh is equal to dh. To determine the scale factor we evaluate the form
at O, the center point of the rhombus. Since O is on the horizontal diagonal
where dh is imaginary, since O is fixed by µv, and since µv∗ changes the sign
of horizontal vectors, we have that

µ∗vdh
(
d

ds

)
= dh

(
− d

ds

)
= dh

(
d

ds

)
at O. Hence µ∗vdh = dh on the torus. On the vertical diagonal, which is fixed
by µv, vertical vectors are also fixed by µv∗. Hence dh = µ∗vdh = dh along the
vertical diagonal, which implies that dh is real along the vertical diagonal.

In an analogous manner, observe that ρ∗dh has the same poles and zeros
as dh, and that, at O, we have ρ∗dh = −dh. Hence, ρ∗dh = −dh everywhere.
Since µh = µvρ, we have µ∗hdh = −dh. This completes the proof of the lemma.

3.4. Solving the vertical period problem geometrically. In order to try to
satisfy the vertical period condition (13) we will vary the conformal diffeomor-
phisms with which we pull back dζ in the slit model to produce gdh on the
rhombus. Any such conformal diffeomorphism is determined by the position
of the inverse image, V2, of the vertex point v2 of the slit model. We may write
V2 = a, 0 < a < 1, a 6= 1/2. Our goal is to find a value of a between 0 and 1/2
for which the vertical period problem (13) is solved by using the intermediate
value theorem.
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E1 V1

−a a
V2 E2

−b 0 b

Figure 14: We label the points Vi and Ei according to their signed and scaled
distance from O. From Abel’s Theorem we know that a+ b = 1.

E1 V1

B

O
V2 E2

P V2 E2

B

E1 V1 O

Figure 15: On the left, the path, B, is illustrated on T1 . On the right, an
equivalent path, also labelled B, is drawn on the shaded rectangle R.

Remark 8. Because a + b = 1, the restriction of a to lie in the interval
(0, 1

2) is equivalent to the requirement that a < b. It follows from Proposition 6
that there are no values of a > 1/2 that satisfy the horizontal period condition
(12).

Even though they do not produce admissible Weierstrass data—see Re-
mark 7—the values a = 0, and a = 1

2 do define conformal diffeomorphisms from
the rhombus to the slit model, and hence they produce well-defined one-forms
gdh. The extreme value a = 1

2 represents the case where Ei = Vi, i = 1, 2;
the extreme value a = 0 is the case where E1 = E2 and V1 = V2. In each of
these cases we may define dh by translating gdh to produce (1/g)dh and then
taking the square root of the product of these two forms.

For each a ∈ [0, 1
2 ], define the map Fa :T1→ C by

Fa(z) =
∫ z

O
dh.

The vertical period condition (13) is

Re
∫
B
dh = 0,

where B is the curve in the rhombus illustrated in Figure 15.
We may also consider Fa to be a map from R in Figure 15—a rectangle

that comprises half of T1— to the complex plane. According to Lemma 2, we
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Figure 16: On the left is the rectangle R. The points Vi and Ei are placed for
a generic value of a between 0 and 1/2. On the right is the image of R under
the mapping Fa.

have ρ∗dh = −dh. Therefore, we may reexpress the period condition (13) as

(15) Re
∫
B
dh = 0,

where B is now considered to be the diagonal inR fromO to P . (See Figures 15
and 16.)

Considering Fa as a map from R to C, we define

(16) f(a) := Re{Fa(P )− Fa(O)},
in terms of which we may restate the vertical period condition (15) as asserting
that our choice of a must satisfy

(17) f(a) = 0

Proposition 9. There exists a value of a, with 0 < a < 1
2 for which the

vertical period condition (15) is satisfied.

Proof. We will prove the proposition by showing the existence of a value
of a satisfying (17). We begin with a discussion of the continuity of Fa and f .
Recall that dh is defined as a square root of (1

g )dh · gdh. The one-form gdh

is a pullback to the rhombus of dζ in the slit model. We will write ηa for the
pullback of dζ that corresponds to the choice of gdh with a double zero at
z = a and a double pole at z = −(1−a). In particular, η0 has a double zero at
z = 0, (which is the center point O) and a double pole at the vertex at z = 1.
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Let ta be the conformal diffeomorphism ta(z) = z− a of the rhombus induced
by horizontal translation by −a, with a ∈ R. Then

η
a

= t∗aη0 .

The one-form η
a

has a double zero at a and a double pole at −b = −(1 − a)
as required. For (gdh)a = η

a
, the corresponding one-form (1

gdh)a is t∗−2agdh =
t∗−2at

∗
+aη0 = t∗−aη0 . Then,

dh2
a = t∗−aη0 · t∗aη0 = η−a · ηa.

In particular,

(18) dh2
0 = η2

0
,

while dh2
1
2
, having no poles or zeros, is a constant multiple of dz2:

(19) dh 1
2

= cdz.

It is clear that dha depends continuously on a on the open interval (0, 1
2).

Claim. (dha) depends continuously on a on the closed interval [0, 1
2 ].

The claim has two immediate consequences. According to Corollary 1,
for a ∈ (0, 1

2), the developed image under dh of the upper half of the vertical
diagonal lies on the positive x−axis (assuming O develops to the origin in the
plane). By the claim, the same must be true for dh0 and dh 1

2
. It follows

immediately from (19) that

(20) dh 1
2

= −c1idz

for some positive real constant c1. Turning our attention to dh0, it follows from
(18) that dh0 must have a double zero at O, and the developed image of the
horizontal diagonal to the right of O must lie on the negative imaginary axis.
Using the fact that η0 is the pullback to a rhombus of dζ in the slit model by
an orientation-preserving diffeomorphism, it follows from (18) that

(21) dh0 = η0 .

Proof of claim. There is a potential problem at the endpoints where
either a zero coalesces with a pole (at a = 1/2) or the zeroes coalesce and the
poles coalesce (at a = 0). We will address this by using sigma functions to
represent the one-forms η

a
.

We recall from the theory (see [27]) of the sigma function σ(z) on a lattice
that any meromorphic form ϕ(z)dz on a torus may be expressed as a ratio

ϕ(z)dz = C

n∏
k=1

σ(z − sk)σ(z − tk)−1dz,
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where each sk represents an orbit of zeros and each tk represents an orbit of
poles. In this representation, it is crucial that

∑n
k=1 sk =

∑n
k=1 tk, and zeros

of multiplicity are considered as separate entries in the list in the customary
way.

With this representation, we may write

η0 = C
σ2(z)

σ(z − 1)σ(z + 1)
dz

for some complex constant C (independent of a). It then follows, using ta(z) =
z − a, that

(gdh)a = η
a

= t∗aη0 = C
σ2(z − a)

σ(z − a− 1)σ(z − a+ 1)
dz

and (
1
g
dh

)
a

= t∗−aη0 = C
σ2(z + a)

σ(z + a− 1)σ(z + a+ 1)
dz.

Therefore

(dh)2
a

dz2
= C2 σ2(z − a)σ2(z + a)

σ(z − a− 1)σ(z − a+ 1)σ(z + a− 1)σ(z + a+ 1)
.

As a → 1/2, this function converges to C2 σ(z−1/2)σ(z+1/2)
σ(z−3/2)σ(z+3/2) = C2, since σ(z +

2) = σ(z + ω1 + ω2) differs from −σ(z) by a factor of the form eαz+β where
α and β depend only on the lattice. Also, note that as a → 0, the function
(dha/dz)2 converges to η2

0
/dz2. This completes the proof of the claim.

In the three-dimensional product [0, 1
2 ]×R of the interval [0, 1

2 ] with the
rectangle R, the set

{(a, p)|dha has a pole at p}

consists of two line segments on the boundary of this (three-dimensional) box.
One line segment connects the bottom left corner of R×{0} to the midpoint of
the top of R×1

2 . The other line segment connects the midpoint of the bottom
of R×{0} to the top right corner of R×{1

2}. After removing from [0, 1
2 ]×R

a small tubular neighborhood N of these line segments, we may assert that
F : [0, 1

2 ]×R\N → C ∪∞ defined by

F (a, p) = Fa(p) =
∫ z

0
dha

is continuous and bounded. Since [0, 1
2 ]×B, where B is the path of integration

from O to P , lies in the domain of F , we may assert that

f(a) := Re{Fa(P )− Fa(O)}
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P V2 = E2 C

C̃ V1 = E1
O

C̃

O C

P
C̃ P

E2

CO

E1

Figure 17: The case a = 1
2 . When a = 1

2 , we have Ei = Vi as is illustrated in
the picture of R on the left. In this case, the one-form dh is regular and the
image of R under F 1

2
is illustrated in the center image. Up to scaling, F 1

2
is

clockwise rotation by 90◦. The image of R under Fa for a near 1
2 is illustrated

on the right.

is continuous on [0, 1
2 ]. (The generic image of Fa, 0 < a < 1

2 , is illustrated in
Figure 16. In this case, a 6= b and Ei 6= Vi, i = 1, 2. ) According to (20),

F 1
2
(p) =

∫ p

0
dh 1

2
= −c1i

∫ p

0
dz = −c1ip,

where c1 is a positive constant; i.e. F 1
2

is clockwise rotation by −π/2 followed
by a scaling. (See Figure 17.) In particular,

(22) f(
1
2

) = Re{F 1
2
(P )− Fa(O)} > 0.

We now consider the other extreme case: a = 0.

Claim.

(23) f(0) < 0.

Proposition 9 then follows from (22), (23) and the intermediate value
theorem.

Proof of Claim (23). According to (21), dh0 = η0 . The symmetry lines
of |dh| on the rhombus—the horizontal and vertical diagonals according to
Corollary 1—correspond to the imaginary and real axes, respectively, in the
slit model.

If we remove the symmetry lines from the rhombus—also the symmetry
lines of |dh| according to Corollary 1– what is left consists of two rectangles,
one of which is R. If we remove the symmetry lines from the slit model, what
is left consists of two conformal rectangles, the ones illustrated in Figure 18.
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1

3

1

4

3

2

Figure 18: R in the slit model. The slit model of T1 (in Figure 13) can be cut
along symmetry lines—the real and imaginary axes—to produce two conformal
rectangles. In the illustration, they are the two differently shaded regions. As
described in the text, one of them, the one on the right, must be (up to scaling)
the image of R under F0.

P C = E

C̃
a = 0

O = V

C

F0(P )

F0(O)

C̃

P
V2 E2

C
Fa(E2)

C̃

E1 V1

O

a near 0
Fa(V1)

Fa(V2)

Fa(E1)

Figure 19: On the extreme left, the rectangle R is drawn with V1 = V2 =O
and E1 = E2 at C and C̃. The image of R under F0 is drawn just to the
right, illustrating that F0(O) lies to the right of F0(P ) when a = 0. On the
right-hand-side, R and Fa(R) are drawn for a 6= 0 small.
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Each rectangle has two vertices at infinity. Since dh0 = η0 is the pullback of
dζ on the slit model, the developing map F0 must send R onto one of these
rectangles. Again, as with all Fa, the map F0 takes vertical (resp. horizontal)
boundary segments to horizontal (resp. vertical) lines. Using Lemma 2, we
know that the image under Fa of the right-hand side of R is a horizontal line
going to the right as one ascends from O. Therefore, the image F0(R) must
be the conformal rectangle on the right of Figure 18 and the left of Figure 19,
with F0(O) equal to the right-hand vertex of this rectangle and F0(P ) equal to
the left-hand vertex. Hence F0(P ) lies to the left of F0(O) which means that

f(0) = Re{F0(P )− F0(O)} < 0,

which is (23). This completes the proof of the claim, which completes the proof
of the proposition.

4. The construction of screw-motion-invariant H
k

Our plan is to construct a family of surfaces {H
k
} that includes the surface

H1 ; in this family, there should exist at least one surface of the type H
k

for
each k ≥ 1. We begin by specifying necessary conditions for the Weierstrass
data of H

k
/σk. A fundamental domain of H

k
is the image of H

k
/σk under

the Weierstrass mapping. It is a genus-one surface with two ends, possessing
a vertical axis and containing two horizontal lines making an angle of πk, one
with the other. We have established in Lemma 1 of Section 2 that H

k
/σk is a

rhombic torus and that it has the same symmetries as H1/T, where T := σ1

is vertical translation by 2π.
Because we want theH

k
family to give a deformation ofH1 , we are justified

in assuming that the placement of vertical points of H
k

conforms qualitatively
to what happens on H1 . Specifically, the vertical points lie on the same lines in
H
k

as they do on H1 , and in the same relative position. As we did in Section 3,
label the ends E1, E2 and the vertical points V1, V2. All four of these points lie
on a curve fixed by a symmetry of the underlying Riemann surface T1 ofH

k
/σk.

We require that this curve be mapped onto horizontal lines on H
k
. Another

curve fixed by a different symmetry of T1 will be mapped into the vertical axis
of H

k
. This curve must meet the first one orthogonally in two points, which

we may assume, without loss of generality, lie between E1 and E2 and between
V1 and V2 respectively. Also, we assume that g(E1) = ∞ and g(E2) = 0.
We expect the Gauss map to behave locally—near E1 and E2—like zk near
infinity and the origin, respectively. At one end we expect a pole of order k,
and at the other a zero of order k. Since we will consider k to take on all real
values greater than 1/2, we will be considering multivalued Gauss maps and
one-forms gdh and (1/g)dh. (In particular, when k is not an integer, the screw-
motion Euclidean isometry σk has a nontrivial rotational component. Hence,
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E1 V1 V2 E2

g ∞k ∞ 0 0k

dh ∞ 0 0 ∞
gdh ∞k+1 − 02 0k−1

1
gdh 0k−1 02 − ∞k+1

dg
g ∞ ∞ ∞ ∞

residuedg
g k 1 −1 −k

Figure 20: Divisor and residue requirements for the Weier-
strass data of H

k
.

0

τ
O

B

E1 V1 O V2 E2

P V2 E2

B

E1 V1 O1

Figure 21: The rectangle. As in Section 3.4.1, we have the same situation
for the formation of a rectangular domain that is half of the Riemann surface
Tk(d) and on which B is the path of integration. The only difference is that
the underlying rhombic torus is not, in general, equal to T1 .

this motion identifies points on H
k

whose normal vectors differ by a rotation.
Therefore, the Gauss map is not well-defined on the quotient torus H

k
/σk.

However, as is customary for such functions, there are well-defined branches of
the Gauss map defined on appropriate subdomains of H

k
/σk, and we will be

careful to indicate which branch we are using when relevant: certainly divisor
data is independent of the branch chosen.)

Because we want the family H
k

to be continuous in k, we require—as is
the case on H1—that g(V1) =∞ and g(V2) = 0. This determines the divisors
of gdh, 1/gdh and dg

g . See Figure 20.

4.1. The rhombic |dz| model . In Section 3, we chose to represent T1 , the
Riemann surface ofH1 modulo translations, as a rhombus in the following man-
ner: a diagonal is a horizontal line segment of length two, whose center point
is the origin of C. In dealing with family H

k
, we do not know in advance the

underlying rhombic structure. Also, we will choose a different normalization
for rhombi underlying H

k
/σk. Here is our convention.

For each H
k
/σk, the associated rhombus in the complex plane will be

chosen to have the following properties: the top vertex of the rhombus sits at
0 ∈ C; the point 1 ∈ C is the right-most vertex; the left-most vertex is at some
unitary value τ ; the points V1 and V2 lie symmetrically placed on the diagonal
from 1 to τ . The last statement is a consequence of Abel’s theorem applied
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Figure 22: A fundamental domain of H
k

can be imagined qualitatively as
a region of the helicoid bounded by two horizontal lines, between which the
helicoid turns by an angle of θ = 2πk and in the middle of which there is a
handle. The boundary lines are identified in the quotient as a single line. The
only other line, besides the vertical axis, that survives the surgery necessary to
insert the handle is a horizontal line in the middle, at the level of the handle.
The surface on the bottom, left, is a fundamental domain of H1 . The surface
on the bottom, right, is a fundamental domain of H

k
for k ∼ 1.25. The two

images on top are are each one quarter of the surfaces below them. They are
bounded by a segment of the vertical axis, two horizontal half lines and a closed
loop that is not contractible in H

k
/σk. See also [23].

to dh (or a consequence of the symmetry of the surface imposed by Lemma 1).
In this setup, the center point of the rhombus lies at O = 1+τ

2 , and a point
on the horizontal diagonal must be of the form O ± t(1−τ

2 ), −1 ≤ t ≤ 1. In
particular, the points Vi, Ei, i = 1, 2 are of the form

E1 =O − b1− τ
2

(24)

E2 =O + b
1− τ

2

V1 =O − a1− τ
2

V2 =O + a
1− τ

2
for some 0 < a < b < 1.

Because we want the family H
k

to include H1 , we may assume that a < b,
as we know this to be the case for that surface. We will refer to this model
of T as the rhombic or the rhombic |dz| model, the latter when we wish to
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emphasize that we are understanding the rhombus as coming equipped with a
(nonsingular) cone metric. In subsequent sections, we will develop two other
models of T using the forms gdh and dh.

The positions of the ends Ei and the vertical points Vi are not independent.
For k = 1, we observed in Section 3 that a + b = 1, a consequence of Abel’s
theorem. In general, we have the following result.

Proposition 10. Suppose given Weierstrass data that satisfy the geo-
metric conditions (4) for H

k
/σk; in particular, g possesses the divisor specified

in Figure 20. If k is an integer, then a+ kb is also an integer and

1 ≤ a+ kb ≤ k.
In particular if k = 1, a+ b = 1.

If such Weierstrass data exist for a continuously varying family of H
k
/σk

that contains H1/σ1, then

(25) a+ kb = k

Proof. If k is an integer, then the function g is single-valued. We will
apply Abel’s Theorem to g, whose divisor is given in Figure 20. From (24), we
have

−kE1 − V1 + V2 + kE2 = (a+ kb)(τ − 1).

Therefore, by Abel’s theorem, (a + kb)(τ − 1) is in the lattice, which implies
that a+ kb is an integer. Since 0 < a < b < 1, we see that a+ kb is an integer
between 1 and k. In particular, when k = 1, we have a+ b = 1.

For any (possibly nonintegral) k > 0, consider the meromorphic one-form
dg
g , whose divisor and residues are given in Figure 20. Let γ1 and γ2 be the

cycles on T = C /{1, τ} given by the vectors 1 and τ , respectively. For any
closed one-form µ with simple poles at P1, . . . , Pr, and residues a1, . . . , ar, the
bilinear relation [12] gives

(26) 2πi
r∑
j=1

Pjaj = ω2α1 − ω1α2,

where αi =
∫
γi
µ and ωi =

∫
γi
dz, i = 1, 2. Applying (26) to µ = dg

g we have

2πi(−kE1 − V1 + V2 + kE2) = α1τ − α2,

and using (24), we obtain

(27) 2πi(a+ kb)(1− τ) = α1τ − α2.

It is left to evaluate α1 and α2.
In Figure 23, we have drawn curves γ̃1 and γ̃2 that are homotopic to γ1 and

γ2, respectively. On the semi-circular arcs near the Ei, the integral of dg
g will
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τ

γ2 γ1

E1 E2

γ̃2

A

γ̃1

E1 E2
1

Figure 23: On the left, a rhombic torus is represented as a planar rhombus
with sides 1 and τ . The paths γ1 and γ2 correspond to the vectors 0, 1 and
0, τ . The ends E1 and E2 are labelled. On the right, the paths γ̃1 and γ̃2 are
drawn. Each begins by descending A, the top half of the vertical diagonal,
then follows their respective halves of the horizontal diagonal, avoiding the
ends, Ei, by traversing semicircular paths. Each γ̃i is homotopic to γi.

give one-half of 2πi times the residue, with a sign change due to the orientation
of the semicircles associated to γ̃1. From the residues given in Figure 20, we
know that the contributions to the integral of dg

g along the semicircles is the
same on γ̃1 as on γ̃2 and is equal to −πi(k + 1).

The horizontal line segments of each γ̃i are mapped by the immersion into
horizontal lines, which implies that on each of the segments, the Gauss map g
takes values on radial lines in C. Since dg

g = d log g, the integral of dg
g along

these lines depends only on the change in |g| along these segments. We can
assume without loss of generality that each of the semicircular arcs begins and
ends at points where |g| has the same value. Since |g| = 1 at the center and
at the vertex of the rhombus—both points on the vertical diagonal which is
mapped into a vertical line—we can conclude that the total contribution to αi
from integrating dg

g along these segments is zero.

It remains to compute
∫
A
dg
g , where A is the top half of the vertical diag-

onal. See Figure 23. Before doing this, we observe that since this segment is
common to γ̃1 and γ̃2 we now know that

(28) α1 = α2 = −πi(k + 1) +
∫
A

dg

g
;

and we denote this common value as α. From (27) we have

2πi(a+ kb)(1− τ) = −α(1− τ)

or

(29) a+ kb =
−α
2πi

.

As noted above, the vertical diagonal is mapped by the immersion into the
vertical axis of H

k
along which g is unitary. By our assumption that H

k
has

the geometric properties outlined in (4) and in Lemma 1, the tangent planes at
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the endpoints of A are vertical planes making an angle of πk with one another.
Hence

(30)
∫
A

dg

g
= −πi(k +N(k))

for some integer N(k). Therefore from (28)

(31) α = −πi(k + 1)− πi(k +N(k)) = −πi(2k +N(k) + 1)

and from (29)

(32) a+ kb = − α

2πi
= k +

(N(k) + 1)
2

.

Equation (32) is valid for any value of k > 0. If we assume that we have
Weierstrass data for a continuous family of H

k
/σk, then the integer-valued

function N(k) is a constant. If that family includes H1 then it follows from
(32) and the first part of the proposition that N(k) = −1. Thus (32) states
that a+ kb = k, which is (25).

Since 0 < a < b < 1 we have

Corollary 2. Under the assumptions of Proposition 10,

a <
k

k + 1
< b, and lim

k→∞
b = 1.

Remark 9. The integral
∫
A
dg
g in Proposition 10 measures the turning of

the normal along the vertical axis of H
k
: the full turning in one period of H

k

will be 2π(k− 1) according to the equation (30) in the proof of Proposition 10
and the fact that N(k) is identically equal to −1. On the helicoid, H, the
normal turns by 2πk on each H/σk. We interpret this as saying that the
presence of a handle in each fundamental domain of H

k
has the effect of costing

one full turn of the normal. In particular, the normals on H1 do not wind
around the vertical axis at all, a surprising geometric consequence of Abel’s
theorem.

4.1.1. The period conditions. The Weierstrass data we produce must
satisfy the horizontal and vertical period conditions (12)and (13):∫

B
gdh=

∫
B

1
g
dh;(33)

Re
∫
B
dh= 0.(34)

The curve B is defined in Figures 15 and 21.

4.2. The |gdh| model and the solution of the horizontal period problem. We
will produce candidate Weierstass data that depend on the conformal type and
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placement of the distinguished points. They will satisfy the divisor conditions
of Figure 20, all the symmetry conditions of Lemma 1, the distinguished-
point-placement requirements of (25) and the horizontal period condition (33),
but not necessarily the vertical period condition (34). We will do this by
constructing a second model, to which we will sometimes refer as the “|gdh|
model”, but more often—for reasons that will become evident— as the slit
model or the |dζ|-model.

The construction of T1 in Section 3.3 involved slicing the ζ-plane along
[−1, 1] and making identifications. Into this model of T1 we are going to sew in
a copy of the cone Sk−1. This cone-metric construction procedure is described
in Section 2.3, Example 2. For each d > 0 and k > 0, we slice the ζ-plane from
di to ∞ along the imaginary axis, and sew in Sk−1, placing the cone point
of Sk−1 with positive cone angle at the point of T1 corresponding to ζ = di,
and the cone point with negative cone angle at ∞. We will refer to the torus
underlying this metric space as Tk(d) and the metric torus as the slit model of
Tk(d). It has three cone points, ζ = 0, ζ = di, and ζ = ∞, with cone angles
6π, 2πk and −2π(k + 1), respectively. We label these points v2, e2 and e1

respectively. See Figure 24.
The multivalued one-form dζ on the ζ plane with an Sk−1 sewn in descends

to a multivalued one-form on Tk(d) with a zero of order k − 1 at e2, a pole of
order k + 1 at e1 and a double zero at v2. (Our choice of notation for these
points comes from the desire to have the ei and the vi correspond to the Ei
and Vi, respectively, in the rhombic model.) We will also refer to this one-form
on Tk(d) as dζ.

All these special points lie on a fixed point set of an involution of Tk(d),
namely the imaginary axis (fixed under ζ → −ζ̄). The rhombic torus Tk(d) is
conformally diffeomorphic to one of the tori constructed in Section 3, which
underlie the |dz| model. It is clear that we may choose a conformal diffeomor-
phism — from the rhombus model to the slit model of the torus we have just
constructed — that has the following properties:

i. The imaginary axis of the ζ-plane is the image of the horizontal diagonal
of a (rhombic) fundamental domain;

ii. The preimages E1 and E2 of e1 = ∞ and e2 = di (respectively) are
symmetric with respect to the vertical diagonal of the rhombus;

iii. The point E1, the preimage of the point e1 = ∞ in the slit model, lies
to the left of the center point O in the rhombus.

As pointed out in Section 4.1, Abel’s theorem applied to dh forces us to define
V1 as the point symmetric to V2 on the horizontal diagonal of the rhombus and
therefore to identify v1 as a uniquely specified point on the imaginary axis of
the ζ-plane. Because of the order of points on the horizontal diagonal on the
rhombus, we know that v1 lies on the negative imaginary axis of the ζ-plane.
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e1

e2

2π(k − 1)

v2

Figure 24: The torus Tk(d) is constructed by sewing into the torus T1 the
cone Sk−1 described in Section 2. The sewing is done along the ray in the
imaginary axis beginning at di and terminating at ∞. The point di is labeled
e2, the point at ∞ is labeled e1, and the origin is labeled v2. Note that when
k = 1 we sew nothing in: T1(d) =T1 with a distinguished point at ζ = di. We
may also remove an Sk from T1 , for 0 < k < 1

2 , allowing us to define Tk(d) for
k > 1

2 .

Note that for each choice of k and d, our geometric normalization deter-
mines a = a(k, d) and b = b(k, d) uniquely. Also, the lattice generated by
{1, τ} that is associated to Tk(d) changes as k and d vary. That is τ = τ(k, d).

Definition 9. The one-form gdh on the torus Tk(d) is given by dζ in the slit
model. On the rhombic model of Tk(d) it is given by the pullback of dζ under
the conformal diffeomorphism between the two models, and the conformal
diffeomorphism is determined by conditions (i)–(iii) in this section.

Remark 10. Our construction in this section is ambiguous when k = 1
and we make it precise here in a manner that is consistent with the discussion
of H1 in Section 3. When k = 1 we are not sewing in a cone at all, which means
that τ(1, d) is constant: the rhombus we get is the rhombus of T1 constructed in
Section 3. For any choice of conformal diffeomorphism that places the inverse
image of the point at infinity at E1 (a point on the horizontal diagonal to the
left of O), let E2 be the symmetric point on the horizontal diagonal to the
right of O. Then the image of E2 under this conformal diffeomorphism is some
point, ζ = di, on the positive imaginary axis.

The one-form gdh is multivalued when k it not an integer. The periods
of gdh (and its companion one-form 1

gdh to be defined below) will be defined
according to the following convention.

Convention. If α is a curve in the slit model of Tk(d) or in the rhombic
model, we specify a base point p on α and a choice of branch for gdh at p.
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E1

B

O E2

e1

e2

−1 1

B O

Figure 25: The path B of integration for the vertical period problem illustrated
on the left in the rhombic model and on the right in the slit model. The
cut referred to in the convention runs in the rhombic model from E1 to E2,
passing through the vertex of the rhombus. It is indicated by a bold line in
the illustration on the left. Its counterpart runs from e1 to e2 in the slit model
on the right, and is also indicated by a bold line.

We use this branch to evaluate
∫
α gdh. In practice we will choose a preferred

branch of gdh. In the slit model of Tk(d), we choose a branch of dζ that is
real on the part of the real axis where |ζ| > 1; this branch extends in a unique
manner to Tk(d) after removing a cut from e2 to e1. The cut we will choose
is in the cone and is the image of the segment of the horizontal diagonal in
the rhombus model that runs from E2 to E1, passing through the vertex of
the rhombus. It follows that, on the rhombus, we are choosing the branch of
gdh that is well-defined in the complement of this same slit, and that is also
imaginary along the remaining segment of the horizontal diagonal.

When dealing with specific curves that do not cross the branch cuts, we
will always choose this branch to evaluate and we will not need to specify a
point on the curve in question.

With this convention in mind we evaluate
∫
B gdh, where B is the cycle in

the rhombic model in Figure 25. It is illustrated there with its diffeomorphic
image, also labelled B, in the slit model. Since these curves do not cross the
cut used to define the principal branch of gdh, we have

(35)
∫
B
gdh =

∫
B
dζ = ±1 ∈ R .

We note that this choice of branch is consistent with the case k = 1, as
described in the proof of Lemma 2. The one-form gdh has the divisor specified
in Figure 20. Also, as was the case for the gdh constructed for H1 in Section 3,
it follows immediately from the definition of gdh and the convention above
that all of the periods of gdh are real.
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v1

e1

e2

Figure 26: The one-form 1
gdh can be considered as the form descended from

dζ to the slit model of the torus that is constructed in the diagram above. The
point e1 is placed at −di and the point e2 is placed at ∞.

4.2.1. The |1gdh| model and the horizontal period condition . We will now
specify the multivalued one-form 1

gdh. Recall from Section 2.7 the involution
r of the rhombus which is a 180◦-rotation about the center point O. Note
that r(E1) = E2 and r(V1) = V2. We expect geometrically that g ◦ r = 1

g

and r∗dh = −dh. This motivates the formal definition of 1
gdh on the rhombic

model:

(36)
1
g
dh := −r∗(gdh).

The one-form 1
gdh has the divisor specified in Figure 20. Furthermore, the pair

{1
gdh, gdh} satisfies the horizontal period condition (33). To see this, note that

the cycle B in Figure 25 satisfies r ◦B = −B and therefore∫
B

1
g
dh = −

∫
B
r∗(gdh) = −

∫
r◦B

gdh =
∫
B
gdh.

Since we know from (35) that gdh has real periods, we see that

(37)
∫
B

1
g
dh =

∫
B
gdh

is satisfied. This is the horizontal period condition (33). For future reference,
we state this result as a proposition.

Proposition 11. For every k > 1/2 and every d > 0, the one-forms gdh
and 1

gdh, defined in Definition 9 and (36), respectively, satisfy the horizontal
period condition (33) in the sense of the Convention of the previous section.

Remark 11. Let φ be the diffeomorphism from the rhombus to the slit
model of Tk(d) which is used to define gdh in Definition 9:

gdh = φ∗(dζ).
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Using (36), we have −1
gdh = (φ ◦ r)∗(dζ), where r is the 180◦-rotation about

the center of the rhombus. Let r̃ be the conformal involution of the slit model
of Tk(d) induced by r: that is, r̃ = φ ◦ r ◦ φ−1. Then

−1
g
dh = (r̃ ◦ φ)∗(dζ).

Clearly r̃ interchanges the ei, interchanges the vi, fixes O and leaves the imag-
inary axis invariant. If f is the involution of the slit model of Tk(d) induced
by ζ → −ζ, then

1
g
dh = (f ◦ r̃ ◦ φ)∗(dζ) = φ∗(f ◦ r̃)∗(dζ).

This equation above tells us that 1
gdh is the one-form on the rhombus produced

by pulling back the one-form dζ on the modified slit model in Figure 26.

4.2.2. Symmetries inherent in the |gdh| and |1gdh| models. We show in this
section that the Weierstrass data we have just defined satisfies the geometric
conditions required of H

k
/σk in (4) and in Lemma 1.

The metric induced by the Weierstrass immersion (5) is given by (6):

(38) ds =
1
2

(
|gdh|+ |1

g
dh|
)
.

Two different branches of gdh (or 1
gdh) differ by a unitary constant. Thus the

metric expression in (38) does not depend on our choice of branch.
We may define g and dh to be square roots of the ratio and the product,

respectively, of gdh and 1
gdh, and we choose the sign of the square root as

we did in Section 3 for H1 . The function g is then likely to be multi-valued,
and our convention extends to choosing the branch determined by our choice
of branch of gdh and 1

gdh. Let r be the involution of the rhombic |dz| model
defined by 180◦-rotation about the center point O, and let and µh and µv be
reflection in the horizontal and vertical diagonals, respectively.

Lemma 3. i) The involutions r, µv and µh are isometries of the metric
ds in (38). The involution µh is an isometry of the rhombus equipped with the
|gdh| metric. The involutions r and µv are isometries between the rhombus
equipped with the metric |gdh| and the rhombus equipped with the metric |1gdh|.

ii) The forms gdh and 1
gdh = −r∗(gdh) are fixed by −µ̄∗h and interchanged

by −r∗ and µ̄∗v.

iii) The one-form dh is imaginary on the horizontal diagonal and real on
the vertical diagonal of the rhombus. There is a definition of g, consistent with
our convention so that the product of g and dh agrees with the form gdh, and
the quotient of dh by g agrees with the form 1

gdh. Moreover, g is unitary on
the vertical diagonal, and g2 is real on the horizontal diagonal and satisfies
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g2 ◦ r = 1
g2 . In particular, any branch of the multivalued function g takes

segments of the horizontal diagonal disjoint from E1 and E2 to a straight line.

We note that the principal branch of gdh and 1
gdh are mapped into one

another by these automorphisms (see our “Convention” in the previous sec-
tion.)

Corollary 3. The Weierstrass immersion (5) defined by the forms gdh
and 1

gdh maps the vertical diagonal into a vertical line and the horizontal di-
agonal into horizontal lines that project onto lines in the (x1, x2)-plane making
an angle of ±πk with one another.

Proof of Lemma 3. Statement i) follows immediately from statement ii)
and the form of the metric (38).

Statement ii) for −r∗ follows immediately from the definition of 1
gdh and

the fact that r2 = id. The meromorphic one-form µ̄∗h(gdh) has the same divisor
as gdh. Along the portion of the horizontal diagonal where (our chosen branch
of) gdh is imaginary, we therefore have µ∗h(gdh) = gdh. Hence

(39) µ̄∗h(gdh) = −gdh,

(and, analogously µ̄∗h(1
gdh) = −1

gdh). Similarly, µ̄∗v(gdh) has the same divisor
as 1

gdh = −r∗(gdh). Hence

µ̄∗v(gdh) = c
1
g
dh = −cr∗(gdh)

for some nonzero constant c. Since r ◦ µv = µh, applying r∗ to the equation
above and using (39) give c = 1. Hence,

(40) µ̄∗v(gdh) =
1
g
dh.

Since µh ◦ r = r ◦µh and µ2
v = id, the equalities (39) and (40) imply statement

(ii) for µh.
For statement iii), observe that since

(41) dh2 = gdh · 1
g
dh,

the identities (39) and (40) imply that µ∗v(dh
2) = dh

2 = µ∗h(dh2). Therefore
when applied to tangent vactors along both diagonals, we have

(42) dh2 = dh
2
,

implying that dh is either real or imaginary on the diagonals. Along the
horizontal diagonal, the form gdh is by definition imaginary when applied to
tangent vectors, and the same is true for 1

gdh, either by our convention, by ii),
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or by construction of 1
gdh. Hence, dh2 is real and negative along the segment

of horizontal diagonal from E1 to E2 through O, which implies that dh is
imaginary. We also know that dh has no zeros on the vertical diagonal, as
neither gdh nor 1

gdh vanish there. Since the form dh must be real for vertical
directions at O (because dh is imaginary on tangent vectors to the horizontal
diagonal), the form dh is real on the entire vertical diagonal.

Our next goal is to provide a definition of g that is consistent with our
conventions and in accord with statement (iii).

To begin, define a multi-valued function G by

(43) G = gdh/
1
g
dh.

Since both gdh and 1
gdh are imaginary when applied to tangent vectors to

the horizontal diagonal, the function G is real there. Since we are expecting
a multivalued g—defined only up to integer powers of e2πik—we have shown
what is required in statement iii) for the horizontal diagonal. Applying (40)
and the fact that µ̄v is an involution to (43), we have

µ̄∗v(G) =
1
G
.

This implies that when applied to tangent vectors to the vertical diagonal we

have G = 1
G , i.e. |G| = 1 as required. Also, G ◦ r = r∗gdh

r∗( 1
g
dh)

=
− 1
g
dh

−gdh = 1/G.

We define g to be the square root of G. (This is permissible since we can do
it on a branch and then extend.) The statements in iii) for g follow directly
from those for G. This completes the proof of the lemma.

Proof of Corollary 3. The involutions µh and µv are isometries of the
metric ds by statement i) of Lemma 3. Therefore, their fixed-point sets are
geodesics. On a minimal surface, a geodesic is a straight line if and only if it
is an asymptotic curve. Moreover, a curve on a minimal surface is asymptotic
if and only if dg

g dh is imaginary along it [16]. Along the vertical diagonal, the
form dh is real on tangent vectors and the function g is unitary according to
statement iii) of Lemma 3. Thus the form dg

g dh is imaginary on tangent vectors
to the vertical diagonal, which means that the vertical diagonal corresponds
to an asymptotic curve, hence a straight line on the minimal surface. Since g
is unitary along the vertical diagonal, the corresponding straight line on the
minimal surface is vertical.

By statement iii) of Lemma 3, the form dh is imaginary on the horizontal
diagonal — and on any interval there not containing E1 or E2. Hence x3 =
Re
∫
dh = 0 on any interval of the horizontal diagonal. It follows that the

image of segments of this diagonal bounded by E1 and E2 are mapped to
curves in horizontal planes in R3. Also by statement iii) of Lemma 3, the
function g takes values on a line through the origin. This implies that dh dg/g
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Figure 27: Upper left: The rhombus with the paths γ1 and γ2 indicated. The
vertical diagonal is labeled γ0. Upper right: The paths γ̂i—the images of the
paths γi under the conformal diffeomorphism—are drawn in the slit model.
Note that γ̂1 and γ̂2 pass through the image of the vertex point in the slit
model and no other point on the imaginary axis. The path γ̂3, the image of
vertical diagonal of the rhombus, passes through both P̂ and O. Lower left:
The rhombus divided into four domains by the γi and the horizontal diagonal.
Lower right: The slit domain divided into four domains corresponding to those
in the rhombus model under the conformal diffeomorphism.

is imaginary along those segments, so their images are horizontal straight lines.
The values of g along these lines increase or decrease by integer multiples of
πk because

∫
α gdh = 2πki for any simple closed curve α surrounding E1 or E2.

Hence projection of successive lines make angles of ±πk with one another.

For future reference, we gather together the key results of Sections 4.2.1
and 4.2.2 (Proposition 11 and Corollary 3).

Proposition 12. For any values of k > 1/2 and d > 0, the Weierstrass
data defined on Tk(d) produce an H

k
satisfying the horizontal period condition

(33). If the data on Tk(d) also satisfy the vertical period condition (34), then
the minimal surface defined by this data satisfies the conditions (4).

To prove Theorem 3, we must show (among other things) that we cannot
only choose for each k > 1 a value of d > 0 for which the vertical period condi-
tion (34) is solved, but also that we can choose a continuous path (k(t), d(t))
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along which k(t) takes on all values between 1 and ∞. We will formulate our
approach to this problem in Sections 4.3 and 4.4, then carry it out in Sec-
tions 5 and 6. Before doing so, we verify that our candidates for Weierstrass
data satisfy a necessary condition.

4.2.3. The placement of the ends and vertical points. Proposition 10 es-
tablishes a necessary condition on the Weierstrass data, specifically restrictions
on the relative positions of the Ei and Vi, in order for the continuous choice
of d to be possible. We prove in this section (see also the alternative proof in
Appendix A) that the Weierstrass data we have defined satisfies this condition
for all admissible pairs (k, d).

Proposition 13. For all finite k > 1/2 and all finite d > 0, the points
Ei and Vi defined by the construction of gdh satisfy (25):

a+ kb = k

when written in the form (24): E1 = O − b(1−τ
2 ), E2 = O + b(1−τ

2 ), V2 =
O + a(1−τ

2 ).

Remark 12. In Proposition 10, we showed that if anH
k

family exists, then
the placement of the ends and vertical points satisfies the condition a+kb = k.
In Proposition 13, we verify that the data we are constructing in the gdh model
do indeed satisfy this condition. We do not assume here that the surfaces H

k

exist and we use only the properties of the gdh and 1
gdh models to prove the

proposition. On the other hand, the function G in the proof of Lemma 3 will
turn out to be the function g2 (the square of the stereographic projection of
the Gauss map on the desired surfaces).

We restate here the immediate consequence of Proposition 10, namely
Corollary 2, now valid for our constructed models:

(44) a <
k

k + 1
< b, and lim

k→∞
b = 1.

Proof. (An alternate proof using theta functions may be found in the
appendix.) We begin by recalling from the proof of Lemma 3 the definition of
the function

G =
gdh
1
gdh

,

a multivalued function with poles at E1 and V1, and zeros at E2 and V2, of
orders given in the following table:
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(45)

E1 V1 V2 E2

G ∞2k ∞2 02 02k

dG
G ∞ ∞ ∞ ∞

residue dG
G −2k −2 2 2k .

The one-form dG/G has simple poles at precisely these four points, with
residues given by the values in the array above. We apply the bilinear re-
lations to dG/G and dz, obtaining

(46) 2πi(−2kE1 − 2V1 + 2V2 + 2kE2) = α1ω2 − α2ω1.

Here the αi are the periods of dG/G and the ωi are the periods of dz on
the cycles given by the sides of the rhombus: γ1 = 0, 1 and γ2 = 0, τ . (See
Figure 28.) Clearly, we have ω1 = 1 and ω2 = τ . Using the expressions for the
four poles of dG/G given in the statement of the proposition, we may write
(46) as

(47) (a+ kb)(1− τ) =
−1
4πi

(α2 − α1τ).

To prove the proposition we will now show that

(48) α1 = α2 = −4πik.

We compute the αi by replacing the paths γi with the paths γ̃i in Figure 28
to which they are homotopic. Each γ̃i consists of the top half of the vertical
diagonal, three horizontal segments and two semicircular paths. Since, by
Lemma 3, we know G ◦ r = 1/G and r(γ̃2) = −γ̃1 by construction, we have

α2 =
∫
γ̃2

dG

G
=
∫
r−1(γ̃2)

r∗(
dG

G
) =

∫
r(γ̃2)

d(G ◦ r)
G ◦ r =

∫
−γ̃1

d( 1
G)
1
G

=
∫
γ̃1

dG

G
= α1.

It remains to prove the second equality of (48). The contribution to each αi
from the two circular paths on γ̃i is clearly equal to −2πi(k + 1). We make
two assertions from which the second equality of (48) follows immediately.

(1) The integral of dG/G along the top half of the vertical diagonal (oriented
downward) is −2πi(k − 1).

(2) The integral of dG/G along the union of the three horizontal segments
of each γ̃i is equal to zero.

Proof of Assertion 1. We label the top half of the vertical diagonal by δ

as in Figure 28 (bottom left). Using Statement ii) of Lemma 3 (and its proof),
we may assert that G = g2 is unitary along δ. The integral of dG/G along δ
is easily computed as follows. Since the form gdh is defined via pullback of dζ
from the slit model of Tk(d), the image of δ under the conformal diffeomorphism
φ from the rhombus model to the slit model is a curve whose derivative at
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e2
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Figure 28: The paths of integration in the proof of Proposition 13. Top: The
rhombic model with paths of integration realized on the models of Tk(d). The
paths γ̃i are homotopic to the paths γi. Each of the paths γ̃i consists of the
top half of the vertical diagonal, two semicircular arcs centered at the Ei and
three line segments on the horizontal diagonal. Bottom left: The part of the
arcs γ̃i consisting of the top half of the vertical diagonal is labeled δ. Bottom
right: The image of δ in the slit model is illustrated here. It begins at a point,
labeled P , in the sewn-in cone (this point corresponds to the vertex point in
the rhombic model), then descends to the slit, passing through it to end at the
point O corresponding to the identically labeled center point in the rhombus.

φ(δ(t)) is precisely gdh(δ̇(t)). It follows from Lemma 3, part ii) and the fact
that δ is fixed by µh that

(49) G ◦ δ =
gdh(δ̇)
1
gdh(δ̇)

=
gdh(δ̇)

gdh(δ̇)

and therefore G ◦ δ(t) = e2iθ(t), where θ(t) is the angle determined by the
tangent to the image of δ under the conformal map φ. Therefore the integral
of dG/G along δ is 2πi times the total turning of the normal of the image
(under φ) of δ. A curve homotopic to the image of δ is drawn in Figure 28 and
is also labeled δ. It is clear that its normal turns through an angle of −π(k−1)
as it leaves P and passes through half of the sewn-in cone. It is also clear that
the normal does not turn at all from the time the curve leaves the cone until
it reaches O. This proves the first assertion.
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Proof of Assertion 2. Since gdh is the pullback of dζ under φ from the
rhombic to the slit model, it follows from Lemma 3 and our convention that
any branch of gdh on the rhombus takes values of the form iλ(t)e(2πik)n on an
interval of the horizontal diagonal bounded by E1 and E2; here, λ(t) is some
nonzero real valued function, k is determined by our choice of Tk(d), and n is
an integer determined by the branch of gdh we chose.

The same is true for 1
gdh with the same value of k, but with a possi-

bly different integer n and also a possibly different real-valued function λ(t).
Therefore, the function G on the interval in question takes values on an open
ray in C, from which it follows that the integral of dG

G on this interval is equal
to the difference of the values of log |G| at its endpoints. Since we are free to
choose the two “semi-circular” arcs of γ̃, so that |G| is constant along them,
it follows that the sum of the integrals of dG

G along the three horizontal line
segments of γ̃1 is equal to log(|G(P )|)− log(|G(O)|. But both P and O are on
the vertical diagonal, where G is unitary, which establishes Assertion 2.

4.3. The |dh| model and the global formulation of the vertical period prob-
lem. We now address the vertical period problem on Tk(d). To do this, we
will describe what amounts to a fourth model for the torus Tk(d), in terms of
which the dh-period problem becomes a question in flat (singular) geometry.

We begin with the rhombic model described in Section 4.1. Consider half
of the rhombic torus, produced by identifying the top-left and bottom-right
rectangles as in Figure 21. The vertical period problem (34) is still

(50) Re
∫
B
dh = 0,

but now we consider, as in Section 3, the curve B to be a path in the rectangle
R. It follows from Lemma 3(iii) that dh is imaginary on the horizontal sides
of the rectangle (as that side corresponds to the imaginary axis in the |gdh|
model) while it is real on the vertical edges, corresponding to the vertical axis
of H

k
/σk. The divisor of dh is given in Figure 29.

E1 V1 V2 E2

dh ∞ 0 0 ∞

Figure 29: The divisor of dh.

We define the map W from the rectangle to the complex plane by

(51) W (p) =
∫ p

O
dh,

where O is the point on the rectangle R corresponding to the center of the
rhombus.
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The vertical period problem (51) is solved when

(52) Re
∫
B
dh = ReW (P ) = 0

where P is the left vertex of the rectangle.

4.4. The (k, d) rectangle P. Our goal in Section 5 will be to to prove the
existence statement of Theorem 3. This we will do by proving that for every
k > 1

2 there is a finite positive value d so that (52) is satisfied, and that there
is a continuous family of solutions (k(t), d(t)) for which k(t) assumes all values
of k in the open interval (1

2 ,∞). This we accomplish by an intermediate-value-
theorem argument with boundary estimates coming from d = 0 and d =∞ for
fixed k ∈ (1

2 ,∞].
Formally, this requires first adjoining, to the parameter space of tori Tk(d)

(with (k, d) ∈ (1
2 ,∞) × (0,∞), as defined in Section 4.2), a set of punctured

tori parametrized by (k, d) ∈ [(1
2 ,∞] × {0,∞}] ∪ [{∞} × [0,∞]] and then

showing that the height function h =
∫
B dh is continuous on the union P

of the parameter space with these boundary points. The added points will
be “degenerate” in the following sense. For 1/2 < k < ∞ and 0 < d < ∞,
the surface Tk(d) \ {e1, e2, v1, v2} is conformally a four-punctured torus. When
we set k = ∞, d = 0, or d = ∞, we describe a torus with fewer than four
punctures. These punctured tori are degenerate four-punctured tori because,
informally, some of the punctures have coalesced; formally, these tori are noded
surfaces.

We begin by carefully defining the total parameter space P. In Sec-
tion 5 we will study the height function, h on P and prove that it is con-
tinuous. In Section 6, we will estimate the height function in order to apply
an intermediate-value argument to prove the existence part of Theorem 3.

4.4.1. The definition of P. To each (k, d) ∈ (1
2 ,∞] × [0,∞], we associate

a punctured Riemann surface. The formal setting for this is the augmented
Teichmüller space T 1,4 of four-times-punctured tori. This space is the bor-
dification of the Teichmüller space T1,4 of four-times-punctured tori obtained
by attaching, to T1,4, strata representing surfaces with nodes; the nodes are
obtained by pinching simple closed curves on a (topological) four-times punc-
tured torus. (We will stick to our suggestive, but somewhat sloppy terminology
of discussing the “coalescing” of distinguished points {p1, . . . , pk} on the torus
— here we of course are referring to the pinching off of a curve surrounding
the points {p1, . . . , pk}. See Remark 2.) In this sense, our definition of the
rectangle P is simultaneously a map of the rectangle (1

2 ,∞]× [0,∞] into T 1,4.
We begin the definition of P on its interior (1

2 ,∞)×(0,∞). We have in fact
done this in Sections 4.1 and 4.2 using the slit model. We remind the reader
that in the slit model, the parameter d determines the placement of e2, while
v2 is always located at the origin of the ζ-plane. The pair (k, d) determine
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−1 v2 = e2 = e1

k =∞

1

Figure 30: The degenerate structure T∞(0).

the conformal structure of Tk(d), and a specifically defined diffeomorphism
with a rhombus representation of Tk(d) determines the location of the four
distinguished points E1, E2, V1 and V2. Their positions (see (24)) determine
the functions a = a(k, d) and b = b(k, d) satisfying a + kb = k according to
(25) and Proposition 13.

For d = 0, and 1
2 < k < ∞, we are sewing in a cone point at v2 with

v2 = e2. In particular, if we want the structures Tk(d) to be continuous at
d = 0, we are required to have a(k, 0) = b(k, 0), and by (25), we have a = b =
k/(k+1). In particular, this will force e1 = v1. Hence Tk(0) must be a rhombic
torus with two distinguished points. As k → ∞, we have a = b → 1, which
means that these two distinguished points should converge at the vertex in the
rhombic model of T∞(0). We define T∞(0) to be the torus produced by sewing
in a cone of simple exponential type at v2 as in Figure 30. All the points V1,
V2, E1 and E2 then coincide with a = b = 1.

We now define Tk(∞) for 1
2 < k ≤ ∞. Here, we are sewing in a 2πk cone

at infinity. The underlying torus will be defined to be T1 (see Section 3) and
the points e1 and e2 coincide. This can only happen when b = b(k,∞) = 1 in
(24). Hence by (25), we have a = 0. We require E = E1 = E2 to be at the
vertex and V = V1 = V2 to be at the center of the rhombus T1 .

Finally, we define T∞(d). For d = 0 or d = ∞, we have already done so.
For 0 < d <∞, we are sewing in a cone of simple exponential type at the point
di in the slit model. This means that the points labelled e1 and e2 coincide
but it does not necessarily mean that the vi have to coincide. In fact, as we
will prove in Proposition 14 below, the points v1 and v2 are distinct. Thus, in
this case, we will have three distinct points: E = E1 = E2, V1 and V2. Here
b = b(∞, d) = 1 but a = a(∞, d) 6= 0, 1.

Proposition 14. For k =∞ and any value of d ∈ (0,∞), the points V1

and V2 defined by the construction of T∞(d) do not coincide. In particular, in
the form (24) we have the expression

V1 = O − a
(

1− τ
2

)
V2 = O + a

(
1 + τ

2

)
,

with a 6= 0, 1.
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d =∞

d = 0

k = 1 2 k = 1 k k =∞

Figure 31: The (k, d) rectangle. Each point corresponds to a Tk(d), on which
we have defined gdh, 1

gdh, g and dh.

Proof. We begin in the slit model of T∞(d). Since we are sewing in a cone
of simple exponential type, we know that e2 = di and e1 =∞ coincide on the
torus T∞(d). We will label that point e. When d > 0, we have v2 = 0 6= e. Let
us now look at what this says in the rhombic model of T∞(d). First, the ends
Ei must coincide at a point we label E and that point must be the vertex of the
rhombus. In particular, b = 1. Consider the points V1 and V2 corresponding
to v1 and v2. Because v2 6= e we know that V2 6= E. In particular, a 6= 1.
We will now show, by contradiction, that a 6= 0. This is equivalent to showing
that V1 6= V2, which is in turn equivalent to showing that v1 6= v2 = 0.

Suppose V1 = V2 = O in the rhombic model. Then the one-forms 1
gdh =

−r∗(gdh) and gdh have the same divisors. This means that the cone metrics
|gdh| and |1gdh| have the same cone points: a cone point at O with cone angle
6π, and an exponential cone point of simple type at E, the vertex of the
rhombic model. The vertex of the rhombus is a fixed point of r∗, and therefore
r∗|E = −id. Therefore

1
g
dh|E = −r∗(gdh)|E = gdh|E ,

which implies that the exponential cone points of the |gdh| and |1gdh| metrics
are asymptotically isometric. It then follows from Proposition 4 of Section 2.3
that |1gdh| and |gdh| define the same cone metric up to a constant scale factor.
Since the metrics agree at the fixed points of r, they are in fact equal: |1gdh| =
|gdh|.

We now use statement ii) of Lemma 3. It says, among other things, that
|gdh| and |1gdh| are interchanged by µ∗v, where µ∗v is reflection in the vertical
diagonal of the rhombus. (Lemma 3 is presented in a context where it is
natural to assume that k <∞, but its proof does not use this, allowing us to
use its statement ii) here.) Therefore, the involution µ∗v is an isometry of the
metric |gdh|. The fixed-point set of µ∗v is the vertical diagonal, which meets
the horizontal diagonal at precisely the points O and E.
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We now look at what this implies in the slit model. Here, gdh is the one
form induced by dζ. This means that the fixed point set of µ∗v, considered now
as acting in the slit model, must consist of straight line segments and rays.
Moreover, reflection in these lines and rays must induce µ∗v in the slit model.
Since µ∗v in the rhombic model leaves the horizontal axis invariant, it follows
that µ∗v in the slit model leaves the imaginary ζ-axis invariant. This is possible
only if the fixed point set is either the imaginary ζ-axis or the real ζ-axis.
However, µ∗v cannot be reflection in the imaginary axis because reflection in
the imaginary axis is µ∗h and µ∗h 6= µ∗v. Similarly, µ∗v cannot be reflection in the
real axis of the slit domain because it takes e = di to −di, and −di is not a cone
point. Therefore, the assumption that V1 = V2 = O leads to a contradiction.

Remark 13. The definition of the Weierstrass data for T∞(d), d 6= 0, ∞,
was forced by the desire to have the data Tk(d) depend continuously on (k, d)
as k → ∞, something we will prove to be the case in the next section. In
addition to the properties proved in Proposition 14, these data have other crit-
ical properties. First, they automatically solve the horizontal period problem.
Second, they define a (possibly multivalued) conformal minimal immersion at
which there is no period at any end. Third, they have the properties of state-
ment (iii) of Lemma 3. These assertions are proved in the first four paragraphs
of the proof of Lemma 8 in Section 6.

5. Continuity and boundary estimates for the height function

In the previous section we defined for each pair (k, d) ∈ P = (1
2 ,∞] ×

[0,∞], a point Tk(d) in the closure of the Teichmüller space, T1,4 of four-times
punctured tori. This torus Tk,d carried a pair of one-forms gdh and 1

gdh.

Proposition 15. The mapping (k, d)→ Tk(d) is continuous on P.

We will prove Proposition 15 in Section 5.1 and its subsections. As the
proof is long, the reader may wish to skip to Section 5.2 on a first reading.

Remark 14. Because the one-forms gdh and 1
gdh both vary continuously

(on, say, a family of continuously varying models), it follows from Proposi-
tion 15 that the development map W in (51) is also continuous as a function
of (k, d) ∈ P.

Definition 10. The real-valued function h : P → R is defined by the left-
hand side of (52) (i.e. h(k, d) = Re

∫
B dh = ReW (P )) , where for (k, d) ∈ P

the path B and the one-form dh are taken in Tk(d).

It follows from Proposition 15 that
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Proposition 16. The function h : P → R is continuous.

Proof of Proposition 16. The one-form dh on Tk(d) is determined up to
a factor by the conformal structure of Tk(d) and the divisor of dh on Tk,d.
Of course, Proposition 15 asserts that the conformal structures and divisors of
Tk(d) vary continuously in P. We know from Lemma 3(iii) that for (k, d) ∈ P◦,
the one-form dh on Tk,d is always imaginary on the horizontal diagonal and
real on the vertical diagonal. Thus if we insist that the forms dh defined
on (k, d) ∈ ∂P also satisfy Lemma 3(iii), then we need only establish the
continuity in (k, d) of the cone metric |dh| to verify continuity of the forms
dh; the phase is already continuous. On the other hand, the line element |dh|
can be expressed as |dh| = {|gdh| · |1gdh|}1/2, and thus any scale of |dh| is
determined by the scales of |gdh| and |1gdh|. We know that these scales are
determined and are clearly continuous by the restriction that the slit [−1, 1]
on the slit model always has |gdh| = |dζ|−length and |1gdh|-length equal to
two. This then corresponds to the continuity of the |dh|-length of a curve on
Tk(d) for (k, d) ∈ P◦. The proposition then follows once we note that as the
underlying conformal structures of (unpunctured) tori vary continuously over
P, then so do representatives of the cycle B, and hence so does h = Re

∫
B dh.

5.1. The proof of Proposition 15. We prove the continuity in successive
steps, each step focusing on continuity on a particular region on P. We begin
with a preliminary observation, separating out the important issues of con-
vergence of punctured tori from the minor issue of convergence of underlying
(unpunctured) tori.

Lemma 4. For every closed subrectangle [1
2 + ε,∞] × [0,∞] ⊂ P, with

ε > 0, the corresponding punctured tori form a compact set.

Proof. For (k, d) ∈ P, we will work with the slit model of the Tk(d).
Consider two cycles γ1 and γ2 in this model which connect the lower edge of
the slit with its corresponding upper edge via a path that avoids the positive
imaginary axis. They may be chosen to be symmetric with respect to the
imaginary axis. (See Figure 32.) The space of tori is compact if, and only if,
those curve classes have extremal lengths which are uniformly bounded above
and uniformly bounded away from zero.

Recall from Section 2.5 that there are two equivalent definitions of ex-
tremal length, one (the geometric) which lends itself to upper bounds, and one
(the analytic) which lends itself to lower bounds. Note that in each of the
homotopy classes of γ1 and γ2, because the cone angle of e2 is bounded away
from π, there is a fixed annulus of positive modulus which embeds in the torus
and is disjoint from the imaginary axis. This is independent of (k, d). By Def-
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−1 1

B
γ1 O γ2

Figure 32: The paths γ1 and γ2 used in the proof of Lemma 4.

inition 6 of Section 2.5, this provides a uniform upper bound for the extremal
lengths of those curves. Next, to prove a lower bound for the extremal lengths
of [γ1] and [γ2], it is enough by Definition 4 to exhibit a conformal metric ρ for
which `ρ(γi)2/Area(ρ) is bounded below. But such a metric is evident: on the
box [−2, 2]× [−1, 1] ⊆ E2, set ρ ≡ 1 and, on the complement, set ρ ≡ 0 (here,
we implicitly set ρ ≡ 0 on the conical region sewn in along the imaginary axis
above (0, di)). It is clear that in this metric `ρ(γi) ≥ 1 while Area(ρ) = 8,
proving the positive lower bound.

5.1.1. Continuity in the interior of P. Continuity on the interior of P
is almost self evident. Here we take 1

2 < k < ∞ and 0 < d < ∞, and note,
roughly, that small changes in either k or d in those ranges only change the
|gdh| structure slightly, and so the conformal structure of the torus with the
four distinguished points {V1, V2, E1, E2} changes only slightly.

However, in preparation for the next two subsections, we will discuss con-
tinuity in the interior carefully and in the context of the methods used later.

In the rhombic or |dz|-model, there is a flat cone metric that is isometric
to the pullback to the rhombus of the |dζ| metric on in the slit model. Recall
that this is the |gdh| metric on the rhombus, and we note that it is determined
up to a scaling factor by its divisor (by Proposition 3); this factor, say C,
is a normalizing constant. In particular, the location and type of the cone
points (the ends and vertical points) are uniquely determined by the metric
|gdh| or even enough of its geometric invariants such as d|gdh| (V2, E2) or the
lengths, `|gdh|(γi), of the shortest representative of the free homotopy class
of γi. Since under a perturbation of (k, d), all the geometric invariants on the
slit model change but slightly, it follows that the positions of the ends and
vertical points vary only slightly in the rhombic model. Because V1 and V2

are symmetrically placed with respect to O, it follows that V1 also depends
continuously on (k, d). By Lemma 4, the underlying unpunctured torus varies
continuously. Therefore, Tk(d) : P → T is continuous on the interior of P.
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e1

id = e2

−1 1

Figure 33: The annulus A(1, d).

5.1.2. Continuity on the top edge away from the right-hand corner. By
Lemma 4, we know that the underlying rhombic tori subconverge, so that our
attention is focused on the positions of the points E1, E2, V1, and V2 in the
rhombic model.

Recall that the points in the rhombic model labeled by Ei (resp. Vi)
correspond to the points in the slit model labeled by ei (resp. vi).

Assuming that k ≤ k0 < ∞ we want to prove that E1 and E2 coalesce
as d → ∞. Since E2 − E1 = 2b = 2b(k, d) according to (24), the coalescence
of the Ei is equivalent to the requirement that b(k, d) → 1 as d → ∞ with
k ≤ k0. Again we have, by (24), that V2 − V1 = 2a = 2a(k, d), and also that
a+ kb = k, a consequence of Proposition 10. It follows from the boundedness
of k that b(k, d) → 1 as d → ∞ if and only if a(k, d) → 1 as d → ∞. Hence
the coalescence of the Ei is equivalent to coalescence of the Vi.

The coalescing of E1 and E2 as d → ∞ for k ≤ k0 < ∞ follows from a
simple extremal length argument. Consider, for small fixed δ > 0, an annulus
A(1 + δ, d − δ) in the slit model with center at the origin (v2), inner radius
1 + δ and outer radius equal to d − δ (with d > 1). This annulus has a large
modulus and a core curve encircling e1 and e2. It is clear that the core curve of
A(1+δ, d−δ) separates the slit from the topological disk in the complement of
A(1+δ, d−δ) that contains e1 and e2. For d large, the modulus of A(1+δ, d−δ)
is nearly 1

2π log d, and therefore the extremal length of a curve encircling e1

and e2 (which we know to be bounded above by 3π
log d by Definition 5) becomes

arbitrarily small as d → ∞. Therefore e1 and e2 coalesce on the compact set
of rhombi under discussion and it follows immediately that the same is true
for E1 and E2 in the rhombic model.

5.1.3. Uniform estimates near the right-hand edge away from the bottom
vertex. In order to prove continuity along the right-hand edge, we need to have
good estimates for the positions of the Ei, as functions of k and d, as k and/or



AN EMBEDDED GENUS-ONE HELICOID 419

C

e1

e2 = di

i

− 1 2 1 2
1− 1

r− ε1 = 0 ε2 r+

1− 1

Figure 34: The ∆ model. On the left: The (scaled) rhombic model with the
circle C, exterior to which is the simply connected domain D. On the right: the
disk ∆, isomorphic to D (with the metric induced by |dζ| in the slit model).
The disk ∆ has been normalized so that the point corresponding to e1 is at
the origin, the point corresponding to e2 is on the positive real axis, and ∆ lies
inside the unit disk but not inside any smaller disk.

d go to ∞. To do this we concentrate on a simply connected neighborhood of
these points. We begin in the slit model. It is convenient for the exposition to
do a single homothety of the slit model, scaling it so that the slit on the real
axis is now along the segment [−1/2, 1/2]. Consider a circle C of, say, radius 1
about the origin. This circle C separates the model into two components: one,
say T , contains the slit and is topologically a punctured torus, and the other,
say D, contains e2 and e1 and is topologically a disk. This disk with the metric
|dζ| = |gdh| is isometric to a domain, say ∆, which we expect to be nearly a
disk with the metric

ds∆ := C

∣∣∣∣(ξ − ε2)k−1

(ξ − ε1)k+1

∣∣∣∣ |dξ|.
(See Appendix B, Lemma 10.) Here, εi represents the position in the domain
∆ of the point ei in the slit model, and C is a constant depending upon the
geometries of ∆ and of the slit model with the metric |gdh| = |dζ|. We translate
the domain ∆ so that ε1 = 0; then the metric ds∆ takes the form

ds∆ =C

∣∣∣∣(ξ − ε2)k−1

ξk+1

∣∣∣∣ |dξ|(53)

=C

∣∣∣∣1− ε2

ξ

∣∣∣∣k−1 |dξ|
|ξ|2 .(54)

When |ε2| is small, we can expect ∂∆ to be a nearly round circle of radius
nearly 1/C; we will later show that |ε2| must be small along any path in P
along which (k, d)→ (∞,∞).
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We are interested in determining the asymptotics of C and ε2 as k or d
tends to infinity; this involves matching the geometric invariants of (∆, ds∆)
with those of (D, |gdh|). To do this we insist that (∆, ds∆) should be bounded
by a ds∆-round circle of ds∆-circumference 2π and that the ds∆-distance from
this circle to ε2 should equal the |gdh|-distance from C to E2, which of course is
d− 1. These are conditions that hold true for the isometric domain (D, |gdh|).

We now introduce two additional normalizations. First, we rotate ∆ so
that ε2 lies on the positive real axis. Second, we dilate ∆—and consequently
alter the constant C—-so that ∂∆ ⊂ D1(0) with ∂D ∩ ∂D1(0) 6= ∅; i.e., we
do a homothety to ∆ so that it just fits within the unit ball B1(0), touching
∂B1(0) at one point at least. (See Figure 34.)

Lemma 5. C = 1 + o(1), ε2 = 1
kd + o(1

d)o( 1
k ) as k →∞.

Proof. We first prove that C is bounded and that ε2 → 0 as k → ∞.
Continuing with our description of the domain ∆, we next make use of the
symmetry of our situation. In the slit model, the disk D is symmetric with
respect to reflection in the imaginary-axis, and the portion of the imaginary
axis between e2 and C is the unique geodesic connecting e2 to ∂D. In particular,
∂∆ meets the positive real axis in one point, say r+, and meets the negative
real axis in one point, say r−. As the metric ds∆ is invariant under reflection
in the real axis, we conclude that the portion of the real axis joining ε2 to
r+ ∈ ∂∆ is a geodesic. As there is but one geodesic joining e2 to ∂D = C,
we conclude that the isometry taking D to ∆ must take the imaginary axis
between C and e2 to the positive real axis between r+ and ε2.

We can now get a crude bound on C. Consider the intersection of ∂∆
with D |r−|

4

(r−), the disk around r− of radius |r−|4 . The arc ∂∆ ∩ D |r−|
4

(r−)

must be properly embedded in the ball D |r−|
4

(r−). Also, in that ball, we have

that |ξ − ε2| > |ξ| as ε2 ∈ R+. This gives the estimate

|ξ − ε2|k−1

|ξ|k+1
>

1
|ξ|2 >

1
|54r−|2

=
16
25
· 1
r2
−
,

valid for ξ ∈ D |r−|
4

(r−). Because the arc ∂∆ ∩D|r−|/4(r−) passes through the

center point r− of that disk, its |dζ|-length is at least |r−|2 . But this implies
that it has ds∆-length of at least |r−|2 · 4C

5|r−| . Since the whole ds∆-length of ∂∆
is 2π, we see that C < 5

2 · 2π = 5π.
We have established that C is uniformly bounded, and we now turn our

attention to estimating ε2. Consider the arc on the positive real axis connecting
ε2 and r+. The ds∆-length of this arc must be d− 1, the distance from e2 to
C in the |dζ|-metric in the slit model. Since this also must be the distance in
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the ds∆-metric we may compute that

d− 1 = d(∂∆, ε2) =
∫ r+

ε2

ds∆ =
∫ r+

ε2

C

∣∣∣∣ 1− ε2

ξ

∣∣∣∣k−1 |dξ|
|ξ|2(55)

= C

∫ r+

ε2

(
1− ε2

ξ

)k−1 dξ

ξ2
=

C

ε2k

(
1− ε2

r+

)k
.

Now, since ∂∆ ⊂ B1(0), we know that 0 < ε2 < r+ < 1. Hence

d− 1 <
C

ε2k
(1− ε2)k <

C

ε2k
,

which implies that

ε2 <
C

k(d− 1)
<
C ′

kd
,

where C ′ = Cd0
d0−1 is a constant depending on the lower bound, d0 of d, which

we assume to be larger than 1. Hence, ε2 → 0 as either d→∞ or k →∞.
With the boundedness of C and the decay of ε2 established, we easily

prove the finer estimates of the lemma. We have normalized ∆ so that ∂∆
meets the unit circle (in the |δξ| metric) at least at one point. Consider such
a point, say ξ0. Then since ε2 → 0, and C is uniformly bounded, the metrics
ds∆ in (53) subconverge on a sequence (k, d) and in a fixed neighborhood of
ξ0 to

C∞
∣∣∣dξ
ξ

∣∣∣2,
where C∞ is the limit of the constants C in the chosen subsequence.

Now, we would like to claim that C∞ = 1, but whatever it is, in the metric
C∞

|dξ|2
|ξ|2 , the arc ∂∆ passing through ξ0 will have constant geodesic curvature

only if ∂∆ is the unit circle. But if ∂∆ is the unit circle, its geodesic curvature
will be equal to one (and its length will be 2π) only if C∞ = 1. This gives the
estimate

C = 1 + o(1),

which is the first estimate of the lemma. (Here by o(1), we are indicating a
quantity which tends to zero as either k → ∞ or d → ∞.) In addition this
argument implies that

(56) r+ = 1 + o(1).

To get the finer estimates on ε2, we return to (55). For d or k large we
must have C = 1 + o(1), and the estimate (56). Thus, we can rewrite (55) as

d− 1 =
1 + o(1)
ε2k

(
1− ε2k

k(1 + o(1))

)k
=

1 + o(1)
µ

(
1− µ(1 + o(1))

k

)k
,
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where we have written µ = ε2k in the last term in order to show the factor
(1− µ

k )k to be uniformly bounded for large k. Expanding the right-hand side
of the above yields

d− 1 =
1
µ

(
1 + o(1)− µ(1 + o(1)) +O(µ2)

)
,

from which we conclude that

d =
1
ε2k

+
o(1)
ε2k

+ o(1) +O(ε2k),

or that

ε2 =
1
kd

+ o

(
1
d

)
o

(
1
k

)
as desired. (The error term indicates a quantity that tends to zero when
multiplied by either k or d as either k or d tends to infinity.) This concludes
the proof of the lemma.

5.1.4. Continuity along the right-hand edge away from the bottom vertex.
We now use the estimates of Lemma 5 in the previous subsection to prove
continuity along the right-hand edge when d > 2. In fact it will be evident
that the proof can be modified to hold for any point on that edge of the form
(∞, d), d > 0. In particular, it holds at the top right-hand vertex of P, the
point (∞,∞).

We know from Lemma 4 that the underlying compact rhombic tori as-
sociated to the slit model determined by (k, d) also converge to a nontrivial,
nondegenerate rhombus as kd→∞. (We will assume throughout that d > 2.)

We will prove first that, as k → ∞, the points E1 and E2 coalesce. This
is required because the (k, d) structures we have defined in Section 4 on the
right-hand edge, where k = ∞, have this property. Note that we will allow
(k, d)→∞ along any path where k →∞ and d > 2. In particular, we allow d

to tend to ∞ with k.
We have constructed in Section 5.1.3 an isometric model ∆ of a domain

D on the slit model containing points ε1 and ε2 corresponding to the points
E1 and E2 (respectively). It is evident from Lemma 5 that ε2 → ε1 = 0 in
this model, as kd→∞. However, we need to prove that in the corresponding
rhombic model, the corresponding points E1 and E2 are coalescing to a point
as k → ∞. To do this, we must relate the disk ∆ with metric ds∆ (which we
will refer to as the ∆-model) to a domain inside the rhombic model.

We do this by constructing yet another model of the surface, a hybrid of
the slit model and the ∆-model in Section 5.1.3. More precisely, we make a
two-step construction of a metric torus that we will denote by N . First, we
apply a quasi-conformal map (with quasiconformal constant close to one) of
the topological disk ∆ so that it becomes a round disk of radius one. Then,
recalling that the ∆-model is a model for the exterior of the disk of radius one
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in the slit model, we sew the interior of the disk of radius one in the slit model
to the disk ∆ (with metric ds∆) along the common round-circle boundary;
here we require the point r+ in ∆ to glue to the imaginary axis of the slit
model. As the circle is round, this determines the gluing completely. It is clear
that if we were to equip ∆ with the |dζ| metric and perturb it only slightly
quasi-isometrically, then the diameter of the resulting torus N is bounded.

In this construction, we alter the metric and conformal structure of the
surface by the initial quasi-conformal map, and so it is crucial that this defor-
mation be quite small. However, we have already seen that the normalizing
constant C is 1 + o(1) as k → ∞ and, by (56), r+ = 1 + o(1). Thus the
boundary ∂∆ lies at radius 1 + o(1), with geodesic curvature κ = 1 + o(1).
Now, as ε2 = 1

kd + o( 1
kd), we see that if we define our quasi-conformal map

to be the identity on a disk of radius 3
kd and a radial stretch (the stretching

dependent on the polar angle) on the exterior of that disk, then the map is
(1 + o( 1

log kd))-quasiconformal.
The metric torus N allows us to estimate the distance separating the

points representing E1 and E2. More precisely, consider the extremal length
of the curve class Γ∗ consisting of all curves freely homotopic to the circle C
in the slit model, a curve that encircles e1 and e2. Now the extremal length
ExtΓ(Ω) of a curve system Γ in a domain Ω will be dilated or contracted by a
factor of K under a K-quasi-conformal map F : Ω→ Ω′; i.e.,

(57)
1
K

ExtΓ(Ω′) ≤ ExtΓ′(Ω′) ≤ K ExtΓ(Ω),

where Γ′ = F (Γ). Thus the extremal length of the particular class Γ∗ will
be within a factor of 1 + o( 1

log kd) of the extremal length ExtΓ∗(N) on the
hybrid model N . But the extremal length ExtΓ∗(N) is easy to compute. From
Lemma 5, we have ε2 = 1

kd + o( 1
dk ). Using this estimate together with the fact

that N has finite diameter in the sense described above we find that

ExtΓ∗(N) =
2π

log kd · cN
+ o

(
1
dk

)
as k → ∞, with cN a constant that depends on the diameter of N , which is
bounded above and below. (See Ohtsuka [32, Thms. 2.55, 2.80].) Taking into
account the distortion of extremal length caused by the quasi-conformal map
of the slit model (which we denote here by M|dζ|) to N , we see from the above
equation that

ExtΓ∗(M|dζ|) =
[
1 + o

(
1

log kd

)][
2π

log(kd · cN )
+ o

(
1

log kd

)]
(58)

=
2π

log(kd · cN )
+ o

(
1

log kd

)
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as k → ∞. Of course, as the slit model M|dζ| is conformal to the rhombic
model, say M|dz|, we see that

(59) ExtΓ∗(M|dz|) =
2π

log kd · cN
+ o

(
1

log kd

)
as k →∞; here, Γ∗ refers to the system of curves encircling E1 and E2 in the
rhombic model. In particular, this extremal length goes to zero as k → ∞.
Thus, E1 and E2 coalesce in the limit rhombic model.

We now consider the limiting behavior of the points V1 and V2 in the rhom-
bic model. To do so, we will establish a quantitative version of the coalescence
of E1 and E2 in order to use the relation (59) to estimate the separation of
V1 and V2. This is now straightforward, for we know that (again see [32,
Thms. 2.55, 2.80]) that from (59) and (58))

ExtΓ∗(M|dz|) =
2π

log cM
|E1−E2|

+ o

(
1

log |E1 − E2|

)
,

as k →∞. Thus, combining the last two estimates for ExtΓ∗(M|dz|), we find

|E1 − E2|= 1
kd · cMcN (1 + o(1))(60)

= C
kd + o

(
1
d

)
o
(

1
k

)
as k →∞.

Now in the notation of (24), |E1 −E2| = 2(1− b) and |V1 − V2| = 2a, and
using (25) or Proposition 13 (namely a + kb = k) and the above estimate for
|E1 − E2| we find

|V1 − V2| = 2a = 2k(1− b) = k|E1 − E2|(61)

= k ·
(
C

kd
+ o

(
1
d

)
o

(
1
k

))
=
C

d
+ o

(
1
d

)
o (1)

as k → ∞. (Here the term o(1) indicates a quantity that tends to zero as
k →∞.)

Thus, not only do E1 and E2 coalesce as (k → ∞), but so do V1 and V2,
provided d → ∞. This corresponds to the definition of the twice-punctured
torus at (k, d) = (∞,∞). If d is finite, it is clear from (61) that the Vi do not
coalesce as k →∞. This is consistent with Proposition 14, which proves that
V1 and V2 must be distinct on the right-hand edge when 0 < d < ∞. That
same proposition shows, when we assume that E1 = E2 and the underlying
conformal stucture of the compact rhombic torus is determined—exactly our
situation—that the positions of the Vi are determined. Therefore the limiting
data are precisely the data we specified on the interior of the right-hand edge.

5.1.5. Continuity on the bottom edge. Finally, we concern ourselves with
continuity of the map P → T1,4 on the set where k ∈ (1

2 ,∞] and d ≥ 0
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is bounded above. The architecture of the argument is identical to that of
Section 5.1.4, with only the details (and level of complication) changing. In
particular, we will again find a homotopically trivial curve C in the slit model
and describe an isometric model for the simply connected component ∆ of its
complement. Most of our work will involve a careful study of the asymptotics
of the representatives of V1, V2, E1 and E2 inside a suitably modified model
∆. We end the argument by showing that the asymptotic relationships found
in ∆ have corresponding statements within the rhombic model.

As before, we begin by showing that the convergence is easily guaranteed
when we bound k from above. In particular, consider a sequence {(kn, dn)}
with kn ≤ k0 < ∞ and dn → 0; with no loss in generality, as we can always
pass to a subsequence, we assume that (kn, dn) → (k∞, 0). We then need to
show that V2 and E2 coalesce, as it will then be clear by symmetry that V1

and E1 coalesce. Thus, it is enough to show that the curve system consisting
of the curves surrounding the segment i[0, dn] has small extremal length, or
equivalently, that we can embed, into the slit model, annuli of large modulus
whose core curve surrounds i[0, dn]. Note that since idn = e2 and 0 = v2,
this will show that e2 and v2 coalesce. This core curve is slightly awkward to
describe: it consists of circles centered at 0, 1

2 and −1
2 of radius 2dn, with the

standard identifications. See Figure 35.

idn

0− 1 2 1 2

Figure 35: The core curve of radius 2dn, bounding a small disk around v2 = 0.

With this core curve defined, it is easy to find fat annuli with that core:
consider the annuli of outer radius 1

5 and inner radius 2dn about 0, 1
2 and

−1
2 . For {kn} bounded, the moduli of these annuli go to infinity as dn → 0.

Therefore V2 and E2 (hence also v1 and e1) coalesce.
Our goal then is to show the coalescence of v1, v2, e1 and e2 as (kn, dn)→

(∞, 0).
We begin by describing the curve C in the slit model. It is crucial that we

can draw a single curve C in the ζ−plane of the slit model, namely C \[−1/2, 1/2],
which surrounds v1, v2, e1 and e2, under the assumption that (k, d) ∈ [1,∞]×
[0, d0]. Such a curve is drawn in Figure 36. (Formally, it is the union of four
curves in the plane: circles of radius 1/10 centered at −1/2 and 1/2, a semi-
circle of radius 1/10 in the lower half plane centered at 0, and a curve that
begins at 1/10, enters the upper half plane before entering the lower half plane
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−
e2= id

1 2

E1 V2
E2

ε2 ε1

1 2

ν2 = 0

Figure 36: Top: The curve C in the slit model is drawn on the left as is
described in the text. It separates the torus into a simply connected domain
D (shaded) containing v2, e1 and e2, and the complement of D, a domain
of genus one. The curve C is symmetric with respect to the imaginary axis.
It consists of two circular arcs of radius 1

10 , a semi-circular arc of radius 1
10

and a curve, symmetric with respect to the imaginary axis, that crosses the
imaginary axis once in the bottom halfplane. On the right is a representation
of the ∆-model normalized as in the discussion preceding Lemma 6. The point
ν2 = 0 corresponds to the point v2, and the points ε2 < ε1 on the positive
real axis correspond to the points e2 = id and e1 =∞, respectively, in the slit
model. The ds∆ metric on ∆ is isometric to the |dζ|-metric on D in the slit
model. Bottom: Illustrated here is the shaded region in the rhombic model
that corresponds to the region D bounded by C in the slit model.

at 1, then leaves the lower half plane at −1 and finally meets the [−1/2, 1/2]
slit again at −1/10.) The reader can easily check that one component, say D,
of the complement contains v1, v2, e1 and e2, while the other component, say
T , is a punctured torus.

Let ∆ be a model disk for D; we construct a model metric ds∆ on D

with singular points ν2, ε1, and ε2 corresponding to the points v2, e1 and e2,
respectively, on D. This metric is isometric to the |gdh|−metric (the metric
induced by |dζ| restricted to D). We define ds∆ by

(62) ds∆ =
∣∣∣ C(ξ − ν2)2(ξ − ε2)k−1

(ξ − ε1)k+1
dξ
∣∣∣ .

We are permitted to normalize the domain ∆ and, concomitantly, the metric
ds∆, by composing our developing map with a Euclidean isometry; further-
more, as we have already included an unknown scaling constant C in the form
of the metric ds∆, we see that we are also permitted a composition by a ho-
mothety. (See Lemma 10 in Appendix B for details.)
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With these allowances in mind, we see that we may assume that ν2 = 0,
that ε1 lies on the positive real axis and that, after a homothety, the disk ∆ is
contained in the unit disk B1(0) while ∂∆ meets the unit circle at at least one
point.

There is one further normalization that follows not from general facts
about isometries, but from the specific form of the metric |gdh| on the slit
model: the |gdh|−metric when considered on the slit model (i.e the |dζ|−metric)
admits a reflection that fixes pointwise the imaginary axis and v2. (See Lemma
3(i) and its proof.) Thus, we may assume that (∆, ds∆) admits an isometry
that fixes ν2 = 0, ε2, ε1, the shortest geodesic from ν2 to ε2, and a geodesic
from ε2 to ε1.

Now, since the metric (62) is written in terms of the |dξ|-distances
|ξ − ν2|, |ξ − ε1| and |ξ − ε2|, we see that this isometry must preserve not just
ds∆ distances from ν2, ε2 and ε1, but also |dξ|-distances (in the space (∆, |dξ|))
from ν2, ε2 and ε1; this is only possible if ε2 is real. Next we claim that we
may assume that 0 < ε2 < ε1. To see this, note first we must have ε2 > 0,
or else there would not exist a path Γ (like the one on the imaginary axis in
the slit model) which is a geodesic from ε2 to ε1 and whose distance from ν2

increases along the path. Then next, we see that we must have ε1 < ε2, so that
there exists a geodesic from ν2 to ε1 whose distance from ν2 is an increasing
function and which passes through ε2.

This effect of symmetry simplifies the derivations, contained in the next
lemma, of the asymptotics of C, ε1 and ε2. However, the proof of this lemma
is rather long and a bit intricate. (Happily, though, the conclusion of the proof
of Proposition 15 is then nearly immediate.)

Lemma 6. Consider the metric on the model disk ∆ given by

(63) ds∆ =
∣∣∣ Cξ2(ξ − ε2)k−1

(ξ − ε1)k+1
dξ
∣∣∣,

which is normalized as above (in particular, with ν2 = 0). Then

(i) C � 1;

(ii) As d→ 0, we have that ε2 → 0 = ν2; in fact ε2 = O
(

1
log 1

d

)
.

(iii) As k →∞, we have that |ε1 − ε2| = O
(

1
k

)
.

Here the expression C � 1 means that there are constants A > 0 and
B <∞ so that A < C < B.

Proof. We begin by proving that C is bounded away from zero. Recall
that the distance in the ds∆-metric between ν2 and ∂∆ is equal to the distance
in the |gdh| metric between v2 and C in the slit model, which is equal to
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d + 1
10 by construction. Since we are assuming that d < d0, it follows that

this distance between ν2 and ∂∆ is bounded above and below. Consider the
restriction of ds∆ to the negative real axis. Along that axis, for any (k, d), we
always have |ξ| < |ξ − ε1|, and |ξ − ε2| < |ξ − ε1|. Thus, we always have that
ds∆

∣∣
{x<0}≤ C|dξ|. If C → 0, then the distance in the ds∆-metric between ν2

and ∂∆ would also go to 0. However, the distance in the ds∆-metric between
ν2 and ∂∆ is equal to the distance in the |gdh| metric between v2 and C in
the slit model, and this distance is bounded away from 0. Hence C must be
bounded below.

We next claim that there is an upper bound on C. This argument is
actually a bit involved, and so we separate it off as a claim.

Claim: C is bounded above. To see that there is an upper bound on C,
we proceed in several steps, always using that the curve C is of fixed length
in the slit model, hence also in ∆. Recall that we have normalized ∆ so that
there is one point, say θ0 ∈ ∂∆, which meets the unit circle.

To begin, suppose that Re θ0 ≥ ε1, and note that this implies that |θ0| >
|ε2 − θ0| > |ε1 − θ0|. Then, at θ0∣∣∣∣ ξ2(ξ − ε2)k−1

(ξ − ε1)k+1

∣∣∣∣> 1.

If the portion of C with Re ξ ≥ ε1 has |dξ|-length bounded from below, then
we see that the normalizing constant C is bounded above, as

C1 >

∫
C∩{Re ξ≥ε1}

ds∆ =
∫
C∩{Re ξ≥ε1}

∣∣∣∣ ξ2(ξ − ε2)k−1

(ξ − ε1)k+1

∣∣∣∣ |dξ|
> C

∫
C∩{Re ξ≥ε1}

|dξ| ≥ C · C2

for C1 a length that is bounded above, and C2 a length that is bounded below.
In general then, we may assume that Re θ0 − ε1 has no positive lower

bound, for if it did, we would find a portion of C with Re ξ > ε1 and with
length bounded below, and end with the same contradiction as in the last
paragraph. To further refine the conditions that concern us, suppose for the
moment that there is a lower bound on ε1 − ε2, say ε1 − ε2 ≥ ε0 > 0. Then in
that case the quantity |(ξ − ε2)|/|ξ − ε1| > 1 + ε′0 for all ξ within a distance of
(ε1 − ε2)/4 of θ0. Thus, in this case

C1 >

∫
C∩{|ξ−θ0|ds∆< 1

4
(ε1−ε2)}

ds∆

> C · (2 · 1
4

(ε1 − ε2)) · (1 + ε′0)k−1 ·
∫ ∣∣∣∣ ξ

ξ − ε1

∣∣∣∣2 dξ →∞
as k →∞. Thus, we see that it is only possible for C →∞ if the θ0 − ε1 does
not have a positive lower bound and ε1 − ε2 → 0.
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We next dispose of a minor case by noting that it is not possible for θ0 → 1
while C → ∞. This is because these hypotheses guarantee that there is an
arc, say C′, of |dξ|-length of at least (θ0− ε1)/4 along which |ξ− ε1| < |ξ− ε2|.
Thus, since on this arc, the modulus |ξ| is bounded below, by, say C3, we see
that this arc C′ has ds∆-length of at least

C · C2
3 · 1k−1 · (θ0 − ε1)

4

∫
C′

|dξ|
|ξ − ε1|2

.

Since |ξ − ε1| < 5/4|θ0 − ε1|, the claim follows.
So we may now suppose that C → ∞, ε1 − ε2 → 0, Re θ0 − ε1 has no

positive lower bound and θ0 is bounded away from 1 (so that θ0 is bounded
away from ε1). In that case, the method of two paragraphs back provides a
lower bound on the decay of ε1−ε2: in particular, we claim that k(ε1−ε2)→∞.
To see this, consider a portion C′ of C within |dξ|-distance of 1/2 from θ0, which
lies in {Re ξ < ε1} and has |dξ|-length of C3 > 0. (It is sufficient to assume that
if C →∞, such an arc must exist by the arguments in the previous paragraphs
after minor modifications.) Then if the total length of C is L, we have

L >

∫
C′

∣∣∣∣ ξ2(ξ − ε2)k−1

(ξ − ε1)k+1

∣∣∣∣ |dξ|
> C · C3 · (1/2)2 inf

C′

∣∣∣∣ ξ − ε2

ξ − ε1

∣∣∣∣k−1

· 1
22
,

here using the trivial bound |ξ− ε1| < 2 which comes from both ξ and ε1 lying
in the unit ξ-disk. We might as well assume that infC′ | ξ−ε2

ξ−ε1
| < 1, or else the

assumption that C →∞ immediately provides a contradiction. Thus we may
continue with

L >
C3

16
C inf
C′

∣∣∣∣ 1 +
ε1 − ε2

ξ − ε1

∣∣∣∣k−1

=
C3

16
C inf
C′

∣∣∣∣ 1 +
k(ε1 − ε2)
k(ξ − ε1)

∣∣∣∣k−1

Now, if k(ε1−ε2)<K0 for some fixed K0, then since on C′, we have Re(ξ−ε1)<0
and |ξ − ε1| > C4 by hypothesis, we find that

L > Ce
−K0
C5

where C5 depends on C4, C3 and |θ0 − ε1|: since θ0 may be assumed bounded
away from 1, we see that |θ0 − ε1| is bounded away from zero.

From this last expression and our assumption that C →∞, we see that it is
impossible that k(ε1−ε2)<K0 for some fixed K0, and so lim supk k(ε1−ε2)=∞.

Finally, consider the point r+ where ∂∆ meets the positive real axis, and
consider the curve C∗ = C ∩B(r+, (r+− ε1)/4) which is the intersection of the
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curve C with the ball around r+ of radius (r+ − ε1)/4. Certainly C∗ has |dξ|-
length of at least 2(1/4(r+−ε1)) and we have both that |ξ−ε1| < 5

4 |r+−ε1| < 5
4

and |ξ|2 > (ε1 + 3
4(r+ − ε1))2 > 3

4(r+ − ε1))2, on C∗ and so

L >

∫
C∗
C

∣∣∣∣ ξ2(ξ − ε2)k−1

(ξ − ε1)k+1

∣∣∣∣ |dξ|
> C · 1/2(r+ − ε1)(4/5)2(ε1 + 3/4(r+ − ε1))2 inf

C∗

∣∣∣∣ ξ − ε2

ξ − ε1

∣∣∣∣k−1

> C · 9/50(r+ − ε1))3 inf
C∗

∣∣∣∣ ξ − ε2

ξ − ε1

∣∣∣∣k−1

.

Thus

L >
9
50
C(r+ − ε1)3 inf

C∗

∣∣∣∣ 1 +
ε1 − ε2

ξ − ε1

∣∣∣∣k−1

>
9
50
C(r+ − ε1)3 inf

C∗

∣∣∣∣ 1 +
k(ε1 − ε2)
k(ξ − ε1)

∣∣∣∣k−1

.

Now, choose a subsequence of values of k along our path so that k(ε1 − ε2)
is monotone and tends to infinity. Now, by construction, Re(ξ − ε1) ∈
(3

4(r+ − ε1), (5
4r+ − ε1)) (so that in particular, Re(ξ − ε1) > 0). Since we

can restrict to a portion of our path so that k(ε1 − ε2) ≥ 1, we find∣∣∣∣ 1 +
k(ε1 − ε2)
k(ξ − ε1)

∣∣∣∣k−1

≥ C6e
C7 Re 1

ξ−ε1 ≥ C6e
C7

1
5/4(r+−ε1) .

Thus
L >

9
50
CC6(r+ − ε1)3e

4C7
5(r+−ε1) .

Next, choosing a further subsequence so that r+ − ε1 converges, we see that –
independently of the (bounded) limit of r+ − ε1 – the right-hand side of the
inequality above must tend to infinity, a contradiction. This proves the claim.

We have established the statement (i) of the lemma. For statements (ii)
and (iii) to hold, it is necessary that along any path in P for which (k, d) →
(∞, 0), we have that ε1, ε2 and ν2 all coalesce at ξ = 0.

We next assert that ε1 is bounded away from ∂∆. This is because, once
we know that C is uniformly bounded on sequences in our domain, we see that
if d|dξ|(ε1, ∂∆)→ 0, then `ds∆(∂∆)→∞ as the line element on the limit point
of ε1 would necessarily blow up uniformly: here note that since ε2 < ε1 and the
pole of |ξ− ε1|(k+1) has order two greater than that of the zero of |ξ− ε2|(k−1),
this blow-up is independent of the asymptotics of ε2.

We prove statement (iii) of the lemma, before later turning our attention
to statement (ii). Consider the arc from V2 to C in the |gdh|-model M|gdh|
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represented by the segment i[−1/10, 0] in the |gdh| model. This arc makes
an angle of 3π at V2 with the arc i[0, d] connecting V2 and E2 in that model
M|gdh|. As the arc i[0, d] in M|gdh| is represented by [0, ε2] in ∆, we see that the
arc i[−1/10, 0] in M|gdh| is represented by a path Γ on the negative real axis
from 0 to ∂∆ in the model ∆: this is true either by symmetry or because we
check that this path Γ is geodesic and makes an angle of 3π with the positive
real ray emanating from 0 ∈ ∆. Suppose that Γ meets C at a point −δ. Then,
computing in the coordinates ξ = x+ iy, because of our isometry between ds∆

and |gdh|, we know that

1
10

= d|gdh|(V2, C) =
∫ 0

−δ
ds∆

=
∫ 0

−δ
C

∣∣∣∣ ξ

ξ − ε1

∣∣∣∣2∣∣∣∣ ξ − ε2

ξ − ε1

∣∣∣∣k−1

dξ = C

∫ 0

−δ

(
x

x− ε1

)2(x− ε2

x− ε1

)k−1

dx

< δ2C

∫ 0

−δ

1
(x− ε1)2

(
x− ε2

x− ε1

)k−1

dx

= δ2C

∫ 0

−δ

1
(x− ε1)2

(
1 +

ε1 − ε2

x− ε1

)k−1

dx,

with the inequality coming from x2 < δ2 on the domain of integration. Now,
we can integrate this last integral explicitly to get

1
10

< δ2C

( −1
ε1 − ε2

)
1
k

(
1 +

ε1 − ε2

x− ε1

)k ∣∣∣∣0
−δ

=
δ2C

(ε1 − ε2)k

[(
1− ε1 − ε2

ε1 + δ

)k
−
(

1− ε1 − ε2

ε1

)k ]
<

δ2C

(ε1 − ε2)k
.

The final inequality follows from the observation that both terms in the dif-
ference are positive (using ε1 > ε2 > 0), both are less than one and the first is
clearly more than the second. But recall that we normalized ∆ to be included
in the unit disk, so that δ < 1. We conclude that

(64)
1
10

<
C

(ε1 − ε2)k
or that (ε1 − ε2) <

C1

k
.

This establishes statement(iii); note also that the estimate (64) is independent
of the behavior of d. We use this estimate (64) on ε1−ε2 to establish statement
(ii). Here we proceed similarly, but focus our attention on the path V2E2 in
M|gdh|, and correspondingly on the arc [0, ε2] in ∆. From the isometry we
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constructed, since V2E2 has length d in M|gdh|, we have

d = d|gdh|(V2, E2) =
∫ ε2

0
ds∆

=
∫ ε2

0
C

(
x

x− ε1

)2(x− ε2

x− ε1

)k−1

dx

> C

∫ ε2

ε2/2

(
x

x− ε1

)2(x− ε2

x− ε1

)k−1

dx,

where here we restrict the integral of a positive quantity to a subinterval
[ε2/2, ε2]. Of course, on that subinterval, we have that x > ε2/2 and so our
estimate becomes

d >
(ε2

2

)2
C

∫ ε2

ε2/2

1
(x− ε1)2

(
1 +

ε1 − ε2

x− ε1

)k
dx.

We integrate explicitly as before to find

d >
−ε2

2C

4k(ε1 − ε2)

(
1 +

ε1 − ε2

x− ε1

)k ∣∣∣∣ε2

ε2/2

=
ε2

2C

4k(ε1 − ε2)

(
1 +

2(ε1 − ε2)
ε2 − 2ε1

)k
=

ε2
2C

4k(ε1 − ε2)

(
1− 2(ε1 − ε2)

ε1 + (ε1 − ε2)

)k
.

Now we invoke the previous estimate (64) that k(ε1 − ε2) < C1 to obtain

d >
ε2

2C

4C1

(
1− 2 · C1

k(ε1 + (ε1 − ε2))

)k
>
ε2

2

C2

(
1− 2C1

kε2

)k
since the relevant denominator k(ε1 +(ε1−ε2)) > k(ε2 +0) in our construction.
Now, as k → ∞, the term (1 − 2C1/kε2)k → e−2C1/ε2 which dominates ε2

2.
Thus, we conclude that for k large we have

d > e−C3/ε2

and so
ε2 <

C3

log 1/d

for k large, proving statement (ii) of the lemma. This then concludes the proof
of the lemma.

We now proceed with the proof of continuity of the mapping (k, d)→Tk(d)
at (∞, 0). The argument is analogous to the argument in Section 5.1.4. It is
evident that as (kn, dn) → (∞, 0), the boundary ∂∆ converges to a curve in
the ξ-disk which avoids a uniform neighborhood of zero. This is because the
metric ds∆ subconverges to the metric |dξ|/|ζ|2, into which the curve C must
develop as a curve of uniformly bounded length. Moreover, by Lemma 6, for
(k, d) near (∞, 0), we know that ε1 is within a distance of O

(
1

log 1
d

)
+ O

(
1
k

)



AN EMBEDDED GENUS-ONE HELICOID 433

 

d = 0

d =∞

k = 1 k =∞

Figure 37: On the (k, d) rectangle, we have defined a function h(k, d) whose
value is the real part of the integral of dh on the path B of the underlying
Tk(d). Illustrated here is a possible locus of the zeros of h(k, d). See Figure 25.
We know that the locus is an analytic set and that it has a unique point on
the vertical line k = 1 (See Proposition 8 in Section 3.3.) corresponding to H1 .
We show that there is at least one path connecting this point to a point on
the right-hand side of the rectangle, where k = ∞. Note: the illustration in
this figure is of the closed rectangle [1,∞]× [0,∞] which is properly contained
in P.

of the origin. We then create a new surface N by gluing the complement of D
to a 1 + o

(
O
(

1
log 1

d

)
+O

(
1
k

))
quasi-conformal image of ∆: here C gets joined

to ∂∆ at corresponding points. As in Subsection 5.1.4, we then conclude that
|E1 − E2| = O

(
1
k

)
and |E1 − V2| = O

(
1

log 1
d

)
in the rhombic model. This

concludes the argument for continuity result along the edge where d = 0 and
k ∈ [1

2 ,∞].
This concludes the proof of Proposition 15.

5.2. Estimates for the height function on the top and bottom of the rect-
angle P and the solution of the period problem for H

k
. We begin this section

with estimates for the height function h near the boundary lines (1/2,∞]×{0}
and (1/2,∞]× {∞}. In particular, we prove

Proposition 17. The function h is positive on (1
2 ,∞]×{0} and negative

on (1
2 ,∞]× {∞}, i.e. h|( 1

2
,∞]×{0} > 0 and h|( 1

2
,∞]×{∞} < 0.

We postpone the proof of this proposition briefly, preferring to present
the following proposition, actually a corollary to Propositon 17, which will be
important in the proof of the main result (Theorem 3).

Proposition 18. There exists a continuous path Γ ⊂ (1
2 ,∞] × (0,∞)

with the following properties: for every k ∈ (1
2 ,∞], the path Γ crosses the

vertical segment {k}×(0,∞); it passes through the point (1, d1) that corresponds
to the Weierstrass data for H1 , the singly periodic genus-one helicoid ; every
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point (k, d) ∈ Γ corresponds to Weierstrass data for H
k
/σk for which both the

horizontal and vertical period problems are solved.

Proof of Proposition 18. It is immediate from Proposition 17 and Propo-
sition 16 that there is a neighborhood in P of (1

2 ,∞] × {0} on which the
function h is positive, and a neighborhood of (1

2 ,∞]×{∞} on which it is neg-
ative. Therefore, there exists a boundary component of the region {h ≤ 0}
which separates (1

2 ,∞]×{0} from (1
2 ,∞]×{∞} in (1

2 ,∞]× [0,∞]. This in turn
implies that there is a connected curve, say Γ, on which h vanishes and where
Γ has the following two properties: Γ cuts every vertical line segment (k,∞),
k > 1

2 , at least once, and Γ terminates at a point on the right-hand edge of
the form (∞, d∞), with d∞ 6= 0. Since h is analytic in k and d, we may assert
that Γ is piecewise smooth. Each point (k, d) ∈ Γ corresponds to a solution
of the vertical period problem for the Weierstrass data defined at (k, d), data
for which the horizontal period problem is solved by construction. Therefore,
for every k > 1

2 , there exists a solution H
k

corresponding to a point on Γ, and
we can assert the existence of a continuously varying (although not necessarily
monotonic in k) family of such solutions. From our discussion in Section 3 (in
particular, Proposition 8) of the uniqueness of the singly periodic genus one
helicoid, H1 , we may assert that there is precisely one value of d, say d1, for
which the vertical period problem for the data at (1, d) has a solution. Thus,
whatever choice of path Γ we make, it passes through this distinguished point
on the vertical segment where k = 1.

Proof of Proposition 17. Our argument parallels that of Section 3.4.
We begin with a discussion of the “top stratum” (1

2 ,∞]× {∞}. By definition
(see Section 4.4) the underlying compact torus on this stratum is T1 , the ends
coincide and the vertical points coincide: that is, E1 = E2 = E and V1 =
V2 = V . In the notation of (24), we have that a = 0 and b = 1. Note that
this is independent of choice of k, and hence h is constant on the top stratum.
However, in the proof of Proposition 8, in particular the proof of claim (23), we
showed that h is negative when k = 1 and a = 0. The situation described there
is precisely the one we have here; the underlying torus is T1 , the ends coincide
and the vertical points coincide. This is equivalent to k = 1 and d =∞. This
establishes the second statement of the proposition.

We next consider the “bottom” stratum (1
2 ,∞) × {0}. Here, of course,

we have a = b = k/(k + 1) and Ei = Vi. Notice that for the moment we have
excluded the point (∞, 0). Consider then a neighborhood of v2 = e2 in the
slit model for values of (k, d) converging to (k0, 0). For each fixed (k, d), the
conformal map w from the slit model to itself that takes the |gdh| structure
to the |1gdh| structure takes this neighborhood into a neighborhood containing
v1 = e1. From Figure 24 we see that, in that neighborhood, the total curvature
of the cone metric {|gdh||w∗ 1

gdh|}1/2 vanishes. Thus, using Proposition 15, we
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can conclude that the limiting structure |dh| is flat and nonsingular, and a
(bounded, nondegenerate) homothety of the rhombic model (because the |gdh|
and |1gdh| structures converge as d→ 0).

The argument then follows exactly as in the proof of Proposition 8, es-
pecially the part that precedes the claim (23). In particular, the value of h is
given by half the length of the vertical axis in the rhombic model. Because
the collection of underlying closed tori associated to P form a compact set by
Lemma 4, the lengths of the vertical axes are uniformly bounded away from
zero. Thus, the values of h along [k0,∞) × {0}, for any k0 >

1
2 , are also uni-

formly bounded away from zero. By continuity of h (Proposition 16), they are
positive and bounded away from zero on an open neighborhood of the closed
set [k0,∞]× {0} in P.

6. The proof of Theorem 3

We will now prove the main theorem stated in Section 1, namely:

Theorem 3. For every k > 1, there exists a complete, σk-invariant, prop-
erly embedded minimal surface, H

k
, whose quotient by σk satisfies conditions

(4). As k →∞, a limit surface exists and is an embedded He1 , i.e. a properly
embedded minimal surface satisfying conditions (1).

Proof. Proposition 18 at the end of Section 5.2 asserted the existence
of a continuous curve, Γ ∈ P, of Weierstrass data for which the vertical and
horizontal period conditions are satisfied. The curve Γ crosses all verticals of
the form {k} × (0,∞), 1

2 < k < ∞. For any value of k ∈ (1
2 ,∞) the Weier-

strass data at (k, d) ∈ P were constructed to guarantee that the conditions (4)
hold provided the vertical period condition h(k, d) = 0 is satisfied. Therefore,
Proposition 18 gives us a continuous family of properly immersed minimal sur-
faces H

k
satisfying (4). To complete the proof of the theorem we must show

that each surface H
k
, 1

2 < k <∞ in the family defined by Γ is embedded and
that the limit surface—the surface corresponding to the Weierstrass data say
(∞, d∞)— is an embedded He1 satisfying the conditions of (1).

Lemma 7. Let Γ ⊂ P be the path described above and in Proposition 18.
Suppose (k, d) ∈ Γ with k 6= ∞. Then the surface H

k
corresponding to (k, d)

is embedded.

Lemma 7 completes the proof of embededness of the continuous family
of H

k
.

Lemma 8. At a point (∞, d∗), 0 < d∗ < ∞, where h(∞, d∗) = 0, the
Weierstrass data define an He1 , a surface satisfying the conditions (1) of Sec-
tion 1.2:
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(i) He1 is a properly immersed minimal surface;

(ii) He1 has genus one and one end, that end being asymptotic to the helicoid ;

(iii) He1 contains a single vertical line (the axis) and a single horizontal line.

We will prove both lemmas after completing the proof of the theorem.
Given Lemma 8, all we need to show at this point is that the limit He1

is embedded. To this end, consider the limit point of Γ, a point of the form
(∞, d∞), d∞ 6= 0,∞, satisfying the requirement of Lemma 8, namely h(∞, d)
= 0. According to Lemma 8, its Weierstrass data produce an He1 , and ac-
cording to Lemma 7, that He1 is the limit of embedded minimal surfaces. By
statement (ii) of Lemma 8, He1 is embedded outside of a compact set. Because
we may approximate the part of this He1 inside the compact set by embedded
minimal surfaces, the limit surface has no transverse intersections in this com-
pact set. Invoking the maximum principle for minimal surfaces, we conclude
that the only other possibility is that the Weierstrass immersion defining this
He1 is a multiple covering of its image. But as pointed out above, this He1 is
embedded outside of the compact set, so it must be embedded. (See the proof
of Lemma 7 for a similar argument in more detail.) This completes the proof
of Theorem 3.

Proof of Lemma 7. From Proposition 18 we know that the path Γ must
pass through the point (1, d1) whose data define the unique singly periodic
genus-one helicoid H1 . From Theorem 2 we know that H1 is embedded. Since
each H

k
is asymptotic to a helicoid and therefore embedded outside of a suit-

ably large cylinder about its vertical axis—and the radius of that cylinder can
be chosen to be a continuous function on Γ—it follows along the lines of argu-
ments that are now becoming standard in the subject that all the H

k
defined

by data on Γ must be embedded. (There does not seem to be a generally stated
argument in the literature that applies directly to our case, so we will give a
proof here that all the H

k
are embedded.)

Let E denote the points of (k, d) ∈ Γ◦ that correspond to an embedded
H
k
. (The interior Γ◦ ⊂ Γ consists of Γ minus the right-hand endpoint where

k = ∞.) Because Γ◦ contains the point, (1, d1), representing H1 , and H1 is
embedded, the set E is nonempty. Since Γ◦ is connected, showing that E is
both open and closed will prove the lemma.

Consider a point (k, d) ∈ Γ◦. It corresponds to an H
k
, a minimal surface

that is invariant under the action of σk and whose quotient, modulo σk, has two
ends asymptotic to the ends of the helicoid. All such surfaces have a vertical
axis and we have normalized the family so that the vertical axis of any H

k
is

the x3-axis. In particular we may assert that:

(i) Any H
k

is embedded outside of some cylinder of sufficiently large radius
about the x3-axis.



AN EMBEDDED GENUS-ONE HELICOID 437

By Proposition 15 and the continuity of Γ we may also assert that:

(ii) Given any connected subset U ⊂ Γ◦ on which k is bounded away from 1
2

and∞, there exists an R > 0 such that every minimal surface H
k

corresponding
to (k, d) ∈ U is embedded outside of the vertical cylinder of radius R around
the x3-axis. In fact, they are uniformly (in k) asymptotic to the ends of the
same helicoid.

To see this, note that such a subset U is precompact in Γ◦, and if we
have a bound R that holds at p ∈ Γ◦, then the bound R/2 holds in a small
neighborhood of Γ◦ near p.

E is open in Γ◦. Let (k0, d0) ∈ E . Choose a neighborhood U ⊂ Γ◦

of (k0, d0) on which k is bounded away from 1
2 and ∞ and select R > 0

according to statement (ii) above. The H
k

with k = k0 corresponding to
(k0, d0) is embedded, and so there must be a (possibly smaller) neighborhood
U ′ of (k0, d0) in U ⊂ Γ◦ for which every H

k
with (k, d) ∈ U ′ is embedded inside

the vertical cylinder of radius R. By assertion (ii), they are all embedded
outside the cylinder of radius R. Hence they are all embedded.

E is closed in Γ◦. The maximum principle forbids a sequence of embedded
minimal surfaces from developing a self-intersection in the limit unless the limit
surface is a (branched) cover of a minimal surface. Since the limit is an H

k
,

the latter possibility cannot occur in our case because of assertion (i) above.

Proof of Lemma 8. We will not use the hypothesis h(∞, d∗) = 0 until
later in the argument. That is, we begin by discussing the properties of the
interior of the right-hand edge of P. At any point (∞, d), with d 6= 0,∞,
the structure of T∞(d) is defined by the slit model for T1 with a cone, S∞, of
simple exponential type sewn in along the positive imaginary axis with vertex
at v2 = di. (For the definition and properties of S∞ see Sections 2.3 and
2.4.) By Proposition 15 and Lemma 4, we know that the underlying conformal
structure is that of a nondegenerate rhombic torus. From Section 2.4, we know
that the points e2 = di and e1 = ∞ in the slit model actually correspond to
the same point on the torus, a point that we will label e. From Proposition 14,
we know that the vertical point v2 corresponding to the origin in the slit model
does not coincide with v1. This means that on the rhombic model of T∞(d),
the point E correponding to e must be at the vertex of the rhombus and points
Vi corresponding to the vi are distinct and—as usual—symmetrically placed
with respect to the center of the rhombus. In the notation of Proposition 14
and of (24), we must have 0 < a < b = 1.

The Weierstrass data at (∞, d), with d 6= 0, ∞, are defined in order to
solve the horizontal period problem. (Certainly we have made this clear in
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Section 4 for points (k, d) on the interior of P. The same argument works
when k =∞. Alternatively, one can use the continuity of structure in Propo-
sition 15 to conclude that the horizontal period problem is also solved when
k =∞.) Therefore, the Weierstrass data at (∞, d) defines a multivalued min-
imal immersion of a rhombic torus into Euclidean space with periods (if any)
that are all vertical.

In Lemma 8, (iii) we proved that at (k, d) ∈ P◦, any branch of the minimal
immersion defined by the Weierstrass data there has the property that it maps
the horizontal diagonal through O in the rhombic model to two horizontal lines
in Euclidean space, and the vertical diagonal through O in the rhombic model
to a vertical line in Euclidean space. By Proposition 15, the same is true for
the Weierstrass data at (∞, d), with d 6= 0, ∞.

There are only two possible sources of multiple values for the minimal
immersion defined by the Weierstrass data at (∞, d), with d 6= 0, ∞. One, of
course, is the possibility that the vertical period problem is not solved, i.e. that
h(∞, d) 6= 0. The second is the existence of a vertical period at the end. We
will show in this paragraph that the latter does not happen. In the rhombic
model, the periods at the ends, E1, E2, for a (k, d) structure in the interior of
P are vertical and of length +2πk at E1 and −2πk at E2. The vertical period
around a small cycle that surrounds E1 and E2 is zero. It follows from the
continuity of (k, d) structures given in Proposition 15 and the fact that the
ends coalesce as k → ∞, that the vertical period of a small cycle around the
end E is zero.

The previous four paragraphs describe the geometric properties of the
Weierstrass immersion associated to any (∞, d), where d 6= 0, ∞. (See Re-
mark 13.)

We now use for the first time the hypothesis that we are at a point where
h(∞, d∗) = 0. This implies immediately that the Weierstrass data associated
to (∞, d∗) define a single-valued, proper, minimal immersion of a torus with
one end into Euclidean space. The image must contain a vertical line and a
horizontal line through the image, say p0, of O (the center of the rhombus). In
particular, the tangent plane to the surface at p0 is a vertical plane, implying
that it cannot contain any other horizontal line through p0. If the image surface
contained any other horizontal or vertical line that did not pass through the
image of O then the surface would be singly periodic, an impossibility since the
surface must have genus equal to one. This completes the proof of statements
(i), (iii) and the first part of statement (ii) of the lemma.

We now turn our attention to the second part of statement (ii). We will
give two different proofs that the end of this surface is asymptotic to a helicoid,
the second proof assuming that the surface is a limit of minimal surfaces (which
is the case of interest).
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Proof using analysis of the special end structure. We consider the Weier-
strass data at the end, E1, of the minimal surface associated with the point
(∞, d∗). These data give the limit of Weierstrass data at (k, d) ∈ P◦ with
k →∞ and d→ d∗. (Note that we are not assuming that h(k, d) = 0 for these
data. Nor are we assuming that the limit is taken over specially chosen values
of (k, d).) From Figure 19 we can read off that dg/g has a simple pole at the
ends E1 and E2 where its residues are k and −k, respectively. Using the fact,
discussed in the first paragraph of the proof of the lemma, that E1 and E2

coalesce as k → ∞, as well as Proposition 15, we see that the (well-defined)
one form dg/g on the torus defined at (∞, d∗) has a double pole at the end E.
Now, as V1 6= V2, we see that dg/g has poles at both V1 and V2 with opposite
residues. As g is regular elsewhere on the surface, we find that dg/g has no
residue at the end E.

When we turn our attention to the one-form dh for values of (k, d) ∈ P◦,
a similar argument shows that the simple poles of dh at E1 and E2 coalesce,
as (k, d) → (∞, d∗), to a double pole at the end E. Moreover, since dh can
have no poles on the surface, the residue theorem guarantees that the double
pole at the unique end of the surface has no residue. Since we have already
established (statement (iii)) that there are one horizontal and one vertical line
diverging into the end at E, we may use Proposition 1 to conclude that the
end at E is asymptotic to the end of a helicoid.

Proof using the asymptotic arguments of Section 5.1.4 to express dg/g

and dh. We assume in this proof that there is a family Γ ⊂ P◦ with endpoint
at (∞, d∗). This is slightly stronger than the hypotheses of the lemma, but
sufficient for the application. By this method, we avoid the use of Proposition 1.

Let (∞, d∗) be a point of Γ on the line {k = ∞} ⊂ P, and let (k, dk)
converge to (∞, d∗). Simplifying the notation somewhat, we let Mk denote
the (embedded) minimal surface associated to the point (k, dk). Each of the
surfaces Mk contains a unique vertical line, and a collection of horizontal lines;
after translating, we can assume that for each Mk, the origin is located at the
intersection of the vertical line with a horizontal line.

As the |gdh| and |1gdh| flat structures converge, as k →∞, to the (nonde-
generate) |gdh| and |1gdh| flat structures associated to the point (∞, d∗) ∈ P,
we see that surfaces Mk converge, uniformly on compacta, to a minimal sur-
face, say M∞, whose |gdh| and |1gdh| structures are associated to the point
(∞, d∗). In particular, M∞ is topologically a torus: note here that it is cru-
cial that the |gdh| model of Tk(d) has a slit whose length is constant, hence
bounded away from zero and infinity.

It is elementary at this point to see that the horizontal and vertical lines
are unique; the surface is invariant with respect to the group of rotations about
parallel lines and so could not be of finite but nontrivial topology if it were to
include a pair of parallel lines.
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Finally, we need to show that M∞ has an end asymptotic to a helicoid.
Naturally, it is enough to check that the Weierstrass data of the end E (the
limit point of the ends E1 and E2 as k →∞) has leading terms which agree with
those of a helicoid. For this, it is enough to recall the estimates of Lemma 5:

|E1 − E2| =
C

kd
+ o

(
1
kd

)
and

C = 1 + o(1),

where Ei referred to the ends in the rhombic model and the estimate was valid
as k →∞ for points (k, d) with d bounded away from zero. As in the proof of
Proposition 15, we take ζ to be the variable on the rhombus and we normalize
the Ei to be real; then the form gdh may be represented on Mk,d (near, say,
E1) in this notation as

gdh = −iC (ζ − E2)k−1(ζ − V2)2

(ζ − E1)k+1
dζ

= −iC
(

1 +
(E1 − E2)
(ζ − E1)

)k−1 (ζ − V2)2

(ζ − E1)2
dζ

with the factor of −i coming from the rotation of the |gdh| model to this
model. Substituting in the estimates from Lemma 5 to this description and
setting E1 = 0, one finds

gdh = −ic(1 + o(1))

(
1 +

1+o(1)
d + o(1)/d

kζ

)k−1
dζ

ζ2

→ −ice
1
d

1
ζ
dζ

ζ2

as k →∞ when ζ is centered at the limit point of the ends Ei (and c is some
constant). The same estimates applied to dg

g yield from Figure 20 that

dg

g
=
{

k

ζ − E1
− k

ζ − E2

}
dζ =

k(E1 − E2)dζ
(ζ − E1)(ζ − E2)

→ 1
d

dζ

ζ2

for ζ as above. It is easy to check that these limits provide Weierstrass data
for the helicoid as described in Section 2.6.

A. Appendix: The Weierstrass data
for H

k
in terms of theta functions

Consider a rhombic torus Tτ = C /Λ, where Λ = {1, τ}, on which we
desire to write down Weierstrass data for the H

k
as presented in Figure 38. In

the rhombic model described in Section 4.1, we specified in (24) the location of
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E1 V1 V2 E2

g ∞k ∞ 0 0k

dh ∞ 0 0 ∞.

Figure 38: The divisors of g and dh.

the geometrically important points, i.e. the ends and the vertical points. The
center of the torus is located at O= 1+τ

2 . In Section 4.2.3, we saw that the
ends Ei and the vertical points Vi could be placed at

E1 = O − b1−τ
2 , E2 = O + b

1− τ
2

,(65)

V1 = O − a1−τ
2 , V2 = O + a

1− τ
2

,

where a < b < 1 by assumption. In particular 1
2 < b < 1.

We will use the theta function

θ(z) = θ(z, τ) =
∞∑

n=−∞
eπ(n+ 1

2
)2τ+2πi(n+ 1

2
)(z+ 1

2
)

to express g and dh. (This theta function is θ1,1 in Mumford [31, pp. 17–19].
It has the following properties:

θ(0) = 0, a simple zero;(66)

θ(z + 1) = θ(z);

θ(z + τ) = e2πi(z+ τ+1
2

)θ(z);

θ(z) = has no poles and no other zeros in a

fundamental domain of Tτ .

We may use θ(z) to write down (perhaps multivalued) meromorphic functions
on Tτ .

Lemma 9. Let ai bi ∈ C, and let αi, βi ∈ R, with
∑
αi =

∑
βi. Then

f(z) =
n∏
i=1

θ(z − ai)αi
θ(z − bi)βi

has a zero of order αi at ai, a pole of order βi at bi, and, modulo Λ = {1, τ},
no other poles or zeros. Furthermore, f satisfies

f(z + 1) = f(z);(67)

f(z + τ) = e2πi(
P
αiai−βibi)f(z).
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The lemma follows directly from the properties of θ listed in (66). Using
Figure 38, we may express the data g and dh in terms of θ as follows.

dh = eit
θ(z − V1)
θ(z − E1)

θ(z − V2)
θ(z − E2)

dz,

g(z) = ρ
θ(z − V2)
θ(z − V1)

θ(z − (E2 + τ))k

θ(z − E1)k
.

The factor eit in dh is determined not by the divisor, but rather by the re-
quirement that dh be real on the vertical diagonal. Similarly, the real factor
ρ in g(z) is determined by the requirement that g be unitary on the vertical
diagonal.

The presence of the shift by τ (i.e. E2 + τ instead of E2) in the term in
the numerator of the expression for g is determined by our desire for g to have
the correct transformation behavior, namely:

g(z + τ) = e−2πikg(z).

A straightforward computation using the definition of g and (67) gives g(z+τ)
= e2πiW g(z), where W = V1 + k(E1)− V2 − k(E2 + τ). Using (65), we get

W = −2(a+ kb)
1− τ

2
− kτ = −(a+ kb) + (a+ kb− k)τ.

Hence W = −k, as required geometrically on a surface invariant under the
screw motion σk, if and only if a + kb = k. So in order to obtain the correct
transformation behavior, we must assume that a + kb = k. This also gives
another derivation both of the relationship a+kb = k proved in Proposition 13
and of the turning of g along the vertical axis of H

k
discussed in Remark 9.

B. Appendix: Existence and uniqueness of flat cone metrics

We prove here Propositions 3 and 4 from Section 2.3, as well as a local
representation lemma used in Section 5. Some of these results extend founda-
tional results of Troyanov [38] in the case when the cone angles are finite and
positive.

Proposition 3. Let M be a compact Riemann surface, and {p1 . . . pr . . .

. . . , pr+`} ⊂ M a collection of distinct points, with r > 0, ` ≥ 0. Suppose
{a1 . . . ar} is a collection of real numbers satisfying (11) and

(68)
r∑
j=1

aj = −(2− 2genus(M)) + r + 2`.

Then there exists a cone metric on M with finite cone points pj with cone
angles aj (j = 1, . . . , r) and exponential cone points pk, (0 ≤ k ≤ `) of simple
type.
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Remark 15. When ` = 0, the proposition is a statement about cone met-
rics all of whose cone points are finite and (68) or (11) is the Gauss-Bonnet
condition (10).

Proof. We recall a fundamental theorem on the existence of holomorphic
one-forms with presribed singularities, an eloquent statment of which can be
found in Royden’s article [34]:

Lemma. Let M be a Riemann surface, E be a closed set in M , O an open
set containing E and G a bounded open set with smooth boundary Γ such that
E ⊂ G and G ⊂ O. Let Ω be an analytic differential in O ∼ E. Then there is
an analytic differential ω in M ∼ E such that Ω−ω has an analytic extension
to all of O if and only if (the flux condition)

∫
Γ Ω = 0.

To apply this lemma, we begin by choosing a holomorphic one-form ω0

on M . (If M has genus zero, a simple modification of the following con-
struction will work, and we leave that to the reader.) Let {q1, . . . , qs} be
the zeros of ω0 with the order of the zero at qi equal to bi . Let E =
{q1, . . . , qs} ∪ {p1, . . . , pr+`}. Let O be the union of disjoint coordinate neigh-
borhoods of the points of E, with each point corresponding to z = 0 in its
respective neighborhood. In each coordinate neighborhood we specify the an-
alytic differential Ω on O − E as follows:
• In the punctured neighborhood of qi 1 ≤ i ≤ s, Ω = −bi dzz ;

• In the punctured neighborhood of pj , 1 ≤ j ≤ r, Ω = (aj − 1)dzz ;

• In the punctured neighborhood of pk , r+1 ≤ k ≤ r+`, Ω = −( 1
z2 + 2

z )dz.

Letting G be the open set consisting of the union of slightly smaller coor-
dinate neighborhoods, we can use the lemma to assert the existence of mero-
morphic differential ω on M with principal parts specified near the singular
set E provided the flux condition

−
s∑
i=1

bi +
r∑
j=1

(aj − 1)− 2` = 0

is satisfied. Since ω0 is holomorphic, −∑s
i=1 bi = 2(1−genus(M)), from which

it follows that the flux condition is precisely our assumption (68). We may
also choose ω to have purely imaginary periods on M . This can be done by
adding to ω a holomorphic differential specified by having all its periods on
M equal to the negative of the real part of the periods of ω. The resulting
meromorphic one-form has the same poles and principal parts as ω and all of
its periods imaginary on M − E.

Define f = e
R
ω, a multivalued function on M −E. Because ω has imagi-

nary periods, the function |f | is well-defined on M −E, and of course, is never
equal to zero. Let

η = fω0.
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Note that η is regular at the zeros of ω0, that |η| is a well-defined metric away
from {p1 . . . pr . . . , pr+`} and that |η| has cone points with cone angles aj at
the points pj , 1 ≤ j ≤ r and exponential cone points of simple type at the
points pk, r + 1 ≤ k ≤ r + `.

Remark 16. If one or more of the zeros of the chosen holomorphic one-
form ω0 coincides with a desired cone point, it can be easily verified that the
construction still produces a cone metric with the prescribed cone points and
cone angles. Simply add the prescribed residues bi and aj − 1 at those points.

Proposition 4. A cone metric on a compact Riemann surface with cone
points with finite cone angles is determined up to scaling by the location of
these cone points and their cone angles. The same result is true if one or more
of the cone points is an exponential cone point of simple type, provided that
these cone points are asymptotically isometric.

Proof. Let |µ1| and |µ2| be cone metrics on M with the same cone points
and cone angles, and let M ′ be the Riemann surface M with the cone points
removed. Because K = −∆ log |µi|

|µi|2 = 0 on M ′, the function log(|µ2

µ1
|) is harmonic

on M ′. In a neighborhood of a cone point p with finite cone angle α, we may
write |µ1| = |zα−1dz| and |µ2| = |wα−1dw| with z and w local coordinates, the
cone point p corresponding to 0 in both z and w coordinates. If w = w(z) with
w′(0) = c 6= 0, then

limq→p
|µ2|
|µ1|

= cα.

In particular, log(|µ2

µ1
|) is bounded in a neighborhood of p. If all the cone

points are finite, then log(|µ2

µ1
|) is a harmonic function on M ′ that is bounded

in a neighborhood of each puncture. Therefore log(|µ2

µ1
|) extends to a bounded

harmonic function on M and hence is the constant function: µ2=cµ1 for some
positive constant c.

We now do a similar analysis in the neighborhood of an exponential cone
point of simple type. Suppose there are coordinates in a punctured neigh-
borhood of z = 0 in which |µ1| = |e 1

z
dz
z2 | and coordinates in a punctured

neighborhood of w = 0 for which |µ2| = |e 1
w
dw
w2 |, the common cone point cor-

responding to the puncture in each disk. Let w = w(z) be a conformal change
of coordinates with w(0) = 0. We may write |µ2| = |e

1
w
w′dz
w2 |.

Then, for w = z + o(z2), we have∣∣ µ2

µ1

∣∣ =
∣∣ e 1

w
− 1
z
z2

w2
w′
∣∣(69)

= eo(1)(1 + o(z))(1 + o(z)).(70)

The remainder of the proof goes through as in the case of finite cone points.
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Remark 17. If w = cz + o(z2) where c 6= 1, then the ratio above acquires
a term of size e

1
r as r → 0, and the proof fails. A counterexample in the case

where the hypothesis doesn’t hold is given in Section 2.4.

We next prove a lemma that was useful in our estimates in Section 5.
While the statement extends to more general settings, we restrict ourselves
here to the situation our estimates require. This restriction then allows for a
simpler proof.

Lemma 10. Let D be a topological disk equipped with a flat singular metric
dsD with up to two cone points (say, p1 and p2) with positive cone angles (say,
2πα1 and 2πα2) and up to a single cone point (say p0) with negative cone
angle (say , 2πα0). Next suppose that the cone angle at p1 exceeds the cone
angle at p2, i.e. α1 > α2. Suppose also that a geodesic Γ between p2 and p0

passes through p1, and that this geodesic bisects the angle found by removing
all possible extensions of Γ to a geodesic from p2 to p0. Suppose finally that
the sum of the cone angles vanish. Then D admits a conformal and isometric
development onto a topological disk ∆ equipped with a metric ds∆ of the form

ds∆ = C

2∏
i=0

|z − qi|αi−1,

where qi is the point in ∆ corresponding to pi ∈ ∆. This representation is
unique up to a rigid motion of the plane containing ∆; a homethety of the
plane containing ∆ is an isometry of ds∆ after a corresponding change in the
normalizing constant C.

Proof. We place q0 at the origin, q1 at the point 1 ∈ C, and consider
q2 > q1 as a variable point on R+. The possible locations of q2 are then on
a segment. We consider the family of flat singular metrics on the family of
domains ∆(q2) with

ds∆(q2) =
2∏
i=0

|z − qi|αi−1

where the cone angle at pi is 2παi, as described in the statement of the lemma.
The metric is then determined by the location of q2, as all choices of q1 and q2

on R determine a metric whose geodesic connecting q2 with q0 passes through
q1; we then seek a metric where d∆(q2)(q1, q2) = dist∆(p1, p2). In fact, in
the present simplified situation of at most three singular points, this is fairly
straightforward, as we merely consider the function d(q2) = d∆(q2)(q1, q2). Cer-
tainly d(q2) → 0 as q2 → q1 and d(q2) → ∞ as q2 → ∞. So by the continuity
of d on the variable q2 and the intermediate value theorem, we conclude that
it is possible to find q2 ∈ (1,∞) with d(q2) = dist∆(p1, p2) as required.
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Note next that when we restrict ds∆(q2) to the complement ∆′(q2) =
∆(q2) − {q0, q1, q2}, we obtain a flat metric. We may then develop the flat
metric ds∆ on ∆′ = ∆ − {p0, p1, p2} onto ∆′(q2) (with pi being sent to qi).
This developing map then develops ∂D onto a Jordan curve in ∆′(q2).

We next turn to uniqueness. Certainly after fixing the positions of q0 and
q1, the position of q2 is determined by the singularity at q2 and the development
of the geodesics from q1 to q0 and q2 respectively. So suppose we have two
metrics, say ds1 and ds2 on D with the same singularities at q0, q1, and q2.
Then the function h = log ds1/ds2 is harmonic, as each dsi is flat, and vanishes
on ∂D, as the development of ∆′ onto ∆′(q2) was isometric. Thus h vanishes
identically, proving the required uniqueness.
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