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Abstract

Let H be a Hopf algebra in a braided rigid monoidal category V admitting a coend C. We

define a “coend element” of H to be a morphism from C to H. We then study certain coend

elements of H, which generalize important elements (e.g., pivotal and ribbon elements) of

a finite dimensional Hopf algebra over a field. This builds on prior work of Bruguières and

Virelizier [BV07; BV12] on elements of Hopf monads and R-matrices of braided Hopf algebras.

As a consequence, we provide another description for pivotal and ribbon structures on the

category VH of H-modules.
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Chapter 1

Introduction

1.1 History

Hopf algebras

Hopf algebras first arose from the investigation of Γ-manifolds (now known as H-spaces)

by Hopf in 1941 [Hop41]. The works of Drinfeld [Dri87] and Jimbo [Jim85] on quantum

groups in the 1980s, motivated by the study of quantum integrable systems in mathematical

physics, further increased interests in these algebraic objects. Initially, to serve the needs of

algebraic topology, many restrictions on Hopf algebras were imposed, such as an N0-grading

with finite-dimensional components, graded commutativity, etc. However, as the list of

applications grew, Hopf algebras gradually became an independent topic of abstract algebra

in its own right, and a clear and consistent set of axioms began to emerge. In brief, a Hopf

algebra over a field k is a bialgebra H over k equipped with an antipode map S : H → H.

By a bialgebra, we mean a vector space H that is simultaneously an algebra and a coalgebra,

such that these two structures are compatible in a certain sense. Examples of Hopf algebras

include the group algebra kG, the universal enveloping algebra U(g) of a Lie algebra g, and

the previously mentioned quantum groups, which are 1-parameter deformations of U(g) for

semisimple complex Lie algebras g.

In terms of representation theory, Hopf algebras capture an important aspect of the

theory of representations of groups and Lie algebras, in that we can form the tensor product

of two representations. More precisely, given two modules M and N over a Hopf algebra

H, the coproduct of H implements a module structure on the tensor product of M and N .

Furthermore, the counit gives rise to a module structure on the trivial vector space k, and

the antipode of H imposes a module structure on the linear dual M∗ of M . To keep things

simple, we will restrict ourselves to consider only finite dimensional modules over a finite
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dimensional Hopf algebra H. In this setting, the categoryMfd
H of finite dimensional right

H-modules forms a rigid monoidal category, and the forgetful functor U :Mfd
H → Vecfd is

a strict monoidal functor. Therefore, a finite dimensional Hopf algebra H gives rise to a

rigid monoidal categoryMfd
H and a strict monoidal functorMfd

H → Vecfd. In fact, a type of

converse statement is true and is part of the broader theory of reconstruction, which we will

now explain.

Tannaka-Krein reconstruction

In the 1930s and the 1940s, Tannaka [Tan39] and Krein [Kre49] proved that a compact

topological group G can be reconstructed from the category Π(G) of finite dimensional

representations of G with the use of the forgetful functor U : Π(G)→ Vecfd. The category

Π(G) is the nonabelian analog of the Pontryagin dual for locally compact abelian groups,

and can be thought of as a “dual” of G. The idea of reconstructing an object from its

category of representations became known as Tannaka-Krein reconstruction. A version of

reconstruction for Hopf algebras is as follows: there is a one-to-one correspondence between

(1) finite dimensional Hopf algebras H over a field k, and (2) pairs (V , F ) consisting of a

finite tensor category V, and an exact faithful monoidal functor F : V → Vecfd [Eti+16,

Theorem 5.3.12]. The key to the reconstruction is the algebra isomorphism

H ∼= End(UH), h 7→ (−) · h

between H and the space of natural endomorphisms of the forgetful functor UH :Mfd
H → Vecfd.

Using this isomorphism, given a pair (V , F ) as above, we reconstruct H as End(F ).

More generally, if H is possibly infinite dimensional, then given a pair (V , F ) consisting
of a tensor category V and an exact faithful functor F : V → Vecfd, one can recover H

from a universal object called the coend of F , and V is now identified with the category of

H-comodules. When restricted to the finite-dimensional case, we can consider the dual to

the coend of F , the end of F , for which we have the following isomorphisms

end(F ) :=

∫
X∈V

F (X)∗ ⊗ F (X) ∼=
∫
X∈V

End(F (X)) ∼= End(F ).

Note that the first isomorphism is the linear isomorphism Hom(V,W ) ∼= W ∗ ⊗ V and the

second is the isomorphism
∫
X∈V Hom(F (X), G(X)) ∼= Nat(F,G).
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Modular tensor categories and modular Hopf algebras

In 1988, Witten [Wit88] introduced topological quantum field theories (TQFTs), and Atiyah

[Ati88] formulated a set of mathematical axioms for TQFTs. Soon afterwards, two construc-

tions of 3-dimensional TQFTs were found: the Reshetikhin-Turaev’s surgery construction

[RT91] whose input is a modular fusion category, and the Turaev-Viro’s state sum construc-

tion [TV92] whose input is a spherical fusion category. In 1995, Turaev conjectured that

the Turaev-Viro’s TQFT derived from a spherical fusion category C is isomorphic to the

Reshetikhin-Turaev’s TQFT derived from the Drinfeld center Z(C) of C, which is a modular

fusion category. For the purpose of TQFTs, it is therefore more important to consider

modular fusion categories.

A modular fusion category is a monoidal category equipped with a braiding and a twist,

having properties of semisimplicity, linearity, finiteness, and whose braiding is maximally

nonsymmetric. We refer to a category with all of these structures and properties, except

possibly semisimplicity, as a modular tensor category.

Besides its connection to (extended) 3-dimensional TQFTs and quantum invariants of

3-manifolds [Bar+15; Tur16], modular fusion categories also appear in conformal field theories

[MS89], vertex operator algebras [Hua05], topological phases of matter and topological

quantum computing [Wan10]. Recently, there have been increased interests in the non-

semisimple setting, see for example [KL01; CGP13; De +22].

Given their importance, it is therefore desirable to produce constructions of modular

fusion categories. In addition to the Drinfeld center of a spherical fusion category [Müg03],

there are many general constructions, some of which are modularization [Bru00; Müg00], local

modules [Par95; KO02]; see also non-semisimple generalizations in [Shi19; LW22a; LW22b].

Classically, concrete examples of modular fusion categories arise from quantum groups

at roots of unity [BK01]; these quantum groups are examples of modular Hopf algebras

as defined in [RT91]. From the perspective of Tannaka duality, Hopf algebras are useful

in constructing modular categories because there is a correspondence between additional

structures on the categoryMfd
H of finite dimensional representations of H, and elements of H.

From this observation, R-matrices, ribbon and spherical elements of H are defined in [Dri87;

RT90; BW99] and correspond to braidings, ribbon structures, and spherical structures on

Mfd
H respectively. In particular, when H is finite dimensional, the category Mfd

H of finite

dimensional right H-modules is modular if and only if H is equipped with an R-matrix R

and a ribbon element t such that (H,R) is factorizable, see e.g. [Tak01]. For instance, the

Drinfeld double D(kG) of the group algebra of a finite group G has a canonical R-matrix

and a ribbon element which makesMD(kG) a modular tensor category [BK01, Section 3.2].
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Structures or properties ofMfd
H Special elements or properties of H

Braiding σ forMfd
H R-matrix R ∈ H ⊗H

Pivotal structure ϕ onMfd
H Pivotal element p ∈ H

Ribbon structure (twist) θ on (Mfd
H , σ) Ribbon element (twist) t for (H,R)

Nondegeneracy of (Mfd
H , σ) (H,R) is factorizable

Table 1.1: Classical correspondence between structures or properties ofMfd
H and special elements or

properties of H.

In the effort to find more examples of modular tensor categories, one could consider the

category of modules over a Hopf algebra in an arbitrary braided finite tensor category V , and
generalize the right hand side of Table 1.1.

Hopf algebras in braided monoidal categories

In [Pen71], Penrose showed that morphisms in the symmetric monoidal category of vector

spaces can be represented by string diagrams. These were later extended by the works of

Joyal, Street, and others to arbitrary monoidal, rigid, braided, pivotal, ribbon and spherical

categories, such that morphisms are invariant up to appropriate notions of isotopies, see

[Sel11] for an overview. The graphical calculus of string diagrams enables us to replace

lengthy algebraic calculations with more natural topological reasoning.

At the same time, algebras and coalgebras can also be defined in any monoidal categories,

and bialgebras and Hopf algebras in any braided monoidal categories. We refer to bialgebras or

Hopf algebras in a braided monoidal category as braided bialgebras and braided Hopf algebras,

respectively. Since the notions of braided, pivotal and ribbon categories are categorical

without references to any linear structures, this raises the following question:

Question 1.1. If H is a Hopf algebra in a braided rigid monoidal category V , is there a way

to define braidings, pivotal, ribbon, etc. structures of VH in terms of “elements” of H, as in

the case when V = Vecfd?

Since k is the monoidal unit in the monoidal category Vecfd, and Hom(k, H) ∼= H ∼=
End(UH), one could try replacing defining pivotal and ribbon elements of H by morphisms

1→ H for braided Hopf algebras H. For instance, Majid [Maj93] defined an R-matrix as

a morphism 1→ H ⊗H satisfying conditions directly generalizing the classical axioms of

R-matrices defined in terms of elements. This notion of R-matrix gives rise to a braiding only

on a certain subcategory of H-modules, and there is no correspondence between R-matrices
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and braidings as in the case of Hopf algebras over a field. In [BV12], a new notion of

R-matrices is introduced, which recovers this correspondence and is explained below.

Elements of Hopf monads

In [BV07], Bruguières and Virelizier develop the algebraic theory of Hopf monads, partly in

order to prove Turaev’s conjecture relating the two constructions of TQFTs. Building on

the work of Moerdijk [Moe02] on bimonads, they define Hopf monads as monads equipped

with additional structures, in the same way that Hopf algebras are algebras with additional

structures, so that the category of modules is rigid monoidal. In particular, for any Hopf

monad on a rigid monoidal category C, the category CT of T -modules is rigid monoidal,

and the forgetful functor UT : CT → C is strict monoidal. An example of a Hopf monad is

TH = (−)⊗H where H is a braided Hopf algebra.

Given a Hopf monad T on a rigid monoidal category C, they also define an element of T

as a natural transformation 1C → T . This terminology is justified by the fact that there is a

bijection

Nat(1C, T ) ∼= End(UT ),

generalizing the bijection Hom(k, H) ∼= H ∼= End(UH) when H is a Hopf k-algebra. Using

this bijection and similar correspondences, Bruguières and Virelizier introduce pivotal and

ribbon elements of Hopf monads as certain natural transformations X → T (X), and R-

matrices as certain natural transformations X ⊗ Y → T (Y )⊗ T (X).

Quasitriangular braided Hopf algebras

Let V be a braided rigid monoidal category, and let H be a Hopf algebra in V. In this

case, we have a Hopf monad TH = (−)⊗H, and we can consider pivotal, ribbon elements,

and R-matrices for TH . For instance, an R-matrix for TH is a natural transformation

X ⊗ Y → Y ⊗H ⊗X ⊗H, subject to certain axioms. This is a generalization of the notion

of R-matrix for k-Hopf algebras, however, Bruguières and Virelizier show that there is a

more direct generalization, provided that the category V admits a universal object, called

the coend of V .
The coend of a monoidal functor is an important object in the general theory of recon-

struction of Hopf algebras as mentioned above. When the coend C of the identity functor on a

braided rigid monoidal category V exists, we say that V admits a coend and call C the coend

of V. Explicitly, C is equipped with a universal natural transformation δX : X → X ⊗ C,
satisfying the following factorization property: for any object D equipped with a natural
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transformation αX : X → X ⊗ D, there is a unique morphism f : C → D such that

α = (id⊗ f)δ. As a consequence of the braiding on V and Fubini’s theorem for coends, C has

an extended factorization property: for any object D equipped with natural transformation

αX1,...,Xn : X1 ⊗ · · · ⊗Xn → X1 ⊗ · · · ⊗Xn ⊗D,

there exists a unique map f : C⊗n → D such that α factors through δ, f and the braiding.

Using these factorization properties, Bruguières and Virelizier in [BV12] give a new definition

of the R-matrix for a braided Hopf algebra H in V as a morphism C⊗C → H ⊗H satisfying

certain axioms. Under this definition, they recover the 1-1 correspondence between R-matrices

of H and braidings on VH . [Ref]

1.2 Summary of main results

Motivated by the definition of the R-matrix in [BV12], we define a particular notion of an

“element” of a braided Hopf algebra H in V as follows.

Definition 1.2. Let H be a Hopf algebra in a braided rigid monoidal category V admitting

a coend C. A coend element (or C-element) of H is a morphism h : C → H.

For example, when V = Vecfd, a k-element of H is an element of H in the usual sense.

We can now state the main results of this paper. Note that VH denotes the category of right

H-modules in V .

Theorem 1.3 (Theorems 4.16, 4.21). Let V be a braided rigid monoidal category admitting a

coend C, and let H be a Hopf algebra in V.

(a) Consider C-pivotal elements of H defined in Definition 4.14. There is a canonical

bijection between the set CPiv(H) of C-pivotal elements of H and the set Piv(VH) of
pivotal structures of VH .

(b) Assume that H is quasitriangular with an R-matrix R : C ⊗C → H ⊗H, and consider

C-balanced (resp. ribbon) elements of H defined in Definition 4.18.

(i) There is a canonical bijection between the set CBal(H) of C-balanced elements of

H and the set Bal(VH) of balanced structures of VH .

(ii) The bijection in (i) further restricts to a bijection between the subset CRbn(H) of

C-ribbon elements of H and the subset Rbn(VH) of ribbon structures of VH .
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Thus, we provide an answer to Question 1.1 when V admits a coend, and consequently

obtain a generalization to Table 1.1 as shown in Table 1.2. We also describe a characterization

of the nondegeneracy of VH , which is explained in Section 5.3.

Structures or properties of VH Special elements or properties of H
Braiding σM,N :M ⊗N → N ⊗M R-matrix R : C ⊗ C → H ⊗H [BV12]
Pivotal structure ϕM :M →M∨∨ Pivotal element p : C → H
Ribbon structure θM :M →M Ribbon element t : C → H

Nondegeneracy (H,R) is factorizable

Table 1.2: Generalized correspondence between structures or properties of VH and special C-elements
or properties of H.

Addtionally, there is a relation between these generalized pivotal and ribbon elements via

the Drinfeld element u and two other elements qµ and cµ as seen in the following theorem,

which generalizes well-known results over vector spaces, see e.g., [Dra01] or Section 2.4.

Theorem 1.4 (Theorems 4.24, 4.26). Let V be a braided rigid monoidal category admitting a

coend C, and let (H,R) be a quasitriangular Hopf algebra in V as in [BV12].

(a) Consider the C-Drinfeld element u as defined in Definition 4.22. This element induces

a bijection CBal(H) ∼= CPiv(H) via t 7→ tu.

(b) Under the above correspondence, a C-balanced element t is ribbon if and only if one of

the following two equivalent conditions is satisfied:

(i) t−2 = c,

(ii) the corresponding pivotal element p satisfies p2 = q,

where q = qµ and c = cµ are certain C-elements defined in Definition 4.25. The product

on Hom(C,H) used in this result is defined in Figure 4.1(b).

A summary of the relationships between the special elements is given in Figure 1.1.

As mentioned above, to obtain these results, we make use the notion of elements of Hopf

monads in [BV07]. A braided Hopf algebra H gives rise to a Hopf monad TH = (−) ⊗H,

and therefore we can talk about elements of TH , i.e. natural transformations X → X ⊗H.

We call these natural transformations monadic elements of the Hopf algebra H. Using

the factorization property of the coend C, these monadic elements translate to morphisms

C → H, i.e. coend elements of H. In other words, the monadic elements of H provide an

intermediate bridge between the different structures of VH , and the coend elements of H.
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p q

u

R

t c

p2=q iff pū ribbon [4.26]

[4.14]

t−2=c iff t ribbon [4.26]

p=ut
[4.24]

[4.25]

[4.25]

[4.22]

[2.37]

[4.18]

Figure 1.1: Summary of relationships of special coend elements.

There is, however, one small difference betweeen our approach to monadic elements and

the one in [BV07]. A general Hopf monad can be defined on any (rigid) monoidal category,

not necessarily one equipped with a braiding. As a result of this generality, the definitions

of monadic pivotal elements require V to be a pivotal category. However, when the Hopf

monad comes from a Hopf algebra, V is necessarily braided, and there is a canonical natural

isomorphism similar to a pivotal structure, called the Drinfeld isomorphism. Unlike a pivotal

structure, the Drinfeld isomorphism is not monoidal, which requires us to slightly modify

certain definitions and statements of results compared to [BV07]. Overall, relaxing the pivotal

assumption strictly increases the scope of our results, since there are braided tensor categories

that are not pivotal, see for instance [Hal21].

Our proofs rely on utilizing the graphical calculus of braided rigid monoidal categories,

and the extended factorization property of the coend [Lemma 2.23]. In order to make use of

this property of the coend, we often need to transform the graphical calculus diagrams into a

specific form, which on some occasions require the ability to untangle certain braidings. For

this purpose, we highlight a useful technical result, Lemma 2.27, which allows us to treat a

braided monoidal category with coend C almost as a symmetric monoidal category, up to

the emergence of certain pairings of C with itself.

1.3 Structure and outline of the thesis

This thesis is organized as follows. In Chapter 2, we introduce the general background

material needed for this paper, including monoidal categories, braided Hopf algebras, and

coends. In Chapter 3, we summarize the main results of [BV07] concerning elements of a
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Hopf monad T in the special context that T = 1V ⊗ H is the Hopf monad induced by a

Hopf algebra in a braided rigid monoidal category V. At the end of Chapter 3, we modify

the theory slightly to relax the pivotal assumption on V, which is necessary for arbitrary

Hopf monads but not for Hopf monads induced by Hopf algebras. This leads us to Chapter

4, where we further assume that V admits a coend C. Using graphical calculus and the

universal property of the coend C, we display the C-element versions of special elements of

H in this setting, and prove their generalized properties and relations. Finally, we give some

concluding remarks, including a few applications of our work in Chapter 5.
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Chapter 2

Preliminaries on monoidal categories,

braided Hopf algebras, and coends

The goal of this section is to introduce the general background material, including basic

definitions and results, as well as notations and conventions that will be used throughout this

paper. In Section 2.1, we define the setting where all of our objects live, which are monoidal

categories endowed with various additional structures. In Section 2.2, we introduce the first

main object, that of a braided Hopf algebra. We also discuss its generalization in the form of

a Hopf monad on a rigid monoidal category. In Section 2.3, we introduce the second main

object: a certain universal object called a coend C of a rigid monoidal category. Next, we

briefly discuss all classical results about special elements of a Hopf algebra over a field k

in Section 2.4, which form the basis of our work. Finally, in Section 2.5, we introduce the

first result in this direction that forms the inspiration of this work: a generalization of the

R-matrix obtained by Bruguières and Virelizier in [BV12].

2.1 Monoidal categories

We review some general facts about monoidal categories, which will be used extensively

throughout.

2.1.1 Conventions for categories

We assume that the reader is familiar with standard category concepts as presented in [Mac98;

Rie16]. Unless otherwise specified, all categories are small.

Let C and D be categories. The category of functors and natural transformations from C to
D is denoted by [C,D]. Given two functors F,G : C → D, the set of natural transformations

10



from F to G is denoted by Nat(F,G) and the monoid of natural endomorphisms of F is

denoted by End(F ). Given a category C, the opposite category of C with all morphisms

reversed is denoted by Cop.

2.1.2 Monoidal categories

For a thorough introduction to monoidal categories and graphical calculus, the reader can refer

to [TV17], [Eti+16], and [Sel11]. On account of MacLane’s coherence theorem, we assume

that all monoidal categories are strict. Given a monoidal category (C,⊗,1), the category

Cop = (Cop,⊗,1) is also monoidal. We also have a monoidal category C⊗op = (C,⊗op,1)

where C is equipped with the reversed tensor product X ⊗op Y = Y ⊗X for all X, Y ∈ C.
A monoidal functor between monoidal categories (C,⊗,1) and (D,⊗,1) is a triple

(F, F (2), F (0)), where F : C → D is a functor, F (2) is a natural transformation

F
(2)
X,Y : F (X)⊗F (Y )→ F (X ⊗ Y ),

for all X, Y ∈ C, and
F (0) : 1→ F (1)

is a distinguished morphism, satisfying coherence axioms. A monoidal functor is strong if

F (2) and F (0) are isomorphisms. A comonoidal functor is a monoidal functor Cop → Dop.

A monoidal natural transformation between two monoidal functors F,G : C → D is a

natural transformation η : F → G such that

ηX⊗Y F
(2)
X,Y = G

(2)
X,Y (ηX ⊗ ηY ), for all X, Y ∈ C,

η1 F
(0) = G(0).

The set of monoidal natural transformations between two monoidal functors F and G is

denoted by Nat⊗(F,G), and the set of monoidal natural endomorphisms of a monoidal

functor F is denoted by End⊗(F ).

2.1.3 Rigidity

Let C be a monoidal category. A duality pairing in C is a quadruple (X, Y, e, c) consisting

of objects X, Y of C and morphisms e : X ⊗ Y → 1 and c : 1→ Y ⊗X, such that the two

compositions

X
X⊗c−−→ X ⊗ Y ⊗X e⊗X−−→ X, Y

c⊗Y−−→ Y ⊗X ⊗ Y Y⊗e−−→ Y
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are both identity morphisms. In this case, X is called a left dual of Y , Y a right dual of X,

and e and c are the evaluation and coevaluation maps respectively. A monoidal category C is

rigid if every object X ∈ C is part of distinguished duality pairings (∨X,X, evlX , coev
l
X) and

(X,X∨, evrX , coev
r
X). The objects ∨X and X∨ are called the left dual and the right dual of X,

respectively, and evlX , coev
l
X (resp. evrX , coev

r
X) are called the left (resp. right) evaluation

and coevaluation maps.

It is well-known that there are unique isomorphisms between any two left (or right) duals

of an object X respecting the evaluation and coevaluation maps. In particular, we will

abstain from writing the following canonical isomorphisms

(∨X)∨∼= X ∼= ∨(X∨), ∨1 ∼= 1 ∼= 1∨,
∨(X ⊗ Y ) ∼= ∨Y ⊗ ∨X, (X ⊗ Y )∨∼= Y ∨⊗X∨.

(2.1)

We follow the top-to-bottom convention for the graphical calculus of monoidal categories.

For any X ∈ C, the left and right evaluation and coevaluation maps are depicted as in

Figure 2.1.

Figure 2.1: Left and right evaluation and coevaluation maps of X ∈ C.

Furthermore, for any morphism f : X → Y we define ∨f and f∨ as in Figure 2.2, such

that (−)∨ and ∨(−) are strong monoidal functors Cop → C⊗op.

Figure 2.2: Left and right dual of a morphism f : X → Y .

2.1.4 Conjugation by duality functors

Let C,D be rigid monoidal categories. For any functor F : C → D, define F ! : C → D by

F !(X) = ∨F (X∨), F !(f) = ∨F (f∨).

12



For any natural transformation α : F → G, where F,G are functors C → D, define

α!
X = ∨αX∨ : G!(X)→ F !(X).

This defines a functor

(−)! : [C,D]→ [C,D]op, F 7→ F !, α 7→ α!,

which we call the conjugation by duality functor. Similarly, one can define a functor !(−) :
[C,D]op → [C,D] which is quasi-inverse to (−)!. Furthermore, for composable functors F

and G between rigid monoidal categories, we have (G ◦ F )! = G! ◦ F !, and for composable

natural transformations α and β between functors between rigid monoidal categories, we

have (β ◦ α)! = β! ◦ α!.

Remark 2.2. It follows that for any endofunctor F on a rigid monoidal category, the

conjugation by duality functor (−)! is an antiautomorphism of End(F ) with inverse !(−).

Lemma 2.3 ([BV07, Lemma 3.4]). Let F,G : C → D be strong monoidal functors and let

α : F → G be a monoidal natural transformation. If C is rigid, then α is an isomorphism

with α−1 = α! = !α.

2.1.5 Pivotal structures

A rigid monoidal category C is pivotal if it is equipped with a pivotal structure, i.e., a monoidal

natural transformation ϕX : X → X∨∨ such that

ϕX⊗Y = ϕX ⊗ ϕY , for all X, Y ∈ C,

ϕ1 = id1,

up to the identifications (2.1). The set of pivotal structures of C is denoted by Piv(C).

Remark 2.4. By Lemma 2.3, any pivotal structure ϕ on a rigid monoidal category C is

invertible with ϕ−1
X = ∨ϕX∨ = ϕ∨

∨X for all X ∈ C. In particular, ϕ!! = ϕ. The invertibility of ϕ

also implies that ϕ1 = id1 if we identify 1 = 1∨∨, since ϕ⊗2
1 = ϕ1.
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2.1.6 Braided categories

Let C be a monoidal category. A lax braiding on C is a natural transformation σX,Y : X⊗Y →
Y ⊗X satisfying

σX,Y⊗Z = (idY ⊗ σX,Z)(σX,Y ⊗ idZ),

σX⊗Y,Z = (σX,Z ⊗ idY )(idX ⊗ σY,Z),

σX,1 = idX = σ1,X ,

for all X, Y, Z ∈ C. A braiding is a lax braiding that is also invertible. A monoidal category

C is braided if it is equipped with a braiding.

If C = (C, σ) is a braided monoidal category, then the reverse braiding σ̄X,Y = σ−1
Y,X is also

a braiding on C. Graphically, the braiding σ and its reverse σ̄ are represented in Figure 2.3(a).

Remark 2.5. When C is rigid, every lax braiding σ on C is invertible, and therefore also

a braiding, with σ−1
X,Y given as in Figure 2.3(b). Furthermore, the invertibility of σ readily

implies that σX,1 = idX = σ1,X for all X ∈ C.

(a) (b)

Figure 2.3: Graphical calculus of a braiding on a (rigid) monoidal category.

The Drinfeld center of a monoidal category

Let C be a monoidal category. The Drinfeld center of C, denoted Z(C), is a braided monoidal

category defined as follows. An object of Z(C) is a pair (M,σM), where M is an object of C
and σM is a natural isomorphism {σMX :M ⊗X → X ⊗M}X∈C, called a half-braiding, such

that

σMX⊗Y = (idX ⊗ σMY )(σMX ⊗ idY ),

for all Y ∈ C. A morphism between (M,σM) and (N, σN) is a morphism f : M → N in C
that commutes with the half-braidings, i.e. f satisfies

(idX ⊗ f)σMX = σNX (f ⊗ idX)
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for all X ∈ C. The category Z(C) has a canonical braiding, which is given for any two objects

(M,σM) and (N, σN) by σMN . If C is rigid or pivotal, so is Z(C), see [TV17, Section 5.2.1].

2.1.7 Ribbon categories

A balanced category is a braided monoidal category (C, σ) equipped with a balanced structure,

which is defined as a natural endomorphism θ ∈ End(1C) satisfying

θX⊗Y = (θX ⊗ θY )σY,X σX,Y , for all X, Y ∈ C,

θ1 = id1.

A balanced structure on (C, σ) is sometimes also called a twist. If C is furthermore rigid, then

the twist θ is said to be self-dual if it satisfies

θ = θ!.

In this case, we say that θ is a ribbon structure and C is a ribbon category. The set of balanced

(resp. ribbon) structures on C will be denoted by Bal(C) (resp. Rbn(C)).

2.1.8 Drinfeld morphisms

In this section, we fix a braided rigid monoidal category (C, σ). Using graphical calculus,

the results in this section are straightforward to verify; see also [HPT16, Appendix A.2] for

similar results on balanced and pivotal structures of C.

Definition 2.6. Define natural transformations ν, ν̄, ν !, ν̄ ! as in Figure 2.4. We refer to these

morphisms collectively as Drinfeld morphisms, with ν called the (right) Drinfeld morphism.

Figure 2.4: Drinfeld morphisms in a braided rigid monoidal category.

15



Lemma 2.7. The morphism ν is invertible with inverse ν−1 = ν̄. Moreover, there are

relations

νM⊗N = (νM ⊗ νN) σ̄N,M σ̄M,N ,

ν̄ !M⊗N = (ν̄ !M ⊗ ν̄ !N)σN,M σM,N ,

ν !M⊗N = σ̄N,M σ̄M,N(ν
!
M ⊗ ν !N),

ν̄M⊗N = σN,M σM,N(ν̄M ⊗ ν̄N).

(2.8)

for all M,N ∈ C. The morphism ν ! is the conjugation of ν by duality functors, with inverse

ν̄ !, such that ν !! = ν.

Lemma 2.9. The Drinfeld morphism ν induces a bijection

Bal(C) ∼= Piv(C), θ 7→ ν ◦ θ (2.10)

between balanced and pivotal structures of C.

Remark 2.11. Since any pivotal structure ϕ is invertible with ϕ−1 = ϕ!, and the Drinfeld

isomorphism ν is invertible, it follows that any balanced/ribbon structure θ on a rigid

monoidal category is invertible as well: if θ = ν̄ϕ then θ−1 = ϕ−1ν. Furthermore, in this case

the condition θ1 = id1 is automatic, since θ⊗2
1 = θ1.

Figure 2.5: The morphisms κ and γ.

Definition 2.12. Define two natural transformations κ and γ by

κM = νM∨∨ν̄ !M = ν̄ !M∨∨νM , γM = (νν !)∨∨M = (ν !ν)M ,

graphically displayed in Figure 2.5. The equalities follow from the fact that the Drinfeld

morphisms satisfy (−)!! = id, see Lemma 2.7.

Lemma 2.13. Let C be a braided rigid monoidal category, and let κ and γ be defined as

in Figure 2.5. Under the correspondence between pivotal and balanced structures (2.10), a
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pivotal structure ϕ corresponds to a ribbon structure θ if and only if one of the following

equivalent conditions hold:

(i) ϕ2 = κ.

(ii) θ−2 = γ.

Definition 2.14. Following Drabant in [Dra01], we call a pivotal structure ϕ such that the

corresponding balanced structure θ is ribbon a strong pivotal structure. The set of ribbon

pivotal structures of C is denoted by SPiv(C) and we have a commutative diagram

SPiv(C) Piv(C)

Rbn(C) Bal(C)

∼= ∼=

where the vertical arrows are the bijection ν ◦ (−) in Lemma 2.9.

2.1.9 Symmetric categories

Let C be a braided monoidal category with braiding σ. The symmetric center C ′ of C is

defined as the full subcategory consisting of objects X such that

σY,X σX,Y = idX⊗Y

for all Y ∈ C. A symmetric category is a braided monoidal category C such that C ′ = C.
A symmetric category C has a canonical ribbon structure θ = 1C, hence a canonical pivotal

structure which is given by the Drinfeld morphism ν. A braided rigid monoidal category C
admitting a coend C is symmetric if and only if the canonical Hopf pairing ω of C is equal to

ϵ⊗ ϵ, see Section 2.3 for the definition of C and ω. This is the case for instance when C = 1

[BV12, Remark 8.1].

2.1.10 Modular tensor categories

Let k be a field. A k-linear abelian category is an abelian category with a compatible

enrichment over the category Vec of vector spaces. A k-linear abelian category A is finite if A
is equivalent to the categoryMfd

A of finite dimensional modules over some finite dimensional

k-algebra A; see [Eti+16, Definition 1.8.6] for an equivalent definition.

Let A and B be k-linear abelian categories. The Deligne tensor product of A and B is a

k-linear abelian category A⊠B equipped with a functor ⊠ : A×B → A⊠B that is k-linear
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and right exact in each variable and is universal among such functors out of A× B. When

A ≃Mfd
A and B ≃Mfd

B are finite, their Deligne tensor product exists and is given byMfd
A⊗kB,

see [Eti+16, Proposition 1.11.2] for a slightly more general result.

A finite tensor category (over k) is a rigid monoidal category (C,⊗,1) such that (1) C is

a finite linear category over k, (2) ⊗ is k-bilinear, and (3) EndC(1) ∼= k. A fusion category is

a semisimple finite tensor category.

Theorem 2.15 ([Shi19, Theorem 1.1]). For a braided finite tensor category (C, σ) over an

algebraically closed field, the following assertions are equivalent:

(i) The symmetric center of C is trivial.

(ii) The functor C ⊠ C T+⊠T−−−−−→ Z(C) ⊠ Z(C) ⊗−→ Z(C) is an equivalence, where T+(X) =

(X, σX,?) and T−(X) = (X, σ−1
?,X).

(iii) The canonical Hopf pairing ω of the coend C of C is nondegenerate, see Definition 2.16

and Lemma 2.23.

(iv) The linear map Hom(C,1)→ Hom(1, C), f 7→ (f ⊗ id)ω is bijective.

If one of the equivalent conditions of Theorem 2.15 is satisfied for a braided finite tensor

category C, we say that C is nondegenerate. A modular tensor category is a nondegenerate

braided finite tensor category equipped with a ribbon structure. In literature, a modular

tensor category is also often assumed to be semisimple, i.e. a nondegenerate braided ribbon

fusion category.

In this paper we will not assume that categories are linear or abelian, unless explicitly

mentioned otherwise.

2.2 Braided Hopf algebras and Hopf monads

2.2.1 Braided Hopf algebras

For the definitions of algebras, coalgebras, bialgebras and Hopf algebras in a braided monoidal

category V , see [TV17, Chapter 6]. For a Hopf algebra H, we represent its product m, unit

u, coproduct ∆, counit ϵ, antipode S and its inverse S−1 graphically as in Figure 2.6(a).

A right H-module is a pair (M, r) where M ∈ V and r :M ⊗H →M is a morphism in

V satisfying the usual associativity and unital axioms. It is well-known that the category VH
of right H-modules is a rigid monoidal category; the H-action r, the monoidal structure and

the dual actions are displayed in Figure 2.7.
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(a) (b)

Figure 2.6: Graphical calculus for structure morphisms of H.

Figure 2.7: The monoidal structure of VH .

Definition 2.16 ([TV17, Section 6.2.3]). Let H = (H,m, u,∆, ϵ) be a bialgebra in a braided

monoidal category V . A bialgebra pairing for H is a morphism ω : H ⊗H → 1 in V such that

ω(m⊗ idH) = ω(idH ⊗ ω ⊗ idH)(idH⊗H ⊗∆), ω(u⊗ idH) = ϵ,

ω(idH ⊗m) = ω(idH ⊗ ω ⊗ idH)(∆⊗ idH⊗H), ω(idH ⊗ u) = ϵ.

We depict a bialgebra pairing ω graphically as in Figure 2.6(b). Bialgebra pairings for Hopf

algebras are called Hopf pairings.

A bialgebra pairing ω is non-degenerate if there exists a copairing, i.e., a morphism

Ω : 1→ H ⊗H satisfying the snake equations

(idH ⊗ ω)(Ω⊗ idH) = idH = (idH ⊗ Ω)(ω ⊗ idH).

Equivalently, a bialgebra pairing ω is a morphism whose left and right adjoint maps H → H∨

and H → ∨H are algebra homomorphisms, and it is nondegenerate if these maps are also

isomorphisms.

2.2.2 Hopf monads

Let C be a category. A monad on C is an algebra (T, µ, η) in the strict monoidal category

(End(C), ◦, 1C) of endofunctors of C. Given a monad (T, µ, η) on C, a T -module is a pair

(M, r) consisting of an object M ∈ C and a morphism r : T (M) → M in C such that

r T (r) = r µM and r ηM = idM . Given two T -modules (M, r) and (N, s), a T -module

morphism f : (M, r) → (N, s) is a morphism f : M → N of underlying objects in C such
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that fr = s T (f). The collection of T -modules and T -module morphisms forms a category,

denoted by CT .
A monad (T, µ, η) on a monoidal category C is a bimonad if T = (T, T (2), T (0)) is a

comonoidal functor, and µ and η are comonoidal natural transformations. If C is a rigid

monoidal category and T is a bimonad, we say that T is a Hopf monad if it is equipped

with two natural transformations slX : T (∨T (X)) → ∨X and srX : T (T (X)∨) → X∨ for

X ∈ C, satisfying [BV07, Equations (20)-(23)]. They are called the left antipode and the

right antipode for T , respectively.

Remark 2.17. In [BLV11], Bruguières, Lack and Virelizier define Hopf monads on any

monoidal categories, not necessarily rigid, using the notion of fusion operators. When

restricting to rigid monoidal categories, the two notions of Hopf monads coincide.

Example 2.18. Let V be a braided rigid monoidal category and let H be a Hopf algebra in

V. The endofunctor T = 1V ⊗H is a Hopf monad with structure morphisms presented in

Figure 2.8 [BV12, Example 2.4]. Moreover, the category of T -modules coincides with the

category of right H-modules in V .

Figure 2.8: Structure morphisms of the Hopf monad T = 1V ⊗H.

2.3 Coends

The references for this section are [Mac98, Sections IX.5 - IX.8] and [TV17, Sections 6.4 -

6.6].

Let C,D be categories and let F : Cop × C → D be a functor. For an object D in D, a
dinatural transformation from F to D is a family d = {dX : F (X,X)→ D}X∈C of morphisms
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in D such that for every morphism f : X → Y in C, the diagram

F (Y,X) F (X,X)

F (Y, Y ) D

F (f,idX)

F (idY ,f) dX

dY

commutes. Let Dinat(F,D) denote the set of dinatural transformations from F to D.

A coend of a functor F : Cop × C → D is a pair (C, ι) where C is an object of D and

ι ∈ Dinat(F,C) such that every dinatural transformation d from F to an object D of D
factors as d = f ◦ ι for a unique morphism f : C → D. In other words, we have a bijection

HomD(C,D)→ Dinat(F,D), f 7→ f ◦ ι. (2.19)

2.3.1 The coend of a rigid monoidal category

Let V be a rigid monoidal category, and let F : Vop × V → V denote the functor defined on

objects by (X, Y ) 7→ ∨X ⊗ Y . We say that V admits a coend if a coend of the functor F

exists. We often denote this coend by (C, ι) or simply C, with C an object of V, and ι the
dinatural transformation with X-component ιX : ∨X ⊗X → C for X ∈ V .

Using the snake identity, the proof of the following lemma is straightforward.

Lemma 2.20. Let V be a rigid monoidal category, and let F be the functor defined as above.

For any object D ∈ V, there is a bijection

Dinat(F,D)→ Nat(1V , 1V ⊗D), ϕ 7→ ϕ̃X := (idX ⊗ ϕX)(coevlX ⊗ idX) (2.21)

with inverse ψ 7→ ψ̄X = (evlX ⊗ idX)(idX ⊗ ψX).

By using the above lemma, in particular by composing the two bijections (2.19) and

(2.21), we see that equivalently, if (C, ι) is a coend of V and δ = ι̃, then for any D ∈ V we

have a bijection

Σ
(1)
D : Hom(C,D)→ Nat(1V , 1V ⊗D), f 7→ (idX ⊗ f) δX . (2.22)

The natural transformation δX : X → X ⊗ C is called the universal coaction associated to

the coend C. Even though ι and δ carry the same data, working with δ is often slightly

more convenient. In terms of graphical calculus, we color C-strands gray, with the universal

coaction δX : X → X ⊗ C graphically depicted as in Figure 2.9.
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Figure 2.9: The universal coaction δ for the coend C.

2.3.2 Extended factorization property of the coend of a braided

rigid monoidal category

In this section, we further assume that the rigid monoidal category V has a braiding σ.

Lemma 2.23. Let (V , σ) be a braided rigid monoidal category that admits a coend (C, δ).

For all n ≥ 1, if there is an object D with a natural transformation

α = {αX1,...,Xn : X1 ⊗ · · · ⊗Xn → X1 ⊗ · · · ⊗Xn ⊗D}(X1,...,Xn)∈Vn

then there exists a unique map f : C⊗n → D such that the following diagram

X1 ⊗ · · · ⊗Xn X1 ⊗ · · · ⊗Xn ⊗D

X1 ⊗ C ⊗ · · · ⊗Xn ⊗ C X1 ⊗ · · · ⊗Xn ⊗ C⊗n

αX1,...,Xn

δX1
⊗···⊗ δXn

β

id⊗ f

commutes. Here β is obtained by repeatedly applying the braiding σ of V. In other words, for

all n ≥ 1 and all D ∈ V, there is a bijection

Σ
(n)
D : Hom(C⊗n, D)→ Nat(⊗(n−1),⊗(n−1) ⊗D)

f 7→ (id⊗ f) β (⊗(n−1)δ×n),
(2.24)

where ⊗(n−1) is the functor (X1, . . . , Xn) 7→ X1 ⊗ · · · ⊗Xn.

Proof. The lemma follows from induction on n, the Fubini Theorem for coends [Mac98,

Section IX.8], and the naturality of the braiding. See [BV12, Lemma 5.4] for the proof of a

more general result.

As a consequence of the (extended) factorization property of coends, we obtain:

Corollary 2.25 ([TV17, Sections 6.4, 6.5]). Let (V , σ) be a rigid braided category that admits

a coend C. Then C has a canonical Hopf algebra structure (C,m, u,∆, ϵ, S) and a canonical
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Figure 2.10: Defining properties of the canonical Hopf algebra structure on the coend C.

Hopf pairing ω : C ⊗ C → 1 compatible with the universal coaction δ and the braiding σ as

illustrated in Figure 2.10.

Remark 2.26 ([BV12, Remark 8.2]). The universal coaction of C on itself can be expressed

in terms of its Hopf algebra structure by δC = (id⊗m)(σ ⊗ id)(S ⊗∆)∆.

We also define two variants ω and ω of ω, depicted graphically by

which will allow us to freely switch between the braiding σ and its reverse braiding σ, as

follows. The pairing ω is the convolution inverse of ω in the sense that

(ω ⊗ ω)(id⊗ σ ⊗ id)(∆⊗∆) = ϵ⊗ ϵ = (ω ⊗ ω)(id⊗ σ ⊗ id)(∆⊗∆).

The pairing ω is the canonical Hopf pairing for C when V is braided with the reverse braiding

σ.

Figure 2.11: The variants ω and ω of ω.

Lemma 2.27. Let ω be the canonical Hopf pairing of the coend C.
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(a) The diagrams in Figure 2.11 hold.

(b) ω = ω(S ⊗ id) = ω(id⊗ S−1)σ, ω = ω(S−1 ⊗ id) = ω(S ⊗ id)σ.

Proof. Part (a) is immediate from the definitions of ω and ω. For part (b), the key is that

the braiding σ can be expressed using σ−1 as shown in Figure 2.3(b). The proof for one of

the formulas of ω is shown in Figure 2.12, and the proofs of the other formulas are completely

analogous.

Figure 2.12: Proof that ω = ω(S−1 ⊗ id).

Remark 2.28. For some graphical calculus diagrams, we rotate certain morphisms such

as the Hopf pairing ω and the mulitplication map mC following a C-coaction by 90 degrees

counterclockwise, see for instance the first diagram in Figure 2.13 below.

2.3.3 Examples of coends

Example 2.29. Let C be a finite tensor k-category, i.e., C is equivalent to the categoryMA

of finite dimensional modules over a finite dimensional k-algebra A, such that the bifunctor

⊗ is bilinear on morphisms, and End(1) ∼= k. In this case, it is known that the coend of C
exists, see [KL01, Section 5.1.3] or [Shi17a, Theorem 3.34]. If C is addtionally semisimple so

that C is a fusion category, we can exhibit the coend as

C =
⊕

i∈Irr(C)

∨i⊗ i,

where i runs over representatives of simple objects of C, see [TV17, Section 6.4.4]. When

C = Vecfd, the coend is k with the universal dinatural transformation given by the evaluation

maps.

Example 2.30 ([BV12, Section 6.3]). Let V be a braided rigid monoidal category admitting

a coend C with universal coaction δ, and let H be a Hopf algebra in V. Then the coend of

B = VH exists and is given by Z(H) = ∨H ⊗ C. This is a right H-module with H-action

z : Z(H)⊗H → Z(H) and universal coaction δ̃ given by Figure 2.13.
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Figure 2.13: The H-action and the universal coaction for the coend of VH .

2.4 Special elements of Hopf algebras over a field

We summarize certain results on special elements of bialgebras and Hopf algebras over a field

k that we generalize in this paper, see e.g. [Dra01; Rad12]. In this section, ⊗ = ⊗k, and we

denote the symmetric braiding in Vecfd by τ . We emphasize that since we work with right

modules rather than left modules, certain definitions may appear different from the literature.

Definition 2.31. Let H be a finite dimensional bialgebra over k.

(i) An R-matrix for H is an element R = Ri ⊗Ri ∈ H ⊗H satisfying

(R1) R∆(h) = τH,H∆(h)R for all h ∈ H.

(R2) (id⊗∆)(R) = RiRj ⊗Rj ⊗Ri.

(R3) (∆⊗ id)(R) = Ri ⊗Rj ⊗RiRj.

(R4) (id⊗ ϵ)(R) = (ϵ⊗ id)(R) = 1.

(ii) A grouplike element of H is an element g ∈ H such that

(G1) ∆(g) = g ⊗ g.

(G2) ϵ(g) = 1.

(iii) If H is furthermore a Hopf algebra, we define a pivotal element of H to be an element

p ∈ H such that

(P1) p is a grouplike element, i.e., p satisfies (G1) and (G2).

(P2) S2(h) = p−1hp for all h ∈ H.

(iv) Let R be an R-matrix for H. A balanced element (or twist) of H with respect to R is

an element t ∈ H such that

(T1) t is central: th = ht for all h ∈ H.
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(T2) ϵ(t) = 1.

(T3) ∆(t) = (t⊗ t)(R21R), where R21 = τH,HR.

A balanced element is called a ribbon element if it further satisfies

(T4) S(t) = t.

These elements are defined from the perspective of Tannaka duality, motivated by certain

additional structures on the category of modules, as explained in the following proposition.

Proposition 2.32. Let H be a finite dimensional bialgebra over k.

(i) There is a bijective correspondence between R-matrices for H and lax braidings onMfd
H ,

given by R 7→ (−) ·Ri ⊗ (−) ·Ri, and σ 7→ σH,H(1H ⊗ 1H).

(ii) If H is furthermore a Hopf algebra, then there is a bijective correspondence between

pivotal elements of H and pivotal structures on Mfd
H , given by p 7→ (−) · p, and

ϕ 7→ ϕH(1H), where we have identified M∨∨∼= M as vector spaces for any H-module

M .

(iii) Suppose R is an R-matrix for H. Then there is a bijective correspondence between

balanced elements of H and balanced structures on Mfd
H , given by t 7→ (−) · t, and

θ 7→ θH(1H). Furthermore, a balanced element t is a ribbon element if and only if the

corresponding balanced structure θ is ribbon.

Remark 2.33. Let H be a finite dimensional Hopf algebra over k.

(a) By Remark 2.5 and Proposition 2.32(a), any R-matrix R for H is invertible, with

R−1 = (id⊗S−1)(R). As a result, the axiom (R4) is automatically satisfied. Furthermore,

if σ is the braid on Mfd
H corresponding to R, then the reverse braid σ is given by

R = τH,HR
−1.

(b) Similarly, any grouplike element g ∈ H is invertible with g−1 = S(g). As a result, the

axiom (G2) is automatically satisfied.

(c) If R is an R-matrix for H, then any twist for H with respect to R is invertible by

Remark 2.11 and Proposition 2.32(c). As a result, the axiom (T2) is automatically

satisfied.

Definition 2.34. Let H be a finite dimensional Hopf algebra over k with an R-matrix

R = Ri⊗Ri. We define u = RiS(R
i), q = uS(u)−1, c = uS(u), and call u the (right) Drinfeld

element.
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Figure 2.14: Axioms of an R-matrix for a braided bialgebra or Hopf algebra.

Remark 2.35. If H has an R-matrix R, the morphisms ν, κ and γ on the braided category

MH of finite dimensional H-modules (see Section 2.1.8) are given by the right actions of

u, q and c, respectively, if we identify M ∼= M∨∨ ∼= M∨∨∨∨ as vector spaces. As a result,

the elements u, q, c are invertible, with u−1 corresponding to ν̄, and therefore given by

u−1 = S2(Ri)R
i.

The following corollary is a straightforward consequence of Lemma 2.9, Lemma 2.13, and

Remark 2.35.

Corollary 2.36. Let (H,R) be a finite dimensional quasitriangular Hopf algebra over k.

Then there is a one-to-one correspondence between the pivotal elements of H and the balanced

elements of H, given by p 7→ u−1p and t 7→ ut. Further, under the above correspondence,

a pivotal element p maps to a balanced element t that is ribbon if and only if one of the

following two equivalent conditions are satisfied:

(i) p2 = q.

(ii) t−2 = c.

2.5 Quasitriangular braided Hopf algebras

Let V be a braided rigid monoidal category admitting a coend C, and let H be a bialgebra

in V . We recall the notion of a quasitriangular bialgebra as defined in [BV12].
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Definition 2.37 ([BV12, Section 8.6]). A morphism R : C ⊗ C → H ⊗ H satisfying the

four diagrammatic equations of Figure 2.14 is called an R-matrix for H. A quasitriangular

bialgebra or quasitriangular Hopf algebra is a bialgebra or Hopf algebra equipped with an

R-matrix.

Figure 2.15: The lax braiding on VH induced by an R-matrix R.

The key property of R-matrices defined in this way is that there is a bijective correspon-

dence between them and lax braidings on the category of modules as follows.

Theorem 2.38 ([BV12, Section 8.6]). Given an R-matrix R : C ⊗ C → H ⊗H, let σ = σR

be defined as in Figure 2.15 for any two right H-modules M and N . Then σ is a lax braiding

on VH and the assignment R 7→ σR is a bijection between R-matrices for H and lax braidings

on VH .

We note that when H is a Hopf algebra, the lax braiding induced by an R-matrix for R

is invertible, see Remark 4.17.
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Chapter 3

Monadic elements of braided Hopf

algebras

This section is a summary of the relevant results of [BV07], with the exception of the new

materials in Section 3.6, in the special context of a Hopf monad TH induced by a Hopf algebra

H in a braided rigid monoidal category V . See Example 2.18 for the structure morphisms of

this Hopf monad. We note that while the monadic perspective is more general, all the results

in this section can be obtained by direct computation using graphical calculus.

3.1 The monoid Nat(1V , 1V ⊗H) of monadic elements

Let V be a monoidal category and let H = (H,m, u) be an algebra in V. The category of

modules over the monad TH = 1V ⊗ H coincides with the category of right modules over

H and hence is denoted by VH . Let UH : VH → V and FH : V → VH denote the forgetful

functor and the free module functor, respectively. Recall that (FH , UH) is an adjunction with

unit and counit given by

η : 1V → UHFH , ηX = idX ⊗ u,

ϵ : FHUH → 1VH , ϵ(M,r) = r,

respectively, such that TH = UHFH . As a result, we can use graphical calculus to obtain the

following lemma:

Lemma 3.1 ([BV07, Lemma 1.3]). Let D be any category and let F,G : V → D be functors.
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We have mutually inverse bijections

(−)♯(F,G) : Nat(F,GTH) ⇆ Nat(FUH , GUH) : (−)♭(F,G)

g 7→ g
♯(F,G)
(M,r) = G(r)gM

fXHF (ηX) = f
♭(F,G)
X ←[ f.

3.1.1 Convolution product

As a corollary of Lemma 3.1 when D = V and F = G = 1V , we obtain a bijection Nat(1V , 1V⊗
H) ∼= End(UH). In this case, End(UH) is also a monoid with function composition as

multiplication. Transporting this monoid structure on End(UH) to Nat(1V , 1V ⊗ H), we

obtain:

Definition 3.2. For h, k ∈ Nat(1V , 1V⊗H), define the convolution product h∗k as displayed

in Figure 3.1. Note the second equality follows from the naturality of h.

Figure 3.1: Convolution product of Nat(1V , 1V ⊗H)

Lemma 3.3. Let V be a monoidal category, and let H be an algebra in V. The convolution

product ∗ gives Nat(1V , 1V ⊗H) a monoid structure with unit 1V ⊗ u, such that the mutually

inverse bijections

(−)♯ : Nat(1V , 1V ⊗H) ⇆ End(UH) : (−)♭

h 7→ h♯(M,r) = rhM

fXHηX = f ♭X ←[ f

(3.4)

are isomorphisms of monoids.

Remark 3.5. When V = Vecfd, we have the more familiar mutually inverse bijections

H ⇆ End(UH)

h 7→ (−) · h

f(H,m)(1H)←[ f

(3.6)
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which is part of the theory of reconstructing H from its category of representations using

the forgetful functor. In an abstract monoidal category we cannot speak of elements of H,

therefore the left hand side of (3.6) does not make sense. However, we always have the

bijection (3.4). Thus, the elements of Nat(1V , 1V ⊗H) can be seen as a substitute for the

elements of H in this more general setting. For this reason, we will call these elements of

Nat(1V , 1V ⊗H) the monadic elements of H.

The investigation of certain special (pivotal, ribbon, etc.) monadic elements of H is the

main focus of this section. The maps (−)♯ and (−)♭, which replace the classical bijections

in (3.6), will play a key role.

A correspondence in higher dimensions

To prove results for R-matrices and essential properties of ribbon and pivotal elements, we

need a further result for the Cartesian product of H, which is also a corollary of Lemma 3.1

as follows. Let × denote the Cartesian product of categories and functors. If V is a monoidal

category and H is an algebra in V, then V×n is monoidal and H×n is an algebra in V×n

in a natural way, such that (V×n)A×n = V×n
H , the forgetful functor UH×n = U×n

H , and the

free module functor FH×n = F×n
H . Applying Lemma 3.1 to the algebra H×n, we obtain the

following result:

Lemma 3.7. Let n ≥ 1 be a positive integer, and let F,G : V×n → V be functors. We have

a bijection

(−)♯(F,G,n) : Nat(F,GT×n
H ) ⇆ Nat(FU×n

H , GU×n
H ) : (−)♭(F,G,n)

defined as follows: for any f ∈ Nat(F,GT×n
H ),

f
♯(F,G,n)
(M1,r1),...,(Mn,rn)

= G(r1, . . . , rn)f(M1,...,Mn),

and for any g ∈ Nat(FU×n
H , GU×n

H ),

g
♭(F,G,n)
(X1,...,Xn)

= g(T (X1),...,T (Xn))F (ηX1 , . . . , ηXn).

In particular, let F = G = ⊗(n−1) : V×n → V be repeated applications of the monoidal

functor ⊗ : V × V → V . We have the following result which will be useful later on:

Corollary 3.8. Let n ≥ 1 be a positive integer. We have a bijection

(−)♯(n) : Nat(⊗(n−1),⊗(n−1)T×n
H ) ⇆ End(⊗(n−1)U×n

H ) : (−)♭(n)
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defined as follows: for any f(X1,...,Xn) : X1 ⊗ · · · ⊗Xn → (X1 ⊗H)⊗ · · · ⊗ (Xn ⊗H),

f
♯(n)
((M1,r1),...,(Mn,rn))

= (r1 ⊗ · · · ⊗ rn)f(M1,...,Mn),

and for any g((M1,r1),...,(Mn,rn)) ∈ End(M1 ⊗ · · · ⊗Mn),

g
♭(n)
(X1,...,Xn)

= g(X1⊗H,··· ,Xn⊗H)(ηX1 ⊗ · · · ⊗ ηXn)

3.1.2 Central elements

Definition 3.9. For a monadic element h ∈ Nat(1V , 1V ⊗ H), define the maps Lh, Rh ∈
End(1V ⊗H) as in Figure 3.2. If Lh = Rh then we say that h is central.

Figure 3.2: Left and right multiplication in Nat(1V , 1V ⊗H).

For all k ∈ Nat(1V , 1V ⊗ H), we have Lh ◦ k = h ∗ k = Rk ◦ h, and hence Lh and Rh

stand for left and right multiplication by h, respectively. In particular, if h is central then h

commutes with all elements in the monoid Nat(1V , 1V ⊗H).

When V = Vec, the central elements of H are the ones whose multiplication maps are

H-linear on all H-modules. We have an analogous result for the monadic central elements:

Lemma 3.10 ([BV07, Lemma 1.5]). For h ∈ Nat(1V , 1V ⊗H), the following are equivalent:

(i) h is central, i.e., Lh = Rh,

(ii) h♯(M,r) is H-linear for all (M, r) ∈ VH , or equivalently, h♯ ∈ End(UH) lifts to an element

in End(1VH ).

Remark 3.11. The proof of the preceding lemma follows from Lemma 3.1 with F = TH and

G = 1V .
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3.1.3 Monadic grouplike elements

Definition 3.12. Let H be a bialgebra in a braided monoidal category V . A monadic element

g ∈ Nat(1V , 1V ⊗H) is grouplike if g satisfies the two diagrams in Figure 3.3. The set of

monadic grouplike elements of H is denoted by MGrp(H).

Figure 3.3: Axioms for a monadic grouplike element g.

The following result is again a generalization of a well-known property of grouplike

elements of a k-bialgebra H.

Lemma 3.13 ([BV07, Lemma 3.20]). The isomorphism (3.4) restricts to an isomorphism

MGrp(H) ∼= End⊗(UH), i.e., a monadic element g is grouplike if and only if g♯ is a monoidal

natural endomorphism.

Remark 3.14. By Lemmas 2.3 and 3.13, when V is rigid and H is a Hopf algebra, any

monadic grouplike element g is convolution invertible with ḡ = S(g) = S−1(g). In particular,

the second axiom ϵHg1 = id1 in Figure 3.3 is automatically satisfied.

3.1.4 Antipodes

Let V be a braided rigid monoidal category. We have seen that there is an isomorphism of

monoids Nat(1V , 1V ⊗H) ∼= End(UH). When H is a Hopf algebra, UH is an endofunctor

on the rigid monoidal category VH , so there is an antiautomorphism (−)! on End(UH) as

in Remark 2.2. We can further transport (−)! to Nat(1V , 1V ⊗H) to obtain the following

definition.

Definition 3.15. Define maps S, S−1 : Nat(1V , 1V ⊗ H) → Nat(1V , 1V ⊗ H) by S(f) =

(!(f ♯))♭ and S−1(f) = ((f ♯)!)♭.

Remark 3.16. As mentioned in the paragraph preceding [BV07, Lemma 3.18], explicit

formulas for S and S−1 are given by Figure 3.4.
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Figure 3.4: Formulas for S±1(h) for h ∈ Nat(1V , 1V ⊗H).

3.2 Monadic pivotal elements

In this section, we will also assume that V is a braided pivotal category with pivotal structure

ψ, or equivalently by Lemma 2.9, a balanced structure θ = ν̄ψ, and H is a Hopf algebra in V .
We present the theory of monadic pivotal elements as first introduced in [BV07], however, we

will later present a slightly different view in Section 3.6.

3.2.1 The square of the antipode

Recall that a pivotal element of a k-Hopf algebra H is a grouplike element g such that

S2(h) = ghg−1 for all h ∈ H. We can rewrite this as Lg(h) = RgS
2(h), where Lg and Rg are

left and right multiplication maps by g, respectively. The correct monadic generalization of

the endomorphism S2 is given by the following definition.

Definition 3.17. The square of the antipode S2
ψ ∈ End(1V ⊗H) with respect to ψ is defined

as in Figure 3.5.

Figure 3.5: The square of the antipode, S2ψ

Lemma 3.18 ([BV07, Lemma 7.5]). For all g ∈ Nat(1V , 1V⊗H), the following are equivalent:

(i) Lg = RgS2
ψ,

(ii) (ψg♯)M : M → M∨∨ is H-linear for all M ∈ VH , i.e., ψg♯ lifts to an element of

Nat(1VH , (−)∨∨VH ).
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3.2.2 Monadic pivotal elements

Definition 3.19. A monadic ψ-pivotal element of a braided Hopf algebra H is a monadic

grouplike element p ∈ MGrp(H) such that Lp = RpS2
ψ. The set of monadic ψ-pivotal elements

of H is denoted by MPivψ(H).

As a consequence of Lemma 3.13 and Lemma 3.18, we obtain:

Theorem 3.20 ([BV07, Proposition 7.6]). Let V be a braided pivotal category with pivotal

structure ψ, and let H be a Hopf algebra in V. We have mutually inverse bijections

ψ(−)♯ : MPivψ(H) ⇆ Piv(VH) : (ψ−1(−))♭

between the set MPivψ(H) of monadic ψ-pivotal elements and the set Piv(VH) of pivotal

structures of VH .

Proof. A pivotal structure ϕ on VH is a natural collection of morphisms M →M∨∨ on the

underlying object M of each H-module (M, r) that is (1) monoidal, and (2) H-linear. By

composing with ψ−1, we see that ϕ satisfies (1) if and only if (ψ−1ϕ)♭ is monadic grouplike

by Lemma 3.13. Similarly, ϕ satisfies (2) if and only if Lp = RpS
2
ψ by Lemma 3.18.

Remark 3.21. If 1V ⊗ uH is a monadic pivotal element of H, then H is said to be involutory

[BV07, Section 7.5]. In this case, the corresponding pivotal structure on VH is a lift of ψ, i.e.,

the forgetful functor UH is a pivotal functor.

3.3 Monadic R-matrices

Definition 3.22. Let V be a braided monoidal category, and let H be a bialgebra in V . A
monadic R-matrix R for H is a natural transformation

{RX,Y : X ⊗ Y → Y ⊗H ⊗X ⊗H}X,Y ∈V

satisfying the axioms in Figure 3.6. A monadic quasitriangular bialgebra (resp. Hopf algebra)

is a braided bialgebra (resp. Hopf algebra) H in V equipped with a monadic R-matrix.

Theorem 3.23 ([BV07, Theorem 8.5]). Let V be a braided monoidal category, and let H

be a bialgebra in V. Given a monadic R-matrix R for H, we obtain a lax braiding σR on

VH by σR(M,r),(N,s) = (s ⊗ r)RM,N . Conversely, given a lax braiding σ on VH , we obtain a

monadic R-matrix Rσ by Rσ
X,Y = σXH,Y H(id⊗ uH ⊗ id⊗ uH). The correspondences R 7→ σR

and σ 7→ Rσ are mutually inverse operations.

35



Figure 3.6: The axioms of a monadic R-matrix R.

Remark 3.24. When V is rigid and H is a Hopf algebra, any R-matrix R gives rise to an

(invertible lax) braiding σ. As a consequence, R is convolution invertible, and its convolution

inverse R corresponds to the reverse braiding σ. Using Figure 2.3, we can express R in terms

of R as in Figure 3.7 below, see also [BV07, Corollary 8.7]. Furthermore, in this case the

axiom represented by the second diagram in Figure 3.6, which corresponds to the axiom

σX,1 = id1 = σ1,X for all X, is no longer needed, see Remark 2.5.

Figure 3.7: The monadic reverse R-matrix R corresponding to σ.

3.4 Monadic ribbon elements

Definition 3.25. Let (H,R) be a monadic quasitriangular bialgebra in a braided monoidal

category V. A monadic balanced element (or monadic twist) of H is a monadic element

t ∈ Nat(1V , 1V ⊗H) satisfying the following properties:

(MT1) t is central (in the sense of Definition 3.9).
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(MT2) ϵHt1 = id1.

(MT3) t satisfies the diagram in Figure 3.8.

Furthermore, when V is rigid and H is a Hopf algebra, we say that t is ribbon if t further

satisfies

(MT4) S(t) = t.

The set of monadic balanced (resp. ribbon) elements of H is denoted by MBal(H) (resp.

MRbn(H)).

Figure 3.8: The axiom (MT3) of a monadic balanced element.

Theorem 3.26 ([BV07, Theorem 8.13]). Let V be a braided monoidal category, and let (H,R)

be a quasitriangular bialgebra in V. We have mutually inverse bijections

MBal(H) ∼= Bal(VH), t 7→ t♯, θ♭ ←[ θ,

between the set MBal(H) of monadic balanced elements of H and the set Bal(VH) of balanced
structures of VH , which further restricts to a bijection MRbn(H) ∼= Rbn(VH) when V is rigid

and H is a Hopf algebra in V.

Remark 3.27. When V is rigid and H is a Hopf algebra in V , any monadic balanced element

is convolution invertible and the axiom (MT2) can be omitted, see Remark 2.11.

3.5 The monadic Drinfeld element

Let V be a braided pivotal category with pivotal structure ψ, and let H be a monadic

quasitriangular Hopf algebra in V with monadic R-matrix R. We present the theory of the

monadic Drinfeld element as first introduced in [BV07], however, we will later present some

modification to the theory in Section 3.6.
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By Proposition 3.23, the category VH is a braided rigid monoidal category with braiding

σ = σR. Hence we can consider the right Drinfeld morphism ν in this category, see Sec-

tion 2.1.8. To utilize the bijection Nat(1V , 1V ⊗H) ∼= End(UH), we compose the Drinfeld

morphism ν with ψ−1 to obtain an endomorphism ψ−1ν ∈ End(UH).

Definition 3.28. Define the monadic ψ-Drinfeld element uψ as in Figure 3.9.

Figure 3.9: Monadic ψ-Drinfeld element uψ

Lemma 3.29 ([BV07, Theorem 8.10]). The monadic ψ-Drinfeld element uψ corresponds to

ψ−1ν under the bijection Nat(1V , 1V ⊗H) ∼= End(UH) in (3.4).

Theorem 3.30 ([BV07, Theorem 8.14]). Let (H,R) be a monadic quasitriangular Hopf

algebra on a braided pivotal category V. The monadic ψ-Drinfeld element uψ induces a

bijection

uψ ∗ (−) : MBal(H) ∼= MPivψ(H) (3.31)

between the set of monadic balanced elements of H and the set of monadic ψ-pivotal elements

of H.

Proof. By design, the diagram

Bal(VH) Piv(VH)

MBal(H) MPivψ(H),

ν◦(−)

∼=

(−)♯ ∼=

uψ∗(−)

(ψ−1(−))♭∼=

commutes, and three out of four arrows are bijections by Lemma 2.9, Theorem 3.20, and

Theorem 3.26.

Definition 3.32. Define monadic elements qψ := uψ ∗ S(uψ) and c := uψ ∗ S(uψ), where uψ
is the convolution inverse of uψ in Nat(1V , 1V ⊗H).
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Remark 3.33. The element c does not depend on ψ, in fact ψ no longer appears in c since

it is cancelled by ψ−1.

Theorem 3.34 ([BV07, Theorem 8.14, Corollary 8.15]). Under the bijection (3.31), a

monadic balanced element t is ribbon if and only if one of the following equivalent conditions

hold:

(i) The corresponding ψ-pivotal element p satisfies p2 = qψ.

(ii) t−2 = c.

Proof. Under the bijection Nat(1V , 1V ⊗H) ∼= End(UH), qψ and c correspond to ψ−2κ and

γ respectively, see Definition 2.12. The result now follows from Lemma 2.13.

3.6 Relaxing the pivotal assumption

Having described the theory of monadic elements as presented in [BV07], we introduce some

small modifications to the theory. A general Hopf monad can be defined on any rigid monoidal

category, not necessarily one equipped with a braiding. Therefore, the definitions of monadic

pivotal elements and the monadic Drinfeld element require a pivotal structure ψ on V, in
order to utilize the bijection (3.4). However, when the Hopf monad comes from a Hopf

algebra, V is necessarily braided, and we have a canonical isomorphism X → X∨∨, namely

the Drinfeld isomorphism. By utilizing the Drinfeld isomorphism, we can remove the pivotal

assumption on V. Unlike a pivotal structure, the Drinfeld isomorphism is not monoidal,

which requires us to slightly modify certain definitions and results. However, relaxing the

pivotal assumption strictly increases the scope of our results, since it is known that there are

braided tensor categories that are not pivotal, see for example [Hal21].

Remark 3.35. We use µ to denote the Drinfeld morphism in V and reserve ν for the Drinfeld

morphism in VH coming from an R-matrix for H.

3.6.1 Monadic twisted grouplike elements

Definition 3.36. Let H be a bialgebra in a braided monoidal category (V , σ). A monadic

element g ∈ Nat(1V , 1V⊗H) is twisted grouplike if g satisfies the two diagrams in Figure 3.10.

Lemma 3.37. Under the isomorphism (−)♯ : Nat(1V , 1V ⊗ H) ∼= End(UH), a monadic

element g is twisted grouplike if and only if the corresponding natural endomorphism g♯

satisfies g♯M⊗N = (g♯M ⊗ g
♯
N)σN,MσM,N for all H-modules M and N , and g♯1 = id1.
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Figure 3.10: Axioms for a monadic twisted grouplike element g.

Proof. Similar to the proof of Lemma 3.13, the only difference being the introduction of the

double braiding.

3.6.2 The square of the antipode

Definition 3.38. The square of the antipode S2 ∈ End(1V ⊗H) is defined as in Figure 3.11.

Figure 3.11: The square of the antipode, S2

Lemma 3.39. For all g ∈ Nat(1V , 1V ⊗H), the following are equivalent:

(i) Lg = RgS2,

(ii) (µg♯)M : M → M∨∨ is H-linear for all M ∈ VH , i.e., µg♯ lifts to an element of

Nat(1VH , (−)∨∨VH ).

Proof. Similar to Lemma 3.18. Note that the double braiding comes from the fact that

µX ⊗ µH = µXHσH,XσX,H , see (2.8), and the fact that the H-action on M∨∨ can be described

in terms of the double dual of the H-action on M , the Drinfeld morphism, and the antipode

of H squared.

3.6.3 Monadic pivotal elements

Definition 3.40. A monadic pivotal element of a braided Hopf algebra H is a monadic

twisted grouplike element p such that Lp = RpS2. The set of monadic pivotal elements of H

is denoted by MPiv(H).
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As a consequence of Lemma 3.37 and Lemma 3.39, we obtain:

Theorem 3.41. Let V be a braided rigid monoidal category, and let H be a Hopf algebra in

V. We have mutually inverse bijections

µ(−)♯ : MPiv(H) ⇆ Piv(VH) : (µ̄(−))♭

between the set MPiv(H) of monadic pivotal elements and the set Piv(VH) of pivotal structures
of VH .

Proof. Same as the proof of Theorem 3.20, however, since we compose a monoidal natural

isomorphism with µ̄, a double braiding is introduced, and therefore the corresponding monadic

element is no longer grouplike but twisted grouplike.

3.6.4 The monadic Drinfeld element

Let (H,R) be a monadic quasitriangular Hopf algebra in a braided rigid monoidal category

V , and let µ and ν denote the Drinfeld morphism in V and VH , respectively. We compose ν

with µ̄ to obtain an endomorphism µ̄ν ∈ End(UH), then use the isomorphism (3.4) to obtain

the following definition.

Definition 3.42. Define the monadic Drinfeld element u as in Figure 3.12.

Figure 3.12: The monadic Drinfeld element u

Since the Drinfeld morphism is composed with µ̄ instead of ψ−1, the formula for u is

essentially the same as that of uψ but with µ̄XH replacing ψ−1
XH , and therefore the proof of

the following lemma is completely analogous to that of Lemma 3.29.

Lemma 3.43. The monadic Drinfeld element u corresponds to µ̄ ν under the bijection

Nat(1V , 1V ⊗H) ∼= End(UH) in (3.4).
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Theorem 3.44. Let (H,R) be a monadic quasitriangular Hopf algebra on a braided rigid

monoidal category V. The monadic Drinfeld element u induces a bijection

u ∗ (−) : MBal(H) ∼= MPiv(H) (3.45)

between the set of monadic balanced elements of H and the set of monadic pivotal elements

of H.

Proof. By design, the diagram

Bal(VH) Piv(VH)

MBal(H) MPiv(H),

ν◦(−)

∼=

(−)♯ ∼=

u∗(−)

(µ̄(−))♭∼=

commutes, and three out of four arrows are bijections by Lemma 2.9, Theorem 3.26, and

Theorem 3.41.

Definition 3.46. Let c0 denote the automorphism µ!µ, and let c̄0 denote its inverse, i.e.,

c̄0 = µ̄!µ̄. Also define two monadic elements qµ = (u ∗ S(ū)) c̄0 and cµ = (u ∗ S(u)) c0.

Theorem 3.47. Under the bijection (3.45), a monadic balanced element t is ribbon if and

only if one of the following equivalent conditions hold:

(i) The corresponding pivotal element p satisfies p2 = qµ.

(ii) t−2 = cµ.

Proof. Under the bijection (3.45), p2 corresponds to µ̄2ϕ2, while u ∗ S(ū) corresponds to

µ̄µ!κ. When t is ribbon, we have ϕ2 = κ by Lemma 2.13, hence the difference between p2 and

u ∗ S(ū) is given by c̄0. Similarly, the difference between t−2 and u ∗ S(u) is given by c0.
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Chapter 4

Coend elements of braided Hopf

algebras

In this section, we fix a braided rigid monoidal category V , which we further assume to admit

a coend C, see Section 2.3. We also fix a bialgebra H in V. Our goal is to study certain

(pivotal, ribbon, etc.) structures on the category VH of right H-modules in terms of certain

morphisms C → H.

4.1 The monoid Hom(C,H) of coend elements of H

In this section, it suffices for H to be an algebra. Recall the factorization property of C, in

particular the bijection in (2.22),

Σ = Σ
(1)
H : Hom(C,H) ∼= Nat(1V , 1V ⊗H)

a 7→ Σ(a)X := (idX ⊗ a) δX
(4.1)

where δX : X → X ⊗ C is the universal coaction. The map Σ is displayed in Fig 4.1(a).

(a) (b)

Figure 4.1: The map Σ and the convolution product of Hom(C,H).
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Definition 4.2. The set Hom(C,H) is called the set of coend elements (or simply C-elements)

of H.

The bijection Σ is therefore a correspondence between the set of coend elements and the

set of monadic elements described in Section 3.1.

Since the set Nat(1V , 1V ⊗H) of monadic elements is in fact a monoid (Lemma 3.3), we

can use Σ to transport the opposite monoid structure of Nat(1V , 1V ⊗ H) to obtain two

formulas for the product ∗ on Hom(C,H) as shown in Figure 4.1(b), with unit ϵCuH . In Hopf

algebra literature, the first formula is the well-known convolution product of Hom(C,H). As

a consequence of our setup, we obtain the following lemma.

Lemma 4.3. The map Σ in (4.1) is anti-multiplicative and unital. Hence, Hom(C,H) with

the product defined in Figure 4.1(b) with unit ϵCuH is a monoid, and Σ is an antiisomorphism

of monoids.

Remark 4.4. From now on, we will simply use concatenation for the convolution product

on Hom(C,H).

4.1.1 Central elements

Definition 4.5. A C-element a : C → H is central if a satisfies the diagram in Figure 4.2.

Figure 4.2: Axiom of a central element in Hom(C,H).

Lemma 4.6. A C-element a : C → H is central if and only if the corresponding monadic

element a = Σ(a) is central, see Definition 3.9.

Proof. Let a : C → H be a C-element, and let a = Σ(a) be the corresponding monadic

element. Recall that a is central if and only if La = Ra, where La and Ra are defined as in

Figure 3.2. We can bend the incoming H-strand on both sides of the equation LΣ(a) = RΣ(a)

downwards using the coevaluation morphism coevlH , in order to apply Σ−1. Finally, by using

evlH , we obtain Figure 4.2.
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4.1.2 Coend grouplike elements

Recall from Definition 3.12 the notion of a monadic grouplike element. The corresponding

coend version of these elements is as follows.

Definition 4.7. A C-element g : C → H is grouplike if it satisfies the axioms presented in

Figure 4.3. Note that the first diagram uses the universal coaction of C on itself, for which

there is a formula as shown in Remark 2.26.

Figure 4.3: Axioms of a grouplike element in Hom(C,H).

Lemma 4.8. A C-element g : C → H is grouplike if and only if the corresponding monadic

element g = Σ(g) is monadic grouplike.

Proof. Recall that the monadic element g = Σ(g) is grouplike if it satisfies the diagrams in

Figure 3.3. Clearly, the second diagram in Figure 4.3 corresponds to the second diagram in

Figure 3.3. It remains to show that the first diagrams in the two figures correspond to each

other. The proof for this equivalence is given in Figure 4.4. Note that the second equality

comes from Lemma 2.27.

Figure 4.4: Proof of the first defining property of coend grouplike elements.

4.1.3 Coend twisted grouplike elements

Definition 4.9. A C-element g : C → H is twisted grouplike if it satisfies the axioms

presented in Figure 4.5.
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Figure 4.5: Axioms of a twisted grouplike element in Hom(C,H).

Since the definition of a monadic twisited grouplike element (Definition 3.36) only differs

from that of a monadic grouplike element by a double braiding, the proof of the following

result is a straightforward extension of the proof of Lemma 4.8.

Lemma 4.10. A C-element g : C → H is twisted grouplike if and only if the corresponding

monadic element g = Σ(g) is twisted grouplike.

Remark 4.11. If H is a Hopf algebra and not merely a bialgebra, then the second axiom

ϵHguC = id1 in Figure 4.3 and Figure 4.5 is not needed, see Remark 3.14.

4.1.4 The antipode S on Hom(C,H)

In this section H is always a Hopf algebra. Recall from Definition 3.15 the antipode map S

on Nat(1V , 1V ⊗H). By using the bijection Σ, we transport this map to Hom(C,H) with

the following definition.

Definition 4.12. Define an endomorphism S on Hom(C,H) as in Figure 4.6.

Figure 4.6: The definition of the endomorphism S on Hom(C,H).

Lemma 4.13. For all a ∈ Hom(C,H), we have Σ(S(a)) = S(Σ(a)), where S(a) is defined

as in Figure 4.6, and S(a) is defined as in Figure 3.4 for a = Σ(a). As a consequence, S is

an antiautomorphism on Hom(C,H).
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Proof. See Figure 4.7. The first equality follows from the definition of S(Σ(a)). The second

equality follows from Lemma 2.27. Finally, we use the naturality of the braiding and the

properties of C as in presented in Figure 2.10 of Corollary 2.23. The second statement is a

clear consequence of the first, since S is an antiautomorphism on Nat(1V , 1V ⊗H) and Σ is

anti-multiplicative.

Figure 4.7: Proof that Σ ◦ S(a) = S ◦ Σ(a).

4.2 Coend pivotal elements

In this section, H is a Hopf algebra in a braided rigid monoidal category V. Recall from

Definition 3.40 the notion of a monadic pivotal element.

Definition 4.14. A C-pivotal element of H is a C-twisted grouplike element p (Definition 4.9)

that satisfies the axiom in Figure 4.8. The set of C-pivotal elements of H is denoted by

CPiv(H).

Figure 4.8: The main axiom of a pivotal element in Hom(C,H).

Lemma 4.15. The bijection Σ in (4.1) between coend and monadic elements of H restricts

to a bijection MPiv(H) ∼= CPiv(H) between the respective pivotal elements.
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Proof. We have already seen in Lemma 4.10 that a C-twisted grouplike element p corresponds

to a monadic twisted grouplike element p. It remains to show that the condition Lp = RpS2

translates to Figure 4.8 for p = Σ(p), which is straightforward.

Theorem 4.16. There is a bijection CPiv(H) ∼= Piv(VH) between C-pivotal elements of H

and pivotal structures of VH .

Proof. Compose the two bijections CPiv(H)
Σ−→ MPiv(H) in Lemma 4.15 and MPiv(H)

µ(−)♯−−−→
Piv(VH) in Proposition 3.41.

4.3 Coend R-matrices

We have seen that the results on coend R-matrices were already obtained by Bruguières and

Virelizier in [BV12], see Section 2.5. In particular, Theorem 2.38 is a consequence of the

correspondence between monadic and coend R-matrices [BV12, Section 8.6].

Remark 4.17. By Remark 3.24, when H is a Hopf algebra, any monadic R-matrix R for H

is convolution invertible, and the axiom corresponding to the last diagram in Figure 2.14 is

automatically satisfied. Furthermore, the extended factorization property of C implies that

there exists a coend R-matrix R corresponding to the convolution inverse R of R. Using the

first formula for R in Figure 3.7, we can express R in terms of R as in Figure 4.9 below.

Figure 4.9: The reverse coend R-matrix R in terms of R.

4.4 Coend ribbon elements

Definition 4.18. Let (H,R) be a quasitriangular bialgebra in a braided rigid monoidal

category V admitting a coend C. A C-balanced element (or C-twist) is a C-element t : C → H

satisfying the following properties:

48



(CT1) t is central (in the sense of Definition 4.5).

(CT2) ϵHtuC = id1.

(CT3) t satisfies the axiom in Figure 4.10.

Furthermore, when H is a Hopf algebra, t is ribbon if it also satisfies

(CT4) S(t) = t.

The set of coend pivotal and ribbon elements are denoted by CBal(H) and CRbn(H), respec-

tively.

Figure 4.10: The axiom (CT3) of a coend ribbon element t : C → H.

Lemma 4.19. Under the bijection Σ in (4.1), the sets MBal(H) and MRbn(H) correspond

to the sets CBal(H) and CRbn(H), respectively.

Proof. Let t = Σ(t) be the corresponding monadic element. The equivalences of the pairs

(CT1) and (MT1), (CT2) and (MT2), and (CT4) and (MT4) of axioms for t and t are clear.

It remains to show that (CT3) is equivalent to (MT3). The calculations are displayed in

Figure 4.11. In more detail, the first equality is obtained by applying the reverse braiding

to the middle two strands in (MT3). For the second equality, the monadic elements R

and t are expressed in terms of their coend counterparts R and t. In the third equality,

we use the naturality of the braiding to rearrange the morphisms. The last equality uses

Lemma 2.27.

Remark 4.20. When H is a Hopf algebra, any coend balanced element t is convolution

invertible, and the axiom (CT2) is automatically satisfied, see Remark 3.27.
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Figure 4.11: Graphical proof of the axiom (CT3).

Theorem 4.21. Let V be a braided rigid monoidal category admitting a coend C, and let

(H,R) be a quasitriangular bialgebra in V.

(a) Balanced structures θ on VH correspond bijectively to balanced C-elements t : C → H.

(b) When H is a Hopf algebra, a balanced structure θ is ribbon if and only if the corresponding

C-balanced element t is ribbon.

Proof. The result follows from composing the bijections Σ and (−)♯ in Theorem 3.26 and

Lemma 4.19.

4.5 The coend Drinfeld element

In this section, we assume that (H,R) is a quasitriangular Hopf algebra. Recall that in

this case, we denote by µ the Drinfeld morphism in V , and the monadic Drinfeld element u

corresponding to the Drinfeld morphism in VH is defined as in Definition 3.42.

Definition 4.22. Let u be the coend element corresponding to the monadic Drinfeld element

u under the bijection Σ. We call u the coend Drinfeld element of H.

Remark 4.23. The Drinfeld element u can be expressed using the R-matrix R as in

Figure 4.12.

Theorem 4.24. Let (H,R) be a quasitriangular Hopf algebra in a braided rigid monoidal

category V admitting a coend C. Via the coend Drinfeld element u, there is a bijection

CBal(H) ∼= CPiv(H), given by t 7→ tu.
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Figure 4.12: The C-Drinfeld element u.

Proof. By design, the diagram

MBal(H) MPiv(H)

CBal(H) CPiv(H)

u∗(−)

∼=

Σ ∼= Σ∼=

(−)·u

commutes, and three out of four arrows are bijections by Proposition 3.44 and Lemmas 4.15,

4.19.

Recall the definitions of c0, qµ and cµ in Definition 3.46. We translate these monadic

elements to their respective coend counterparts as follows.

Definition 4.25. Define qµ = (uS(ū) ⊗ c̄0)∆C and cµ = (uS(u) ⊗ c0)∆C , where ū is the

convolution inverse of u, c0 : C → 1 is the coend element of 1 corresponding to c0 under the

bijection Σ
(1)
1 in (2.22), and c0 is the convolution inverse of c0, see Definition 3.46.

Theorem 4.26. Under the correspondence t 7→ p = ut between balanced and pivotal elements,

t is ribbon if and only if p2 = qµ, or t−2 = cµ.

Proof. Clearly, qµ and cµ are defined to correspond to the monadic elements qµ and cµ in

Definition 3.46. Consider the elements t ∈ CBal(H), p = ut, p = Σ(p), and t = Σ(t). Since

the monadic elements p and t satisfy p2 = qµ and t−2 = cµ by Theorem 3.47, and Σ is

anti-multiplicative, their coend counterparts p and t also satisfy the analogous properties.

Remark 4.27. If V has a pivotal structure ψ, then one can develop the theory of coend

ψ-pivotal elements, the coend ψ-Drinfeld element uψ, and the elements qψ = uψS(uψ) and

cψ = uψS(uψ) in a completely analogous way, from the theory of the corresponding monadic

elements in Sections 3.2 and 3.5.
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Chapter 5

Applications and further directions

5.1 Special cases of H

Let H be a Hopf algebra in a braided rigid monoidal category V admitting a coend C. Two

special cases of the Hopf algebra H are worth mentioning: H = 1, or H = C. When H = 1,

the C-elements are morphisms C → 1 and correspond to endomorphisms of the identity

functor on VH = V. Note that the R-matrix corresponding to the default braiding σ on V
is simply ϵC ⊗ ϵC ⊗ uH ⊗ uH . In this case, the set of monadic and coend pivotal elements

coincide with the set of monadic and coend balanced elements,

MBal(V) = MPiv(V), CBal(V) = CPiv(V),

while the monadic and coend Drinfeld morphisms are the units for the convolution product

in Nat(1V , 1V ⊗H) and Hom(C,H) respectively. By making these simplifications, we obtain

another description for the set of balanced (pivotal) and ribbon structures on any braided

rigid monoidal category admitting a coend, see Section 4.2 and Section 4.4.

WhenH = C, there is a canonical R-matrix C⊗C → C⊗C which is given by uC⊗ϵC⊗idC ,
such that we have a braided isomorphism VC ∼= Z(V) [BV13, Example 2.9]. Therefore, we

can study structures on Z(V) in terms of endomorphisms of C. We remark that when V is

not necessarily braided, there is still a description of Z(V) as a category of modules over a

quasitriangular Hopf monad, see [TV17, Theorem 9.3].
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5.2 Linear braided Hopf algebras and the Radford iso-

morphism

In this thesis, we have not assumed that the rigid monoidal category V is abelian or k-linear,

which is often the case in applications. With these assumptions added, V is a braided finite

tensor category, and we may call a Hopf algebra H in such a category a linear braided Hopf

algebra. In this case, the category VH is a finite tensor category. The theory of finite tensor

categories is much richer than the theory of monoidal categories, see [Eti+16]. For instance,

for any finite tensor category C, there is an object D in C, called the distinguished invertible

object, together with an isomorphism

ρX : D ⊗X ⊗D−1 ∼=−→ ∨∨∨∨X,

called the Radford isomorphism. When V = Vecfd, i.e. when H is a finite dimensional Hopf

algebra over k, D and ρ are given by the distinguished grouplike elements αH and gH of H∗

and H respectively, and the H-linearity of ρ translates to the Radford’s S4 formula. For a

general braided finite tensor category V and a Hopf algebra H in V , Shimizu has obtained a

description of the distinguished invertible object D of VH in [Shi17b, Theorem 5.2] in terms

of the distinguished modular function αH : H → 1.

Question 5.1. What is the Radford isomorphism ρ for the finite tensor category VH?

While it can be shown that the isomorphism ρ in VH must be implemented by a grouplike

coend element g : C → H, it is not clear how it is related to the distinguished multiplicative

functional g : 1→ H, or the generalized Radford’s S4 formula as described in [Bes+00].

We remark that an answer to Question 5.1 is a step toward describing a nonsemisimple

spherical structure on VH as defined in [DSS20], which relies on the Radford isomorphism.

By [Shi21, Theorem 5.11], a nonsemisimple spherical structure on a finite tensor category C
gives rise to a ribbon structure on Z(C), which turns Z(C) into a modular tensor category.

This is a generalization of the classical result that the Drinfeld center of a spherical fusion

category is a modular fusion category. Therefore, a non-semisimple structure on VH would

produce a modular tensor category, namely Z(VH).
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5.3 Factorizable linear braided Hopf algebras and rib-

bon structures of the Drinfeld center

Let us consider a quasitriangular linear braided Hopf algebra, i.e. a quastriangular Hopf

algebra (H,R) in a braided finite tensor category V. By [Shi19], the nondegeneracy of VH
is equivalent to the nondegeneracy of the canonical Hopf pairing of the coend of VH . We

have seen that the coend of VH is ∨H ⊗ C from Example 2.30. Its structure morphisms are

displayed in [BV12, Section 8.5].

Definition 5.2. Let (H,R) be a quasitriangular Hopf algebra in a braided finite tensor

category V . We say that (H,R) is factorizable if the canonical Hopf pairing ω for ∨H ⊗ C is

nondegenerate.

Remark 5.3. We can now conclude that if H is a Hopf algebra in a braided finite tensor

category V , then VH is a (nonsemisimple) modular tensor category precisely when there is an

R-matrix R and a ribbon element t for H such that (H,R) is factorizable.

A construction that frequently gives rise to a modular tensor category is the Drinfeld center

Z(C) of a finite tensor category C. By [Shi19, Theorem 1.1] and [Eti+16, Proposition 8.6.3],

Z(C) is a nondegenerate braided finite tensor category, and hence Z(C) is modular if and

only if Z(C) has a ribbon structure. As a result, the set of ribbon structures of Z(C) is a
subject of great interest. For instance, when C is nonsemisimple spherical, Z(C) is ribbon as

mentioned above.

Note that when C =Mfd
H for a finite dimensional Hopf algebra H over k, there is a braided

isomorphism Z(C) ∼=Mfd
D(H), where D(H) is the Drinfeld double of H. Thus, the modularity

of Z(Mfd
H) now translates to the set of ribbon elements of D(H). In 1993, Kauffman and

Radford obtains the following description for the set of the ribbon elements of the Drinfeld

double D(H):

Theorem 5.4 ([KR93, Theorem 3]). Let H be a finite-dimensional Hopf algebra over k,

and let D(H) be the Drinfeld double of H. The set of ribbon elements of D(H) corresponds

bijectively to the set√
(αH , gH) = {(β, h) ∈ G(H∗)×G(H) | β2 = αH , h

2 = gH ,

S2(x) = h(β ⇀ x ↼ β−1)h−1 for all x ∈ H}.

where gH and αH are the distinguished grouplike elements of H and H∗ respectively.
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In other words, the ribbon structures of Z(Mfd
H) can be described in terms of square

roots of the distinguished grouplike elements of H and H∗, satisfying the square root of the

Radford’s S4 formula. The main result of [Shi21], which describes the set of ribbon structures

of Z(C) in terms of square roots of the distinguished invertible object of C that satisfy the

square root of the Radford isomorphism, can be seen as a tensor categorical generalization of

this result.

In [BV12], Bruguières and Virelizier constructed the Drinfeld double D(H) of a Hopf

algebra H in a braided rigid monoidal category V, such that D(H) = H ⊗ ∨H ⊗ C is a

quasitriangular Hopf algebra in V and there is an isomorphism Z(VH) ∼= VD(H) of braided

monoidal categories. For instance, when H = 1, we have that D(H) is the quasitriangular

Hopf algebra C described in Section 5.1 above. We now have two more descriptions for the set

of ribbon structures of Z(C) when C = VH : as ribbon C-elements of D(H) (Theorem 4.21),

and as pivotal C-elements of D(H) that are square roots of qµ (Theorem 4.26). It would be

interesting to see whether a third description exists in a form that directly generalizes the

Kauffman-Radford theorem.
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