Symmetry	Quantum Symmetry	Results	Next steps	

Quantum Symmetry ... and more

Chelsea Walton

University of Illinois Urbana-Champaign

AWM Symposium April 6, 2019

Symmetry ●0000	Quantum Symmetry 00000000	Results 00000000000	Next steps 0000	
Symmetry				

Figure: Mosque in Al Ain, UAE; and Skyscraper in Guangzhou, China

Definition

Given an object X, a symmetry of X is an invertible, property-preserving transformation from X to itself.

The collection of symmetries of X (say of a special type \mathcal{T}) is a group $Sym(X):=Sym^{\mathcal{T}}(X)$ under composition.

Symmetry	Quantum Symmetry	Results	Next steps	
0●000	00000000	00000000000	0000	
Symmetry				

Figure: Mosque in Al Ain, UAE; and Skyscraper in Guangzhou, China

Example Sym(Mosque) = \mathbb{Z}_2 Sym(Skyscraper) = $D_6 \cong S_3$ Sym^{rotations}(Skyscraper) = \mathbb{Z}_3

The collection of symmetries of X (say of a special type \mathcal{T}) is a group Sym(X):=Sym $^{\mathcal{T}}(X)$ under composition.

Symmetry: more examples

Definition

Given an object X, a symmetry of X is an invertible, property-preserving transformation from X to itself.

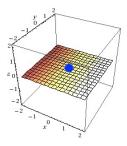
The collection of symmetries of X (say of a special type \mathcal{T}) is a group Sym(X):=Sym $^{\mathcal{T}}(X)$ under composition.

Example (Symmetries of the complex plane) Sym^{affine}(\mathbb{C}^2) = $\mathbb{C}^2 \rtimes GL_2(\mathbb{C})$ [translations, rotations, dilations] Sym^{linear}(\mathbb{C}^2) = $GL_2(\mathbb{C})$ [affine w/ origin fixed: rotations and dilations]

$$\operatorname{Sym}^{\operatorname{rotations}}(\mathbb{C}^2) = \mathbb{T} := \{ z \in \mathbb{C} : |z| = 1 \}$$
 [rotations only]

Symmetry	Quantum Symmetry	Results	Next steps	
00000	00000000	00000000000	0000	

Symmetries of \mathbb{C} -vector spaces



Example (Symmetries of \mathbb{C}^2 as a \mathbb{C} -vector space)

 $\mathsf{Sym}^{\mathsf{linear}}(\mathbb{C}^2) = \mathsf{GL}_2(\mathbb{C})$ [affine w/ origin fixed: rotations and dilations]

Symmetries of C-vector spaces & group actions

For a \mathbb{C} -vector space V, we get that Sym(V) = GL(V), the group of invertible \mathbb{C} -linear transformations $V \to V$.

If $\dim_{\mathbb{C}}(V) = n < \infty$, then $V \cong \mathbb{C}^n$ and $Sym(V) = GL_n(\mathbb{C})$.

Definition

A group G acts on a C-vs V, $G \curvearrowright V$, if \exists a group homom:

$$\phi: G \to \mathsf{GL}(V), \ g \mapsto [\phi_g: V \to V].$$

Equiv., G = C if $\exists map \ G \times V \to V$, $(g, v) \mapsto g \bullet v$, so that

$$(g_2g_1) \bullet v = g_2 \bullet (g_1 \bullet v), \quad e_G \bullet v = v, \qquad g_1, g_2 \in G, \ v \in V.$$

Symmetries of vector spaces are encoded by G-rep'ns $\equiv G$ -modules

000000 00000000000000000000000000000000	>	0000000000	0000	00

Symmetries of \mathbb{C} -algebras

 \mathbb{C} -algebra = \mathbb{C} -vector space + unital ring

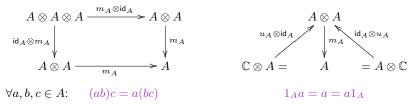
Definition

A \mathbb{C} -algebra is a triple (A, m_A, u_A) , where

- ∗ A is a C-vector space,
- * $m_A : A \otimes A \to A$, $a \otimes b \mapsto ab$, is a \mathbb{C} -linear map (multip'n),

* $u_A : \mathbb{C} \to A$, $1_{\mathbb{C}} \mapsto 1_A$, is a \mathbb{C} -linear map (unit),

where m_A is assoc., and u_A is comp. w/ m_A so that diag. commutes:



Quantum Symmetry ... and more

University of Illinois Urbana-Champaign

Symmetries of $\mathbb{C}\text{-algebras}$

Example (Symmetries of polynomial algebras) Take $V = \mathbb{C}x \oplus \mathbb{C}y$.

Have that $A = S(V) = \mathbb{C}[x, y]$ is a \mathbb{C} -algebra...

...which is the coordinate algebra $\mathcal{O}(\mathbb{C}^2)$ of the complex plane.

Recall: Sym^{linear} (\mathbb{C}^2) = $GL_2(\mathbb{C})$.

In fact:

$$\mathsf{Sym}^{\mathsf{linear}}(\mathbb{C}^2) = \mathsf{GL}_2(\mathbb{C}) \cong \mathsf{Aut}^{\mathsf{graded}}(\mathbb{C}[x,y])$$

graded = degree-preserving

Next steps

Symmetries of $\mathbb{C}\text{-algebras}$

Example (Symmetries of quantum poly'l algs)

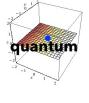
One coordinate alg of a quantum cpx plane $\mathcal{O}(\mathbb{C}^2_q)$:

$$A_q = \mathbb{C}_q[x, y] = \mathbb{C}\langle x, y \rangle / (xy - qyx), \text{ for } q \in \mathbb{C}^{\times}$$

 \mathbb{C}^2_q cannot be visualized, nor can Sym^{linear}(\mathbb{C}^2_q) Work algebraically to get that when $q \neq \pm 1$:

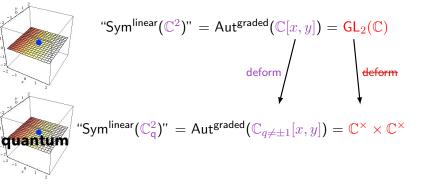
$$"\mathsf{Sym}^{\mathsf{linear}}(\mathbb{C}^2_q)" = \mathsf{Aut}^{\mathsf{graded}}(\mathbb{C}_q[x,y]) = \mathbb{C}^{\times} \times \mathbb{C}^{\times}$$

graded = degree-preserving



Symmetry	Quantum Symmetry	Results	Next steps	
	00000000			

Symmetries of \mathbb{C} -algebras



Need a better framework of symmetry, especially for noncommutative (quantum) algebras

Symmetry	Quantum Symmetry	Results	Next steps	
	00000000			

Symmetries of \mathbb{C} -algebras: A New Framework

Recall that a \mathbb{C} -algebra is a triple (A, m_A, u_A) , where

- * A is a \mathbb{C} -vector space,
- * $m_A : A \otimes A \to A$ is a \mathbb{C} -linear map (multiplication),
- * $u_A : \mathbb{C} \to A$ is a \mathbb{C} -linear map (unit),

Need category \mathcal{C} (collection of objects & maps btw objects) where * $A, A \otimes A, \mathbb{C}$ are objects of $\mathcal{C} \rightsquigarrow \mathcal{C} = (\mathcal{C}, \otimes, \mathbf{1})$ is "monoidal", * m_A, u_A are maps in \mathcal{C} .

Been using $\operatorname{Rep}(G)$: $G \curvearrowright (A \otimes A)$ by $g \bullet (a \otimes b) = (g \bullet a) \otimes (g \bullet b)$.

Upgrade to $\operatorname{Rep}(H)$ for H a "Hopf alg." (structure that deforms).

Symmetry 00000	Quantum Symmetry	Results 00000000000	Next steps 0000	
Hopf alg	ebras			

A Hopf algebra $H = (H, m_H, u_H, \Delta, \epsilon, S)$ is an assoc. algebra (H, m_H, u_H) , a coassociative coalgebra (H, Δ, ε) , with antipode map S, satisfying compatibility conditions.

Take $\tau : H \otimes H \to H \otimes H$, with $h \otimes \ell \mapsto \ell \otimes h$. *H* is cocommutative if $\tau \circ \Delta = \Delta$.

Classical Examples:

- * group algebra $\mathbb{C}G$: we have for $g \in G$ $m \checkmark \quad u \checkmark \quad \Delta(g) = g \otimes g \quad \varepsilon(g) = 1_{\mathbb{C}}, \quad S(g) = g^{-1}.$
- * universal enveloping algebra of a Lie algebra $U(\mathfrak{g})$: for $x \in \mathfrak{g}$ $m \checkmark u \checkmark \Delta(x) = 1_H \otimes x + x \otimes 1_H$, $\varepsilon(x) = 0_{\mathbb{C}}$ S(x) = -x.

* $\mathbb{C}G$ and $U(\mathfrak{g})$ are cocommutative.

Symmetry	Quantum Symmetry	Results	Next steps	
	000000000			

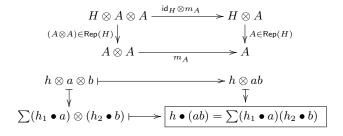
Quantum Symmetries of \mathbb{C} -algebras via Hopf actions

Definition

A Hopf algebra $H = (H, m_H, u_H, \Delta, \epsilon, S)$ <u>acts on</u> an algebra $A = (A, m_A, u_A)$, $H \curvearrowright A$ if A is an H-module algebra:

 $A \in \operatorname{Rep}(H)$ (inducing $A \otimes A \in \operatorname{Rep}(H)$), and m_A , u_A are H-maps.

I.e., for any $a, b \in A$ and $h \in H$, with $\Delta(h) := \sum h_1 \otimes h_2$, get:

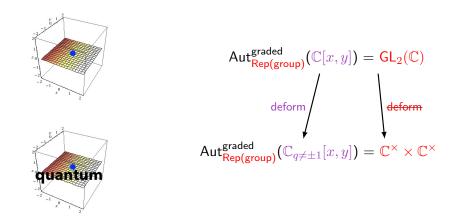


(similarly,
$$h \bullet 1_A = \varepsilon(h)1_A$$
)

Quantum Symmetry ...and more

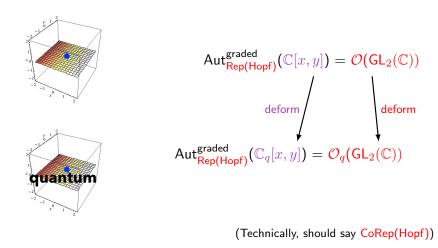
Symmetry 00000	Quantum Symmetry	Results	Next steps 0000	
00000	000000000	000000000000	0000	00

Quantum Symmetries of C-algebras via Hopf actions



Symmetry 00000	Quantum Symmetry	Results 00000000000	Next steps 0000	

Quantum Symmetries of C-algebras via Hopf actions



No Quantum Symmetry

Classical Symmetry = Actions of groups G (of $\mathbb{C}G$) and of Lie algebras \mathfrak{g} (of $U(\mathfrak{g})$)

 $\mathbb{C}G$ and $U(\mathfrak{g})$ are cocommutative Hopf algebras: $\Delta = \tau \circ \Delta$, where $\overline{\tau(h \otimes \ell)} = \ell \otimes h$, for $h, \ell \in \overline{H}$.

Theorem (Cartier-Kostant-Milnor-Moore) If H is a <u>cocommutative</u> Hopf algebra over \mathbb{C} , then $H \cong U(\mathfrak{g}) \# \mathbb{C}G$, for some $G \curvearrowright \mathfrak{g}$.

Further, if H is finite-dim'l, then $H \cong \mathbb{C}G$, for some group G.

Symmetry	Quantum Symmetry	Results	Next steps	
		0000000000		

No Quantum Symmetry

Given an action of a Hopf algebra H on an algebra A, we say there is **No Quantum Symmetry** $H \curvearrowright A$ must factor through the action of a <u>cocommutative</u> Hopf algebra.

 \exists Hopf ideal I of H so that H/I is cocommutative and $H/I \frown A$.

Theorem (Cartier-Kostant-Milnor-Moore) If H is a <u>cocommutative</u> Hopf algebra over \mathbb{C} , then $H \cong U(\mathfrak{g}) \# \mathbb{C}G$, for some $G \curvearrowright \mathfrak{g}$.

Further, if H is finite-dim'l, then $H \cong \mathbb{C}G$, for some group G.

No Quantum Symmetry : Results

On commutative domains

Etingof and W.. Semisimple Hopf actions on commutative domains. Advances in Mathematics 251C (2014), pp. 47-61.

Skryabin. Finiteness of the number of coideal subalgebras. Proceedings of the American Mathematical Society 145 (2017), 2859-2869.

** A Hopf algebra is semisimple if each of its modules is a \oplus of simple modules. Ex. Hopf algebras built from groups: $\mathbb{C}G$, $(\mathbb{C}G)^*$ [duals], $(\mathbb{C}G)_{\sigma}$ [twists]...

No Quantum Symmetry : Results

On quantizations of commutative domains

Chan, W., Wang, Zhang. Hopf actions on filtered regular algebras. Journal of Algebra 397, no. 1 (2014), pp. 68-90.

Cuadra, Etingof, W.. Semisimple Hopf actions on Weyl algebras. Advances in Mathematics 282 (2015), pp. 47-55.

Cuadra, Etingof, W.. Finite dimensional Hopf actions on Weyl algebras. Advances in Mathematics 302 (2016), pp. 25-39.

Etingof and W.. Finite dimensional Hopf actions on algebraic quantizations. Algebra and Number Theory 10, no. 10, (2016), 2287-2310.

Etingof and W.. Finite dimensional Hopf actions on deformation quantizations. Proc. AMS 145 (2017), pp. 1917-1925.

Results

Next step: 0000

Genuine Quantum Symmetry

Given an action of a Hopf algebra H on an algebra A, we say there is **Genuine Quantum Symmetry** when $H \curvearrowright A$ does *not* factor through the action of a cocommutative Hopf algebra.

Genuine Quantum Symmetry : Results

On commutative domains: fields

Etingof and W.. Pointed Hopf actions on fields, I. Transformation Groups 20, no. 4 (2015), pp. 985-1013.

Etingof and W.. Pointed Hopf actions on fields, II. Journal of Algebra 460 (2016), pp. 253-283.

** A Hopf algebra is pointed if each of its simple comodules is 1-dim'l vs. Ex. Hopf algebras built from Lie algebras: $U(\mathfrak{g})$, $U_q(\mathfrak{g})$, $u_q(\mathfrak{g})$...

Genuine Quantum Symmetry : Results

On commutative domains: fields

Such Hopf algebras are called Galois-theoretical. Examples below, all of which are fin.-dim'l, noncom., noncocom., non-ss, pointed.

Н	"Cartan type"
Taft algebras $T_{\zeta}(n)$	A1
Nichols Hopf algebras $E(n)$	$A_1^{ imes n}$
the book algebra ${f h}(\zeta,1)$	$A_1 \times A_1$
the Hopf algebra H_{81} of dimension 81	A_2
$u_q(\mathfrak{sl}_2)$	$A_1 \times A_1$
$u_q(\mathfrak{gl}_2)$	$A_1 \times A_1$
Twists $u_q(\mathfrak{gl}_n)^{J^+}$, $u_q(\mathfrak{gl}_n)^{J^-}$ for $n\geq 2$	$A_{n-1} \times A_{n-1}$
Twists $u_q(\mathfrak{sl}_n)^{J^+}$, $u_q(\mathfrak{sl}_n)^{J^-}$ for $n \ge 2$	$A_{n-1} \times A_{n-1}$
Twists $u_{\overline{q}}^{\geq 0}(\mathfrak{g})^J$ for $2^{\mathrm{rank}(\mathfrak{g})-1}$ of such J	same type as \mathfrak{g}

Here, \mathfrak{g} is a finite-dimensional simple Lie algebra.

Path algebra = algebra on directed graph ("quiver")

Figure: (undirected) Graphs in real life

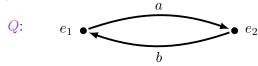
Definition

A path algebra $\mathbb{C}Q$ of a quiver (directed graph) Q (over \mathbb{C}) has

 \mathbb{C} -vector space basis = paths of quiver Multiplication = concatenation of paths, 0 elsewhere

Symmetry	Quantum Symmetry	Results	Next steps	
00000	00000000	00000000●000	0000	

Example



E.g., $e_1, e_2, a, b, ab, aba, abab, \dots$ are basis elements of $\mathbb{C}Q$,

$$e_1a = a$$
 in $\mathbb{C}Q$, $a^2 = 0$ in $\mathbb{C}Q$.

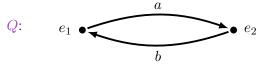
Definition

A path algebra $\mathbb{C}Q$ of a quiver (directed graph) (over \mathbb{C}) has

$$\mathbb{C}$$
-vector space basis = paths of quiver
Multiplication = concatenation of paths, 0 elsewhere

Quantum Symmetry	Results	
	000000000000	

Example



E.g., $e_1, e_2, a, b, ab, aba, abab, ...$ are basis elements of $\mathbb{C}Q$,

 $e_1a = a$ in $\mathbb{C}Q$, $a^2 = 0$ in $\mathbb{C}Q$.

Note that $\mathbb{Z}_2 = \langle g : g^2 = 1 \rangle$ acts on $\mathbb{C}Q$:

 $|g \cdot e_1 = e_2, \qquad g \cdot e_2 = e_1, \qquad g \cdot a = b, \qquad g \cdot b = a$

So, $\mathbb{C}Q$ admits classical symmetry...

Quantum Symmetry ... and more

Symmetry	Quantum Symmetry	Results	Next steps	
00000	00000000	000000000000	0000	00

Example (continued) $e_1 \bullet \underbrace{a}_b \bullet e_2$ $\mathbb{Z}_2 = \langle g \rangle$ acts on $\mathbb{C}Q$: $g \cdot e_1 = e_2, g \cdot e_2 = e_1, g \cdot a = b, g \cdot b = a$

 \dots $\mathbb{C}Q$ also admits genuine quantum symmetry

Extend to action of the Sweedler Hopf algebra:

$$\begin{split} H &= \langle g, x \ : g^2 = 1, \ x^2 = 0, \ gx + xg = 0 \rangle \text{ with } \\ \Delta(g) &= g \otimes g, \quad \epsilon(g) = 1, \quad S(g) = g \\ \Delta(x) &= 1 \otimes x + x \otimes g, \quad \epsilon(x) = 0, \quad S(x) = -xg \end{split}$$

 $\begin{aligned} x \cdot e_1 &= -\gamma(e_1 + e_2), & x \cdot e_2 &= \gamma(e_1 + e_2) \\ x \cdot a &= \gamma(a - b) + \lambda e_1, & x \cdot b &= \gamma(a - b) - \lambda e_2, \text{ for } \gamma, \lambda \in \mathbb{C} \end{aligned}$

This example and classification results on Quantum Symmetry of Path Algebras are available here:

Kinser and W.. Actions of some pointed Hopf algebras on path algebras of quivers. Algebra and Number Theory 10, no. 1 (2016) pp. 117-154.

H: certain finite-dimensional, pointed Hopf algebras

Q: finitely many vertices and arrows, loopless, no parallel arrows $H \curvearrowright \mathbb{C}Q$: preserves ascending filtration by path length

E.g., Sweedler Hopf algebra actions on the path algebra of Q:

The action of \mathbb{Z}_2 is given by $\bullet \blacktriangleleft \cdots \bullet \bullet$

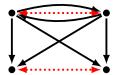


Figure: Yes, Chelsea, come to the light!

Symmetry	Quantum Symmetry	Results	Next steps	
00000	00000000	00000000000	0●00	

Figure: No, Chelsea, it's too fancy!

Previous work on actions of Hopf algebras H over \mathbb{C} on \mathbb{C} -algebras A.

Studied H-module algebras A

Equiv to studying algebras \boldsymbol{A} in the monoidal category

 $(\mathsf{Rep}(H), \otimes_{\mathbb{C}}, \mathbb{C})$

Next: Understand algebras in general monoidal categories

Figure: The slow climb

... projects to get started:

1. Work in preparation (with Etingof, Kinser):

Tensor algebras in finite tensor categories.

Builds on prev. work w/ Kinser

 $\mathbb{C}Q = T_{\mathbb{C}Q_0}(\mathbb{C}Q_1)$

 Q_0 , Q_1 = vertex, arrow set of Q

- 2. Current WINART2 project.
- 3. Other dreams.

Figure: The slow climb

Symmetry	Quantum Symmetry	Results	Next steps	
				00

Thanks for listening to this portion of the talk!

Any questions?

Photos from unsplash.com: azhrjl [mosque]; denys nevozhai [skyscraper]; clint-adair, samuel zeller [graphs]; sam schooler, max larochelle [clouds]; luke brugger [snail]