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Abstract

For a field K and a finite group G that acts faithfully on a polynomial
ring K[V ] = K[x1, x2, ..., xn], the ring of invariants K[V ]G satisfies Noether’s
bound: if d is the maximum degree of a generator in a minimal generating
set of K[V ]G, then d ≤ |G|. However, it has been hitherto unknown whether
the bound generalizes for noncommutative algebras over a field K with group
representations or Hopf algebra representations. We describe a noncommuta-
tive Noetherian monomial algebra with a permutation group representation that
does not satisfy Noether’s bound. We also propose a conjecture on the degree
bound on invariant rings for faithful permutation representations of Noetherian
monomial algebras.

Introduction

Invariant theory is a branch of abstract algebra that studies symmetries
of objects by studying their ”symmetry groups” of transformations of
objects, and invariants which are parts of objects do not change under
the symmetries.

Example: Consider an arrangement of four identical points, with four
different positions each occupied by one point.

1 2 3 4

(The set of all symmetries of this object is the 4th symmetric group
Σ4, which has 4! = 24 symmetries since there are 4! ways to permute
four objects.)

For example, under the symmetry that swaps points 1 and 2, the ”in-
variants” are 3 and 4.

We can summarize this information as:

Object: an arrangement of four points.
Symmetry: a way of rearranging these four points.
Invariant: points that remain fixed under the symme-
tries.
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The present area of study:

Algebraic structures such as algebras can also be studied this way.

Roughly speaking, an ”algebra” is a set where all elements are sums
and products of generators, and can be multiplied by a number; expres-
sions called relations are considered to equal 0.

This time,

Object: An algebra
Symmetry: Group action
Invariants: elements of the algebra that remain fixed
under the group action

More precisely, let A be an algebra and let G be a group. Then a
group action ofG onA is a function ρ : G→ Sym(A); it is a rule spec-
ifying how each group element rearranges elements in A. We write an
element of G acting on an element of A as ρ(g).a, or simply g.a when
ρ is understood from context.

For the remainder we will assume G is a finite group, and G acts
faithfully on A (”faithful” means that no two elements of G act on A
the same way).

Invariant theory concerns itself with the ring of invariants of a given
action of a group G on an algebra A. Invariants of A under G are ele-
ments that do not change under the action of G (i.e. elements x ∈ A
such that for all g ∈ G, g.x = x). The invariants of A under G form an
invariant ring which is denoted AG.

Question: Given a G-action on an algebra A, what generators and
relations does AG have? A priori, AG need not have finitely many
generators or finitely many relations.

To understand AG it is useful to compute β(A,G), which is the de-
gree of the highest degree generator in a minimal generating set ofAG.

For commutative algebras, which are synonymous with polynomial
rings (such as R[x], the set of all polynomials of one variable with real
coefficients), a result called Noether’s bound holds.

Noether’s bound For a polynomial ring K[V ] over a field K, and G
a finite group acting faithfully on K[V ], β(K[V ], G) ≤ |G|.

Goal: We investigate Noether’s bound for special, not necessarily
commutative algebras.

Our algebra: A ”monomial algebra” is generated as a ring (is built
by addition and multiplication which is not necessarily commutative)
by n variables and has relations of a fixed degree N which specify the
expressions that are equal to 0. A monomial algebra is also closed
under scalar multiplication by elements of R.

To make our examples easier to study and calculate we assume thatA
is ”Noetherian”. An important property of Noetherian monomial alge-
bras is that they are finitely generated (have finitely many generators).

Working Definition. A is Noetherian if and only if no arrows go
into or out of any cycles in its ”Ufnarovskii graph” U(A).

Definition. Given a monomial algebra A with fixed n,N , the Uf-
narovskii graph ofA, denoted U(A), is equal to a directed graph (V,E)
where:

1) V the vertex set is the set of all words of n variables of length
N − 1;

2) each edge in E corresponds to a ”valid word” xi1xi2...xiN which is
not in the relation space R, and goes from the vertex xi1...xiN−1 to the
vertex xi2...xiN .

Example: The algebra A =
R〈x,y〉
()x2,y2)

under the action of G = 〈
(

0 1
1 0

)
〉

is a Noetherian algebra and has invariant ring AG = R〈x + y〉 (a free
algebra generated by x+y as a ring). For instance, x+y is an invariant;
g.(x + y) = y + x = x + y.
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Our finding:

We have found that Noether’s bound fails for noncommutative alge-
bras.

The Counterexample. Let A =
K〈u,v〉

(u3v,v3u,u2vu,v2uv,uvu2,vuv2,uv3,vu3)
,

and let G = 〈g〉 =

〈(
0 1
1 0

)〉
, acting via g.u = v and g.v = u.
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Note that for this A, n = 2 and N = 4 (Recall n is the number of
basis elements of A, and N is degree of relations in A).

Proof sketch: The ”Hilbert series” of an algebra A is defined by:

HA(t) =

∞∑
i=0

dim(Ai)t
i.

The ith coefficient of the Hilbert series of A tells us how many linear
basis elements are in Ai, the ith degree homogeneous subspace of A.

We first calculate the Hilbert series of AG by using Molien’s Theo-
rem:

HAG(t) =
1

|G|
∑
g∈G

1

det(I − tg)
=

1

|G|
∑
g∈G

∞∑
i=0

tr(g|Ai) =
1

|G|

∞∑
i=0

∑
g∈G

tr(g|Ai).

To compute tr(g|Ai) we look at what linear basis elements are in Ai,
i ≥ 0. Looking at U(A) helps with this. Then we use the action of g on
each element to find out how many elements are mapped to themselves.

Then we make a guess for AG and check that its Hilbert series is
equal to the Hilbert series we have found above.

More specifically, by using Molien’s Theorem and U(A) we get the
following traces:

degree-d subspace of A tr(1G|Ai
) tr(g|Ai

)
A0 = 〈1〉 1 1
A1 = 〈u, v〉 2 0

A2 = 〈u2, v2, uv, vu〉 4 0

A3 = 〈u3, v3, u2v, v2u, uv2, vu2, uvu, vuv〉 8 0

A4 = 〈u4, v4, u2v2, v2u2, uv2u, vu2v, uvuv, vuvu〉 8 0
... ... ...

By adding the traces for each degree we find that the Hilbert series of
AG is equal to

HAG(t) =
1

2
((1+1)+2t+4t2 +8t3 +8t4 + ...) = 1+ t+2t2 +4t3

∑
i≥0

ti.

We use the guessL =
K〈a,b,c〉

(b2−a2b,a2b−ba2,ac−ca,bab−bc,bc−cb,bab−aca,abc−c2),

where a = u + v, b = u2 + v2, and c = u3 + v3. (It can be shown that
a, b, c are algebraically independent.)

The Hilbert series ofL is also 1+t+2t2+4t3
∑
i≥0 t

i. So we conclude
AG = L.

This shows that β(A,G) = 3. But |G| = 2. Hence Noether’s bound
fails to hold for A.

Interestingly, we looked for an algebra with |G| = 2 and N = 4 in
order to get this answer. This suggests a pattern for permutation group
actions:

Conjecture. Let A =
K〈u1,u2,...,un〉

R be a Noetherian monomial alge-

bra and let φ : G→ Aut(A) be a linear faithful group action acting on
A by permutation of basis elements. Let N be the degree of generators
of R. Then β(A,G) = N − 1.


