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Introduction

This thesis investigates the properties of weak bialgebras and weak Hopf algebras,
along with their (co)representations, utilizing a combination of algebraic and categorical
techniques. The research explores examples from groupoids, path algebras, and Lie
algebroids, highlighting the versatility of weak actions in studying symmetries in (non-
commutative) positively graded algebras over a field, particularly in the non-connected
setting.

Weak bialgebras and weak Hopf algebras have emerged as powerful tools for capturing
algebraic structures with flexible properties. These structures provide a broader framework
beyond traditional bialgebras and Hopf algebras, accommodating algebraic objects with
less rigid axioms and enabling a more nuanced understanding of various phenomena
in mathematics. Several applications in diverse areas of mathematics have been found,
demonstrating their significance and potential impact (see, e.g., [BCJ11, BNS99, BS97,
HWWW23, Nik02, NV02, WWW22]).

Let k be a field. Symmetries of noncommutative k-algebras have been extensively
studied in the context of Hopf algebra (co)actions, with notable success for connected
graded k-algebras (see, e.g., [AS10, CK98, Mon93, Vár03]). However, extending these
results to not-necessarily-connected k-algebras is not a straightforward task. In recent years,
the study of (co)actions of weak Hopf algebras has emerged as a promising avenue for
investigating symmetries of such k-algebras, with several attempts made in this direction
(see, e.g., [AFSS00, BNS99, NSW98, Nik02, HWWW23]). In this work, we contribute to
this ongoing effort by providing further insights and results for weak Hopf algebra actions
on noncommutative, not necessarily connected k-algebras. Specifically, we address three
open problems:

1. Monoidal categories and (weak) Hopf algebras are closely related, as the (co)module
category over these structures have a canonical monoidal product making them
monoidal categories. For traditional bialgebras and Hopf algebras, the monoidal
product in the categories of (co)modules is given the classical tensor product of
k-vector spaces, ⊗k, so there is an immediate correspondence between categorical
objects in these categories (e.g., monoids) and classical algebraic structures over
k-algebras (e.g., (co)module algebras) [BCJ11, NTV03]. However, in the weak case
the monoidal product depends on certain substructures, making harder to match
the categorical setup with its algebraic counterpart. Hence, we discuss recent
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INTRODUCTION IV

advances in this area while providing some correspondences that we expect to give
a categorical framework to understand partial (co)actions of Hopf-like structures
(see, e.g. [ABV15, BFP10, CPQS15, Dok18, FMF20]) for future research.

2. If 𝐴 is a k-algebra, then the group AutAlg(𝐴) of k-algebra automorphisms of 𝐴
can be viewed as the algebraic object which captures the symmetries of 𝐴 [CM84,
Proposition 1.2]. Likewise, the Lie algebra Der(𝐴) of derivations of 𝐴 can also be
viewed as capturing the symmetries of 𝐴. We unite and generalize these notions
by defining an object Sym𝒞(𝐴), which captures the symmetries of 𝐴 by actions of
objects in a category 𝒞 whose objects resemble cocommutative (weak) Hopf algebras.

3. A line of research was prompted by Manin’s inquiry in the work of Artin-Schelter-
Tate [AST91] on whether the bialgebras that coact universally on a well-behaved
class of connected graded algebras, Artin-Schelter regular algebras, also enjoy nice
ring-theoretic and homological properties. In that work, the question was addressed
for key examples of connected graded comodule algebras, skew polynomial rings
[AST91], and has been addressed later for other Artin-Schelter regular algebras,
especially for the Noetherian, domain, prime, growth conditions and homological
dimensions (see, e.g., [BG02, Sections I.2 and II.9] and [WW16]). But Manin’s
question is unresolved, in general. Hence, we address this inquiry for a class of
graded algebras that are usually non-connected: path algebras of finite quivers.

By addressing these three problems, we aim to deepen our understanding of weak
Hopf algebras and their representations, uncovering their foundational properties, and
exploring the relationships between their operations and substructures. Categorical
techniques, particularly those based on monoidal categories, are employed to study the
(co)representations of weak Hopf algebras, enhancing our understanding of their structure
and behavior in a broader mathematical context. Examples drawn from groupoids, path
algebras, and Lie algebroids are provided to demonstrate the practical significance of the
theoretical findings, showcasing the versatility of weak Hopf algebra actions in modeling
complex algebraic structures arising in diverse mathematical domains.

Our research contributes to the field of algebra by offering a comprehensive investi-
gation of weak Hopf algebras, their representations, and their applications in groupoids,
path algebras, and Lie algebroids. The research outcomes deepen our understanding
of these structures, their role as symmetry generators, and their broader impact in var-
ious mathematical contexts, thereby advancing both theoretical and applied algebraic
mathematics.

This thesis is structured as follows. Chapter 1 delves into the basic algebraic and cate-
gorical structures and properties studied throughout, including the notion and examples
of weak bialgebras and weak Hopf algebras. Then, we delve into their (co)representations,
giving those categories a canonical monoidal structure. We prove a natural connection
between certain objects in these categories and their algebraic counterparts. Chapter 2
constructs a distinguished object in remarkable categories of Hopf-like structures, pro-
viding a bĳective correspondence between actions of these structures on a given algebra
and morphisms in the corresponding category. Chapter 3 examines the ring-theoretic and
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homological properties shared between path algebras and the only weak bialgebra acting
universally on them, focusing on graph-theoretic properties of quivers. Throughout this
work, new results, examples, and open questions are presented, which may serve as future
research directions for researchers in the field.

Notations and conventions

Throughout this document, by k we denote any field that, if needed, is assumed to
be algebraically closed and of characteristic 0. Unless stated otherwise, all rings and
k-algebras are associative and unital. Ring and k-algebra morphisms are supposed to be
unitary. If not explicitly specified, modules (resp. comodules) are considered left-sided
(resp. right-sided). Unadorned tensor products are over k.

Let 𝑓 , 𝑔, ℎ be functions. If defined, we denote the composition of 𝑓 with 𝑔 by 𝑓 𝑔

and the composition of ℎ with itself 𝑛-times as ℎ𝑛 . Id𝑋 : 𝑋 → 𝑋 will always denote the
identity map of 𝑋. Arrow diagrams will be constantly used; they represent composition
of functions as concatenation of arrows. A diagram is said to be commutative if, no matter
what path one follows, the composition of arrows gives always the same result.

The symbols N, Z, Q, R, C denote the usual numerical systems, assuming that 0 ∈ N.

Statement of contributions

Chapters 2 and 3 in this thesis correspond to the following publications and preprints
containing original results.

• Chapter 2: Calderón, F., Huang, H., Wicks, E., and Won, R. Symmetries of algebras
captured by actions of weak Hopf algebras. Submitted for publication. Available
online at arXiv:2209.11903, 2023. [CHWW23]

• Chapter 3: Calderón, F., and Walton, C. Algebraic properties of face algebras. Journal
of Algebra and Its Applications, 22 (03) 2350076, 2023. [CW23]

Part of Chapter 1 is extracted from the following upcoming preprint, in which partial
and global (co)actions of weak Hopf algebras are studied.

• Section 1.3.1: Calderón, F., and Reyes, A. On the (partial) representation category of
weak Hopf algebras. In preparation, 2023. [CR23]

Furthermore, our research findings have been presented in the following events and
seminars:

1. On the study of quantum groupoids and their actions. June 2023. XXIII Congreso
Colombiano de Matemáticas. Universidad Pedagógica y Tecnológica de Colombia -
UPTC, Tunja, Colombia.
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2. Hopf-like actions on algebras: an invitation to quantum groups. November 2022. Seminario
de Matemática de Postgrado. Universidad de Santiago de Chile, Santiago, Chile.

3. Poster: Hopf-like actions on algebras: an invitation to quantum groups. November 2022.
Encuentro Nacional de Estudiantes de Matemática. Pontificia Universidad Católica
de Chile, Santiago, Chile.

4. Hopf-like actions on algebras: an invitation to quantum groups. October 2022. Seminario
de estudiantes de posgrado en Matemáticas. Pontificia Universidad Católica de
Chile, Santiago, Chile.
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CHAPTER 1

Preliminaries

This chapter lays the groundwork for our study of weak quantum symmetries, which
extend classical actions of Hopf algebras on algebras. Section 1.1 introduces the concept of
weak bialgebras and weak Hopf algebras, exploring their structure and relevant properties.
In Section 1.2, we delve into monoidal categories as a framework for understanding classical
and weak quantum symmetries. Section 1.3 investigate (co)actions of weak bialgebras and
weak Hopf algebras on algebras. Section 1.4 explores the connections between groupoids
and weak Hopf algebras, while Section 1.5 examines quivers and their path algebras in
relation to our study. Finally, in Section 1.6, we provide a concise overview of the algebraic
and homological properties that will be studied throughout.

1.1 Structure and properties of weak Hopf algebras

First, we set our notation for basic algebraic structures; see e.g. [DNR01, EGNO15,
Mon93] for details and examples. Recall that a triple (𝐴, 𝑚, 𝑢) is a k-algebra if 𝐴 is a k-vector
space, and the maps 𝑚 : 𝐴 ⊗ 𝐴 → 𝐴 (multiplication) and 𝑢 : k → 𝐴 (unit) satisfy the
following properties:

𝑚(𝑚 ⊗ Id) = 𝑚(Id ⊗𝑚) (associativity),
𝑚(𝑢 ⊗ Id) = Id = 𝑚(Id ⊗𝑢) (unit property).

We denote 1𝐴 := 𝑢(1k). A k-algebra morphism between two algebras (𝐴, 𝑚𝐴 , 𝑢𝐴) and
(𝐵, 𝑚𝐵 , 𝑢𝐵) is a k-linear map 𝑓 : 𝐴→ 𝐵 that preserves the multiplication and unit maps,
that is, satisfies the following properties:

𝑚𝐵( 𝑓 ⊗ 𝑓 ) = 𝑓 𝑚𝐴 (multiplicative),
𝑢𝐵 = 𝑓 𝑢𝐴 (unital).

A left module over a k-algebra (𝐴, 𝑚, 𝑢) is a pair (𝑀, 𝛾) where 𝑀 is a k-vector space and
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CHAPTER 1. PRELIMINARIES 2

𝛾 : 𝐴 ⊗ 𝑀 → 𝑀 (left action) is a k-linear map satisfying the following conditions:

𝛾(𝑚 ⊗ Id𝑀) = 𝛾(Id𝐴 ⊗𝛾),
𝛾(𝑢 ⊗ Id𝑀) = Id𝑀 .

In these definitions, we make use of the well-known k-isomorphisms k ⊗ 𝐴 � 𝐴 and
k ⊗ 𝑀 � 𝑀. We write 𝑎 · 𝑚 := 𝛾(𝑎 ⊗ 𝑚), for all 𝑎 ∈ 𝐴 and 𝑚 ∈ 𝑀. A morphism
between two left 𝐴-modules (𝑀, 𝛾𝑀) and (𝑁, 𝛾𝑁 ) is a k-linear map 𝑓 : 𝑀 → 𝑁 such that
𝛾𝑁 (Id𝐴 ⊗ 𝑓 ) = 𝑓 𝛾𝑀 . The definitions for right modules and their morphisms are similar.

Let (𝐴, 𝑚𝐴 , 𝑢𝐴) and (𝐵, 𝑚𝐵 , 𝑢𝐵) be two k-algebras. A k-vector space 𝑀 that is both a
left 𝐴-module via left action map 𝛾 : 𝐴 ⊗ 𝑀 → 𝑀 and a right 𝐵-module via right action
map 𝜏 : 𝑀 ⊗ 𝐵 → 𝑀 is called an (𝐴, 𝐵)-bimodule if 𝛾(Id𝐴 ⊗𝜏) = 𝜏(𝛾 ⊗ Id𝐵).

Dually, (𝐶,Δ, 𝜀) is a k-coalgebra if 𝐶 is a k-vector space, and the maps Δ : 𝐶 → 𝐶 ⊗ 𝐶
(comultiplication) and 𝜀 : 𝐶 → k (counit) are such that:

(Δ ⊗ Id)Δ = (Id ⊗Δ)Δ (coassociativity),
(𝜀 ⊗ Id)Δ = Id = (Id ⊗𝜀)Δ (counit property).

We use sumless notation, which means that for any 𝑐 ∈ 𝐶 we write Δ(𝑐) := 𝑐1 ⊗ 𝑐2. Using
the coassociativity, we also denote Δ2(𝑐) = (Δ ⊗ Id)(𝑐) = 𝑐1 ⊗ 𝑐2 ⊗ 𝑐3, etc. A k-coalgebra
morphism between two coalgebras (𝐶,Δ𝐶 , 𝜀𝐶) and (𝐷,Δ𝐷 , 𝜀𝐷) is a k-linear map 𝑔 : 𝐶 → 𝐷

that preserves the coalgebraic structure, that is, satisfies the following properties:

(𝑔 ⊗ 𝑔)Δ𝐶 = Δ𝐷 𝑔 (comultiplicative),
𝜀𝐶 = 𝜀𝐷 𝑔 (counital).

A k-subspace 𝐼 ⊆ 𝐶 of a coalgebra (𝐶,Δ, 𝜀) is a coideal if Δ(𝐼) ⊆ 𝐼 ⊗ 𝐶 + 𝐶 ⊗ 𝐼 and
𝜀(𝐼) = 0. A right comodule over (𝐶,Δ, 𝜀) is a pair (𝑀, 𝜌) where 𝑀 is a k-vector space and
𝜌 : 𝑀 → 𝑀 ⊗ 𝐶 (right coaction) is a k-linear map satisfying the following conditions:

(Id𝑀 ⊗Δ)𝜌 = (𝜌 ⊗ Id𝐶)𝜌,
(Id𝑀 ⊗𝜀)𝜌 = Id𝑀 .

There is also sumless notation for right comodules: for any𝑚 ∈ 𝑀 we write 𝜌(𝑚) = 𝑚0⊗𝑚1.
A morphism between two right 𝐶-comodules (𝑀, 𝜌𝑀) and (𝑁, 𝜌𝑁 ) is a k-linear map
𝑓 : 𝑀 → 𝑁 such that 𝜌𝑁 𝑓 = ( 𝑓 ⊗ Id𝐶)𝜌𝑀 . The definitions for left comodules and
their morphisms are similar. For a left coaction of the form 𝜂 : 𝑀 → 𝐶 ⊗ 𝑀, we write
𝜂(𝑚) = 𝑚−1 ⊗ 𝑚0, for any 𝑚 ∈ 𝑀, preserving the convention that 𝑚𝑖 ∈ 𝐶 for 𝑖 ≠ 0.

Let (𝐶,Δ𝐶 , 𝜀𝐶) and (𝐷,Δ𝐷 , 𝜀𝐷) be two k-coalgebras. A k-vector space 𝑀 that is both a
left 𝐷-comodule via left coaction map 𝜂 : 𝑀 → 𝐷 ⊗ 𝑀 and a right 𝐶-comodule via right
action map 𝜌 : 𝑀 → 𝑀 ⊗ 𝐶 is called an (𝐷, 𝐶)-bicomodule if (𝜂 ⊗ Id𝐶)𝜌 = (Id𝐷 ⊗𝜌)𝜂.

A k-bialgebra is defined as a quintuple (𝐻, 𝑚, 𝑢,Δ, 𝜀), where (𝐻, 𝑚, 𝑢) forms a k-algebra
and (𝐻,Δ, 𝜀) forms a k-coalgebra, such that both Δ and 𝜀 are algebra maps, or equivalently,
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𝑚 and 𝑢 are coalgebra maps.

To simplify the notation, if no further mention of the operations is required, we will
use the same letter to denote both the algebraic structure and the underlying k-vector
space. For example, a k-algebra (𝐴, 𝑚, 𝑢) will be denoted simply as 𝐴.

It is important to note that the mere presence of algebra and coalgebra structures
on a vector space 𝐻 does not guarantee that the comultiplication Δ and the counit 𝜀
are both multiplicative and unital. This realization serves as a driving force behind the
development of more flexible concepts that accommodate structures where the complete
multiplicativity and unitality requirements may not be satisfied. To this end, we recall the
notion of a k-Frobenius algebra, defined as a quintuple (𝐹, 𝑚, 𝑢,Δ, 𝜀) where (𝐹, 𝑚, 𝑢) forms
a k-algebra and (𝐹,Δ, 𝜀) forms a k-coalgebra, subject to the Frobenius constraint, that is,

(𝑚 ⊗ Id)(Id ⊗Δ) = Δ𝑚 = (Id ⊗m)(Δ ⊗ Id).

If additionally 𝑚Δ = Id, we call the Frobenius algebra separable. Every k-Frobenius algebra
is finite-dimensional [EN55, Section 3].

However, in the context of our investigation of weak quantum symmetries, we aim to
define a concept that bears a closer resemblance to classical bialgebras. Thus we introduce
weak bialgebras. It is worth mentioning that in earlier works (e.g., [BNS99, BS97, Nil98])
the vector space 𝐻 was required to be finite-dimensional; we do not assume such a
restriction here.

Definition 1.1 (Weak bialgebra). A quintuple (𝐻, 𝑚, 𝑢,Δ, 𝜀) is called a k-weak bialgebra if
the following conditions are satisfied:

(i) (𝐻, 𝑚, 𝑢) is a k-algebra;

(ii) (𝐻,Δ, 𝜀) is a k-coalgebra;

(iii) Δ is multiplicative, that is, Δ(𝑎𝑏) = Δ(𝑎)Δ(𝑏), for all 𝑎, 𝑏 ∈ 𝐻;

(iv) 𝜀 is weak multiplicative, that is, 𝜀(𝑎𝑏𝑐) = 𝜀(𝑎𝑏1)𝜀(𝑏2𝑐) = 𝜀(𝑎𝑏2)𝜀(𝑏1𝑐), for all 𝑎, 𝑏, 𝑐 ∈ 𝐻;

(v) Δ is weak comultiplicative, that is, Δ2(1) = (Δ(1) ⊗ 1)(1 ⊗ Δ(1)) = (1 ⊗ Δ(1))(Δ(1) ⊗ 1).

Remark 1.2. Several comultiplications of the unit could appear in the same formula, so we
denote different copies of these using primed notation, that is,

Δ(1) ⊗ Δ(1) = (11 ⊗ 12) ⊗ (1′1 ⊗ 1′2) = 11 ⊗ 12 ⊗ 1′1 ⊗ 1′2.

Hence condition (v) of Definition 1.1 may be expressed as

11 ⊗ 12 ⊗ 13 = 11 ⊗ 121′1 ⊗ 1′2 = 11 ⊗ 1′112 ⊗ 1′2.

As mentioned above, the transition from classical bialgebras to weak bialgebras
consists on a weakening of the usual required compatibility between the algebra and
coalgebra structures. More precisely, even thought in a weak bialgebra we still require
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the comultiplication Δ to respect products (condition (iii)), the counit 𝜀 is no longer
multiplicative and we do not necessarily have Δ(1) = 1 ⊗ 1 or 𝜀(1) = 1 (and instead we
place conditions (iv)-(v)). In fact, a weak bialgebra is a bialgebra if and only if Δ is unital if
and only if 𝜀 is multiplicative [BNS99, p. 5].

Naturally, morphisms between weak bialgebras are those preserving the operations,
that is, those being morphism of both algebras and coalgebras. Finally, notice that the
axioms in Definition 1.1 are self-dual, so in the finite-dimensional case the linear dual
𝐻∗ := Homk(𝐻, k) of a weak bialgebra is also a weak bialgebra, denoted by 𝐻∗ [BNS99,
p. 3]. However, even for traditional bialgebras, the infinite-dimensional case is not so-well
behaved since the dual of the algebra structure is not necessarily a coalgebra (see e.g.
[Mon93, Section 1.1]).

Within the framework of weak bialgebras, we encounter a notable pair of maps known
as counital maps. These measure “how far” a weak bialgebra is from satisfying the classical
compatibility requirements [Proposition 1.4(viii)].

Definition 1.3 (Counital maps, counital subalgebras). Let (𝐻, 𝑚, 𝑢,Δ, 𝜀) be a k-weak
bialgebra. The source and target counital maps of 𝐻 are respectively defined as follows:

𝜀𝑠 : 𝐻 → 𝐻, 𝜀𝑡 : 𝐻 → 𝐻,

ℎ ↦→ 11𝜀(ℎ12), ℎ ↦→ 𝜀(11ℎ)12.

We denote 𝐻𝑠 := 𝜀𝑠(𝐻) and 𝐻𝑡 := 𝜀𝑡(𝐻), which are called the counital subalgebras of 𝐻.

The presence of these counital maps and subalgebras enables us to establish several
remarkable properties specific to weak bialgebras.

Proposition 1.4. Let (𝐻, 𝑚, 𝑢,Δ, 𝜀) be a weak bialgebra.

(i) 𝐻𝑠 and 𝐻𝑡 are separable Frobenius k-algebras, and hence finite-dimensional.

(ii) 𝑦 ∈ 𝐻𝑠 if and only if Δ(𝑦) = 11 ⊗ 12𝑦 = 11 ⊗ 𝑦12. Similarly, 𝑧 ∈ 𝐻𝑡 if and only if
Δ(𝑧) = 11𝑧 ⊗ 12 = 𝑧11 ⊗ 12.

(iii) 𝜀𝑠(𝑦) = 𝑦 for every 𝑦 ∈ 𝐻𝑠 . Similarly, 𝜀𝑡(𝑧) = 𝑧, for every 𝑧 ∈ 𝐻𝑡 .

(iv) If 𝑦 ∈ 𝐻𝑠 and 𝑧 ∈ 𝐻𝑡 , then 𝑦𝑧 = 𝑧𝑦.

(v) 𝐻𝑠 (resp., 𝐻𝑡) is a left (resp., right) coideal subalgebra of 𝐻. Moreover, if 𝐻 is finite-
dimensional, then

𝐻𝑠 = {(Id ⊗𝜑)Δ(1) : 𝜑 ∈ 𝐻∗} and 𝐻𝑡 = {(𝜑 ⊗ Id)Δ(1) : 𝜑 ∈ 𝐻∗}.

(vi) 𝐻𝑠 is a coalgebra with counit 𝜀|𝐻𝑠 and comultiplication

Δ𝑠 : 𝐻𝑠 → 𝐻𝑠 ⊗ 𝐻𝑠

𝑦 ↦→ 11 ⊗ 𝜀𝑠(𝑦12) = 𝑦1 ⊗ 𝜀𝑠(𝑦2).
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Similarly, 𝐻𝑡 is a coalgebra with counit 𝜀|𝐻𝑡 and comultiplication

Δ𝑡 : 𝐻𝑡 → 𝐻𝑡 ⊗ 𝐻𝑡

𝑧 ↦→ 𝜀𝑡(11𝑧) ⊗ 12 = 𝜀𝑡(𝑧1) ⊗ 𝑧2.

(vii) 𝜀𝑡 is an anti-isomorphism of algebras from 𝐻𝑠 to 𝐻𝑡 , that is, 𝐻𝑠 � 𝐻
op
𝑡 as k-algebras.

(viii) 𝐻 is a bialgebra if and only if dimk 𝐻𝑠 = 1 if and only if dimk 𝐻𝑡 = 1.

(ix) Any nonzero weak bialgebra morphism 𝛼 : 𝐻 → 𝐾 preserves counital subalgebras, that is,
𝐻𝑠 � 𝐾𝑠 and 𝐻𝑡 � 𝐾𝑡 as k-algebras.

Proof. (i): the assertion follows from [BCJ11, Proposition 4.4] and [BNS99, Proposition 2.11].

(ii), (iii), (iv), (v): the claims are consequences of [BNS99, Section 2.2] and [NV02,
Propositions 2.2.1 and 2.2.2].

(vi): this is the content of [BCJ11, Proposition 1.17].

(vii): this is [BCJ11, Propositions 1.15 and 1.18].

(viii): it follows from (vii) and [Nik02, Definition 3.1 and Remark 3.2].

(ix): this is [WWW22, Proposition 2.3(h)]. □

We recall some useful weak bialgebra identities that will be use onward. A detailed
proof of these facts can be found in [NV02, Proposition 2.2.1].

Lemma 1.5. Let (𝐻, 𝑚, 𝑢,Δ, 𝜀) be a weak bialgebra and ℎ ∈ 𝐻. The following relations hold:

𝜀𝑠(𝜀𝑠(ℎ)) = 𝜀𝑠(ℎ), 𝜀𝑡(𝜀𝑡(ℎ)) = 𝜀𝑡(ℎ), (1.1)
ℎ1𝜀𝑠(ℎ2) = ℎ = 𝜀𝑡(ℎ1)ℎ2 , (1.2)

Δ(1) = 11 ⊗ 𝜀𝑡(12) = 𝜀𝑠(11) ⊗ 12 ∈ 𝐻𝑠 ⊗ 𝐻𝑡 . (1.3)

Recall that a classical k-bialgebra 𝐻 is called a k-Hopf algebra if there is a k-linear map
𝑆 : 𝐻 → 𝐻 such that 𝑆(ℎ1)ℎ2 = 𝜀(ℎ)1𝐻 = ℎ1𝑆(ℎ2). Naturally, there is a notion of antipode
for weak bialgebras.

Definition 1.6 (Weak Hopf algebra). A quintuple 𝐻 = (𝐻, 𝑚, 𝑢,Δ, 𝜀, 𝑆) is a k-weak Hopf
algebra if (𝐻, 𝑚, 𝑢,Δ, 𝜀) is a k-weak bialgebra, and there exists a k-linear map 𝑆 : 𝐻 → 𝐻

(antipode) that satisfies the following properties for all ℎ ∈ 𝐻:

(i) 𝑆(ℎ1)ℎ2 = 𝜀𝑠(ℎ);

(ii) ℎ1𝑆(ℎ2) = 𝜀𝑡(ℎ);

(iii) 𝑆(ℎ1)ℎ2𝑆(ℎ3) = 𝑆(ℎ).

Remark 1.7. Notice that the antipode axioms for a weak Hopf algebra use the maps 𝜀𝑠 and
𝜀𝑡 instead of 𝜀 as for ordinary Hopf algebras. In fact, a weak Hopf algebra 𝐻 is a classical
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Hopf algebra if and only if 𝐻 is a bialgebra and 𝑆(ℎ1)ℎ2 = 𝜀(ℎ)1 (or ℎ1𝑆(ℎ2) = 𝜀(ℎ)1), for all
ℎ ∈ 𝐻 [BNS99, p. 5]. Moreover, it follows from Definition 1.6 that 𝑆 is anti-multiplicative
with respect to 𝑚, and anti-comultiplicative with respect to Δ.

As expected, a morphism of weak Hopf algebras between 𝐻 and 𝐾 (with respective
antipodes 𝑆𝐻 and 𝑆𝐾) is a k-weak bialgebra map 𝑓 : 𝐻 → 𝐾 such that 𝑓 𝑆𝐻 = 𝑆𝐾 𝑓 .

A k-subspace 𝐼 of a weak bialgebra 𝐻 is called a (weak) biideal if it is a two-sided ideal of
the underlying algebra structure of 𝐻 and a coideal of the underlying coalgebra structure
of 𝐻. Further, 𝐼 is called a (weak) Hopf ideal if it is a biideal of a weak Hopf algebra 𝐻 such
that 𝑆(𝐼) ⊆ 𝐼.

Now, we mention some remarkable examples of weak bialgebras and weak Hopf
algebras over k. More can be found in [BCJ11, BNS99, RWZ21, Szl01, NV02].

Example 1.8 (Groupoid algebras; e.g., [NV02, Example 2.5]). Let 𝒢 be a finite groupoid,
that is, a finite category in which every morphism has inverse. Consider the k-vector space
k𝒢 with basis given by the morphisms 𝑔 in 𝒢. We define the product of two morphisms
as their composition if it is defined and 0 otherwise. This extends linearly to define a
multiplication on k𝒢, so that the unit of k𝒢 is 1k𝒢 =

∑𝑛
𝑖=1 𝑒𝑖 , where 𝑒𝑖 denotes the identity

morphism of the 𝑖th object of 𝒢. The algebra k𝒢 is known as the groupoid algebra of 𝒢.
Furthermore, k𝒢 has structure of (finite-dimensional) weak Hopf algebra via

Δ(𝑔) = 𝑔 ⊗ 𝑔, 𝜀(𝑔) = 1, 𝑆(𝑔) = 𝑔−1 , ∀𝑔 ∈ 𝒢.

Moreover, for every 𝑔 ∈ 𝒢,

𝜀𝑠(𝑔) = 11𝜀(𝑔12) =
𝑛∑
𝑖=1

𝑒𝑖𝜀(𝑔𝑒𝑖) = 𝑒𝑡(𝑔) ,

where 𝑡(𝑔) denotes the target object of 𝑔 and composition is written left-to-right. Hence
(k𝒢)𝑠 =

⊕𝑛
𝑖=1 k𝑒𝑖 = (k𝒢)𝑡 . Groupoids, their algebras and their (co)representations are

studied in dept in Section 1.4. The groupoid algebra is a Hopf algebra if and only if 𝒢 = 𝐺

is a group (that is, a groupoid with only one object).

Notice that, for any integer 𝑛 > 0, the matrix algebra 𝑀𝑛(k) can be seen as a groupoid
algebra and thus these are a particular examples of weak Hopf algebras.

Example 1.9 (Path algebras; e.g., [WWW22, Example 4.9]). Let 𝑄 be a finite quiver, that
is, a quadruple 𝑄 = (𝑄0 , 𝑄1 , 𝑠 , 𝑡), where 𝑄0 (resp., 𝑄1) is a finite collection of vertices
(resp., arrows), and 𝑠, 𝑡 : 𝑄1 → 𝑄0 denote the source and target maps, respectively. We
read paths of 𝑄 from left-to-right. For any quiver 𝑄, its associative, unital path algebra
k𝑄 is the k-algebra having as basis the paths of 𝑄 with ring structure determined by
path concatenation when possible: 𝑎 ∗ 𝑏 = 𝛿𝑡(𝑎),𝑠(𝑏)𝑎𝑏, for all paths 𝑎, 𝑏 of 𝑄. The unit is
1k𝑄 =

∑
𝑖∈𝑄0 𝑒𝑖 , where each 𝑒𝑖 is the trivial path at vertex 𝑖th of 𝑄. Furthermore, k𝑄 has a
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weak bialgebra structure given by

Δ(𝑒𝑖) = 𝑒𝑖 ⊗ 𝑒𝑖 , 𝜀(𝑒𝑖) = 1, 1 ≤ 𝑖 ≤ 𝑛,

Δ(𝑝) = 𝑝 ⊗ 𝑝, 𝜀(𝑝) = 1, ∀𝑝 ∈ 𝑄1.

Also, (k𝑄)𝑠 =
⊕𝑛

𝑖=1 k𝑒𝑖 = (k𝑄)𝑡 . Quivers, their algebras and their (co)representations are
studied in dept in Section 1.5. The path algebra k𝑄 is a bialgebra if and only if |𝑄0 | = 1. In
general, k𝑄 does not admit antipode. The path algebra k𝑄 is N-graded by path length,
where (k𝑄)𝑘 = k(𝑄𝑘), for 𝑄𝑘 consisting of paths of length 𝑘 ∈ N.

Example 1.10 (Hayashi’s face algebras; [Hay96, Example 1.1]). Let 𝑄 be a finite quiver,
and denote by 𝑄𝑘 the set of all paths of length 𝑘 ∈ N in 𝑄. For a path 𝑎, let 𝑠(𝑎) and 𝑡(𝑎)
denote the source and target vertex of 𝑎, respectively. By ℌ(𝑄) we denote the k-vector
space that has k-basis given by elements {𝑥𝑎,𝑏}𝑎,𝑏∈𝑄𝑘

, for each 𝑘 ≥ 0. The ring structure of
ℌ(𝑄) is determined by the following relations:

𝑥𝑖 , 𝑗𝑥𝑖′, 𝑗′ = 𝛿𝑖 ,𝑖′𝛿 𝑗 , 𝑗′𝑥𝑖 , 𝑗 , ∀𝑖 , 𝑗 , 𝑖′, 𝑗′ ∈ 𝑄0 ,

𝑥𝑠(𝑝),𝑠(𝑞)𝑥𝑝,𝑞 = 𝑥𝑝,𝑞 = 𝑥𝑝,𝑞𝑥𝑡(𝑝),𝑡(𝑞) , ∀𝑝, 𝑞 ∈ 𝑄1 ,

𝑥𝑝,𝑞𝑥𝑝′,𝑞′ = 𝛿𝑡(𝑝),𝑠(𝑝′)𝛿𝑡(𝑞),𝑠(𝑞′)𝑥𝑝𝑝′,𝑞𝑞′ , ∀𝑝, 𝑝′, 𝑞, 𝑞′ ∈ 𝑄1.

The unit is 1ℌ(𝑄) =
∑
𝑖 , 𝑗∈𝑄0 𝑥𝑖 , 𝑗 . The algebra ℌ(𝑄) is known as the Hayashi’s face algebra

attached to 𝑄, and it has weak bialgebra structure given by

Δ(𝑥𝑎,𝑏) =
∑
𝑐∈𝑄𝑘

𝑥𝑎,𝑐 ⊗ 𝑥𝑐,𝑏 𝜀(𝑥𝑎,𝑏) = 𝛿𝑎,𝑏 , ∀𝑎, 𝑏 ∈ 𝑄𝑘 , 𝑘 ≥ 0.

For each 𝑗 ∈ 𝑄0, the face idempotents of ℌ(𝑄) are 𝑎 𝑗 :=
∑
𝑖∈𝑄0 𝑥𝑖 , 𝑗 and 𝑎′

𝑗
=

∑
𝑖∈𝑄0 𝑥 𝑗 ,𝑖 . Hence,

for 𝑎, 𝑏 ∈ 𝑄𝑘 , 𝜀𝑠(𝑥𝑎,𝑏) = 𝛿𝑎,𝑏
∑
𝑖∈𝑄0 𝑥𝑖 ,𝑡(𝑏) and 𝜀𝑡(𝑥𝑎,𝑏) = 𝛿𝑎,𝑏

∑
𝑗∈𝑄0 𝑥𝑠(𝑏), 𝑗 . Thus, as k-vector

spaces, ℌ(𝑄)𝑠 =
⊕

𝑗∈𝑄0
k𝑎 𝑗 and ℌ(𝑄)𝑡 =

⊕
𝑗∈𝑄0
k𝑎′

𝑗
. In general, ℌ(𝑄) does not admit

antipode. Hayashi’s face algebra has a N-grading given by

(ℌ(𝑄))𝑘 =
⊕
𝑎,𝑏∈𝑄𝑘

k𝑥𝑎,𝑏 , for all 𝑘 ∈ N.

More details on the construction of this weak bialgebra can be found in [Hay93].

Example 1.11 (Direct sums; e.g. [HWWW23, Lemma 2.24]). If 𝐻, 𝐾 are weak bialgebras,
then their direct sum 𝐻 ⊕ 𝐾 is again a weak bialgebra with the following structure for all
ℎ, 𝑔 ∈ 𝐻 and 𝑘, 𝑙 ∈ 𝐾:

multiplication: (ℎ, 𝑘)(𝑔, 𝑙) := (ℎ𝑔, 𝑘𝑙),
unit: 1𝐻⊕𝐾 := (1𝐻 , 1𝐾),

comultiplication: Δ𝐻⊕𝐾(ℎ, 𝑘) := (ℎ1 , 0) ⊗ (ℎ2 , 0) + (0, 𝑘1) ⊗ (0, 𝑘2),
counit 𝜀𝐻⊕𝐾(ℎ, 𝑘) := 𝜀𝐻(ℎ) + 𝜀𝐾(𝑘).
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Also,

(𝜀𝐻⊕𝐾)𝑠(ℎ, 𝑘) = ((𝜀𝐻)𝑠(ℎ), (𝜀𝐾)𝑠(𝑘)), (𝐻 ⊕ 𝐾)𝑠 = 𝐻𝑠 ⊕ 𝐾𝑠 ,
(𝜀𝐻⊕𝐾)𝑡(ℎ, 𝑘) = ((𝜀𝐻)𝑡(ℎ), (𝜀𝐾)𝑡(𝑘)), (𝐻 ⊕ 𝐾)𝑡 = 𝐻𝑡 ⊕ 𝐾𝑡 .

Furthermore, if both 𝐻 and 𝐾 have antipode, then 𝑆𝐻⊗𝐾 := (𝑆𝐻(ℎ), 𝑆𝐾(𝑘)) defines an
antipode for 𝐻 ⊕ 𝐾. This construction covers three remarkable contexts:

(i) It is known that the direct sum of Hopf algebras is not necessarily a Hopf algebra,
but via this example, it is always a weak Hopf algebra;

(ii) The 𝑛-space k𝑛 and the matrix algebra 𝑀𝑛(𝐻) are weak Hopf algebra for any integer
𝑛 > 0;

(iii) In [Nik01, Section 3.2] a Lie algebroid is defined as the weak Hopf algebra obtained
from a direct sum of universal enveloping algebras of Lie algebras, and this is used to
prove a generalized version of the Cartier-Gabriel-Kostant-Milnor-Moore Theorem
for cocommutative weak Hopf algebras. These Lie algebroids will be studied in dept
in Section 2.3.

Example 1.12 (e.g., [RWZ21, Example 5.4]). Let 𝐻 be a weak Hopf algebra, 𝜎 a weak Hopf
algebra automorphism of 𝐻, and Z = ⟨𝑎⟩ an infinite cyclic group. 𝐻 is a kZ-module
algebra (action induced by 𝜎; see Definition 1.27 below). Then the smash product 𝐻#kZ,
which as vector space is 𝐻 ⊗ kZ, is a weak Hopf algebra via the following structure for all
ℎ, 𝑘 ∈ 𝐻 and 𝑚, 𝑛 ∈ Z:

multiplication: (ℎ ⊗ 𝑎𝑚)(𝑘 ⊗ 𝑎𝑛) := ℎ𝜎𝑚(𝑘) ⊗ 𝑎𝑚+𝑛 ,

unit: 1𝐻#kZ := 1𝐻 ⊗ 𝑎0 ,

comultiplication: Δ𝐻#kZ(ℎ ⊗ 𝑎𝑚) := (ℎ1 ⊗ 𝑎𝑚) ⊗ (ℎ2 ⊗ 𝑎𝑚),
counit 𝜀𝐻#kZ(ℎ ⊗ 𝑎𝑚) := 𝜀(ℎ),

antipode: 𝑆𝐻#kZ(ℎ ⊗ 𝑎𝑚) := 𝜎−𝑚(𝑆(ℎ)) ⊗ 𝑎−𝑚 .

This construction is isomorphic, as algebra, to the skew Laurent polynomial ring 𝐻[𝑥±1; 𝜎],
via ℎ ↦→ ℎ ⊗ 𝑎0, for all ℎ ∈ 𝐻, and 𝑥 ↦→ 1 ⊗ 𝑎.

1.2 Monoidal categories

Let 𝒞 be any category. The collection of objects of 𝒞 is denoted Ob(𝒞), but we write
𝑋 ∈ 𝒞 as a shorthand for 𝑋 ∈ Ob(𝒞). For every pair of objects 𝑋,𝑌 ∈ 𝒞, we denote the set
of morphisms from 𝑋 to 𝑌 by Hom𝒞(𝑋,𝑌). If 𝑓 ∈ Hom𝒞(𝑋,𝑌) we also write 𝑓 : 𝑋 → 𝑌.
For all pairs of morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 in 𝒞 the the composition of 𝑔 and
𝑓 is denoted 𝑔 𝑓 : 𝑋 → 𝑍. In this case, we call 𝑓 and 𝑔 composable. For each 𝑋 ∈ 𝒞, the
identity morphism of 𝑋 is denoted Id𝑋 : 𝑋 → 𝑋. Also, recall that an additive category is
called k-linear if the hom-sets are k-vector spaces and the composition of morphisms is
bilinear over k.
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Example 1.13. Let 𝐴, 𝐵 be algebras and 𝐶, 𝐷 be coalgebras over k. We consider the
following categories:

• Set, of sets together with set-theoretic functions,

• k- Vec, of k-vector spaces together with k-linear maps,

• Alg, of k-algebras together with k-algebra morphisms,

• 𝑋-Alg, of k-algebras with a complete set of nonzero orthogonal idempotents indexed
by a nonempty finite set 𝑋, together with 𝑋-preserving k-algebra morphisms (see
Definition 2.26),

• Coalg, of k-coalgebras together with k-coalgebra morphisms,

• WBA, of weak bialgebras together with k-weak bialgebra morphisms,

• WHA, of weak Hopf algebras together with k-weak Hopf algebra morphisms.

We also denote the categories of left/right modules over 𝐴 respectively by 𝐴-mod and
mod-𝐴. Similarly, the category of left/right comodules over 𝐶 are respectively denoted
by 𝐶-comod and comod-𝐶. Furthermore, we denote the category of (𝐴, 𝐵)-bimodules by
𝐴-bimod-𝐵 and the category of (𝐷, 𝐶)-bicomodules by 𝐷-bicomod-𝐶.

Next, we introduce the concept of a category having a structure resembling a monoid.
This concept plays a fundamental role in our subsequent work.

Definition 1.14 (Monoidal category, e.g. [EGNO15, Definition 2.2.8]). A monoidal
category (𝒞 , ⊗, 1) is a category 𝒞 together with a bifunctor ⊗ : 𝒞×𝒞 → 𝒞 (monoidal product),
a natural isomorphism 𝛼□,△,^ : (□ ⊗ △) ⊗ ^ ∼−→ □ ⊗ (△ ⊗ ^) (associative constraint), an object
1 ∈ 𝒞 (monoidal unit), and natural isomorphisms 𝑙□ : 1 ⊗ □ ∼−→ □ and 𝑟□ : □ ⊗ 1

∼−→ □ (unital
constraints), such that the pentagon and triangle axioms are satisfied:

• For all𝑊, 𝑋,𝑌, 𝑍 ∈ 𝒞 the following diagram commutes:

((𝑊 ⊗ 𝑋) ⊗ 𝑌) ⊗ 𝑍

(𝑊 ⊗ (𝑋 ⊗ 𝑌)) ⊗ 𝑍 (𝑊 ⊗ 𝑋) ⊗ (𝑌 ⊗ 𝑍)

𝑊 ⊗ ((𝑋 ⊗ 𝑌) ⊗ 𝑍) 𝑊 ⊗ (𝑋 ⊗ (𝑌 ⊗ 𝑍))

𝛼𝑊⊗𝑋,𝑌,𝑍𝛼𝑊,𝑋,𝑌⊗Id𝑍

𝛼𝑊,𝑋⊗𝑌,𝑍 𝛼𝑊,𝑋,𝑌⊗𝑍

Id𝑊 ⊗𝛼𝑋,𝑌,𝑍
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• For all 𝑋,𝑌 ∈ 𝒞 the following diagram commutes:

(𝑋 ⊗ 1) ⊗ 𝑌 𝑋 ⊗ (1 ⊗ 𝑌)

𝑋 ⊗ 𝑌

𝛼𝑋,1,𝑌

𝑟𝑋⊗Id𝑌 Id𝑋 ⊗𝑙𝑌

Some examples of monoidal categories are the following. More can be found in, e.g.,
[EGNO15, Section 2.3].

Example 1.15 (e.g., [EGNO15, Example 2.3.3]). The category Veck := (k- Vec, ⊗k , k) of k-
vector spaces, together with the canonical associativity and unit isomorphisms, is monoidal.
An important subcategory that carries the monoidal structure is that of finite-dimensional
vector spaces, veck.

It is important to note that in this chapter we will use different notations for both the
category itself and the enriched monoidal structure. Furthermore, in the sequel, when
discussing a monoidal category without explicitly mentioning the associative or unital
constraints, it is understood that they are the same as those in the category Veck.

Example 1.16 (e.g., [BCJ11, Section 2]). Let 𝐴 be a k-algebra. Given two (𝐴, 𝐴)-bimodules
𝑀 and 𝑁 , the tensor product of 𝑀 and 𝑁 over 𝐴 is the (𝐴, 𝐴)-bimodule given by

𝑀 ⊗𝐴 𝑁 := (𝑀 ⊗ 𝑁)/Img(𝜈𝑀 ⊗ Id𝑁 − Id𝑀 ⊗𝜇𝑁 ).

Notice that 𝑀 ⊗𝐴 𝑁 is a k-quotient space of 𝑀 ⊗ 𝑁 . The category of (𝐴, 𝐴)-bimodules,
𝐴ℳ𝐴 := (𝐴-bimod-𝐴, ⊗𝐴 , 𝐴), is monoidal.

Example 1.17 (e.g., [BCJ11, Section 3]). Let 𝐶 be a k-coalgebra. Given two (𝐶, 𝐶)-
bicomodules 𝑀 and 𝑁 , the cotensor product of 𝑀 and 𝑁 over 𝐶 is the (𝐶, 𝐶)-bimodule
given by

𝑀 ⊗𝐶 𝑁 := ker(𝜌𝑀 ⊗ Id𝑁 − Id𝑀 ⊗𝜆𝑁 ).

Notice that 𝑀 ⊗𝐶 𝑁 is a k-subspace of 𝑀 ⊗ 𝑁 . The category of (𝐶, 𝐶)-comodules,
𝐶ℳ𝐶 := (𝐶-bicomod-𝐶, ⊗𝐶 , 𝐶), is monoidal.

Now, we proceed to define special functors between monoidal categories; see e.g.
[DP08], [Str07, Chapter 13], [Szl05, Equations 6.46 and 6.47] or [WWW22, Definition 3.3]
for further details.

Definition 1.18 ((Co)monoidal functor). Let (𝒞 , ⊗𝒞 , 1𝒞) and (𝒟 , ⊗𝒟 , 1𝒟) be two
monoidal categories.

(i) A functor 𝐹 : 𝒞 → 𝒟 is monoidal if it is equipped with a natural transformation
𝐹□,△ : 𝐹(□) ⊗𝒟 𝐹(△) → 𝐹(□ ⊗𝒞 △), and a morphism 𝐹0 : 1𝒟 → 𝐹(1𝒞) in 𝒟, such that
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associative and unital constraints are satisfied, that is, for all 𝑋,𝑌, 𝑍 ∈ 𝒞,

𝐹𝑋,𝑌⊗𝒞𝑍(Id𝐹(𝑋) ⊗𝒟𝐹𝑌,𝑍)𝛼𝐹(𝑋),𝐹(𝑌),𝐹(𝑍) = 𝐹(𝛼𝑋,𝑌,𝑍)𝐹𝑋⊗𝒞𝑌,𝑍(𝐹𝑋,𝑌 ⊗𝒟 Id𝐹(𝑍)),
𝐹(𝑙𝑋)−1𝑙𝐹(𝑋) = 𝐹1𝒞 ,𝑋(𝐹0 ⊗𝒟 Id𝐹(𝑋)),
𝐹(𝑟𝑋)−1𝑟𝐹(𝑋) = 𝐹𝑋,1𝒞 (Id𝐹(𝑋) ⊗𝒟𝐹0).

Moreover, the functor is called strong monoidal if 𝐹0 and 𝐹𝑋,𝑌 are isomorphisms, for
all 𝑋,𝑌 ∈ 𝒞.

(ii) A functor 𝐹 : 𝒞 → 𝒟 is comonoidal if it is equipped with a natural transformation
𝐹□,△ : 𝐹(□ ⊗𝒞 △) → 𝐹(□) ⊗𝒟 𝐹(△), and a morphism 𝐹0 : 𝐹(1𝒞) → 1𝒟 in 𝒟, such that
coassociativity and counitality constraints are satisfied, that is, for all 𝑋,𝑌, 𝑍 ∈ 𝒞,

𝛼𝐹(𝑋),𝐹(𝑌),𝐹(𝑍)(𝐹𝑋,𝑌 ⊗𝒟 Id𝐹(𝑍))𝐹𝑋⊗𝒞𝑌,𝑍 = (Id𝐹(𝑋) ⊗𝒟𝐹𝑌,𝑍)𝐹𝑋,𝑌⊗𝒞𝑍𝐹(𝛼𝑋,𝑌,𝑍),
𝑙−1
𝐹(𝑋)𝐹(𝑙𝑋) = (𝐹0 ⊗𝒟 Id𝐹(𝑋))𝐹1𝒞 ,𝑋 ,

𝑟−1
𝐹(𝑋)𝐹(𝑟𝑋) = (Id𝐹(𝑋) ⊗𝒟𝐹

0)𝐹𝑋,1𝒞 .

Moreover, the functor is called strong comonoidal if 𝐹0 and 𝐹𝑋,𝑌 are isomorphisms for
all 𝑋,𝑌 ∈ 𝒞.

Our notion of (co)monoidal functor is also referred to as a lax (co)monoidal functor in
the literature. In those cases, a strong (co)monoidal functor is simply referred to as a
(co)monoidal functor. It is worth noting that a strong monoidal functor is the same as a
strong comonoidal functor.

Two monoidal categories are said to be monoidally equivalent if there exists a strong
(co)monoidal functor between them that is an equivalence of ordinary categories. Similarly,
two monoidal categories are said to be monoidally isomorphic if there exists a strong
(co)monoidal functor between them that is an isomorphism of ordinary categories.

Definition 1.19 (Frobenius monoidal functor). A functor 𝐹 : 𝒞 → 𝒟 is Frobenius
monoidal if it is simultaneously monoidal and comonoidal, and such that for all 𝑋,𝑌, 𝑍 ∈ 𝒞,
the following identities hold:

(𝐹𝑋,𝑌 ⊗𝒟 Id𝐹(𝑍))𝛼−1
𝐹(𝑋),𝐹(𝑌),𝐹(𝑍)(Id𝐹(𝑋) ⊗𝒟𝐹

𝑌,𝑍) = 𝐹𝑋⊗𝒞𝑌,𝑍𝐹(𝛼−1
𝑋,𝑌,𝑍)𝐹𝑋,𝑌⊗𝒞𝑍 ,

(Id𝐹(𝑋) ⊗𝒟𝐹𝑌,𝑍)𝛼𝐹(𝑋),𝐹(𝑌),𝐹(𝑌)(𝐹𝑋,𝑌 ⊗𝒟 Id𝐹(𝑍)) = 𝐹𝑋,𝑌⊗𝒞𝑍𝐹(𝛼𝑋,𝑌,𝑍)𝐹𝑋⊗𝒞𝑌,𝑍 .

Any strong (co)monoidal functor is Frobenius monoidal [DP08, Proposition 3].

In monoidal categories, there exist distinguished objects that exhibit behavior reminis-
cent of (co)algebras. This leads to the following concepts; see e.g., [B1̈8, Definition 7.1] or
[EGNO15, Definition 7.20.3] for further details.

Definition 1.20 (Monoid, comonoid, Frobenius monoid). Let (𝒞 , ⊗𝒞 , 1𝒞) be a monoidal
category.

(i) A triple (𝐴, 𝑚, 𝑢) is a monoid in 𝒞 if 𝐴 ∈ 𝒞, and the morphisms 𝑚 : 𝐴 ⊗ 𝐴→ 𝐴 and
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𝑢 : 1𝒞 → 𝐴 in 𝒞 satisfy:

𝑚(𝑚 ⊗ Id) = 𝑚(Id ⊗𝑚)𝛼𝐴,𝐴,𝐴 (associativity constraint),
𝑚(𝑢 ⊗ Id) = 𝑙𝐴 , 𝑚(Id ⊗𝑢) = 𝑟𝐴 (unitality constraints).

Given two monoids (𝐴, 𝑚𝐴 , 𝑢𝐴) and (𝐵, 𝑚𝐵 , 𝑢𝐵) in 𝒞, a morphism of monoids from 𝐴

to 𝐵 is a morphism 𝑓 : 𝐴→ 𝐵 in 𝒞 so that 𝑓 𝑚𝐴 = 𝑚𝐵( 𝑓 ⊗ 𝑓 ) and 𝑓 𝑢𝐴 = 𝑢𝐵. Monoids
in 𝒞 together with their morphisms form a category, which we denote by Mon(𝒞).

(ii) A triple (𝒞 ,Δ, 𝜀) is a comonoid in 𝒞 if 𝐶 ∈ 𝒞, and the morphisms Δ : 𝐶 → 𝐶 ⊗ 𝐶 and
𝜀 : 𝐶 → 1 in 𝒞 satisfy:

𝛼𝐶,𝐶,𝐶(Δ ⊗ Id)Δ = (Id ⊗Δ)Δ (coassociativity constraint),
(𝜀 ⊗ Id)Δ = 𝑙−1

𝐶 , (Id ⊗𝜀)Δ = 𝑟−1
𝐶 , (counitality constraints).

Given two comonoids (𝐶,Δ𝐶 , 𝜀𝐶), (𝐷,Δ𝐷 , 𝜀𝐷) in 𝒞, a morphism of comonoids from
𝐶 to 𝐷 is a morphism 𝑔 : 𝐶 → 𝐷 in 𝒞 so that Δ𝐷 𝑔 = (𝑔 ⊗ 𝑔)Δ𝐶 and 𝜀𝐷 𝑔 = 𝜀𝐶 .
Comonoids in 𝒞 together with their morphisms form a category, which we denote
by Comon(𝒞).

(iii) A quintuple (𝐴, 𝑚, 𝑢,Δ, 𝜀) is a Frobenius monoid in 𝒞 if (𝐴, 𝑚, 𝑢) ∈ Mon(𝒞) and
(𝐴,Δ, 𝜀) ∈ Comon(𝒞), so that

(𝑚 ⊗ Id)𝛼−1
𝐴,𝐴,𝐴(Id ⊗Δ) = Δ𝑚 = (Id ⊗𝑚)𝛼𝐴,𝐴,𝐴(Δ ⊗ Id).

A morphism of Frobenius monoids in 𝒞 is a morphism in 𝒞 that lies in both Mon(𝒞) and
Comon(𝒞). Frobenius monoids in 𝒞 and their morphisms form a category, which
we denote by FrobMon(𝒞).

Our notion of monoid object (resp. comonoid object, Frobenius monoid object) is also
referred to as an algebra (resp. coalgebra, Frobenius algebra) in 𝒞. In fact, it is worth noting
that monoids, comonoids, and Frobenius monoids in the category Veck correspond to
k-algebras, k-coalgebras, and Frobenius algebras over k, respectively. Furthermore, if we
restrict our attention to the category of finite-dimensional vector spaces veck, we recover
the finite-dimensional versions of these concepts.

We end this section by recalling that these distinguished objects are preserved by
the corresponding type of functor. This result follows from [Str07, p. 100-101], [Szl05,
Lemma 2.1], [DP08, Corollary 5], and [KR09, Proposition 2.13].

Proposition 1.21. Let (𝒞 , ⊗𝒞 , 1𝒞) and (𝒟 , ⊗𝒟 , 1𝒟) be two monoidal categories. We have the
following assertions:

(i) If 𝐹 : 𝒞 → 𝒟 is a monoidal functor and (𝐴, 𝑚, 𝑢) ∈ Mon(𝒞), then

(𝐹(𝐴), 𝐹(𝑚)𝐹𝐴,𝐴 , 𝐹(𝑢)𝐹0) ∈ Mon(𝒟).
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(ii) If 𝐹 : 𝒞 → 𝒟 is a comonoidal functor and (𝐶,Δ, 𝜀) ∈ Comon(𝒞), then

(𝐹(𝐶), 𝐹𝐶,𝐶𝐹(Δ), 𝐹0𝐹(𝜀)) ∈ Comon(𝒟).

(iii) If 𝐹 : 𝒞 → 𝒟 is a Frobenius monoidal functor and (𝐴, 𝑚, 𝑢,Δ, 𝜀) ∈ FrobMon(𝒞), then

(𝐹(𝐴), 𝐹(𝑚)𝐹𝐴,𝐴 , 𝐹(𝑢)𝐹0 , 𝐹
𝐴,𝐴𝐹(Δ), 𝐹0𝐹(𝜀)) ∈ FrobMon(𝒟).

1.3 (Co)actions of weak bialebras

This section is dedicated to proving that both the category of modules and the category
of comodules over a weak bialgebra are monoidal. Additionally, we will establish a
correspondence between (co)monoids in these categories and the traditional notions of
(co)module (co)algebras over a weak Hopf algebra. In this section 𝐻 will denote a k-weak
bialgebra.

1.3.1 Weak actions

We start by recalling the monoidal structure of the left representation category 𝐻-mod;
see e.g., [BCJ11, Section 2], [NTV03, Section 4], [NV02, Section 5] or [Nil98, Section 2]
for further details. It suffices to work with left representations since 𝐻op is also a weak
bialgebra and 𝐻-mod � mod-𝐻op [NV02, Remark 2.4.1]. As stated in the Introduction, for
the rest of this section, we assume that all modules are left-sided.

Definition 1.22 (𝐻-monoidal product of modules). Given two 𝐻-modules 𝑀 and 𝑁 ,
the 𝐻-monoidal product of 𝑀 with 𝑁 is the subspace

𝑀⊗𝑁 := ⟨𝑥 ⊗ 𝑦 ∈ 𝑀 ⊗ 𝑁 | 𝑥 ⊗ 𝑦 = 11 · 𝑥 ⊗ 12 · 𝑦⟩ ⊆ 𝑀 ⊗ 𝑁.

If 𝑥 ⊗ 𝑦 ∈ 𝑀⊗𝑁 , we write 𝑥⊗𝑦. Given two morphisms 𝑓 : 𝑀 → 𝑀′ and 𝑔 : 𝑁 → 𝑁′ in
𝐻-mod, the 𝐻-monoidal product of 𝑓 with 𝑔 is given by

𝑓 ⊗𝑔 : 𝑀⊗𝑁 → 𝑀′⊗𝑁′

𝑥⊗𝑦 ↦→ 𝑓 (𝑥)⊗𝑔(𝑦).

Remark 1.23. Let 𝑀, 𝑁, 𝑓 , 𝑔 as in Definition 1.22.

(i) Notice that 𝑀⊗𝑁 = Δ(1)(𝑀 ⊗ 𝑁), which corresponds to the unital submodule
1 · (𝑀 ⊗ 𝑁) of the non-unital left 𝐻-action on 𝑀 ⊗ 𝑁 given by

ℎ · (𝑥 ⊗ 𝑦) := ℎ1 · 𝑥 ⊗ ℎ2 · 𝑦, (1.4)

for all ℎ ∈ 𝐻, 𝑥 ∈ 𝑀 and 𝑦 ∈ 𝑁 . Hence, 𝑀⊗𝑁 ∈ 𝐻-mod. Furthermore, there are
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inclusion and projection maps given by

𝜄𝑀,𝑁 : 𝑀⊗𝑁 → 𝑀 ⊗ 𝑁 𝜋𝑀,𝑁 : 𝑀 ⊗ 𝑁 → 𝑀⊗𝑁
𝑥⊗𝑦 ↦→ 11 · 𝑥 ⊗ 12 · 𝑦, 𝑥 ⊗ 𝑦 ↦→ 11 · 𝑥⊗12 · 𝑦.

(ii) Since for every 𝑥⊗𝑦 ∈ 𝑀⊗𝑁 we have 11 · 𝑓 (𝑥)⊗12 · 𝑔(𝑥) = 𝑓 (𝑥)⊗ 𝑔(𝑦), the𝐻-monoidal
product of 𝐻-module maps is well defined. Moreover, 𝑓 ⊗𝑔 = ( 𝑓 ⊗ 𝑔)|𝑀⊗𝑁 .

The counital subalgebra 𝐻𝑡 is an 𝐻-module via ℎ · 𝑘 = 𝜀𝑡(ℎ𝑘), for all ℎ ∈ 𝐻 and 𝑘 ∈ 𝐻𝑡 .
This allows us to define the 𝐻-isomorphisms given by

𝑙𝑀 : 𝐻𝑡⊗𝑀 → 𝑀 𝑟𝑀 : 𝑀⊗𝐻𝑡 → 𝑀

𝑘⊗𝑥 ↦→ 𝑘 · 𝑥, 𝑥⊗𝑘 ↦→ 𝑘 · 𝑥,

for every 𝑀 ∈ 𝐻-mod. Using (1.3), the inverses of these morphisms are defined as

𝑙−1
𝑀 : 𝑀 → 𝐻𝑡⊗𝑀 𝑟−1

𝑀 : 𝑀 → 𝑀⊗𝐻𝑡

𝑥 ↦→ 11⊗12 · 𝑥, 𝑥 ↦→ 11 · 𝑥 ⊗ 12.

These constructions guarantee the following result.

Proposition 1.24 ([BCJ11, Theorem 2.3]). The category 𝐻ℳ := (𝐻-mod, ⊗, 𝐻𝑡) is monoidal.

Now, we present some functors of 𝐻ℳ used later on.

Proposition 1.25 ([BCJ11, Theorem 2.4], [Szl05, Section 6]). Let𝑈 : 𝐻ℳ → Veck be the
forgetful functor. Then𝑈 is a Frobenius monoidal functor with monoidal functor structure given by

𝑈𝑀,𝑁 = 𝜋𝑀,𝑁 : 𝑀 ⊗ 𝑁 → 𝑀⊗𝑁 𝑈0 = 𝑢𝐻𝑡 : k→ 𝐻𝑡

𝑥 ⊗ 𝑦 ↦→ 11 · 𝑥 ⊗ 12 · 𝑦, 1k ↦→ 1𝐻 ,
(1.5)

and comonoidal functor structure given by

𝑈𝑀,𝑁 = 𝜄𝑀,𝑁 : 𝑀⊗𝑁 → 𝑀 ⊗ 𝑁 𝑈0 = 𝜀|𝐻𝑡 : 𝐻𝑡 → k
𝑥⊗𝑦 ↦→ 11 · 𝑥 ⊗ 12 · 𝑦, 𝑘 ↦→ 𝜀(𝑘),

(1.6)

for all 𝑀, 𝑁 ∈ 𝐻-mod.

Remark 1.26. Notice that
𝑈𝑀,𝑁𝑈

𝑀,𝑁 = Id𝑀⊗𝑁 . (1.7)

Moreover, as a consequence, any 𝐻-module has structure of 𝐻𝑡-bimodule with left action
𝜇𝑀 : 𝐻𝑡 ⊗ 𝑀 → 𝑀 and right 𝐻𝑡-action 𝜈𝑀 : 𝑀 ⊗ 𝐻𝑡 → 𝑀 given, respectively, by

𝜇𝑀(𝑘 ⊗ 𝑥) := 𝑘 · 𝑥, and 𝜈𝑀(𝑥 ⊗ 𝑘) := 𝜀(12𝑘)11 · 𝑥, (1.8)

for all 𝑘 ∈ 𝐻𝑡 and 𝑥 ∈ 𝑀. Furthermore, any𝐻-module map is a morphism of𝐻𝑡-bimodules.

Now, we establish an identification between monoid objects in 𝐻ℳ and k-algebras
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that also possess a compatible 𝐻-module structure. This duality allows us to bridge the
algebraic and categorical perspectives.

Definition 1.27 (𝐻-module algebra, e.g. [CG00, Section 4.5]). Let 𝐴 be a k-algebra. We
say that 𝐴 is an 𝐻-module algebra if 𝐴 ∈ 𝐻-mod, the action is multiplicative, that is, satisfies

ℎ · (𝑎𝑏) = (ℎ1 · 𝑎)(ℎ2 · 𝑏), for all ℎ ∈ 𝐻 and 𝑎, 𝑏 ∈ 𝐴, (1.9)

and the action is unital, that is, satisfies

ker(𝜀𝑡) · 1𝐴 = 0. (1.10)

Naturally, a morphism between 𝐻-module algebras is a k-algebra map that lies in 𝐻-mod.
The category of 𝐻-module algebras together with their morphisms is denoted by 𝐻𝒜.

Remark 1.28. Adapting [CG00, Proposition 4.15] to the left case, we get that (1.10) is
equivalent to each of the following conditions, for all ℎ, 𝑘 ∈ 𝐻 and 𝑎 ∈ 𝐴:

(ℎ𝑘) · 1𝐴 = 𝜀(ℎ1𝑘)ℎ2 · 1𝐴; (1.11)
(ℎ𝑘) · 1𝐴 = 𝜀(ℎ2𝑘)ℎ1 · 1𝐴; (1.12)

𝜀(11ℎ)12 · 𝑎 = (ℎ · 1𝐴)𝑎; (1.13)
𝜀(12ℎ)11 · 𝑎 = 𝑎(ℎ · 1𝐴); (1.14)

𝜀(11ℎ)12 · 1𝐴 = ℎ · 1𝐴; (1.15)
𝜀(12ℎ)11 · 1𝐴 = ℎ · 1𝐴. (1.16)

Recall the notation of Definition 1.20.

Theorem 1.29. The categories 𝐻𝒜 and Mon(𝐻ℳ) are isomorphic.

Proof. We prove the statement by defining two functors 𝐹 : 𝐻𝒜 → Mon(𝐻ℳ) and
𝐺 : Mon(𝐻ℳ) → 𝐻𝒜, and proving that they are inverse of each other. Firstly, given
𝐴 = (𝐴, 𝑚𝐴 , 𝑢𝐴) ∈ 𝐻𝒜, define

𝐹(𝐴) := (𝐴, 𝑚𝐴 := 𝑚𝐴𝑈
𝐴,𝐴 , 𝑢𝐴 := 𝜇𝐴(Id𝐻𝑡 ⊗𝑢𝐴)),

where 𝜇𝐴 : 𝐻𝑡 ⊗ 𝐴→ 𝐴 denotes the induced left 𝐻𝑡-action on 𝐴 of (1.8). By construction,

𝑚𝐴 : 𝐴⊗𝐴→ 𝐴 𝑢𝐴 : 𝐻𝑡 → 𝐴

𝑎⊗𝑏 ↦→ 𝑎𝑏, 𝑘 ↦→ 𝑘 · 1𝐴.
(1.17)

Similarly, given a morphism 𝑓 : (𝐴, 𝑚𝐴 , 𝑢𝐴) → (𝐵, 𝑚𝐵 , 𝑢𝐵) in 𝐻𝒜, we define the corre-
sponding morphism 𝐹( 𝑓 ) : (𝐴, 𝑚𝐴 , 𝑢𝐴) → (𝐵, 𝑚𝐵 , 𝑢𝐵) simply as 𝐹( 𝑓 ) := 𝑓 . To guarantee
that 𝐹 is in fact a functor, it suffices to show the following:
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• 𝑚𝐴 ∈ 𝐻ℳ: for all ℎ ∈ 𝐻 and 𝑎, 𝑏 ∈ 𝐴,

𝑚𝐴(ℎ · (𝑎⊗𝑏))
(1.4)
= 𝑚𝐴(ℎ1 · 𝑎⊗ℎ2 · 𝑏)

(1.17)
= (ℎ1 · 𝑎)(ℎ2 · 𝑏)

(1.9)
= ℎ · (𝑎𝑏) (1.17)

= ℎ · 𝑚𝐴(𝑎⊗𝑏).

• 𝑢𝐴 ∈ 𝐻ℳ: for all ℎ ∈ 𝐻 and 𝑘 ∈ 𝐻𝑡 ,

𝑢𝐴(ℎ · 𝑘) = 𝑢𝐴(𝜀𝑡(ℎ𝑘))
(1.17)
= 𝜀𝑡(ℎ𝑘) · 1𝐴

(1.15)
= ℎ𝑘 · 1 = ℎ · (𝑘 · 1𝐴)

(1.17)
= ℎ · 𝑢𝐴(𝑘).

• 𝑚𝐴 satisfies the associative constrain: this is immediate form the associativity of 𝑚𝐴.

• 𝑚𝐴 and 𝑢𝐴 satisfy the unitality constrains: recall that

𝑙𝐴 : 𝐻𝑡⊗𝐴→ 𝐴 𝑟𝐴 : 𝐴⊗𝐻𝑡 → 𝐴

𝑘⊗𝑎 ↦→ 𝑘 · 𝑎, 𝑎⊗𝑘 ↦→ 𝑘 · 𝑎,

so for every 𝑘 ∈ 𝐻𝑡 and 𝑎 ∈ 𝐴,

𝑚𝐴(𝑢𝐴⊗ Id𝐴)(𝑘⊗𝑎)
(1.17)
= (𝑘 · 1𝐴)𝑎

(1.13)
= 𝜀𝑡(𝑘) · 𝑎 = 𝑘 · 𝑎,

where in the last equality we have used Proposition 1.4(iii); the proof is similar for
the right unitality constraint.

• 𝐹( 𝑓 ) = 𝑓 ∈ 𝐻ℳ: this follows from the definition.

• 𝐹( 𝑓 ) = 𝑓 is a morphism of monoids: for 𝑎, 𝑏 ∈ 𝐴 and 𝑘 ∈ 𝐻𝑡 ,

𝑓 𝑚𝐴 (𝑎⊗𝑏) = 𝑓 (𝑎𝑏) = 𝑓 (𝑎) 𝑓 (𝑏) = 𝑚𝐵( 𝑓 (𝑎)⊗ 𝑓 (𝑏)),
𝑓 𝑢𝐴 (𝑘) = 𝑓 (𝑘 · 1𝐴) = 𝑘 · 𝑓 (1𝐴) = 𝑘 · 1𝐵 = 𝑢𝐵(𝑘).

The functoriality of 𝐹 is clear and hence, as claimed, 𝐹 : 𝐻𝒜 → Mon(𝐻ℳ) is a functor.

Conversely, for 𝐴 = (𝐴, 𝑚𝐴 , 𝑢𝐴) ∈ Mon(𝐻ℳ), we define

𝐺(𝐴) := (𝐴, 𝑚𝐴 := 𝑚𝐴𝑈𝐴,𝐴 , 𝑢𝐴 := 𝑢𝐴𝑈0).

By construction, 𝐺(𝐴) = (𝑈(𝐴), 𝑈(𝑚𝐴)𝑈𝐴,𝐴 , 𝑈(𝑢𝐴)𝑈0). Since the functor 𝑈 is monoidal,
by Proposition 1.21 we have that 𝐺(𝐴) is indeed a k-algebra. Similarly, for a morphism of
monoids 𝑔 : (𝐴, 𝑚𝐴 , 𝑢𝐴) → (𝐵, 𝑚𝐵 , 𝑢𝐵) we define 𝐺(𝑔) := 𝑔. To guarantee that 𝐺 is indeed
a functor, it suffices to prove the following:
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• 𝑚𝐴 satisfies (1.9): for ℎ ∈ 𝐻 and 𝑎, 𝑏 ∈ 𝐴,

ℎ · 𝑚𝐴(𝑎 ⊗ 𝑏) = ℎ · 𝑚𝐴(11 · 𝑎⊗12 · 𝑏) = 𝑚𝐴(ℎ1 · (11 · 𝑎)⊗ℎ2 · (12 · 𝑏))
= 𝑚𝐴(11 · (ℎ1 · 𝑎)⊗12 · (ℎ2 · 𝑏)) = 𝑚𝐴(ℎ1 · 𝑎 ⊗ ℎ2 · 𝑏)
= 𝑚𝐴(ℎ · (𝑎 ⊗ 𝑏)).

• 𝑢𝐴 satisfies (1.10): for ℎ ∈ 𝐻,

ℎ · 𝑢𝐴(1k) = ℎ · 𝑢𝐴(1𝐻) = 𝑢𝐴(ℎ · 1𝐻) = 𝑢𝐴(𝜀𝑡(ℎ)) = 𝑢𝐴(𝜀𝑡(ℎ) · 1𝐻)
= 𝜀𝑡(ℎ) · 𝑢𝐴(1𝐻) = 𝜀𝑡(ℎ) · 𝑢𝐴(1k),

which proves (1.15).

• 𝐺(𝑔) = 𝑔 is a 𝐻-module map: by construction 𝐺(𝑔) = 𝑔 ∈ 𝐻ℳ and for 𝑎, 𝑏 ∈ 𝐴,

𝑔(𝑚𝐴(𝑎 ⊗ 𝑏)) = 𝑔 𝑚𝐴 (11 · 𝑎⊗12 · 𝑏) = 𝑚𝐵(11 · 𝑔(𝑎)⊗12 · 𝑔(𝑏))
= 𝑚𝐵(𝑔 ⊗ 𝑔)(𝑎 ⊗ 𝑏),

which shows that 𝑔 is multiplicative, and

𝑔(𝑢𝐴(1k)) = 𝑔(𝑢𝐴(1𝐻)) = 𝑢𝐵(1𝐻) = 𝑢𝐵(1k),

so 𝑔 is an algebra map.

The functoriality of 𝐺 is clear and hence, as claimed, 𝐺 : Mon(𝐻ℳ) → 𝐻𝒜 is a functor.

Finally, we prove that 𝐹 and 𝐺 are inverse to each other. If (𝐴, 𝑚𝐴 , 𝑢𝐴) ∈ Mon(𝐻ℳ),
then

𝐹𝐺(𝐴) = (𝐴, 𝑚𝐴𝑈𝐴,𝐴𝑈
𝐴,𝐴 , 𝜇𝐴(Id𝐻𝑡 ⊗ 𝑢𝐴 𝑈0)).

It is clear from (1.7) that 𝑚𝐴𝑈𝐴,𝐴𝑈
𝐴,𝐴 = 𝑚𝐴, and

𝜇𝐴(Id𝐻𝑡 ⊗ 𝑢𝐴 𝑈0)(1𝐻) = 𝜇𝐴(1𝐻 ⊗ 𝑢𝐴(1𝐻)) = 1𝐻 · 𝑢𝐴(1𝐻) = 𝑢𝐴(1𝐻),

so 𝐹𝐺(𝐴) = 𝐴. Clearly, for any morphism of monoids 𝑔 in Mon(𝐻ℳ) we have 𝐹𝐺(𝑔) = 𝑔.
Hence 𝐹𝐺 = IdMon(𝐻ℳ).

Reciprocally, if 𝐴 = (𝐴, 𝑚𝐴 , 𝑢𝐴) ∈ 𝐻𝒜, then

𝐺𝐹(𝐴) = (𝐴, 𝑚𝐴𝑈
𝐴,𝐴𝑈𝐴,𝐴 , 𝜇𝐴(Id𝐻𝑡 ⊗𝑢𝐴)𝑈0).

For 𝑎, 𝑏 ∈ 𝐴 we have

𝑚𝐴𝑈
𝐴,𝐴𝑈𝐴,𝐴(𝑎 ⊗ 𝑏) = 𝑚𝐴𝑈

𝐴,𝐴(11 · 𝑎⊗12 · 𝑏) = 𝑚𝐴(11 · 𝑎 ⊗ 12 · 𝑏)

= (11 · 𝑎)(12 · 𝑏)
(1.9)
= 1 · (𝑎𝑏) = 𝑎𝑏,
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and thus 𝑚𝐴𝑈
𝐴,𝐴𝑈𝐴,𝐴 = 𝑚𝐴. Similarly,

[𝜇𝐴(Id𝐻𝑡 ⊗𝑢𝐴)𝑈0](1k) = 𝜇𝐴(Id𝐻𝑡 ⊗𝑢𝐴)(1𝐻) = 𝜇𝐴(1𝐻 ⊗ 1𝐴) = 1𝐻 · 1𝐴 = 1𝐴 ,

which means 𝜇𝐴(Id𝐻𝑡 ⊗𝑢𝐴)𝑈0 = 𝑢𝐴. Clearly, for any morphism of 𝐻-module algebras
𝑓 ∈ 𝐻𝒜 we have 𝐺𝐹( 𝑓 ) = 𝑓 and thus 𝐺𝐹 = Id

𝐻𝒜 . □

Example 1.30. Since the counital subalgebra 𝐻𝑡 is clearly a left 𝐻-module algebra, as
consequence of the previous result we have 𝐻𝑡 ∈ Mon(𝐻ℳ), which is consistent with the
fact that in a monoidal category the unit object is always a monoid.

The isomorphism of Theorem 1.29 allows us to make the following convention: if 𝐴 is
a k-algebra and an 𝐻-module so that 𝐴 ∈ Mon(𝐻ℳ) (by satisfying (1.9)-(1.10)), we call 𝐴
an 𝐻-module algebra. This makes the proof of the following proposition straightforward.

Proposition 1.31. Let {𝐻𝑥}𝑥∈𝑋 be a finite collection of a weak Hopf algebras.

(i) Then 𝐻 =
⊕

𝑥∈𝑋 𝐻𝑥 is a weak Hopf algebra. The algebra operations and antipode are defined
component-wise, while the coalgebra structure is given by the sum of the component-wise
operations. Moreover, 𝐻𝑠 =

⊕
𝑥∈𝑋(𝐻𝑥)𝑠 and 𝐻𝑡 =

⊕
𝑥∈𝑋(𝐻𝑥)𝑡 .

(ii) If, for each 𝑥 ∈ 𝑋, 𝐴𝑥 is a 𝐻𝑥-module algebra, then
⊕

𝑥∈𝑋 𝐴𝑥 is an 𝐻-module algebra with
𝐻-action defined component-wise.

1.3.2 Weak coactions

Dually, we start by recalling the monoidal structure of the right corepresentation
category comod-𝐻; see e.g., [BCJ11, Section 4] or [WWW22, Section 3.2] for further details.
It suffices to work with right corepresentations since 𝐻cop is also a weak bialgebra and
comod-𝐻cop � 𝐻-comod [NV02, Remark 2.4.1]. As stated in the Introduction, for the rest
of this section, we assume that all comodules are right-sided.

Definition 1.32 (𝐻-monoidal product of comodules). Given two 𝐻-comodules 𝑀 and
𝑁 , the 𝐻-monoidal product of 𝑀 with 𝑁 is the subspace

𝑀⊗𝑁 := ⟨𝑥 ⊗ 𝑦 ∈ 𝑀 ⊗ 𝑁 | 𝑥 ⊗ 𝑦 = 𝜀(𝑥1𝑦1)𝑥0 ⊗ 𝑦0⟩ ⊆ 𝑀 ⊗ 𝑁.

If 𝑥 ⊗ 𝑦 ∈ 𝑀⊗𝑁 , we write 𝑥⊗𝑦. Given two morphisms 𝑓 : 𝑀 → 𝑀′ and 𝑔 : 𝑁 → 𝑁′ in
comod-𝐻, the 𝐻-monoidal product of 𝑓 with 𝑔 is given by

𝑓 ⊗𝑔 : 𝑀⊗𝑁 → 𝑀′⊗𝑁′

𝑥⊗𝑦 ↦→ 𝑓 (𝑥)⊗𝑔(𝑦).

Remark 1.33. Let 𝑀, 𝑁, 𝑓 , 𝑔 as in Definition 1.32.
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(i) The 𝐻-coaction on 𝑀⊗𝑁 is given by

𝜌𝑀⊗𝑁 : 𝑀⊗𝑁 → 𝑀⊗𝑁 ⊗ 𝐻
𝑥⊗𝑦 ↦→ 𝑥0⊗𝑦0 ⊗ 𝑥1𝑦1 ,

(1.18)

for all ℎ ∈ 𝐻, 𝑥 ∈ 𝑀 and 𝑦 ∈ 𝑁 . Hence, 𝑀⊗𝑁 ∈ comod-𝐻. Furthermore, there are
inclusion and projection maps given by

𝜄𝑀,𝑁 : 𝑀⊗𝑁 → 𝑀 ⊗ 𝑁 𝜋𝑀,𝑁 : 𝑀 ⊗ 𝑁 → 𝑀⊗𝑁
𝑥⊗𝑦 ↦→ 𝜀(𝑥1𝑦1)𝑥0 ⊗ 𝑦0 , 𝑥 ⊗ 𝑦 ↦→ 𝜀(𝑥1𝑦1)𝑥0⊗𝑦0.

(ii) Since we have

𝜀( 𝑓 (𝑥)1𝑔(𝑦)1) 𝑓 (𝑥)0⊗𝑔(𝑦)0 = 𝜀(𝑥1𝑦1) 𝑓 (𝑥0)⊗𝑔(𝑦0),

for every 𝑥⊗𝑦 ∈ 𝑀⊗𝑁 , the𝐻-monoidal product of𝐻-comodule maps is well defined.
Moreover, 𝑓 ⊗𝑔 = ( 𝑓 ⊗ 𝑔)|𝑀⊗𝑁 .

The counital subalgebra 𝐻𝑠 is an 𝐻-comodule since the image of Δ𝐻𝑠 is a subspace of
𝐻𝑠 ⊗ 𝐻 [Proposition 1.4(vi)], and so we can set Δ𝐻𝑠𝐻𝑠 → 𝐻𝑠 ⊗ 𝐻. This allows us to define
the 𝐻-isomorphisms given by

𝑙𝑀 : 𝐻𝑠⊗𝑀 → 𝑀 𝑟𝑀 : 𝑀⊗𝐻𝑠 → 𝑀

𝑘⊗𝑥 ↦→ 𝜀(𝑘𝑥1)𝑥0 , 𝑥⊗𝑘 ↦→ 𝜀(𝑥1𝑘)𝑥0 ,

for every 𝑀 ∈ comod-𝐻. Using (1.3), the inverses of these morphisms are defined as

𝑙−1
𝑀 : 𝑀 → 𝐻𝑠⊗𝑀 𝑟−1

𝑀 : 𝑀 → 𝑀⊗𝐻𝑡

𝑥 ↦→ 𝜀(12𝑥1)11⊗𝑥0 , 𝑥 ↦→ 𝜀(𝑥112)11.

These constructions guarantee the following result.

Proposition 1.34 ([BCJ11, Theorem 3.1]). The categoryℳ𝐻 := (comod-𝐻, ⊗, 𝐻𝑠) is monoidal.

Now, we present some functors of ℳ𝐻 used later.

Proposition 1.35 ([BCJ11, Theorem 3.2], [Szl05, Section 6]). Let𝑈 : ℳ𝐻 → Veck be the
forgetful functor. Then𝑈 is a Frobenius monoidal functor with monoidal functor structure given by

𝑈𝑀,𝑁 = 𝜋𝑀,𝑁 : 𝑀 ⊗ 𝑁 → 𝑀⊗𝑁 𝑈0 = 𝑢𝐻𝑠 : k→ 𝐻𝑠

𝑥 ⊗ 𝑦𝜀(𝑥1𝑦1)𝑥0⊗𝑦0 , 1k ↦→ 1𝐻 ,
(1.19)

and comonoidal functor structure given by

𝑈𝑀,𝑁 = 𝜄𝑀,𝑁 : 𝑀⊗𝑁 → 𝑀 ⊗ 𝑁 𝑈0 = 𝜀|𝐻𝑠 : 𝐻𝑠 → k
𝑥⊗𝑦 ↦→ 𝜀(𝑥1𝑦1)𝑥0 ⊗ 𝑦0 , 𝑘 ↦→ 𝜀(𝑘),

(1.20)

for all 𝑀, 𝑁 ∈ comod-𝐻.
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Remark 1.36. Notice that
𝑈𝑀,𝑁𝑈

𝑀,𝑁 = Id𝑀⊗𝑁 . (1.21)

Moreover, as a consequence, any 𝐻-comodule has structure of 𝐻𝑠-bimodule with left
𝐻𝑠-action 𝜇𝑀 : 𝐻𝑠 ⊗ 𝑀 → 𝑀 and right 𝐻𝑠-action 𝜈𝑀 : 𝑀 ⊗ 𝐻𝑠 → 𝑀 given, respectively,
by

𝜇𝑀(𝑘 ⊗ 𝑥) := 𝜀(𝑘𝑥1)𝑥0 , and 𝜈𝑀(𝑥 ⊗ 𝑘) := 𝜀(𝑥1𝑘)𝑥0 , (1.22)

for all 𝑘 ∈ 𝐻𝑠 and 𝑥 ∈ 𝑀. Furthermore, any 𝐻-comodule map is a morphism of
𝐻𝑠-bimodules.

Dual to Section 1.3.1, we establish an identification between monoid objects in ℳ𝐻

and k-algebras that also possess a compatible 𝐻-comodule structure.

Definition 1.37 (𝐻-comodule algebra, e.g. [CG00, Section 4.5]). Let 𝐴 be a k-algebra.
We say that 𝐴 is an 𝐻-comodule algebra if 𝐴 ∈ comod-𝐻 via 𝜌 : 𝐴→ 𝐴 ⊗ 𝐻, the coaction is
multiplicative, that is, satisfies

(𝑎𝑏)0 ⊗ (𝑎𝑏)1 = 𝑎0𝑏0 ⊗ 𝑎1𝑏1 , for all 𝑎, 𝑏 ∈ 𝐴, (1.23)

and the coaction is unital, that is, satisfies

𝜌(1𝐴) ∈ 𝐴 ⊗ 𝐻𝑡 . (1.24)

Naturally, a morphism between 𝐻-comodule algebras is a k-algebra map that lies in
comod-𝐻. The category of 𝐻-comodule algebras together with their morphisms is denoted
by 𝒜𝐻 .

Recall the notation of Definition 1.20.

Theorem 1.38 ([BCM02, Proposition 3.9], [WWW22, Theorem 4.4]). The categories 𝒜𝐻

and Mon(ℳ𝐻) are isomorphic.

Proof. Since the proof is somewhat dual to that of Theorem 1.29 and can be found in the
referenced sources, we will only outline how to construct the mutually inverse functors
𝐹 : 𝒜𝐻 → Mon(ℳ𝐻) and 𝐺 : Mon(ℳ𝐻) → 𝒜𝐻 .

Firstly, for a given 𝐴 = (𝐴, 𝑚𝐴 , 𝑢𝐴) ∈ 𝒜𝐻 , define

𝐹(𝐴) := (𝐴, 𝑚𝐴 := 𝑚𝐴𝑈
𝐴,𝐴 , 𝑢𝐴 := 𝜈𝐴(𝑢𝐴 ⊗ Id𝐻𝑠 )),

where 𝜈𝐴 : 𝐴⊗𝐻𝑠 → 𝐴 denotes the induced right𝐻𝑠-action on 𝐴 of (1.22). By construction,

𝑚𝐴 : 𝐴⊗𝐴→ 𝐴 𝑢𝐴 : 𝐻𝑠 → 𝐴

𝑎⊗𝑏 ↦→ 𝑎𝑏, 𝑘 ↦→ 𝜀(11𝑘)10.

Similarly, given 𝑓 : (𝐴, 𝑚𝐴 , 𝑢𝐴) → (𝐵, 𝑚𝐵 , 𝑢𝐵) in 𝒜𝐻 , we define the corresponding
morphism 𝐹( 𝑓 ) : (𝐴, 𝑚𝐴 , 𝑢𝐴) → (𝐵, 𝑚𝐵 , 𝑢𝐵) simply as 𝐹( 𝑓 ) := 𝑓 .
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Reciprocally, for 𝐴 = (𝐴, 𝑚𝐴 , 𝑢𝐴) ∈ Mon(ℳ𝐻), we define

𝐺(𝐴) := (𝐴, 𝑚𝐴 := 𝑚𝐴𝑈𝐴,𝐴 , 𝑢𝐴 := 𝑢𝐴𝑈0).

By construction,𝐺(𝐴) = (𝑈(𝐴), 𝑈(𝑚𝐴)𝑈𝐴,𝐴 , 𝑈(𝑢𝐴)𝑈0) and since the functor𝑈 is monoidal,
by Proposition 1.21 we have that 𝐺(𝐴) is indeed a k-algebra. Moreover, for a morphism of
monoids 𝑔 : (𝐴, 𝑚𝐴 , 𝑢𝐴) → (𝐵, 𝑚𝐵 , 𝑢𝐵) we simply define 𝐺(𝑔) := 𝑔. □

Example 1.39. Since the counital subalgebra 𝐻𝑠 is clearly a right 𝐻-comodule algebra, as
consequence of the previous result we have 𝐻𝑠 ∈ Mon(ℳ𝐻), which is consistent with the
fact that in a monoidal category the unit object is always a monoid.

Example 1.40 ([Hay99, Equation 2.15]). Let 𝑄 be a finite quiver, k𝑄 its path algebra and
ℌ(𝑄) its attached Hayashi’s face algebra. Recall from Example 1.10 that a k-basis for ℌ(𝑄)𝑡
is given by {∑𝑖∈𝑄0 𝑥𝑖 , 𝑗} 𝑗∈𝑄0 . Let 𝑘 ∈ N and define for any path 𝑝 ∈ 𝑄𝑘 the map

𝜌 : k𝑄 → k𝑄 ⊗ ℌ(𝑄)
𝑝 ↦→

∑
𝑞∈𝑄𝑘

𝑞 ⊗ 𝑥𝑞,𝑝 .

Hence 𝜌 is a ℌ(𝑄)-coaction on k𝑄. Moreover, k𝑄 is a ℌ(𝑄)-comodule algebra. A complete
proof of these facts can be found in [WWW22, Example 4.9].

The isomorphism of Theorem 1.38 allows us to make the following convention: if 𝐴 is
a k-algebra and an 𝐻-comodule so that 𝐴 ∈ Mon(ℳ𝐻) (by satisfying (1.23)-(1.24)), we call
𝐴 an 𝐻-comodule algebra.

Finally, we give a notion that will be mentioned in Chapter 3.

Definition 1.41. Let 𝐻 be a k-weak bialgebra and 𝐴 a k-algebra. We say that 𝐻 coacts
universally on 𝐴 if it satisfies the following properties:

(i) 𝐴 is an 𝐻-comodule algebra via coaction 𝜌 : 𝐴→ 𝐴 ⊗ 𝐻,

(ii) if 𝐻′ is another k-weak bialgebra so that 𝐴 is also a 𝐻′-comodule algebra via coaction
𝜌′ : 𝐴 → 𝐴 ⊗ 𝐻′, then there is a unique weak bialgebra map 𝜋 : 𝐻 → 𝐻′ so that
(𝜋 ⊗ Id𝐴)𝜌 = 𝜌′.

1.4 Groupoids and groupoid algebras

In this section, we introduce the fundamental terminology of groupoids, which will be
used in Chapter 2. Although we have already mentioned it in Example 1.8, we provide the
precise definition of a groupoid for clarity.

Definition 1.42. (𝒢, 𝒢0, 𝒢1, 𝑒𝑥) A groupoid 𝒢 = (𝒢0 ,𝒢1) is a small category in which every
morphism is an isomorphism. Here, 𝒢0 (resp., 𝒢1) is the set of objects (resp., morphisms)
of 𝒢. If 𝑔 ∈ 𝒢1, then 𝑠(𝑔) (resp., 𝑡(𝑔)) denotes the source (resp., target) object of 𝑔. By
convention, we compose elements of a groupoid from right to left. For each 𝑥 ∈ 𝒢0, the
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identity morphism of Hom𝒢(𝑥, 𝑥) is denoted by 𝑒𝑥 . A morphism of groupoids is simply a
functor between groupoids.

A group 𝐺 can be viewed as a groupoid with only one object. Unless otherwise stated,
we assume that 𝒢0 is a nonempty finite set. If 𝒢1 is also a finite set, then we call 𝒢 finite.
Throughout we will use the following notation.

Notation 1.43 (𝑋). Henceforth, let 𝑋 be a nonempty finite set.

Definition 1.44 (𝑋-Grpd). Let 𝑋-Grpd be the category defined as follows:

• the objects are groupoids 𝒢 such that 𝒢0 = 𝑋; we call these 𝑋-groupoids.

• the morphisms are groupoid morphisms leaving 𝑋 fixed, that is, functors of the
form 𝜋 : 𝒢 → 𝒢′ such that 𝜋(𝑥) = 𝑥 for all 𝑥 ∈ 𝑋; we call these functors 𝑋-groupoid
morphisms.

1.4.1 Modules over groupoids

Some of the concepts here are partially adapted from [BHS11, Definition 7.1.7] and
[PT14, p. 85].

Definition 1.45 (𝑋-decomposable vector space). A vector space 𝑉 is 𝑋-decomposable
if there exists a family {𝑉𝑥}𝑥∈𝑋 of subspaces of 𝑉 such that 𝑉 =

⊕
𝑥∈𝑋 𝑉𝑥 . We call the

{𝑉𝑥}𝑥∈𝑋 the components of 𝑉 . If 𝑉 =
⊕

𝑥∈𝑋 𝑉𝑥 and 𝑊 =
⊕

𝑥∈𝑋𝑊𝑥 are 𝑋-decomposable
vector spaces, a k-linear map 𝑓 : 𝑉 →𝑊 is said to be 𝑋-decomposable if there is a family
{ 𝑓𝑥 : 𝑉𝑥 →𝑊𝑥}𝑥∈𝑋 of k-linear maps such that 𝑓 |𝑉𝑥 = 𝑓𝑥 for all 𝑥 ∈ 𝑋. In this case, we write
𝑓 = ( 𝑓𝑥)𝑥∈𝑋 .

For instance, every vector space 𝑉 has a trivial 𝑋-decomposition if |𝑋 | = 1. Even if
|𝑋 | > 1, 𝑉 has an 𝑋-decomposition where 𝑉𝑥 = 𝑉 for one 𝑥 ∈ 𝑋, and 𝑉𝑦 = 0 otherwise.

Definition 1.46 (𝒢-module). Let 𝒢 be an 𝑋-groupoid. An 𝑋-decomposable vector space
𝑉 =

⊕
𝑥∈𝑋 𝑉𝑥 is said to be a left 𝒢-module if it is equipped with, for each 𝑥, 𝑦 ∈ 𝑋, a k-linear

map Hom𝒢(𝑥, 𝑦) ×𝑉𝑥 → 𝑉𝑦 , denoted (𝑔, 𝑣) ↦→ 𝑔 · 𝑣, such that

• (𝑔ℎ) · 𝑣 = 𝑔 · (ℎ · 𝑣), for all 𝑔, ℎ ∈ 𝒢1 with 𝑡(ℎ) = 𝑠(𝑔) and all 𝑣 ∈ 𝑉𝑠(ℎ), and

• 𝑒𝑥 · 𝑣 = 𝑣, for all 𝑥 ∈ 𝑋 and 𝑣 ∈ 𝑉𝑥 .

Given two left 𝒢-modules 𝑉 =
⊕

𝑥∈𝑋 𝑉𝑥 and 𝑊 =
⊕

𝑥∈𝑋𝑊𝑥 , a 𝒢-module morphism
𝑓 = ( 𝑓𝑥)𝑥∈𝑋 : 𝑉 →𝑊 is an 𝑋-decomposable k-linear map such that

𝑔 · 𝑓𝑠(𝑔)(𝑣) = 𝑓𝑡(𝑔)(𝑔 · 𝑣), for all 𝑔 ∈ 𝒢1 and 𝑣 ∈ 𝑉𝑠(𝑔). (1.25)

For two 𝒢-module morphisms 𝑓 = ( 𝑓𝑥)𝑥∈𝑋 : 𝑉 → 𝑊 and 𝑓 ′ = ( 𝑓 ′𝑥)𝑥∈𝑋 : 𝑊 → 𝑍, their
composition is defined as the 𝒢-module morphism 𝑓 ′ 𝑓 = ( 𝑓 ′𝑥 𝑓𝑥)𝑥∈𝑋 : 𝑉 → 𝑍.

Remark 1.47. Let 𝒢 be an 𝑋-groupoid and let 𝑉 =
⊕

𝑥∈𝑋 𝑉𝑥 be a left 𝒢-module. Notice
that the action is defined locally, so if 𝑔 ∈ 𝒢1, then 𝑔 · 𝑣 makes sense only when 𝑣 ∈ 𝑉𝑠(𝑔).
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For this reason, in the literature, the linear maps associated to the module are called a
partial (groupoid) action (see e.g., [BP12, Section 1]). Also, when |𝑋 | = 1 (that is, when 𝒢 is
a group), Definition 1.46 recovers the classical notion of a module over a group.

The following result is an adapted version of [IR19a, Proposition 9.3].

Lemma 1.48. Let 𝒢 be an 𝑋-groupoid and let 𝑉 =
⊕

𝑥∈𝑋 𝑉𝑥 be a left 𝒢-module. Then, for each
𝑔 ∈ 𝒢1, the linear map 𝜈𝑔 : 𝑉𝑠(𝑔) → 𝑉𝑡(𝑔) given by 𝑣 ↦→ 𝑔 · 𝑣 is an isomorphism. In particular,
({𝑉𝑥}𝑥∈𝑋 , {𝜈𝑔}𝑔∈𝒢1) is a groupoid.

Proof. If 𝑔 : 𝑥 → 𝑦 is a morphism in 𝒢1, then 𝜈−1
𝑔 = 𝜈𝑔−1 . Indeed, for every 𝑣 ∈ 𝑉𝑥 we

have 𝜈𝑔−1𝜈𝑔(𝑣) = 𝑔−1 · (𝑔 · 𝑣) = (𝑔−1𝑔) · 𝑣 = 𝑒𝑥 · 𝑣 = 𝑣. Similarly, for any 𝑣′ ∈ 𝑉𝑦 we have
𝜈𝑔𝜈𝑔−1(𝑣′) = 𝑒𝑦 · 𝑣′ = 𝑣′. In particular, 𝜈𝑒𝑥 = Id𝑉𝑥 , for every 𝑥 ∈ 𝑋. □

Notation 1.49 (𝜈𝑔 , 𝜔𝑔 , 𝛼𝑔). The maps {𝜈𝑔}𝑔∈𝒢1 above are called the structure isomorphisms
of the 𝒢-module 𝑉 =

⊕
𝑥∈𝑋 𝑉𝑥 . When dealing with groupoids, we will use the Greek

letters {𝜈𝑔}𝑔∈𝒢1 , {𝜔𝑔}𝑔∈𝒢1 , {𝛼𝑔}𝑔∈𝒢1 , etc., to denote the respective structure isomorphisms
of given 𝒢-modules 𝑉 =

⊕
𝑥∈𝑋 𝑉𝑥 , or𝑊 =

⊕
𝑥∈𝑋𝑊𝑥 , or 𝐴 =

⊕
𝑥∈𝑋 𝐴𝑥 , etc.

For instance, if 𝑓 = ( 𝑓𝑥)𝑥∈𝑋 : 𝑉 → 𝑊 is a 𝒢-morphism, then condition (1.25) can be
restated as 𝜔𝑔 𝑓𝑠(𝑔) = 𝑓𝑡(𝑔)𝜈𝑔 , for all 𝑔 ∈ 𝒢1.

The category of left 𝒢-modules can be endowed with a monoidal structure. The proof
of the following result is straightforward.

Lemma 1.50 (𝒢-mod). Let 𝒢 be an 𝑋-groupoid let 𝒢-mod be the category of left 𝒢-modules. This
category admits a monoidal structure as follows.

• If 𝑉 =
⊕

𝑥∈𝑋 𝑉𝑥 ,𝑊 =
⊕

𝑥∈𝑋𝑊𝑥 ∈ 𝒢-mod, then 𝑉 ⊗𝒢-mod 𝑊 =
⊕

𝑥∈𝑋 𝑉𝑥 ⊗𝑊𝑥 ; the
structure isomorphisms are {𝜈𝑔 ⊗ 𝜔𝑔}𝑔∈𝒢1 ,

• 1𝒢-mod =
⊕

𝑥∈𝑋 k with the structure isomorphisms {𝜅𝑔 = Idk}𝑔∈𝒢1 .

If 𝑓 = ( 𝑓𝑥)𝑥∈𝑋 : 𝑉 → 𝑊 and 𝑓 ′ = ( 𝑓 ′𝑥)𝑥∈𝑋 : 𝑉′ → 𝑊 ′ are two 𝒢-module morphisms, then
𝑓 ⊗𝒢-mod 𝑓

′ = ( 𝑓𝑥 ⊗ 𝑓 ′𝑥)𝑥∈𝑋 . The associativity constraint is that induced by the tensor product of
components, and the left/right unital constraints

𝑙𝑉 : 1𝒢-mod ⊗𝒢-mod 𝑉 −→ 𝑉, 𝑟𝑉 : 𝑉 ⊗𝒢-mod 1𝒢-mod −→ 𝑉,

are given by scalar multiplication, that is, for each 𝑥 ∈ 𝑋,

(𝑙𝑉 )𝑥 : k ⊗ 𝑉𝑥 → 𝑉𝑥 , 𝑘 ⊗ 𝑣 ↦→ 𝑘𝑣 (𝑟𝑉 )𝑥 : 𝑉𝑥 ⊗ k→ 𝑉𝑥 , 𝑣 ⊗ 𝑘 ↦→ 𝑘𝑣.

For a group 𝐺, Lemma 1.50 implies the well-known result that 𝐺-mod is a monoidal
category under the usual tensor product ⊗k. Now we provide specific examples of modules
over a groupoid.
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Example 1.51. Consider the following groupoid:

𝒢 = •𝑥 •𝑦

𝑔

𝑒𝑥

𝑔−1

𝑒𝑦 (1.26)

(a) Let 𝑉𝑥 = 𝑉𝑦 = k2 and define for all 𝑎, 𝑏 ∈ k,

𝑔 · (𝑎, 𝑏) = 𝑔−1 · (𝑎, 𝑏) := (𝑏, 𝑎), 𝑒𝑥 · (𝑎, 𝑏) = 𝑒𝑦 · (𝑎, 𝑏) := (𝑎, 𝑏).

Then 𝑉 = 𝑉𝑥 ⊕ 𝑉𝑦 is a left 𝒢-module; 𝜈𝑔 , 𝜈𝑔−1 : k2 → k2 are given by (𝑎, 𝑏) ↦→ (𝑏, 𝑎).

(b) Let𝑊𝑥 =𝑊𝑦 = k3 and define for all 𝑎, 𝑏, 𝑐 ∈ k,

𝑔 · (𝑎, 𝑏, 𝑐) = 𝑔−1 · (𝑎, 𝑏, 𝑐) := (−𝑎, 𝑐, 𝑏), 𝑒𝑥 · (𝑎, 𝑏, 𝑐) = 𝑒𝑦 · (𝑎, 𝑏, 𝑐) := (𝑎, 𝑏, 𝑐).

Then 𝑊 = 𝑊𝑥 ⊕𝑊𝑦 is a left 𝒢-module. Also, 𝜔𝑔 , 𝜔𝑔−1 : k3 → k3 are both given
by (𝑎, 𝑏, 𝑐) ↦→ (−𝑎, 𝑐, 𝑏). Furthermore, the maps 𝑓𝑥 , 𝑓𝑦 : k2 → k3 both defined as
(𝑎, 𝑏) ↦→ (0, 𝑎, 𝑏) make 𝑓 = ( 𝑓𝑥 , 𝑓𝑦) a 𝒢-module morphism from 𝑉 to𝑊 .

(c) Let 𝑍𝑥 = 𝑍𝑦 = k[𝑡 , 𝑡−1] and define for every 𝑟 ∈ k[𝑡 , 𝑡−1],

𝑔 · 𝑟 := 𝑡𝑟, 𝑔−1 · 𝑟 := 𝑡−1𝑟, 𝑒𝑥 · 𝑟 = 𝑒𝑦 · 𝑟 := 𝑟.

Then 𝑍 = 𝑍𝑥 ⊕ 𝑍𝑦 is an infinite-dimensional left 𝒢-module. The structure isomor-
phisms 𝜉𝑔 , 𝜉𝑔−1 : k[𝑡 , 𝑡−1] → k[𝑡 , 𝑡−1] are given by 𝜉𝑔(𝑟) = 𝑡𝑟 and 𝜉𝑔−1(𝑟) = 𝑡−1𝑟, for
every 𝑟 ∈ k[𝑡 , 𝑡−1].

(d) Let𝐴𝑥 = 𝐴𝑦 = k[𝑡 , 𝑡−1] and let 𝜎 be the automorphism of k[𝑡 , 𝑡−1] define by 𝜎(𝑡) = 𝑡−1.
For 𝑟 ∈ k[𝑡 , 𝑡−1], define

𝑔 · 𝑟 = 𝜎(𝑟) = 𝑔−1 · 𝑟, 𝑒𝑥 · 𝑟 = 𝑒𝑦 · 𝑟 = 𝑟.

Then 𝐴 = 𝐴𝑥 ⊕ 𝐴𝑦 is an infinite-dimensional left 𝒢-module with structure isomor-
phisms 𝛼𝑔 = 𝛼𝑔−1 = 𝜎.

1.4.2 Representations of groupoids

Now we focus our study on representations of groupoids, by adapting terminology
present in [IR19a, Section 9.3], [IR19b, Section 3.1] and [PF13, Section 2.3]. First, we
introduce a generalization of the general linear group, GL(𝑉), over a vector space 𝑉 .

Definition 1.52 (GL𝑋(𝑉),GL(𝑑1 ,...,𝑑𝑛)(k)). Let 𝑉 =
⊕

𝑥∈𝑋 𝑉𝑥 be an 𝑋-decomposable vector
space. We define the 𝑋-groupoid GL𝑋(𝑉), which we call the 𝑋-general linear groupoid of 𝑉 ,
as follows:

• the object set is 𝑋,
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• for any 𝑥, 𝑦 ∈ 𝑋, HomGL𝑋 (𝑉)(𝑥, 𝑦) is the space of linear isomorphisms between the
vector spaces 𝑉𝑥 and 𝑉𝑦 .

If 𝑋 = {1, . . . , 𝑛} and 𝑉𝑖 has dimension 𝑑𝑖 , then we also denote GL𝑋(𝑉) by GL(𝑑1 ,...,𝑑𝑛)(k)
for 𝑑1 ≤ 𝑑2 ≤ · · · ≤ 𝑑𝑛 .

This generalizes the classical notation GL𝑑(k) = GL(𝑉) when 𝑉 has dimension 𝑑. Note
that, in general, this 𝑋-groupoid is not finite (but always has finitely many objects).

Example 1.53. If 𝑋 = {𝑥, 𝑦}, then k4 is 𝑋-decomposable by taking (k4)𝑥 := (k, k, 0, 0) and
(k4)𝑦 := (0, 0, k, k). Moreover, we have

GL𝑋(k4) = GL(2,2)(k) = 𝑥 𝑦 � k2 k2 ,

where the dashed arrows can be identified with the spaces GL2(k) of linear isomorphisms.

Definition 1.54 (Representation of 𝒢). Let 𝒢 be an 𝑋-groupoid. A representation of 𝒢 is
an 𝑋-decomposable vector space 𝑉 =

⊕
𝑥∈𝑋 𝑉𝑥 equipped with a 𝑋-groupoid morphism

𝜋 : 𝒢 → GL𝑋(𝑉), called the representation map of 𝑉 . We often denote this as (𝑉,𝜋). Given
two representations (𝑉,𝜋), (𝑊, 𝜏), a morphism of 𝒢-representations is a k-linear natural
transformation 𝜑 : 𝜋 ⇒ 𝜏, that is, a family of k-linear maps 𝜑 = {𝜑𝑥 : 𝑉𝑥 →𝑊𝑥}𝑥∈𝑋 such
that 𝜑𝑡(𝑔)𝜋(𝑔) = 𝜏(𝑔)𝜑𝑠(𝑔) for every 𝑔 ∈ 𝒢1.

The 𝒢-representations, together with their morphisms, form a category that possesses
a monoidal structure.

Lemma 1.55 (rep(𝒢)). Let 𝒢 be an 𝑋-groupoid and let rep(𝒢) be the category of 𝒢-representations.
This category admits a monoidal structure as follows.

• If (𝑉,𝜋), (𝑊, 𝜏) ∈ rep(𝒢), then 𝑉 ⊗rep(𝒢) 𝑊 =
⊕

𝑥∈𝑋 𝑉𝑥 ⊗𝑊𝑥 ; the representation map
𝒢 → GL𝑋(𝑉 ⊗rep(𝒢)𝑊) is given by 𝑔 ↦→ 𝜋(𝑔) ⊗ 𝜏(𝑔), for all 𝑔 ∈ 𝒢1,

• 1rep(𝒢) =
⊕

𝑥∈𝑋 k; the representation map 𝒢 → GL𝑋(1rep(𝒢)) is given by 𝑔 ↦→ Idk, for all
𝑔 ∈ 𝒢1.

Given 𝒢-representations (𝑉,𝜋), (𝑊, 𝜏), (𝑉′,𝜋′), (𝑊 ′, 𝜏′), if 𝜑 = {𝜑𝑥 : 𝑉𝑥 → 𝑊𝑥}𝑥∈𝑋 and
𝜑′ = {𝜑′

𝑥 : 𝑉′
𝑥 →𝑊 ′

𝑥}𝑥∈𝑋 are morphisms of 𝒢-representations, then 𝜑⊗rep(𝒢)𝜑
′ = (𝜑𝑥 ⊗𝜑′

𝑥)𝑥∈𝑋 .
The associativity constraint is that induced by the tensor product of components, and the left/right
unital constraints

𝑙𝑉 : 1rep(𝒢) ⊗rep(𝒢) 𝑉 −→ 𝑉, 𝑟𝑉 : 𝑉 ⊗rep(𝒢) 1rep(𝒢) −→ 𝑉,

are given by scalar multiplication, that is, for each 𝑥 ∈ 𝑋,

(𝑙𝑉 )𝑥 : k ⊗ 𝑉𝑥 → 𝑉𝑥 , 𝑘 ⊗ 𝑣 ↦→ 𝑘𝑣 (𝑟𝑉 )𝑥 : 𝑉𝑥 ⊗ k→ 𝑉𝑥 , 𝑣 ⊗ 𝑘 ↦→ 𝑘𝑣.

Remark 1.56. In [IR19b, Definition 2], a 𝒢-representation is defined as a functor from 𝒢 to
Veck; our definition is a repackaging of the information carried by such a functor. One
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benefit of this repackaging is that in the case that |𝑋 | = 1 (that is, when 𝒢 is a group),
Definition 1.54 recovers the classical notion of a group representation, that is, a vector
space 𝑉 equipped with a group morphism 𝜋 : 𝐺 → GL(𝑉).
Example 1.57. Let 𝒢 be as in (1.26). Then the {𝑥, 𝑦}-decomposable vector space k4 of
Example 1.53 is a 𝒢-representation by taking 𝜋 : 𝒢 → GL𝑋(k4) = GL(2,2)(k) as

𝜋(𝑔) : (k, k, 0, 0) −→ (0, 0, k, k) 𝜋(𝑔−1) : (0, 0, k, k) −→ (k, k, 0, 0)
(𝑎, 𝑏, 0, 0) ↦→ (0, 0, 𝑏, 𝑎), (0, 0, 𝑎, 𝑏) ↦→ (𝑏, 𝑎, 0, 0).

The following result reconciles various notions of (linear) groupoid actions in the
literature and reduces to a well-known result for groups when 𝒢 has one object; see, e.g.
[BHS11, Section 7.1.ii], [BP12, Section 1], [IR19a, Section 9.3], [IR19b, Section 3.1], [PF13,
Section 2.3], or [PT14, Section 3].

Lemma 1.58. Let 𝒢 be an 𝑋-groupoid. Then, the categories 𝒢-mod and rep(𝒢) are monoidally
isomorphic.

Proof. Consider the functor 𝐹 : 𝒢-mod → rep(𝒢) that sends a left 𝒢-module𝑉 =
⊕

𝑥∈𝑋 𝑉𝑥
with associated structure isomorphisms {𝜈𝑔}𝑔∈𝒢1 to the representation𝑉 =

⊕
𝑥∈𝑋 𝑉𝑥 with

representation map 𝜋 : 𝒢 → GL𝑋(𝑉) defined as 𝜋(𝑔) := 𝜈𝑔 for all 𝑔 ∈ 𝒢1. Here, we must
have 𝜋(𝑥) = 𝑥, for all 𝑥 ∈ 𝑋, by Definition 1.54. Moreover, if 𝑓 = ( 𝑓𝑥)𝑥∈𝑋 : 𝑉 → 𝑊 is a
𝒢-module morphism, then 𝐹( 𝑓 ) = 𝑓 . It is clear that the functor is an isomorphism of
categories.

For any two left 𝒢-modules 𝑉,𝑊 consider 𝐹𝑉,𝑊 : 𝐹(𝑉) ⊗rep(𝒢) 𝐹(𝑊) → 𝐹(𝑉 ⊗𝒢-mod 𝑊)
given by (𝐹𝑉,𝑊 )𝑥 = Id𝑉𝑥⊗𝑊𝑥 for all 𝑥 ∈ 𝑋. Then {𝐹𝑉,𝑊 }𝑉,𝑊∈𝒢-mod is clearly a natural
isomorphism. Also, consider the morphism 𝐹0 : 1rep(𝒢) → 𝐹(1𝒢-mod) in rep(𝒢) given
by (𝐹0)𝑥 = Idk : k → k for all 𝑥 ∈ 𝑋, which is clearly invertible. By straightforward
verification, we can confirm that 𝐹 satisfies the associativity and unit constraints outlined
in Definition 1.18. We can conclude that 𝐹 is a strong monoidal functor and thus, 𝐹 is a
monoidal isomorphism. □

When 𝒢 = 𝐺 is a group, this results recovers the classical monoidal isomorphism
between 𝐺-mod and rep(𝐺), given by 𝑉 ↦→ 𝑉 and 𝑔 · 𝑣 = 𝜋(𝑔)(𝑣), for all 𝑔 ∈ 𝐺 and 𝑣 ∈ 𝑉 .

Example 1.59. The𝒢-module k2⊕k2 of Example 1.51(a) corresponds to the𝒢-representation
k4 � k2 ⊕ k2 of Example 1.57 via the correspondence of Lemma 1.58.

1.4.3 Module algebras over groupoids

Next, we study module algebras over groupoids.

Definition 1.60. Let 𝐴 be a k-algebra. We say that 𝐴 is an 𝑋-decomposable k-algebra if
there exists a family {𝐴𝑥}𝑥∈𝑋 of unital k-algebras (some of which may be 0) such that
𝐴 =

⊕
𝑥∈𝑋 𝐴𝑥 as k-algebras.
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In other words, 𝑋-decomposable k-algebras are simply direct sums of |𝑋 | unital
k-algebras with the canonical (unital) k-algebra structure. This is a stronger condition than
the k-algebra 𝐴 being an 𝑋-decomposable vector space, in the sense of Definition 1.45,
since we also require that the decomposition respects the k-algebra structure of 𝐴.

Remark 1.61. Let 𝐴 =
⊕

𝑥∈𝑋 𝐴𝑥 be an 𝑋-decomposable k-algebra. If 1𝑥 denotes the
multiplicative identity element of 𝐴𝑥 , for each 𝑥 ∈ 𝑋, then 1𝐴 =

∑
𝑥∈𝑋 1𝑥 by definition. We

refer to the set of elements {1𝑥 | 𝑥 ∈ 𝑋 such that 1𝑥 ≠ 0} as the local identities of 𝐴. The
local identities form a complete set of orthogonal central idempotents of 𝐴.

However, the local identities could be a sum of nonzero central orthogonal idempotents
(that is, non-primitive), as the next example shows. Thus, an 𝑋-decomposition of a
k-algebra is not unique.

Example 1.62. The {𝑥, 𝑦}-decomposable vector space k4 of Example 1.53 is, in fact, a
{𝑥, 𝑦}-decomposable k-algebra when considering component-wise operations. Here, the
local identities are 1𝑥 = (1, 1, 0, 0) and 1𝑦 = (0, 0, 1, 1), which are not primitive.

We point out an example of an 𝑋-decomposable k-algebra which is used in [CL09] for
their classification of weak Hopf algebra structures derived from𝑈𝑞(𝑠𝑙2).
Example 1.63. Take 𝑞 ∈ k×. We follow [CL09] for the following construction. The weak
quantum group 𝐴 := 𝑤𝑠𝑙𝑞2 is the unital k-algebra generated by indeterminates 𝐸, 𝐹, 𝐾, 𝐾
subject to the following relations:

𝐾𝐸 = 𝑞2𝐸𝐾, 𝐾𝐸 = 𝑞−2𝐸𝐾, 𝐾𝐹 = 𝑞−2𝐹𝐾, 𝐾𝐹 = 𝑞2𝐹𝐾,

𝐾𝐾 = 𝐾𝐾, 𝐾𝐾𝐾 = 𝐾, 𝐾𝐾𝐾 = 𝐾, 𝐸𝐹 − 𝐹𝐸 = (𝐾 − 𝐾)/(𝑞 − 𝑞−1).

For 𝑋 = {𝑥, 𝑦}, let 𝐴𝑥 = 𝐴1𝑥 , 𝐴𝑦 = 𝐴1𝑦 , with 1𝑥 = 𝐾𝐾, and 1𝑦 = 1𝐴 − 𝐾𝐾. Thus,
𝐴 = 𝐴𝑥 ⊕ 𝐴𝑦 is an 𝑋-decomposable k-algebra; in fact, 𝐴𝑥 � 𝑈𝑞(𝔰𝔩2) and 𝐴𝑦 � k[𝑡1 , 𝑡2] as
k-algebras [CL09, Theorems 2.3, 2.5, 2.7].

Now, we define two remarkable 𝑋-decomposable linear maps that arise when an
𝑋-decomposable k-algebra has the structure of module over an 𝑋-groupoid 𝒢.

Remark 1.64. If 𝐴 =
⊕

𝑥∈𝑋 𝐴𝑥 is an 𝑋-decomposable k-algebra, the multiplication map
𝑚𝐴 : 𝐴 ⊗ 𝐴 → 𝐴 and unit map 𝑢𝐴 : k → 𝐴 immediately decompose into the respective
multiplication map 𝑚𝑥 : 𝐴𝑥 ⊗ 𝐴𝑥 → 𝐴𝑥 and unit map 𝑢𝑥 : k→ 𝐴𝑥 of each k-algebra 𝐴𝑥 ,
for all 𝑥 ∈ 𝑋. If additionally 𝐴 is a 𝒢-module then, using the notation of Lemma 1.50,
𝑚𝐴 and 𝑢𝐴 induce 𝑋-decomposable linear maps 𝑚𝐴 := (𝑚𝑥)𝑥∈𝑋 : 𝐴 ⊗𝒢-mod 𝐴 → 𝐴 and
𝑢𝐴 := (𝑢𝑥)𝑥∈𝑋 : 1𝒢-mod → 𝐴, which we call the monoidal multiplication and monoidal unit
of 𝐴, respectively. It is clear that these maps satisfy associativity and unital condition.
However, in general, these maps are not necessarily 𝒢-module morphisms.

By definition, it follows immediately that the monoidal multiplication and monoidal
unit maps are 𝒢-module morphisms precisely when they make 𝐴 a monoid in the category
of 𝒢-modules. Conversely, if 𝐴 is monoid in 𝒢-mod, then it comes equipped with maps
in 𝒢-mod, 𝑚𝐴 = (𝑚𝑥)𝑥∈𝑋𝐴 ⊗𝒢-mod 𝐴 → 𝐴 and 𝑢𝐴 = (𝑢𝑥)𝑥∈𝑋 : 1𝒢-mod → 𝐴. These maps
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extend naturally to maps 𝑚𝐴 : 𝐴 ⊗ 𝐴 → 𝐴 (where if 𝑎 ∈ 𝐴𝑥 and 𝑏 ∈ 𝐴𝑦 for 𝑥 ≠ 𝑦, we
define 𝑚𝐴(𝑎 ⊗ 𝑏) = 0) and 𝑢𝐴 : k → 𝐴 (defined by k → 1𝒢-mod → 𝐴 where k → 1𝒢-mod
maps 1k to (1, 1, . . . , 1)). Hence, we have proved the following result.

Lemma 1.65. Let 𝐴 =
⊕

𝑥∈𝑋 𝐴𝑥 be an 𝑋-decomposable k-algebra and let 𝒢 be an 𝑋-groupoid.
Then the following statements are equivalent.

(i) 𝐴 ∈ Mon(𝒢-mod), via the monoidal product 𝑚𝐴 : 𝐴 ⊗𝒢-mod 𝐴 → 𝐴 and monoidal unit
𝑢𝐴 : 1𝒢-mod → 𝐴 of Remark 1.64.

(ii) 𝐴 is a 𝒢-module such that

𝑔 · (𝑎𝑏) = (𝑔 · 𝑎)(𝑔 · 𝑏), (1.27)
𝑔 · 1𝑠(𝑔) = 1𝑡(𝑔) , (1.28)

for all 𝑔 ∈ 𝒢1 and 𝑎, 𝑏 ∈ 𝐴𝑠(𝑔).

As a consequence of this result, an 𝑋-decomposable k-algebra satisfying the conditions
in Lemma 1.65(ii) can be referred to as a 𝒢-module algebra. This terminology emphasizes
that the k-algebra is equipped with a compatible action of the 𝑋-groupoid 𝒢, making it a
monoid object within the category of 𝒢-modules (see also Remark 2.6).

1.4.4 Actions of groupoid algebras on algebras

In this subsection, we introduce important concepts related to groupoid algebra actions.
We recall the notation used in Example 1.8, and emphasize that while a group algebra is a
Hopf algebra, a groupoid algebra is generally a weak Hopf algebra.

Remark 1.66. Let 𝒢 be an 𝑋-groupoid and k𝒢-mod be the category of left k𝒢-modules in
the sense of Example 1.13 and Proposition 1.24. It is straightforward to show that every
k𝒢-module 𝑉 can be given the structure of a 𝒢-module in the sense of Definition 1.46 by
taking𝑉𝑥 = 𝑒𝑥 ·𝑉 for all 𝑥 ∈ 𝑋. Conversely, every 𝒢-module is a k𝒢-module by linearizing
the action of 𝒢. Hence, the categories 𝒢-mod and k𝒢-mod are isomorphic.

For a vector space 𝑉 , we let End(𝑉) = HomVeck (𝑉,𝑉) denote the usual endomorphism
ring of 𝑉 . If 𝑉 =

⊕
𝑥∈𝑋 𝑉𝑥 is 𝑋-decomposable with each 𝑉𝑥 ≠ 0, then for each 𝑥 ∈ 𝑋, we

let 𝜋𝑥 : 𝑉 → 𝑉𝑥 denote the canonical projection and 𝜄𝑥 : 𝑉𝑥 → 𝑉 denote the canonical
inclusion. Note that 𝜄𝑥𝜋𝑥 is an idempotent of End(𝑉) whose restriction to 𝑉𝑥 is Id𝑉𝑥 .

Definition 1.67 (rep(k𝒢)). Let 𝒢 be an 𝑋-groupoid and rep(k𝒢) be the category of
representations of k𝒢, that is, 𝑋-decomposable vector spaces𝑉 =

⊕
𝑥∈𝑋 𝑉𝑥 equipped with a

k-algebra morphism 𝜋 : k𝒢 → End(𝑉), such that 𝜋(𝑒𝑥) = 𝜄𝑥𝜋𝑥 , for all 𝑥 ∈ 𝑋. A morphism
between representations (𝑉,𝜋) and (𝑉′,𝜋′) is a linear map 𝜙 : 𝑉 → 𝑉′ with 𝜙(𝑉𝑥) ⊂ 𝑉′

𝑥

for all 𝑥 ∈ 𝑋, such that 𝜙 ◦ 𝜋(𝑔) = 𝜋′(𝑔) ◦ 𝜙 for 𝑔 ∈ 𝒢1.

Remark 1.68. Similar to the group case (where |𝑋 | = 1), we have an isomorphism of
categories rep(k𝒢) � k𝒢-mod. This will follow from Remark 2.32, which shows that
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rep(k𝒢) � rep(𝒢), along with the isomorphisms rep(𝒢) � 𝒢-mod [Lemma 1.58] and
𝒢-mod � k𝒢-mod [Remark 1.66].

1.5 Quivers and path algebras

In this section we recall preliminary graph-theoretic concepts of quivers and corre-
sponding algebraic properties of path algebras. These will be used in Chapter 3. Recall from
Example 1.9 that a quiver is simply a directed graph, which is a quadruple𝑄 = (𝑄0 , 𝑄1 , 𝑠 , 𝑡),
where 𝑄0 (resp., 𝑄1) is a collection of vertices (resp., arrows), and 𝑠, 𝑡 : 𝑄1 → 𝑄0 denote
the source and target maps, respectively.

We say that 𝑄 is finite if both |𝑄0 | and |𝑄1 | are finite sets. We read paths of 𝑄 from
left-to-right, and all cycles are assumed to be oriented here, so by “cycle” we mean “oriented
cycle”. A quiver is said to be acyclic if it contains no cycles.

Hypothesis 1.69. We assume throughout this work that quivers are finite.

For any quiver 𝑄, its associative, unital path algebra k𝑄 over k is the k-algebra having
k-basis given by the paths of 𝑄, with ring structure determined by path concatenation
when possible: 𝑎 ∗ 𝑏 = 𝛿𝑡(𝑎),𝑠(𝑏)𝑎𝑏, for all paths 𝑎, 𝑏 of 𝑄. The unit is 1k𝑄 =

∑
𝑖∈𝑄0 𝑒𝑖 , where

each 𝑒𝑖 is the trivial path at vertex 𝑖. The path algebra k𝑄 is N-graded by path length,
where (k𝑄)𝑘 = k(𝑄𝑘), for 𝑄𝑘 consisting of paths of length 𝑘 ∈ N.

First, we introduce some basic terminology.

Definition 1.70. Let 𝑄 = (𝑄0 , 𝑄1 , 𝑠 , 𝑡) be a quiver.

(i) A cycle 𝑝1𝑝2 · · · 𝑝𝑘 ∈ 𝑄𝑘 is called a simple if 𝑠(𝑝𝑖) ≠ 𝑡(𝑝 𝑗) for 2 ≤ 𝑖 , 𝑗 ≤ 𝑘.

(ii) A cycle 𝑐 := 𝑝1𝑝2 · · · 𝑝𝑘 of 𝑄 is said to be a source (resp., sink) cycle if there exists an
arrow leaving (resp., entering) 𝑐, that is, there exists an arrow 𝑝 ∈ 𝑄1, not in 𝑐, with
𝑠(𝑝) = 𝑠(𝑝𝑖) (resp., 𝑡(𝑝) = 𝑡(𝑝𝑖)) for some 𝑖 = 1, . . . , 𝑘.

(iii) A cycle of 𝑄 is called isolated if it is neither a source nor sink cycle.

(iv) A cycle of 𝑄 is called exclusive (or cyclically simple) if it is disjoint with every other
cycle.

(v) 𝑄 is said to satisfy the exclusive condition if every cycle of 𝑄 is exclusive.

(vi) For two cycles 𝑐, 𝑑 of 𝑄, we write 𝑐 ⇒ 𝑑 if there is a path that starts at a vertex in 𝑐
and ends at a vertex in 𝑑. A sequence of distinct cycles 𝑐1 , . . . , 𝑐𝑛 of 𝑄 is a chain of
cycles of length 𝑛 if 𝑐1 ⇒ 𝑐2 ⇒ · · · ⇒ 𝑐𝑛 .

In Figure 1.1 below, we present examples of (non-)isolated and (non-)exclusive cycles.
Notice that every isolated cycle is an exclusive cycle.

Next, we turn our attention to the connected condition of quivers.

Definition 1.71. Let 𝑄 = (𝑄0 , 𝑄1 , 𝑠 , 𝑡) be a quiver.
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• • • • • • • •
Non-isolated cycle Non-isolated cycles

Exclusive cycle Exclusive cycles

• • • • •
Non-isolated cycles Isolated cycle
Non-exclusive cycles Exclusive cycle

Figure 1.1: Non-/isolated and non-/exclusive cycles

(i) 𝑄 is said to be connected if for any given decomposition 𝑄0 = 𝑄′
0 ∪ 𝑄′′

0 , with
𝑄′

0 ∩𝑄′′
0 = ∅ and both 𝑄′

0 , 𝑄
′′
0 non-empty, there exists at least one arrow 𝑝 ∈ 𝑄1 such

that either 𝑠(𝑝) ∈ 𝑄′
0, 𝑡(𝑝) ∈ 𝑄′′

0 or 𝑠(𝑝) ∈ 𝑄′′
0 , 𝑡(𝑝) ∈ 𝑄′

0.

(ii) 𝑄 is said to be strongly connected (or oriented connected) if for every 𝑖 , 𝑗 ∈ 𝑄0 with 𝑖 ≠ 𝑗,
there exists a path 𝑝1 · · · 𝑝𝑘 such that 𝑠(𝑝1) = 𝑖 and 𝑡(𝑝𝑘) = 𝑗.

(iii) 𝑄 is said to be pairwise strongly connected if for every 𝑖 , 𝑗 , 𝑖′, 𝑗′ ∈ 𝑄0 with 𝑖 ≠ 𝑗 and
𝑖′ ≠ 𝑗′, there exist paths 𝑝1 · · · 𝑝𝑘 and 𝑞1 · · · 𝑞𝑘 of the same length such that 𝑠(𝑝1) = 𝑖,
𝑡(𝑝𝑘) = 𝑗, 𝑠(𝑞1) = 𝑖′ and 𝑡(𝑞𝑘) = 𝑗′.

(iv) 𝑄 is said to be path reversible if for every path 𝑝1𝑝2 · · · 𝑝𝑘 ∈ 𝑄𝑘 , there exists a path
𝑞1𝑞2 · · · 𝑞𝑙 ∈ 𝑄𝑙 such that 𝑠(𝑝1) = 𝑡(𝑞𝑙) and 𝑡(𝑝𝑘) = 𝑠(𝑞1). Here, 𝑙 need not equal 𝑘.

It is clear that pairwise strongly connected ⇒ strongly connected ⇒ connected.
However, the converses do not hold as we see in Figure 1.2 below.

• •
•

• •
Connected Strongly connected

Not strongly connected Not pairwise strongly connected

Figure 1.2: Various connected quivers

Now we recall results on algebraic properties of path algebras which depend on
graph-theoretic properties of the underlying quiver; many of these results are standard.

Notation 1.72 (𝐶, 𝐶𝑘 , 𝑐(𝑘)
𝑖 , 𝑗

). For a quiver 𝑄, denote by 𝐶 = (𝑐𝑖 , 𝑗)𝑖 , 𝑗∈𝑄0 the adjacency matrix

of (arrows in) 𝑄, and by 𝐶𝑘 := (𝑐(𝑘)
𝑖 , 𝑗
)𝑖 , 𝑗∈𝑄0 the adjacency matrix of paths of length 𝑘 in 𝑄

(which is equal to the 𝑘-th power of 𝐶).

Proposition 1.73. Let 𝑄 = (𝑄0 , 𝑄1 , 𝑠 , 𝑡) be a quiver.

(i) (a) [ASS06, Lemma II.1.4] k𝑄 is finite dimensional if and only if 𝑄 is acyclic.

(b) When k𝑄 is finite dimensional, dimk k𝑄 =
∑
𝑖 , 𝑗∈𝑄0 , 𝑘≥0 𝑐

(𝑘)
𝑖 , 𝑗
.
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(c) In general, the Hilbert series of k𝑄 is given by

𝐻k𝑄(𝑡) = (𝐼 − 𝐶𝑡)−1 = 𝐼 + 𝐶𝑡 + 𝐶2𝑡2 + 𝐶3𝑡3 + · · · ,

where 𝐼 denotes the |𝑄0 | × |𝑄0 | identity matrix.

(ii) [Ufn82] (see also [MFSM18, Theorem 3.12]) k𝑄 has finite GK-dimension if and only if
𝑄 satisfies the exclusive condition. In this case, GKdim(k𝑄) equals the maximal length of
chains of cycles in 𝑄.

(iii) (see, e.g., [CL00, Theorems 2.2 and 2.3]) k𝑄 is (resp., right, left) Noetherian if and only if
every cycle in 𝑄 is (resp., not a source cycle, not a sink cycle) isolated.

(iv) (see, e.g., [CL00, Theorem 2.1]) k𝑄 is prime if and only if 𝑄 is strongly connected.

(v) [SM08, Proposition 2.1] k𝑄 is semiprime if and only if 𝑄 is path reversible.

(vi) (see, e.g., [Bri12, Section 1.4]) k𝑄 is hereditary, and gldim(k𝑄) = 0 if and only if 𝑄 is
arrowless. □

1.6 Overview of algebraic and homological properties

In this section, we present an overview of several ring-theoretic and homological
properties that will be recalled throughout this work, with a particular focus on Chapter 3.
Take 𝑅 a ring, k an arbitrary field, and 𝐴 a k-algebra here. We refer the reader to [GW04,
Section 1.1], [MR01, Sections 0.2, 7.1, 8.1], [Frö99, Section 1], and [EE07, Section 2.1] for
further details of the material here.

A right 𝑅-module 𝑀𝑅 is called Noetherian if every submodule of 𝑀 is finitely generated.
In particular, a ring 𝑅 is said to be right Noetherian if 𝑅𝑅 is Noetherian. Likewise, we can
define left Noetherian rings, and 𝑅 is Noetherian if it is both left and right Noetherian.

The projective dimension of a module 𝑀𝑅, written pd(𝑀𝑅), is the shortest length 𝑛 of a
projective resolution of 𝑀, or equal to ∞ if no such 𝑛 exists. The right global dimension of 𝑅
is defined by r. gldim(𝑅) := sup{pd(𝑀) | 𝑀 any right 𝑅-module}. Likewise, l. gldim(𝑅)
is defined; when r. gldim(𝑅) = l. gldim(𝑅), we simply write gldim(𝑅). A ring 𝑅 is called
hereditary if gldim(𝑅) ≤ 1.

An N-graded k-algebra 𝐴 is said to be Koszul if it has a linear minimal graded free
resolution, that is, there exists an exact sequence

· · · → 𝐴(−𝑖)𝑏𝑖 → · · · → 𝐴(−2)𝑏2 → 𝐴(−1)𝑏1 → 𝐴→ k→ 0,

where 𝐴(−𝑗) is the graded algebra 𝐴 with grading shifted up by 𝑗, that is 𝐴(−𝑗)𝑖 = 𝐴𝑖−𝑗 ,
and the exponents 𝑏𝑖 refer to the 𝑏𝑖-fold direct sum.

A ring 𝑅 is called prime if for every pair of nonzero two-sided ideals 𝐼 , 𝐽 of 𝑅 it follows
𝐼𝐽 ≠ 0, and is called semiprime if 𝑅 has no nonzero nilpotent two-sided ideals.
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Let 𝐴 be a finitely generated k-algebra. The Gelfand-Kirillov dimension of 𝐴 is defined
by GKdim(𝐴) = sup𝑉 lim𝑛→∞ log𝑛(dimk 𝑉𝑛), where the supremum is taken over all finite
dimensional k-subspaces 𝑉 of 𝐴 and 𝑉𝑛 denotes the subspace spanned by all elements of
the form 𝑣1 · · · 𝑣𝑛 , where 𝑣𝑖 ∈ 𝑉 , 1 ≤ 𝑖 ≤ 𝑛. A well known result is that GKdim(𝐴) = 0 if
and only if 𝐴 is finite-dimensional as a k-vector space.

Finally, recall that a positively graded bimodule𝑀 =
⊕

𝑛∈N𝑀𝑛 over a graded k-algebra
𝐴 =

⊕
𝑛∈N 𝐴𝑛 is said to be locally finite if each 𝑀𝑛 is finite-dimensional. Let 𝐽 be a finite set

and consider the k-algebra 𝐴 := k |𝐽 |. Note that a locally finite N-graded 𝐴-bimodule 𝑀
can be seen as an 𝐽 × 𝐽-graded vector space 𝑀 =

⊕
𝑖 , 𝑗∈𝐽 𝑀𝑖 , 𝑗 . We define the (matrix) Hilbert

series ℎ𝑀(𝑡) of 𝑀 to be a matrix-valued series with entries given by

ℎ𝑀(𝑡)𝑖 , 𝑗 =
∑
𝑘≥0 dimk((𝑀𝑘)𝑖 , 𝑗)𝑡𝑘 .



CHAPTER 2

Weak quantum symmetries

The objective of this chapter is to investigate the symmetries of k-algebras 𝐴 through
the use of actions by algebraic structures 𝐻 that resemble cocommutative Hopf algebras.
To accomplish this, we will extend and formalize the well-known correspondence between
group modules and representations of groups. This will allow us to establish a connection
between categorical and representation-theoretic frameworks for these 𝐻-actions on 𝐴.
Throughout this chapter, we will focus on the following categories.

Notation 2.1. Let 𝑋 be a nonempty set. We consider the following categories:

• Grp, of groups together with group morphisms,

• Lie, of Lie algebras together with Lie algebra morphisms,

• Hopf, of Hopf algebras together with Hopf algebra morphisms,

• Grpd, of groupoids together with groupoid morphisms.

• 𝑋-Grpd, the subcategory of Grpd whose objects are groupoids with object set 𝑋,
together with 𝑋-preserving groupoid morphisms (see Definition 1.44),

• 𝑋-Lie, of 𝑋-Lie algebroids, together with 𝑋-Lie algebroid morphisms (see Defini-
tion 2.37),

• 𝑋-WHA, of weak Hopf algebras with a complete set of grouplike idempotents indexed
by𝑋, together with𝑋-preserving weak Hopf algebra morphisms (see Definition 2.26).

We also consider the following full subcategories of Hopf:

• GrpAlg, of group algebras,

• EnvLie, of enveloping algebras of Lie algebras,

• CocomHopf, of cocommutative Hopf algebras,
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as well as the following full subcategories of 𝑋-WHA:

• 𝑋-GrpdAlg, of 𝑋-groupoid algebras (see Definition 2.26),

• 𝑋-EnvLie, of 𝑋-enveloping algebras of 𝑋-Lie algebroids (see Definition 2.49),

• 𝑋-CocomWHA, of cocommutative 𝑋-weak Hopf algebras.

Note that all the categories 𝒞 mentioned above have a common property: for any object
𝐻 in 𝒞, there is a notion of a category of left 𝐻-modules, which we denote 𝐻-mod, and
this category is a k-linear monoidal category (although ⊗𝐻-mod is not necessarily given by
⊗k). We refer to any of the categories above as a category of Hopf-like structures.

We would like to emphasise that we do not provide a precise set of axioms that define
a category 𝒞 as consisting of “Hopf-like structures”. However, the categories presented in
Notation 2.1 share several common properties, which we discuss in Remark 2.2. It is our
aspiration that the findings of our research can be extended to other categories, including
non-cocommutative Hopf-like structures. We consider this an open question for future
investigation and exploration.

Remark 2.2. Let𝒞 be any of the categories of Hopf-like structures introduced in Notation 2.1.
We will see that each of these categories possesses the following properties:

(i) 𝒞 is a concrete category.

(ii) For each 𝐻 in 𝒞, there exists a notion of a quotient object 𝐻/𝐼 in 𝒞 for certain subsets
𝐼 of 𝐻. It is important to note that in this context, 𝐼 may not necessarily be a subobject
of 𝐻 in 𝒞.

(iii) One of the following cases occurs:

(I) There exists a bifunctor ⊠𝒞 : 𝒞 × Veck → Set, so that the elements of 𝐻 ⊠𝒞 𝑉
have the form ℎ ⊠𝒞 𝑣, for certain ℎ ∈ 𝐻 and 𝑣 ∈ 𝑉 ; in this case we say 𝒞 is of
type I,

(II) There exists a bifunctor ⊠𝒞 : 𝒞 × Veck → Veck, so that the elements of 𝐻 ⊠𝒞 𝑉
are sums of elements of the form ℎ ⊠𝒞 𝑣, for certain ℎ ∈ 𝐻 and 𝑣 ∈ 𝑉 ; in this
case we say 𝒞 is of type II.

The details of ⊠𝒞 depend on the category 𝒞 and will be clarify for each studied
category (see Example 2.3).

(iv) For each object 𝐻 in 𝒞, there is a notion of endowing a k-vector space 𝑉 with a
structure of 𝐻-module via a set-theoretic function ℓ𝐻,𝑉 : 𝐻 ⊠𝒞 𝑉 → 𝑉 (if 𝒞 is of type
I) or a k-linear map ℓ𝐻,𝑉 : 𝐻 ⊠𝒞 𝑉 → 𝑉 (if 𝒞 is of type II). In either case, we use the
notation ℎ · 𝑣 to denote ℓ𝐻,𝑉 (ℎ ⊠ 𝑣) and say that 𝐻 acts on 𝑉 .

(v) For each object 𝐻 in 𝒞, there is also a notion of a morphism of 𝐻-modules, and thus
there exists a category 𝐻-mod of 𝐻-modules and their morphisms. 𝐻-mod forms a
k-linear monoidal category (𝐻-mod, ⊗𝐻-mod , 1𝐻-mod).
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In short, our categories of Hopf-like structures are categories in which it is possible to
associate to each object a k-linear monoidal category of modules.

Example 2.3. (a) When 𝒞 = Grp, we may take ⊠Grp = ×, the Cartesian product of sets.
In this case, if 𝐺 is a group, ℓ𝐺,𝑉 : 𝐺 ×𝑉 → 𝑉 is a k-linear group action of 𝐺 on a
vector space 𝑉 . Then (𝐺-mod, ⊗k , k) is a k-linear monoidal category where if 𝑉,𝑊
are 𝐺-modules, then𝑉 ⊗𝑊 is a 𝐺-module via the action 𝑔 · (𝑣 ⊗ 𝑤) = (𝑔 · 𝑣) ⊗ (𝑔 ·𝑤)
for 𝑔 ∈ 𝐺, 𝑣 ∈ 𝑉 , and 𝑤 ∈𝑊 .

(b) When 𝒞 = Lie, we may take ⊠Lie = ×, the Cartesian product. In this case, if 𝔤 is a Lie
algebra, ℓ𝔤,𝑉 : 𝔤×𝑉 → 𝑉 is ak-bilinear map such that [𝑥, 𝑦]·𝑣 = 𝑥·(𝑦·𝑣)−𝑦·(𝑥·𝑣), for all
𝑥, 𝑦 ∈ 𝔤 and 𝑣 ∈ 𝑉 . Then (𝔤-mod, ⊗k , k) is a k-linear monoidal category where if𝑉,𝑊
are 𝔤-modules, then𝑉⊗𝑊 is a 𝔤-module via the action 𝑥 ·(𝑣⊗𝑤) = (𝑥 ·𝑣)⊗𝑤+𝑣⊗(𝑥 ·𝑤).

(c) When 𝒞 = Hopf, we may take ⊠Hopf = ⊗k. In this case, ℓ𝐻,𝑉 : 𝐻 ⊗ 𝑉 → 𝑉 is k-linear
map that makes 𝑉 a left module over the k-algebra 𝐻. Then (𝐻-mod, ⊗k , k) is a
k-linear monoidal category where if𝑉,𝑊 are𝐻-modules, then𝑉⊗𝑊 is an𝐻-module
via the action ℎ · (𝑣 ⊗ 𝑤) = ∑(ℎ1 · 𝑣) ⊗ (ℎ2 · 𝑤). As consequence, GrpAlg, EnvLie and
CocomHopf are also categories of Hopf-like structures.

(d) When 𝒞 = 𝑋-Grpd, for an 𝑋-groupoid 𝒢 and an 𝑋-decomposable vector space
𝑉 =

⊕
𝑥∈𝑋 𝑉𝑥 , we may take

𝒢 ⊠𝑋-Grpd 𝑉 = {( 𝑓 , 𝑣) ∈ 𝒢 ×𝑉 | 𝑓 ∈ 𝒢 , 𝑣 ∈ 𝑉𝑠( 𝑓 )}.

Then a left action of 𝒢 on 𝑉 can be viewed as a map 𝒢 ⊠𝑋-Grpd 𝑉 → 𝑉 . By the
Lemma 1.50, (𝒢-mod, ⊗𝒢-mod , k |𝑋 |) is a monoidal category. Note that since the
morphisms in 𝑋-Grpd fix the set 𝑋, the subobjects of 𝒢 in 𝑋-Grpd are all wide
subgroupoids ℋ (that is, subcategories with ℋ0 = 𝑋). A wide subgroupoid is called
normal if 𝑔ℎ𝑔−1 ∈ ℋ for all ℎ ∈ ℋ1 and all 𝑔 ∈ 𝒢1 such that 𝑠(𝑔) = 𝑡(ℎ). If ℋ is a
normal subgroupoid, then the set of cosets of ℋ in 𝒢 forms a quotient groupoid
𝒢/ℋ ∈ 𝑋-Grpd.

Later we will show that the remaining categories 𝑋-Lie, 𝑋-WHA, 𝑋-GrpdAlg, 𝑋-EnvLie
and 𝑋-CocomWHA also satisfy the properties in Remark 2.2 (see Remarks 2.6 and 2.40).

Next we introduce the notion of inner-faithful action by a Hopf-like structure.

Definition 2.4 (Inner-faithful action). Let 𝒞 be a category of Hopf-like structures with
bifunctor ⊠𝒞 : 𝒞 × Veck → Set (if 𝒞 is of type I) or a bifunctor ⊠𝒞 : 𝒞 × Veck → Veck (if
𝒞 is of type II). If 𝐻 is an object in 𝒞 and 𝑉 is an 𝐻-module via ℓ𝐻,𝑉 , we say that 𝐻 acts
inner-faithfully on 𝑉 if there is no proper quotient 𝐻/𝐼 of 𝐻 in 𝒞 such that 𝐻/𝐼 acts on 𝑉
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via ℓ𝐻/𝐼 ,𝑉 and the following diagram commutes (in Set or in Veck):

𝐻 ⊠𝒞 𝑉

𝐻
𝐼 ⊠𝒞 𝑉 𝑉,

ℓ𝐻,𝑉𝜋⊠𝒞Id

ℓ𝐻/𝐼 ,𝑉

where 𝜋 : 𝐻 → 𝐻/𝐼 is the natural projection.

Definition 2.5 (𝐻-module algebra). Let 𝐻 be an object in a category of Hopf-like
structures 𝒞. We say that 𝐴 is a left 𝐻-module algebra if 𝐴 is a monoid object in the monoidal
category 𝐻-mod.

Remark 2.6. While we require the objects of 𝐻-mod to be k-vector spaces, it is important
to note that the monoidal product ⊗𝐻-mod may not coincide with the tensor product ⊗k.
Consequently, not every monoid object 𝐴 in 𝐻-mod automatically possesses a k-algebra
structure. However, it is worth highlighting that in the categories of Notation 2.1, this
correspondence between monoid objects and k-algebras with compatible 𝐻-actions holds.
Specifically:

(i) For Grp, Lie, and Hopf, where the monoidal product is given by ⊗k, it is immediate
that every monoid object 𝐴 in 𝐻-mod can be endowed with a k-algebra structure.

(ii) In the case of 𝑋-Grpd, Lemma 1.65 establishes that monoid objects 𝐴 in 𝒢-mod
precisely correspond to k-algebras equipped with a compatible 𝒢-action. This result
will also hold for 𝑋-Lie [Lemma 2.45].

(iii) The main objective of Theorem 1.29 was to prove that for weak bialgebras (and hence,
weak Hopf algebras), monoid objects in 𝐻-mod correspond to 𝐻-module algebras
as defined in Definition 1.27. Consequently, this correspondence also extends to
𝑋-WHA and the full subcategories 𝑋-GrpdAlg, 𝑋-EnvLie and 𝑋-CocomWHA.

We are now ready to introduce the object Sym𝒞(𝐴) which captures the symmetries of
a k-algebra 𝐴 by all actions of the structures in 𝒞.

Definition 2.7 (Sym𝒞(𝐴)). Let 𝐴 be a k-algebra and let 𝒞 be a category of Hopf-like
structures, as in Notation 2.1. We denote by Sym𝒞(𝐴) an object in 𝒞 (if it exists) such that:

(i) 𝐴 is Sym𝒞(𝐴)-module algebra via ℓSym𝒞(𝐴),𝐴 : Sym𝒞(𝐴) ⊠𝒞 𝐴→ 𝐴 (where if 𝑓 ⊠ 𝑎 ∈
Sym𝒞(𝐴) ⊠𝒞 𝐴, we write 𝑓 ⊲ 𝑎 to denote ℓSym𝒞(𝐴),𝐴( 𝑓 ⊠ 𝑎)).

(ii) For each object 𝐻 in 𝒞, if 𝐴 is an 𝐻-module algebra via ℓ𝐻,𝐴 : 𝐻 ⊠𝒞 𝐴 → 𝐴, then
there exists a unique morphism 𝜙 : 𝐻 → Sym𝒞(𝐴) in 𝒞 such that the following
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diagram commutes

𝐻 ⊠𝒞 𝐴

Sym𝒞(𝐴) ⊠𝒞 𝐴 𝐴,

ℓ𝐻,𝐴𝜙⊠𝒞Id

ℓSym𝒞(𝐴),𝐴

and conversely, every morphism 𝜙 : 𝐻 → Sym𝒞(𝐴) in 𝒞 gives 𝐴 the structure of an
𝐻-module algebra via ℓ𝐻,𝐴(ℎ ⊠ 𝑎) = 𝜙(ℎ) ⊲ 𝑎.

Remark 2.8. (i) Note that, while the definition of an 𝐻-module algebra is “category-
theoretic”, if the object Sym𝒞(𝐴) exists, then it provides a “representation-theoretic"
framework for actions on k-algebras: 𝐴 is an𝐻-module algebra if there is a morphism
𝐻 → Sym𝒞(𝐴) in 𝒞.

(ii) It is not obvious that the object Sym𝒞(𝐴) exists. For example, let 𝒞 = AbGrp be the
category of abelian groups and let 𝐴 = k[𝑥]. Let 𝐺 = ⟨𝑔⟩ be the group of order 2.
Then 𝐺 acts on 𝐴 via the action · defined by 𝑔 · 𝑥 = −𝑥 and also the action ∗ defined
by 𝑔 ∗ 𝑥 = −𝑥 + 1. If SymAbGrp(𝐴) existed, then we would obtain abelian group
morphisms 𝜙 : 𝐺 → SymAbGrp(𝐴) and 𝜓 : 𝐺 → SymAbGrp(𝐴) so that 𝜙(𝑔) ⊲ 𝑥 = −𝑥
and 𝜓(𝑔) ⊲ 𝑥 = −𝑥 + 1. But then the elements 𝜙(𝑔) and 𝜓(𝑔) would not commute
in SymAbGrp(𝐴) (since they have different actions on 𝑥), contradicting the fact that
SymAbGrp(𝐴) is an abelian group.

(iii) For the categories 𝒞 in Notation 2.1, we conjecture that if Sym𝒞(𝐴) exists, then it acts
inner-faithfully on 𝐴 and it is unique up to unique isomorphism in 𝒞. This remains
as an open question that we expect to answer in future research.

In the remainder of this chapter, we will show that Sym𝒞(𝐴) exists for the categories 𝒞
appearing in Notation 2.1. We note that these categories are all categories of objects which
are (closely related to) weak Hopf algebras. Hence, weak Hopf algebras can be viewed as
capturing symmetries of k-algebras.

2.1 Weak quantum symmetries captured by groupoids

The main objective of this section is to establish a correspondence between two action
frameworks in the context of groupoids. Specifically we aim to generalize the following
well-known correspondence: if𝐺 is a group, a𝐺-module algebra structure on a k-algebra𝐴
yields a group morphism from𝐺 to the algebra automorphism group AutAlg(𝐴); conversely
any group morphism 𝐺 → AutAlg(𝐴) induces a 𝐺-module algebra structure on 𝐴 [CM84,
Proposition 1.2].

First, we introduce a generalization of the algebra automorphism group to accommodate
groupoid actions. Recall the notation of Section 1.4 and Example 2.3.(d).
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Definition 2.9 (Aut𝑋-Alg(𝐴)). Let 𝐴 =
⊕

𝑥∈𝑋 𝐴𝑥 be an 𝑋-decomposable k-algebra. We
define Aut𝑋-Alg(𝐴), the 𝑋-algebra automorphism groupoid of 𝐴, as follows:

• the object set is 𝑋,

• for any 𝑥, 𝑦 ∈ 𝑋, HomAut𝑋-Alg(𝐴)(𝑥, 𝑦) is the space of unital k-algebra isomorphisms be-
tween the unital k-algebras 𝐴𝑥 and 𝐴𝑦 . The composition of morphisms is determined
by the composition of the corresponding k-algebra morphisms.

Remark 2.10. Note that the 𝑋-algebra automorphism groupoid Aut𝑋-Alg(𝐴) is as a sub-
groupoid (that is, a subcategory closed under taking inverses) of GL𝑋(𝐴) from Definition 1.52,
and it is usually proper in the sense that it is not a full subcategory. Clearly Aut𝑋-Alg(𝐴)
is an 𝑋-groupoid. Also, when |𝑋 | = 1 we recover the classical group of automorphisms
AutAlg(𝐴) as a subgroup of GL(𝐴).

Now, we explicitly calculate Sym𝑋-Grpd(𝐴) for any 𝑋-decomposable k-algebra 𝐴 (recall
Definition 2.7).

Proposition 2.11. Let 𝐴 =
⊕

𝑥∈𝑋 𝐴𝑥 be an 𝑋-decomposable k-algebra and 𝒢 be an 𝑋-groupoid.
Then:

(i) 𝐴 is an Aut𝑋-Alg(𝐴)-module algebra via

ℓAut𝑋-Alg(𝐴),𝐴( 𝑓 ⊠ 𝑎) = 𝑓 (𝑎), for all 𝑓 ⊠ 𝑎 ∈ Aut𝑋-Alg(𝐴) ⊠𝑋-Grpd 𝐴

(that is, for all 𝑓 ∈ Aut𝑋-Alg(𝐴)1 and 𝑎 ∈ 𝐴𝑠( 𝑓 )). We denote ℓAut𝑋-Alg(𝐴),𝐴( 𝑓 ⊠ 𝑎) by 𝑓 ⊲ 𝑎.

(ii) Suppose that 𝐴 is a 𝒢-module algebra via ℓ𝒢 ,𝐴, and denote 𝑔 · 𝑎 := ℓ𝒢 ,𝐴(𝑔 ⊠ 𝑎) for all
𝑔 ⊠ 𝑎 ∈ 𝒢 ⊠𝑋-Grpd 𝐴. Then there is a unique 𝑋-groupoid morphism 𝜋 : 𝒢 → Aut𝑋-Alg(𝐴)
such that 𝑔 · 𝑎 = 𝜋(𝑔) ⊲ 𝑎 for all 𝑔 ⊠ 𝑎 ∈ 𝒢 ⊠𝑋-Grpd 𝐴.

(iii) Every 𝑋-groupoid morphism 𝜋 : 𝒢 → Aut𝑋-Alg(𝐴) gives 𝐴 the structure of a 𝒢-module
algebra via ℓ𝒢 ,𝐴(𝑔 ⊠ 𝑎) = ℓAut𝑋-Alg(𝐴),𝐴(𝜋(𝑔) ⊠ 𝑎) for all 𝑔 ⊠ 𝑎 ∈ 𝒢 ⊠𝑋-Grpd 𝐴.

Hence Sym𝑋-Grpd(𝐴) = Aut𝑋-Alg(𝐴).

Proof. (i): For all 𝑓 ∈ Aut𝑋-Alg(𝐴)1 and 𝑎, 𝑏 ∈ 𝐴𝑠( 𝑓 ) we have

𝑓 ⊲ (𝑎𝑏) = 𝑓 (𝑎𝑏) = 𝑓 (𝑎) 𝑓 (𝑏) = ( 𝑓 ⊲ 𝑎)( 𝑓 ⊲ 𝑏),
𝑓 ⊲ 1𝑠( 𝑓 ) = 𝑓 (1𝑠( 𝑓 )) = 1𝑡( 𝑓 )

so by Lemma 1.65 it follows that 𝐴 is an Aut𝑋-Alg(𝐴)-module algebra.

(ii): If 𝐴 is a 𝒢-module via ·, then by Lemma 1.48, there is an associated subgroupoid
of GL𝑋(𝐴) with object set 𝑋 and its structure isomorphisms 𝛼𝑔 (see Notation 1.49). This
induces a unique 𝑋-groupoid morphism 𝜋 : 𝒢 → GL𝑋(𝐴) such that and 𝜋(𝑔) = 𝛼𝑔 for all
𝑥 ∈ 𝑋 and 𝑔 ∈ 𝒢1 (see Lemma 1.58). Moreover, if 𝐴 is a 𝒢-module algebra, then it satisfies
(1.27) and (1.28), which are equivalent to map 𝜋(𝑔) being a unital k-algebra map for all
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𝑔 ∈ 𝐺. Hence, the image of the groupoid morphism 𝜋 is contained in the subgroupoid
Aut𝑋-Alg(𝐴) of GL𝑋(𝐴). Corestricting 𝜋 to a map 𝒢 → Aut𝑋-Alg(𝐴) gives the result.

(iii): If 𝜋 : 𝒢 → Aut𝑋-Alg(𝐴) is any 𝑋-groupoid morphism, then we can define a map
ℓ𝒢 ,𝐴 : 𝒢 ⊠𝑋-Grpd 𝐴 → 𝐴 by ℓ𝒢 ,𝐴(𝑔 ⊠ 𝑎) = ℓAut𝑋-Alg(𝐴),𝐴(𝜋(𝑔), 𝑎) for all 𝑔 ⊠ 𝑎 ∈ 𝒢 ⊠𝑋-Grpd 𝐴.
Since 𝜋 is an 𝑋-groupoid morphism, we see that if 𝑔, ℎ ∈ 𝒢1 with 𝑡(ℎ) = 𝑠(𝑔) and 𝑎 ∈ 𝐴𝑠(ℎ),
then

(𝑔ℎ) · 𝑎 = 𝜋(𝑔ℎ) ⊲ 𝑎 = [𝜋(𝑔)𝜋(ℎ)] ⊲ 𝑎 = 𝜋(𝑔) ⊲ (𝜋(ℎ) ⊲ 𝑎) = 𝑔 · (ℎ · 𝑎),

and for all 𝑎 ∈ 𝐴𝑥
𝑒𝑥 · 𝑎 = 𝜋(𝑒𝑥) ⊲ 𝑎 = 𝑎.

Hence, · makes 𝐴 a 𝒢-module. Further for all 𝑔 ∈ 𝒢1 and 𝑎, 𝑏 ∈ 𝐴𝑠(𝑔), we have

𝑔 · (𝑎𝑏) = 𝜋(𝑔) ⊲ (𝑎𝑏) = (𝜋(𝑔) ⊲ 𝑎)(𝜋(𝑔) ⊲ 𝑏) = (𝑔 · 𝑎)(𝑔 · 𝑏)

and
𝑔 · 1𝑠(𝑔) = 𝜋(𝑔) ⊲ 1𝑠(𝑔) = 1𝑡(𝜋(𝑔)) = 1𝑡(𝑔)

and so 𝐴 is a 𝒢-module algebra. □

Example 2.12. In Example 1.51(a), the 𝒢-module k4 � k2 ⊕ k2 is a 𝒢-module algebra
with functor 𝜋 : 𝒢 → Aut𝑋-Alg(k4) induced from 𝜋 as defined in Example 1.57. In
Example 1.51(d), the 𝒢-module 𝐴 = k[𝑡 , 𝑡−1] ⊕ k[𝑡 , 𝑡−1] is a 𝒢-module algebra with the
functor 𝜋 : 𝒢 → Aut𝒢0-Alg(𝐴). However, the 𝒢-module in Example 1.51(b) is not an
example of a 𝒢-module algebra since the structure isomorphisms are not unital. Similarly,
the induced 𝑋-decomposition of the 𝒢-module of Example 1.51(c) does not make it into
an 𝒢-module algebra.

We end this section with a well-known result, which is the reinterpretation of Proposi-
tion 2.11 in the case that |𝑋 | = 1 (that is, when 𝒢 is a group).

Corollary 2.13. Let 𝐴 be a k-algebra. Then 𝐴 is an AutAlg(𝐴)-module algebra and for a group
𝐺, the following are equivalent.

(i) 𝐴 is a 𝐺-module algebra.

(ii) There exists a group morphism 𝜋 : 𝐺 → AutAlg(𝐴).

Hence, SymGrp(𝐴) = AutAlg(𝐴).

2.2 Weak quantum symmetries captured by groupoid algebras

In this section we explore a linearization approach for groupoid actions using a
generalization of a well-known adjuntion for groups: the functor k() : Grp → Alg, which
maps a group to its group algebra, is left adjoint to the functor ()× : Alg → Grp, which
assigns the group of units of an algebra.
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2.2.1 Local units of algebras

Next, we introduce the notion of local units of a k-algebra. This generalizes the group
of units functor to the groupoid setting; see Theorem 2.31(i) below.

Definition 2.14 (̂𝑎). Let 𝐴 be a k-algebra and {𝑒𝑥}𝑥∈𝑋 be a set of nonzero orthogonal
idempotents of 𝐴. For 𝑥, 𝑦 ∈ 𝑋, an element 𝑎 ∈ 𝑒𝑦𝐴𝑒𝑥 is called a local unit if there exists an
element 𝑏 ∈ 𝑒𝑥𝐴𝑒𝑦 such that 𝑎𝑏 = 𝑒𝑦 and 𝑏𝑎 = 𝑒𝑥 . The element 𝑏 is called a local inverse of
𝑎, which we denote by 𝑎̂ := 𝑏.

The notions above are well-defined due to the following straightforward lemma.

Lemma 2.15. Let 𝐴 be a k-algebra and let {𝑒𝑥}𝑥∈𝑋 be a set of nonzero orthogonal idempotents of 𝐴.
Suppose that 𝑎 ∈ 𝑒𝑦𝐴𝑒𝑥 be a local unit of 𝐴 for some 𝑥, 𝑦 ∈ 𝑋. Then:

(i) 𝑎 is nonzero.

(ii) If 𝑎 ∈ 𝑒𝑦′𝐴𝑒𝑥′ for 𝑥′, 𝑦′ ∈ 𝑋, then 𝑥 = 𝑥′ and 𝑦 = 𝑦′.

(iii) If there exists 𝑏, 𝑏′ ∈ 𝑒𝑥𝐴𝑒𝑦 such that 𝑎𝑏 = 𝑎𝑏′ = 𝑒𝑦 and 𝑏𝑎 = 𝑏′𝑎 = 𝑒𝑥 , then 𝑏 = 𝑏′.

(iv) For 𝑥, 𝑦, 𝑧 ∈ 𝑋, if 𝑎1 ∈ 𝑒𝑦𝐴𝑒𝑥 and 𝑎2 ∈ 𝑒𝑧𝐴𝑒𝑦 are local units of 𝐴, then the product
𝑎2𝑎1 ∈ 𝑒𝑧𝐴𝑒𝑥 is also a local unit of 𝐴.

Proof. (i): Recall that 𝑎𝑏 = 𝑒𝑦 for some 𝑦 ∈ 𝑋 and 𝑏 ∈ 𝐴. It is clear that 𝑎 is nonzero.

(ii): Since 𝑎 ∈ 𝑒𝑦𝐴𝑒𝑥 , we assume that 𝑎 = 𝑒𝑦𝑎
′𝑒𝑥 for some 𝑎′ ∈ 𝐴. One can see that

𝑒𝑦𝑎𝑒𝑥 = 𝑒2
𝑦𝑎

′𝑒2
𝑥 = 𝑒𝑦𝑎

′𝑒𝑥 = 𝑎. If 𝑎 ∈ 𝑒′𝑦𝐴𝑒′𝑥 for some 𝑥′, 𝑦′ ∈ 𝑋, then we have 𝑎 = 𝑒′𝑦𝑎𝑒
′
𝑥 . So

𝑎 = 𝑒𝑦𝑎𝑒𝑥 = 𝑒𝑦𝑒𝑦′𝑎𝑒𝑥′𝑒𝑥 . Since the idempotents are orthogonal and 𝑎 is nonzero, we have
that 𝑥 = 𝑥′ and 𝑦 = 𝑦′.

(iii): We have that 𝑏 = 𝑒𝑥𝑏𝑒𝑦 = 𝑏
′𝑎𝑏𝑎𝑏′ = 𝑏′𝑒𝑦 . So by multiplying on the left by 𝑒𝑥 and

on the right by 𝑒𝑦 , we get that 𝑏 = 𝑏′.

(iv): Since 𝑎1 𝑎̂1 = 𝑒𝑦 , 𝑎̂1𝑎1 = 𝑒𝑥 , 𝑎2 𝑎̂2 = 𝑒𝑧 and 𝑎̂2𝑎2 = 𝑒𝑦 , we have that

𝑎2𝑎1 𝑎̂1 𝑎̂2 = 𝑎2𝑒𝑦 𝑎̂2 = 𝑎2 𝑎̂2𝑎2 𝑎̂2 = 𝑒𝑧𝑒𝑧 = 𝑒𝑧 .

Similarly, 𝑎̂1 𝑎̂2𝑎2𝑎1 = 𝑒𝑥 . □

Remark 2.16. In contrast with the notion of local identities introduced in Remark 1.61
for 𝑋-decomposable k-algebras, the idempotents in Lemma 2.15 are not required to be
central, nor do we require 1𝐴 =

∑
𝑥∈𝑋 𝑒𝑥 . This allows us to work with a broader scope of

k-algebras towards our main result, Theorem 2.31. For example, for an 𝑋-groupoid 𝒢, the
groupoid algebra k𝒢 has the set of nonzero orthogonal idempotents {𝑒𝑥}𝑥∈𝑋 , and even
though 1k𝒢 =

∑
𝑥∈𝑋 𝑒𝑥 , the idempotents are 𝑒𝑥 are not central, in general. Hence, unless 𝒢

is totally disconnected, k𝒢 is not a 𝑋-decomposable k-algebra via these elements.

Definition 2.17 ((−)×
𝑋

). Let 𝐴 be a k-algebra and {𝑒𝑥}𝑥∈𝑋 be a set of nonzero orthogonal
idempotents of 𝐴. The groupoid of local units of 𝐴, denoted by 𝐴×

𝑋
, is defined as follows.
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• The objects are the elements 𝑥 ∈ 𝑋

• For each 𝑥, 𝑦 ∈ 𝑋, Hom𝐴×
𝑋
(𝑥, 𝑦) = {𝑎 ∈ 𝑒𝑦𝐴𝑒𝑥 | 𝑎 is a local unit of 𝐴}. In this case

we write 𝑎 : 𝑥 → 𝑦.

• Given two morphisms 𝑎 : 𝑥 → 𝑦 and 𝑎′ : 𝑦 → 𝑧 we define their composition as the
product 𝑎′𝑎 : 𝑥 → 𝑧.

• The inverse of a morphism 𝑎 : 𝑥 → 𝑦 is given by its local inverse 𝑎̂ : 𝑦 → 𝑥.

Remark 2.18. Lemma 2.15 guarantees that the construction above is well-defined, and it is
indeed an 𝑋-groupoid.

The construction of 𝐴×
𝑋

strongly depends on the choice of the family of idempotents,
so a k-algebra might have several different associated groupoids of local units.

Example 2.19. (a) If |𝑋 | = 1, then for any k-algebra 𝐴 we can take {1𝐴} as the set of
idempotents indexed by 𝑋. In this case, 𝐴×

𝑋
is precisely the group of units 𝐴×.

(b) If 𝒢 is an 𝑋-groupoid and 𝐴 = k𝒢, then the identity morphisms {𝑒𝑥}𝑥∈𝑋 of 𝒢 form
a set of orthogonal nonzero idempotents in k𝒢. Hence, 𝒢 is a subgroupoid of (k𝒢)×

𝑋

since 𝑔𝑔−1 = 𝑒𝑡(𝑔) and 𝑔−1𝑔 = 𝑒𝑠(𝑔) for all 𝑔 ∈ 𝒢1. If |𝑋 | = 1, then this reduces to the
fact that 𝒢 is a subgroup of the group (k𝒢)×.

(c) Let 𝐴 =
⊕

𝑥∈𝑋 𝐴𝑥 be an 𝑋-decomposable k-algebra. Then 𝐴×
𝑋

is a disjoint collection
of groups due to the fact that Hom𝐴×

𝑋
(𝑥, 𝑥) � (𝐴𝑥)× as multiplicative groups and

Hom𝐴×
𝑋
(𝑥, 𝑦) = 0, for every 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦.

(d) Let 𝑉 =
⊕

𝑥∈𝑋 𝑉𝑥 be an 𝑋-decomposable vector space with 𝑉𝑥 ≠ 0 for all 𝑥 ∈ 𝑋.
Let 𝐴 = End(𝑉). Recalling the notation introduced before Definition 1.67, for all
𝑥 ∈ 𝑋, set 𝑒𝑥 = 𝜄𝑥𝜋𝑥 . Then, 𝑒𝑦𝐴𝑒𝑥 � HomVeck (𝑉𝑥 , 𝑉𝑦), and so 𝑓 ∈ 𝑒𝑦𝐴𝑒𝑥 is a local
unit if and only if it is an isomorphism of vector spaces between 𝑉𝑥 and 𝑉𝑦 . Hence,
𝐴×
𝑋
� GL𝑋(𝑉). If |𝑋 | = 1, then we recover that (End(𝑉))× = GL(𝑉).

2.2.2 Groupoids of grouplike elements

The groupoid of local units introduced in the previous section provides a groupoid 𝐴×
𝑋

which is associated to a k-algebra 𝐴 with a set {𝑒𝑥}𝑥∈𝑋 of nonzero orthogonal idempotents.
For the groupoid algebra k𝒢 with its set of identity morphisms, (k𝒢)×

𝑋
is not necessarily

equal to k𝒢. In this section, we study the groupoid of grouplike elements Γ(𝐻) of a weak
Hopf algebra 𝐻 and we will see that Γ(k𝒢) = 𝒢. Following [BGTLC14, Corollary 6.6,
Proposition 6.8, Theorem 8.4], consider the construction below. Recall that the object set
(resp. morphism set) of a groupoid 𝒢 is denoted by 𝒢0 (resp. 𝒢1).

Definition 2.20 (Γ(𝐻), [BGTLC14]). Let 𝐻 be a k-weak Hopf algebra. The groupoid of
grouplike elements of 𝐻, denoted Γ(𝐻), is defined as follows. The morphisms of Γ(𝐻) are
the elements in

Γ(𝐻)1 = {ℎ ∈ 𝐻 : Δ(ℎ) = ℎ ⊗ ℎ, 𝜀(ℎ) = 1k}.
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The object set Γ(𝐻)0 is Γ(𝐻)1 ∩ 𝐻𝑡 . Each ℎ ∈ Γ(𝐻)1 is an element in HomΓ(𝐻)(𝜀𝑠(ℎ), 𝜀𝑡(ℎ))
with composition defined by restriction of the product in 𝐻. The inverse of the morphism
ℎ ∈ HomΓ(𝐻)(𝜀𝑠(ℎ), 𝜀𝑡(ℎ)) is given by 𝑆(ℎ) ∈ HomΓ(𝐻)(𝜀𝑡(ℎ), 𝜀𝑠(ℎ)).

If 𝐻 is a Hopf algebra, then this definition gives the classical group of grouplike
elements of 𝐻, and so we use the same notation Γ(𝐻) whether 𝐻 is a Hopf algebra or a
weak Hopf algebra. We remark that Γ(𝐻)0 is a finite set since 𝐻𝑡 is finite-dimensional
and grouplike elements are linearly independent. However, Γ(𝐻)0 may be empty (see
Example 2.23 below). We now seek to understand Γ(𝐻)0 in two special cases: when
𝐻𝑠 ∩ 𝐻𝑡 � k and when 𝐻𝑠 = 𝐻𝑡 .

The next result shows that it is possible to understand the object set Γ(𝐻)0 in terms of
its minimal weak Hopf subalgebra 𝐻min := 𝐻𝑠𝐻𝑡 , which was studied in [Nik02, Nik04].

Lemma 2.21. Let 𝐻 be a weak Hopf algebra. Then

Γ(𝐻)0 = {𝑝 ∈ 𝐻𝑠 ∩ 𝐻𝑡 : 𝑝 is a nonzero idempotent and dim(𝐻min𝑝) = 1}.

Proof. Suppose that 𝑥 ∈ Γ(𝐻)1. Since 𝑆 is anti-comultiplicative by Remark 1.7, we have
Δ(𝜀𝑠(𝑥)) = Δ(𝑆(𝑥1)𝑥2) = Δ(𝑆(𝑥)𝑥) = (𝑆(𝑥) ⊗ 𝑆(𝑥))(𝑥 ⊗ 𝑥) = 𝜀𝑠(𝑥) ⊗ 𝜀𝑠(𝑥), so 𝜀𝑠(𝑥) is an
object in Γ(𝐻). Similarly, 𝜀𝑡(𝑥) is an object in Γ(𝐻). This forces Γ(𝐻)0 ⊆ 𝐻𝑡 ∩ 𝐻𝑠 . Now
let 𝑝 ∈ Γ(𝐻)0. Since 𝑝 is identified with the identity morphism at 𝑝, we also see that
𝑝2 = 𝑝. Since 𝜀(𝑝) = 1, this shows that 𝑝 is a nonzero idempotent. Now by [Nik04,
p. 643], we have that 𝐻min𝑝 = 𝑝𝐻min𝑝 is a weak Hopf algebra with unit 𝑝. However,
since Δ(𝑝) = 𝑝 ⊗ 𝑝, we get that 𝐻min𝑝 is actually a Hopf algebra. Thus dim(𝐻min𝑝) = 1 as
𝐻min𝑝 = (𝐻min𝑝)min = k𝑝.

Conversely, suppose that 𝑝 ∈ 𝐻𝑠 ∩ 𝐻𝑡 is a nonzero idempotent such that 𝐻min𝑝 has
dimension 1. Since 𝐻min𝑝 has a weak Hopf algebra structure, Δ(𝐻min𝑝) ⊂ 𝐻min𝑝 ⊗ 𝐻min𝑝.
Write Δ(𝑝) = 𝛼𝑝 ⊗ 𝑝 for 𝛼 ∈ k. Since Δ(𝑝) = Δ(𝑝𝑘) = 𝛼𝑘𝑝 ⊗ 𝑝 for any positive integer 𝑘,
𝛼𝑘 = 𝛼 and so 𝛼 = 1. So, Δ(𝑝) = 𝑝 ⊗ 𝑝. Next, 𝑝 = (𝜀 ⊗ Id)Δ(𝑝) = 𝜀(𝑝)𝑝; thus, 𝜀(𝑝) = 1k.
Hence, 𝑝 ∈ Γ(𝐻)0, as desired. □

Next, we consider the case when 𝐻𝑠 ∩ 𝐻𝑡 � k.

Proposition 2.22. If 𝐻 is a weak Hopf algebra with 𝐻𝑠 ∩ 𝐻𝑡 = k, then 𝐻 is either a Hopf algebra
or Γ(𝐻)0 = ∅.

Proof. By Lemma 2.21, we have that |Γ(𝐻)0 | ≤ 1. If |Γ(𝐻)0 | = 1, then there exists some
scalar 𝛼 ∈ k such that Γ(𝐻)0 = 𝛼1𝐻 . Since 𝛼1𝐻 is grouplike, Δ(1𝐻) = 𝛼(1𝐻 ⊗ 1𝐻). By
Proposition 1.4, 𝐻𝑡 = 𝐻𝑠 = k1𝐻 and hence 𝐻 is a Hopf algebra. Otherwise, |Γ(𝐻)0 | = 0,
whence Γ(𝐻)0 = ∅. □

Example 2.23. Let 𝑁 ≥ 2 be an integer, let 𝜖 ∈ {1,−1}, and consider the face algebra
𝐻 = 𝔖(𝐴𝑁−1; 𝑡)𝜖 introduced by Hayashi [Hay99, Example 2.1]. Then 𝐻 is a weak Hopf
algebra with 𝐻𝑠 ∩ 𝐻𝑡 = k1𝐻 . So by the result above, we have that Γ(𝐻)0 = ∅.

We now consider the case when 𝐻𝑠 = 𝐻𝑡 . In particular, this holds if 𝐻 is a cocommuta-
tive weak Hopf algebra.
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Proposition 2.24. Let 𝐻 be a weak Hopf algebra with 𝐻𝑠 = 𝐻𝑡 . Then the following statements
hold.

(i) Γ(𝐻)0 = {𝑒1 , . . . , 𝑒𝑛}, where 1𝐻 =
∑𝑛
𝑖=1 𝑒𝑖 and {𝑒1 , . . . , 𝑒𝑛} is a complete set of primitive

orthogonal idempotents of 𝐻. Moreover, each 𝑒𝑖 is grouplike.

(ii) If 𝐴 is an 𝐻-module algebra, then 𝐴 =
⊕𝑛

𝑖=1 𝐴𝑖 is an 𝑋-decomposable k-algebra where
𝑋 = {𝑒1 , . . . , 𝑒𝑛} is a complete set of primitive idempotents of 𝐻. The local identities of 𝐴
are given by the family of orthogonal idempotents {𝑒𝑖 · 1𝐴 | 1 ≤ 𝑖 ≤ 𝑛}.

(iii) Suppose, further, that 𝐻 =
⊕

𝑥∈𝑋 𝐻𝑥 is a direct sum of weak Hopf algebras 𝐻𝑥 . If 𝐴 is an
𝐻-module algebra, then 𝐴 is 𝑋-decomposable, and 𝐴𝑥 is a 𝐻𝑥-module algebra obtained by
restricting the action of 𝐻 on 𝐴, for each 𝑥 ∈ 𝑋. Moreover, 𝐻𝑦 · 𝐴𝑥 = 0 if 𝑥 ≠ 𝑦.

Proof. (i): If 𝐻𝑠 = 𝐻𝑡 , then 𝐻𝑠 = 𝐻𝑡 = 𝐻min is a commutative semisimple k-algebra by
Proposition 1.4(i) and (vii). Hence, 𝐻𝑡 =

⊕𝑛
𝑖=1 𝐻𝑡 𝑒𝑖 , where {𝑒1 , . . . , 𝑒𝑛} is a complete set of

primitive orthogonal idempotents. Since k is algebraically closed, 𝐻𝑡 𝑒𝑖 � k𝑒𝑖 for 𝑖. Now
apply Lemma 2.21 to get the first statement.

Next, by Proposition 1.4(iii), Δ(𝑒𝑖) = 11𝑒𝑖 ⊗ 12 = 11 ⊗ 𝑒𝑖12 = 11 ⊗ 12𝑒𝑖 . Since each 𝑒𝑖 is
idempotent, we have

Δ(𝑒𝑖) = Δ(𝑒2
𝑖 ) = (11𝑒𝑖 ⊗ 12)(1′1 ⊗ 1′2𝑒𝑖) = 11𝑒𝑖 ⊗ 12𝑒𝑖 = Δ(1𝐻)(𝑒𝑖 ⊗ 𝑒𝑖).

Writing Δ(1𝐻) =
∑𝑛
𝑖,𝑗=1 𝛼𝑖 , 𝑗𝑒𝑖 ⊗ 𝑒 𝑗 for some scalars 𝛼𝑖 , 𝑗 ∈ k, we see that

Δ(𝑒𝑖) =
∑𝑛
𝑖,𝑗=1(𝛼𝑖 , 𝑗𝑒𝑖 ⊗ 𝑒 𝑗)(𝑒𝑖 ⊗ 𝑒𝑖) = 𝛼𝑖 ,𝑖𝑒𝑖 ⊗ 𝑒𝑖 .

Since Δ(𝑒𝑖) = Δ(𝑒 𝑘
𝑖
) = 𝛼𝑘

𝑖,𝑖
𝑒𝑖 ⊗ 𝑒𝑖 for all 𝑘 ∈ Z+, so 𝛼𝑖 ,𝑖 = 1. Thus, Δ(𝑒𝑖) = 𝑒𝑖 ⊗ 𝑒𝑖 .

(ii): Take {𝑒1 , . . . , 𝑒𝑛} as in part (i). Next define the k-linear map 𝜀′𝑠 : 𝐻 → 𝐻 by
𝜀′𝑠(ℎ) = 11𝜀(12ℎ). It follows from Remark 1.28 that

(ℎ · 1𝐴)𝑎 = 𝜀𝑡(ℎ) · 𝑎 and 𝑎(ℎ · 1𝐴) = 𝜀′𝑠(ℎ) · 𝑎, (2.1)

for any 𝑎 ∈ 𝐴 and ℎ ∈ 𝐻. Note that for ℎ ∈ 𝐻, we have

𝜀′𝑠(ℎ) = 11𝜀(12ℎ) =
∑𝑛
𝑖=1 𝑒𝑖𝜀(𝑒𝑖ℎ) =

∑𝑛
𝑖=1 𝜀(𝑒𝑖ℎ)𝑒𝑖 = 𝜀(11ℎ)12 = 𝜀𝑡(ℎ).

In particular, for any 1 ≤ 𝑗 ≤ 𝑛, we have

𝜀′𝑠(𝑒 𝑗) = 𝑒 𝑗 . (2.2)

Therefore, by (2.1) we see that
(ℎ · 1𝐴)𝑎 = 𝑎(ℎ · 1𝐴) (2.3)

for any 𝑎 ∈ 𝐴 and ℎ ∈ 𝐻.

By Definition 1.60, to show that 𝐴 is an 𝑋-decomposable k-algebra it suffices to check
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that {𝑒𝑖 · 1𝐴 | 1 ≤ 𝑖 ≤ 𝑛} is a complete set of orthogonal central idempotents of 𝐴. Indeed,

(𝑒𝑖 · 1𝐴)(𝑒 𝑗 · 1𝐴)
(2.1)
= 𝜀′𝑠(𝑒 𝑗) · (𝑒𝑖 · 1𝐴)

(2.2)
= 𝑒 𝑗 · (𝑒𝑖 · 1𝐴) = 𝛿𝑖 , 𝑗𝑒𝑖 · 1𝐴.

So 𝑒𝑖 · 1𝐴 and 𝑒𝑖 · 1𝐴 are mutually orthogonal idempotents. It follows from
∑𝑛
𝑖=1(𝑒𝑖 · 1𝐴) =

(∑𝑛
𝑖=1 𝑒𝑖) · 1𝐴 = 1𝐴 that {𝑒𝑖 · 1𝐴 | 𝑒𝑖 ∈ 𝑋} is a complete set of idempotents. Letting ℎ = 𝑒𝑖 in

(2.3), we get (𝑒𝑖 · 1𝐴)𝑎 = 𝑎(𝑒𝑖 · 1𝐴) for all 𝑎 ∈ 𝐴. Hence each 𝑒𝑖 · 1𝐴 is central in 𝐴.

(iii): We give the proof in the case that |𝑋 | = 2. The proof easily generalizes to any finite
set 𝑋. Let 𝐻1 and 𝐻2 be weak Hopf algebras and suppose that 𝐴𝑖 is an 𝐻𝑖-module algebra
for 𝑖 = 1, 2. By part (ii), we know that 𝐴 is 𝑌-decomposable, where 𝑌 = {𝑒1 , . . . , 𝑒𝑛} is a
complete set of primitive idempotents of 𝐻, and the k-algebra decomposition of 𝐴 is given
by

𝐴 =
⊕𝑛

𝑖=1(𝑒𝑖 · 1𝐴)𝐴.

Suppose that 1𝐻1 = 𝑒1 + · · · + 𝑒𝑘 and 1𝐻2 = 𝑒𝑘+1 + · · · + 𝑒𝑛 . Then

𝐴 =
⊕𝑘

𝑖=1(𝑒𝑖 · 1𝐴)𝐴 ⊕
⊕𝑛

𝑖=𝑘+1(𝑒𝑖 · 1𝐴)𝐴 = (1𝐻1 · 1𝐴)𝐴 ⊕ (1𝐻2 · 1𝐴)𝐴.

For 𝑖 = 1, 2, let 𝐴𝑖 = (1𝐻𝑖 · 1𝐴)𝐴, so that 𝐴 = 𝐴1 ⊕ 𝐴2.

We claim that 𝐻𝑖 · 𝐴𝑖 ⊆ 𝐴𝑖 , but 𝐻𝑖 · 𝐴 𝑗 = 0 if 𝑖 ≠ 𝑗. Indeed, choosing ℎ𝑖 ∈ 𝐻𝑖 and
𝑎 𝑗 = (1𝐻𝑗

· 1𝐴)𝑎 ∈ 𝐴 𝑗 for some 𝑎 ∈ 𝐴, if 𝑖 ≠ 𝑗 ∈ {1, 2}, then we compute:

ℎ𝑖 · 𝑎 𝑗 = ℎ𝑖 · ((1𝐻𝑗
· 1𝐴)𝑎) = ((ℎ𝑖)1 · (1𝐻𝑗

· 1𝐴))((ℎ𝑖)2 · 𝑎) = (((ℎ𝑖)11𝐻𝑗
) · 1𝐴)((ℎ𝑖)2 · 𝑎) = 0.

Without loss of generality, we assume that ℎ1 · 𝑎1 = 𝑏1 + 𝑏2 where ℎ1 ∈ 𝐻1, 𝑎1 ∈ 𝐴1, and
𝑏𝑖 ∈ 𝐴𝑖 for 𝑖 = 1, 2. Then, ℎ1 · 𝑎1 = 1𝐻1 · 𝑏1 + 1𝐻1 · 𝑏2 = 𝑏1. So, 𝐻1 · 𝐴1 ⊆ 𝐴1. Likewise,
𝐻2 · 𝐴2 ⊆ 𝐴2 as claimed. □

As a corollary to the previous proposition, we obtain that groupoid actions on domains
factor through group actions (see similar results for inner faithful Hopf actions on various
domains factoring through actions of groups [EW14, CEW15, CEW16, EW16a, EW16b]).

Corollary 2.25. Suppose that 𝒢 is an 𝑋-groupoid and 𝐴 is a domain such that 𝐴 is an inner
faithful k𝒢-module algebra. Then 𝒢 is a disjoint union of groups, and at most one of the groups is
nontrivial.

Proof. By Proposition 2.24, if 𝐴 is a k𝒢-module algebra, then 𝐴 is 𝑋-decomposable where
𝑋 = {1, . . . , 𝑛} is the set of objects of 𝒢, that is, 𝐴 =

⊕𝑛
𝑖=1 𝐴𝑖 . Since 𝐴 is a domain, this

implies that exactly one of the 𝐴𝑖 is nonzero. Without loss of generality, suppose 𝐴1 ≠ 0.
Now consider the ideal of k𝒢 defined by

𝐼 = ⟨𝑔 − 𝑒𝑖 | 𝑔 ∈ 𝒢 such that 𝑠(𝑔) = 𝑡(𝑔) = 𝑖 , 2 ≤ 𝑖 ≤ 𝑛⟩ .

It is straightforward to check that 𝐼 is in fact a weak Hopf ideal of k𝒢. Further observe
that if 𝑎 ∈ 𝐴1 and 𝑔 − 𝑒𝑖 is a generator of 𝐼 (so 𝑖 ≠ 1), then we have (𝑔 − 𝑒𝑖) · 𝑎 = 0. Hence,
𝐼 · 𝐴1 = 0, whence 𝐼 · 𝐴 = 0. Since 𝐴 is inner faithful, this implies that for 2 ≤ 𝑖 ≤ 𝑛, the
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only element 𝑔 ∈ 𝒢 satisfying 𝑠(𝑔) = 𝑡(𝑔) = 𝑖 is the trivial path 𝑒𝑖 . This shows that 𝒢 is a
disjoint union of trivial groups, together with a possibly nontrivial group at vertex 1. □

2.2.3 Key categories

Next, we define some categories that we first mentioned in Example 1.13 and Nota-
tion 2.1.

Definition 2.26 (𝑋-Alg, 𝑋-WHA, 𝑋-GrpdAlg). We define the following categories.

(i) Let 𝑋-Alg be the category defined as follows:

• The objects are unital k-algebras 𝐴 with a given set {𝑒𝐴𝑥 }𝑥∈𝑋 of nonzero orthog-
onal idempotents such that 1𝐴 =

∑
𝑥∈𝑋 𝑒

𝐴
𝑥 ; we call these 𝑋-algebras.

• The morphisms are unital k-algebra maps 𝑓 : 𝐴→ 𝐵 such that 𝑓 (𝑒𝐴𝑥 ) = 𝑒𝐵𝑥 for
every 𝑥 ∈ 𝑋; we call these maps 𝑋-algebra morphisms.

(ii) Let 𝑋-WHA be the category defined as follows:

• The objects are weak Hopf algebras 𝐻 with a given set {𝑒𝐻𝑥 }𝑥∈𝑋 of nonzero
orthogonal idempotents such that 1𝐻 =

∑
𝑥∈𝑋 𝑒

𝐻
𝑥 , Δ(𝑒𝐻𝑥 ) = 𝑒𝐻𝑥 ⊗ 𝑒𝐻𝑥 , and 𝜀(𝑒𝐻𝑥 ) =

1k for all 𝑥 ∈ 𝑋; we call these 𝑋-weak Hopf algebras.
• The morphisms are unital weak Hopf algebra morphisms 𝑓 : 𝐻 → 𝐻′ such that
𝑓 (𝑒𝐻𝑥 ) = 𝑒𝐻

′
𝑥 for all 𝑥 ∈ 𝑋; we call these maps 𝑋-weak Hopf algebra morphisms.

(iii) Let 𝑋-GrpdAlg be the category of 𝑋-groupoid algebras, that is, the full subcategory
of 𝑋-WHA consisting of groupoid algebras k𝒢 over 𝑋-groupoids 𝒢.

Remark 2.27. (i) Every 𝑋-decomposable k-algebra is an 𝑋-algebra, but not conversely
(as the idempotents of an 𝑋-algebra are not necessarily central).

(ii) We have that 𝑋-WHA is a subcategory of 𝑋-Alg.

(iii) By Proposition 2.24(i), a weak Hopf algebra 𝐻 satisfying 𝐻𝑠 = 𝐻𝑡 is an 𝑋-weak Hopf
algebra, where 𝑋 is the complete set of primitive idempotents of 𝐻.

(iv) By [NV02, Proposition 2.3.3], weak Hopf algebra morphisms preserve counital
subalgebras. Hence, by considering all possible finite sets 𝑋, our results pertain to
all weak Hopf algebras with commutative counital subalgebras, and all morphisms
between such weak Hopf algebras.

(v) We remark that the category wha considered in [BGTLC14] has a weaker notion of
morphisms than those in 𝑋-WHA here. The morphisms in wha need not be weak
Hopf algebra morphisms (in particular, they are not necessarily k-algebra morphisms;
see [BGTLC14, Theorem 4.12]).

Example 2.28. For an 𝑋-groupoid 𝒢, the groupoid algebra k𝒢 belongs to 𝑋-WHA.
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Example 2.29. Let 𝒢 be an 𝑋-groupoid. Then an 𝑋-decomposable vector space 𝑉 =⊕
𝑥∈𝑋 𝑉𝑥 is a representation of 𝒢 if and only if 𝒢 → GL𝑋(𝑉) is a morphism in 𝑋-Grpd.

Moreover, an 𝑋-decomposable vector space 𝑉 =
⊕

𝑥∈𝑋 𝑉𝑥 is a representation of k𝒢 if and
only if k𝒢 → End(𝑉) is a morphism in 𝑋-Alg.

Lemma 2.30. Let 𝐴, 𝐵 ∈ 𝑋-Alg with respective sets of idempotents {𝑒𝐴𝑥 }𝑥∈𝑋 and {𝑒𝐵𝑥 }𝑥∈𝑋 . If
𝑓 : 𝐴→ 𝐵 is an 𝑋-algebra map and 𝑎 ∈ 𝐴 is a local unit in 𝐴, then 𝑓 (𝑎) is a local unit in 𝐵.

Proof. Let 𝑎 ∈ 𝑒𝐴𝑦 𝐴𝑒
𝐴
𝑥 for some 𝑥, 𝑦 ∈ 𝑋. Then, 𝑓 (𝑎) = 𝑓 (𝑒𝐴𝑦 𝑎𝑒𝐴𝑥 ) = 𝑒𝐵𝑦 𝑓 (𝑎)𝑒𝐵𝑥 ∈ 𝑒𝐵𝑦 𝐵𝑒

𝐵
𝑥 .

Moreover, 𝑓 (𝑎) 𝑓 (̂𝑎) = 𝑓 (𝑎𝑎̂) = 𝑓 (𝑒𝐴𝑦 ) = 𝑒𝐵𝑦 , and similarly, 𝑓 (̂𝑎) 𝑓 (𝑎) = 𝑒𝐵𝑥 . □

2.2.4 Module algebras over groupoid algebras

We generalize well-known adjunctions of groups to the groupoid case, recovering the
classical case when |𝑋 | = 1.

Theorem 2.31. Let 𝑋 be a finite nonempty set.

(i) The following functors are well-defined:

k(−) : 𝑋-Grpd −→ 𝑋-Alg (groupoid algebra);
(−)×

𝑋
: 𝑋-Alg −→ 𝑋-Grpd (groupoid of local units).

Moreover, k(−) ⊣ (−)×
𝑋

, that is, for an 𝑋-groupoid 𝒢 and an 𝑋-algebra 𝐵, we have a bĳection
that is natural in each slot:

Hom𝑋-Grpd(𝒢 , 𝐵×
𝑋) � Hom𝑋-Alg(k𝒢 , 𝐵).

(ii) The following functors are well-defined:

k(−) : 𝑋-Grpd −→ 𝑋-WHA (groupoid algebra);
Γ(−) : 𝑋-WHA −→ 𝑋-Grpd (groupoid of grouplike elements).

Moreover, k(−) ⊣ Γ(−), that is, for an 𝑋-groupoid 𝒢 and an 𝑋-weak Hopf algebra 𝐻, we
have a bĳection that is natural in each slot:

Hom𝑋-Grpd(𝒢 , Γ(𝐻)) � Hom𝑋-WHA(k𝒢 , 𝐻).

In particular, Γ(k𝒢) = 𝒢.

Proof. (i): First, we prove that k(−) : 𝑋-Grpd → 𝑋-Alg is indeed a functor. As mentioned in
Remark 2.16 and Example 2.19(a), k𝒢 is an 𝑋-algebra with idempotent set {𝑒𝒢𝑥 }𝑥∈𝑋 given
by the identity morphisms of 𝒢, so k(−) sends objects to objects. Also, if 𝜙 : 𝒢 → 𝒢′ is an
𝑋-groupoid morphism, then we can consider 𝜙 as a function between 𝒢1 and 𝒢′

1 so the
linear extension k𝜙 : k𝒢 → k𝒢′ makes sense. It is straightforward to check that 𝜙 being a
functor translates into k𝜙 being an 𝑋-algebra map. Hence, k(−) also sends morphisms to
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morphisms. Since the linear extension of a map behaves as the map itself when restricted
to basis elements, k(−) respects compositions and identities.

Secondly, we check that (−)×
𝑋

: 𝑋-Alg → 𝑋-Grpd is a functor. By construction, the
groupoid of local units is an 𝑋-groupoid, so (−)×

𝑋
sends objects to objects. Moreover, if

𝜓 : 𝐴→ 𝐵 is an 𝑋-algebra map, we can define the 𝑋-groupoid map 𝜓×
𝑋

: 𝐴×
𝑋
→ 𝐵×

𝑋
where

𝑎 : 𝑥 → 𝑦 maps to 𝜓(𝑎) : 𝑥 → 𝑦 (which is a local unit by Lemma 2.30). So 𝜓×
𝑋

fixes 𝑋 and
it is a functor due to the properties of 𝜓. Also, (−)×

𝑋
respects compositions and identities.

Now, for any 𝑋-groupoid 𝒢 and any 𝑋-algebra 𝐵, we want to display a bĳection

Hom𝑋-Grpd(𝒢 , 𝐵×
𝑋) � Hom𝑋-Alg(k𝒢 , 𝐵).

Given an 𝑋-groupoid morphism 𝜙 ∈ Hom𝑋-Grpd(𝒢 , 𝐵×
𝑋
), we consider it as a function

𝜙 : 𝒢1 → (𝐵×
𝑋
)1, and construct the linear extension 𝜙′ : k𝒢 → 𝐵. Note that for 𝑔 ∈ 𝒢1,

𝜙′(𝑔) = 𝜙(𝑔), which implies that 𝜙′ is indeed an 𝑋-algebra map. Such verification uses
that 1𝐵 =

∑
𝑥∈𝑋 𝑒

𝐵
𝑥 . Hence, we have constructed the assignment

Φ𝒢 ,𝐵 : Hom𝑋-Grpd(𝒢 , 𝐵×
𝑋) → Hom𝑋-Alg(k𝒢 , 𝐵)
𝜙 ↦→ 𝜙′.

On the other hand, given an 𝑋-algebra map 𝜓 ∈ Hom𝑋-Alg(k𝒢 , 𝐵), consider the restriction
𝜓 |𝒢 : 𝒢 → 𝐵×

𝑋
given by 𝜓 |𝒢(𝑔 : 𝑥 → 𝑦) := 𝜓(𝑔) : 𝑥 → 𝑦. As above, this assignment is

well-defined due to Lemma 2.30. The fact that 𝜓 |𝒢 is a functor follows from 𝜓 being an
𝑋-algebra map. Hence, we have constructed the assignment

Ψ𝒢 ,𝐵 : Hom𝑋-Alg(k𝒢 , 𝐵) → Hom𝑋-Grpd(𝒢 , 𝐵×
𝑋)

𝜓 ↦→ 𝜓 |𝒢 .

The following calculations show that these assignments are mutually-inverse. If 𝑔 : 𝑥 → 𝑦

in 𝒢1, then

[(Ψ𝒢 ,𝐵 ◦Φ𝒢 ,𝐵)(𝜙)](𝑔) = Ψ𝒢 ,𝐵(𝜙′)(𝑔) = 𝜙′ |𝒢(𝑔) = 𝜙(𝑔),
[(Φ𝒢 ,𝐵 ◦Ψ𝒢 ,𝐵)(𝜓)](𝑔) = Φ𝒢 ,𝐵(𝜓 |𝒢)(𝑔) = (𝜓 |𝒢)′(𝑔) = 𝜓(𝑔).

Finally, the bĳection is natural since for any 𝑋-groupoid morphism 𝜑 : 𝒢′ → 𝒢, any
𝑋-algebra map 𝑓 : 𝐵 → 𝐵′, and all 𝜓 ∈ Hom𝑋-Alg(k𝒢 , 𝐵) one can check the following
equality:

(Φ𝒢′,𝐵′ ◦ Hom𝑋-Alg(k𝜑, 𝑓 ))(𝜓) = (Hom𝑋-Grpd(𝜑, 𝑓 ×𝑋 ) ◦Φ𝒢 ,𝐵)(𝜓).

Here, Hom𝑋-Alg(k𝜑, 𝑓 ) : Hom𝑋-Alg(k𝒢 , 𝐵) → Hom𝑋-Alg(k𝒢′, 𝐵′) is given by composition,
that is, 𝜓 ↦→ 𝑓 ◦ 𝜓 ◦ k𝜑; a similar notion holds for Hom𝑋-Grpd(𝜑, 𝑓 ×𝑋 ).

(ii): First, we show that k(−) : 𝑋-Grpd → 𝑋-WHA is a functor. If 𝒢 is an 𝑋-groupoid,
then k𝒢 is a weak Hopf algebra. The set {𝑒k𝒢𝑥 }𝑥∈𝑋 of identity morphisms of 𝒢 are
idempotent elements of k𝒢 satisfying 1k𝒢 =

∑
𝑥∈𝑋 𝑒

k𝒢
𝑥 and Δ(𝑒k𝒢𝑥 ) = 𝑒

k𝒢
𝑥 ⊗ 𝑒

k𝒢
𝑥 for each

𝑥 ∈ 𝑋, and so k𝒢 is an object of 𝑋-WHA. If 𝜙 : 𝒢 → 𝒢′ is an 𝑋-groupoid morphism,
then by part (i), k𝜙 : k𝒢 → k𝒢′ is a map of 𝑋-algebras. Since the elements of 𝒢 form a
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k-basis of grouplike elements for k𝒢, and k𝜙 maps these elements to grouplike elements
of k𝒢′, we have that k𝜙 is also a k-coalgebra map. Since the antipode of k𝒢 is defined by
𝑆k𝒢(𝑔) = 𝑔−1 for all 𝑔 ∈ 𝒢, therefore 𝑆k𝒢′ ◦ k𝜙 = k𝜙 ◦ 𝑆k𝒢 . Finally, 𝜙(𝑒k𝒢𝑥 ) = 𝑒

k𝒢′
𝑥 , so k𝜙 is

a morphism in 𝑋-WHA.

Now we show that Γ(−) : 𝑋-WHA → 𝑋-Grpd is a functor. Note that Γ(−) is the
restriction of the functor g(−) : wha → Grpd in [BGTLC14, Theorem 8.4] to 𝑋-WHA, where
the category wha has a weaker notion of morphism; see Remark 2.27(v). So, we need
only check that if 𝐻 ∈ 𝑋-WHA then Γ(𝐻) ∈ 𝑋-Grpd. Indeed, if 𝐻 ∈ 𝑋-WHA, then Γ(𝐻) is a
groupoid with object set {𝑒𝐻𝑥 }𝑥∈𝑋 , and so Γ(𝐻) ∈ 𝑋-Grpd. We remark that if 𝑓 : 𝐻 → 𝐻′ is
a morphism in 𝑋-WHA, then Γ( 𝑓 ) is the restriction of 𝑓 to Γ(𝐻).

Finally, for any 𝒢 ∈ 𝑋-Grpd and 𝐻 ∈ 𝑋-WHA, we wish to exhibit a bĳection

Hom𝑋-Grpd(𝒢 , Γ(𝐻)) � Hom𝑋-WHA(k𝒢 , 𝐻).

Given 𝜙 ∈ Hom𝑋-Grpd(𝒢 , Γ(𝐻)), the k-linearization k𝜙 : k𝒢 → kΓ(𝐻) is a morphism of 𝑋-
weak Hopf algebras. Since composition in Γ(𝐻) was defined as restriction of multiplication
in 𝐻, the map 𝜈𝐻 : kΓ(𝐻) → 𝐻 induced by the inclusion Γ(𝐻) ⊆ 𝐻 is a k-algebra map. It
is also unital. Since the elements of Γ(𝐻) are grouplike in 𝐻, it is also a k-coalgebra map.
Since the inverse in Γ(𝐻) coincides with the antipode of 𝐻, 𝜈𝐻 intertwines the antipodes
of kΓ(𝐻) and 𝐻. Therefore, 𝜈𝐻 ◦ k𝜙 ∈ Hom𝑋-WHA(k𝒢 , 𝐻), and we have the assignment

Φ𝒢 ,𝐻 : Hom𝑋-Grpd(𝒢 , Γ(𝐻)) → Hom𝑋-WHA(k𝒢 , 𝐻)
𝜙 ↦→ 𝜈𝐻 ◦ k𝜙.

Conversely, if 𝜓 ∈ Hom𝑋-WHA(k𝒢 , 𝐻), then Γ(𝜓) : Γ(k𝒢) → Γ(𝐻) is an 𝑋-groupoid
morphism. Note that Γ(k𝒢) = 𝒢. It is clear that the elements of 𝒢 are grouplike elements
of k𝒢. On the other hand, any element of k𝒢 is of the form 𝑎 =

∑
𝑔∈𝒢 𝛼𝑔 𝑔, where

𝑎 ⊗ 𝑎 =
©­«
∑
𝑔∈𝒢

𝛼𝑔 𝑔
ª®¬ ⊗

(∑
ℎ∈𝒢

𝛼ℎℎ

)
=

∑
𝑔,ℎ∈𝒢

𝛼𝑔𝛼ℎ(𝑔 ⊗ ℎ)

and Δ(𝑎) = ∑
𝑔∈𝒢 𝛼𝑔(𝑔⊗ 𝑔). By the linear independence of grouplike elements, if 𝑎 ∈ Γ(k𝒢)

we have that 𝛼𝑔𝛼ℎ = 𝛿𝑔,ℎ𝛼𝑔 , whence exactly one 𝛼𝑔 = 1 and the remaining coefficients are
0. Hence, the only grouplike elements of k𝒢 are the elements of 𝒢. We have therefore
constructed an assignment

Ψ𝒢 ,𝐻 : Hom𝑋-WHA(k𝒢 , 𝐻) → Hom𝑋-Grpd(𝒢 , Γ(𝐻))
𝜓 ↦→ Γ(𝜓) ◦ 𝜂𝒢 ,

where 𝜂𝒢 : 𝒢 → Γ(k𝒢) is the identity map.

It is straightforward to check that Φ𝒢 ,𝐻 and Ψ𝒢 ,𝐻 are mutually-inverse. Naturality
holds by [BGTLC14, Theorem 8.4]. □

Remark 2.32. Note that Theorem 2.31(i) shows that for an 𝑋-groupoid 𝒢, we have an
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isomorphism of categories, rep(k𝒢) � rep(𝒢). Namely, if 𝑉 =
⊕

𝑥∈𝑋 𝑉𝑥 , let 𝐵 = End(𝑉).
Then, 𝐵×

𝑋
= GL𝑋(𝑉) and

Hom𝑋-Grpd(𝒢 ,GL𝑋(𝑉)) � Hom𝑋-Alg(k𝒢 , End(𝑉)).

See also Example 2.29.

Finally, by using the adjunction in Theorem 2.31(ii), together with Proposition 2.11, for
an 𝑋-decomposable k-algebra 𝐴, we are able to identify the object Sym𝑋-GrpdAlg(𝐴).
Proposition 2.33. Let 𝐴 =

⊕
𝑥∈𝑋 𝐴𝑥 be an 𝑋-decomposable k-algebra and 𝒢 be an 𝑋-groupoid.

Then:

(i) The action of Aut𝑋-Alg(𝐴) on 𝐴 can be extended linearly to make 𝐴 a k(Aut𝑋-Alg(𝐴))-module
algebra. For the action map ℓk(Aut𝑋-Alg(𝐴)),𝐴 : k(Aut𝑋-Alg(𝐴)) ⊗ 𝐴→ 𝐴, we use the notation
ℎ ⊲ 𝑎 := ℓk(Aut𝑋-Alg(𝐴)),𝐴(ℎ ⊗ 𝑎) for ℎ ∈ k(Aut𝑋-Alg(𝐴)) and 𝑎 ∈ 𝐴.

(ii) Suppose that 𝐴 is a k𝒢-module algebra via ℓk𝒢 ,𝐴, where we write ℎ · 𝑎 for ℓ (ℎ⊗ 𝑎) for ℎ ∈ k𝒢
and 𝑎 ∈ 𝐴. Then there is a unique𝑋-weak Hopf algebra morphism𝜋 : k𝒢 → k(Aut𝑋-Alg(𝐴))
such that ℎ · 𝑎 = 𝜋(ℎ) ⊲ 𝑎 for all ℎ ∈ k𝒢 and 𝑎 ∈ 𝐴.

(iii) Every 𝑋-weak Hopf algebra morphism 𝜋 : k𝒢 → k(Aut𝑋-Alg(𝐴)) gives 𝐴 the structure of a
k𝒢-module algebra via ℓk𝒢 ,𝐴(ℎ ⊗ 𝑎) = ℓk(Aut𝑋-Alg(𝐴)),𝐴(𝜋(ℎ) ⊗ 𝑎) for all ℎ ∈ k𝒢 and 𝑎 ∈ 𝐴
(that is, ℎ · 𝑎 = 𝜋(ℎ) ⊲ 𝑎).

Hence Sym𝑋-GrpdAlg(𝐴) = k(Aut𝑋-Alg(𝐴)).

Proof. (i): As mentioned in Remark 1.66, over any groupoid 𝒢, the notion of a 𝒢-module
and a k𝒢-module are equivalent. By Proposition 2.11, 𝐴 is an Aut𝑋-Alg(𝐴)-module via
∗, and so by linearizing this action, 𝐴 is a k(Aut𝑋-Alg(𝐴))-module via ⊲. To see that 𝐴
is actually a k(Aut𝑋-Alg(𝐴))-module algebra, let ℎ ∈ k(Aut𝑋-Alg(𝐴)) and 𝑎, 𝑏 ∈ 𝐴. Write
ℎ =

∑
𝑓 ∈Aut𝑋-Alg(𝐴) 𝛼 𝑓 𝑓 for some 𝛼 𝑓 ∈ k. Then

ℎ ⊲ (𝑎𝑏) =
(∑

𝛼 𝑓 𝑓
)
⊲ (𝑎𝑏) =

∑
𝛼 𝑓 ( 𝑓 ⊲ (𝑎𝑏)) =

∑
𝛼 𝑓 ( 𝑓 ∗ (𝑎𝑏))

=
∑

𝛼 𝑓 ( 𝑓 ∗ 𝑎)( 𝑓 ∗ 𝑏) =
∑

𝛼 𝑓 ( 𝑓1 ⊲ 𝑎)( 𝑓2 ⊲ 𝑏) = (ℎ1 ⊲ 𝑎)(ℎ2 ⊲ 𝑏)

and

ℎ ⊲ 1𝐴 =

(∑
𝛼 𝑓 𝑓

)
⊲ 1𝐴 =

∑
𝛼 𝑓 ( 𝑓 ⊲ 1𝐴) =

∑
𝛼 𝑓 ( 𝑓 ∗ 1𝐴) =

∑
𝛼 𝑓 1𝑡( 𝑓 ) = 𝜀𝑡(ℎ) · 1𝐴.

(ii)-(iii): As shown above, 𝐴 is a k𝒢-module algebra if and only if 𝐴 is a 𝒢-module
algebra. By Proposition 2.11, this happens if and only if the action of 𝒢 on𝐴 factors through
a unique 𝑋-groupoid morphism 𝜋 : 𝒢 → Aut𝑋-Alg(𝐴). Now, letting 𝐻 = k(Aut𝑋-Alg(𝐴)) in
Theorem 2.31(ii), we obtain a bĳection:

Hom𝑋-Grpd(𝒢 ,Aut𝑋-Alg(𝐴)) � Hom𝑋-Alg(k𝒢 , k(Aut𝑋-Alg(𝐴))), 𝜋 ↦→ 𝜋.
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Hence, there exists an 𝑋-groupoid morphism 𝜋 : 𝒢 → Aut𝑋-Alg(𝐴) if and only if there
exists an 𝑋-weak Hopf algebra morphism 𝜋 : k𝒢 → k(Aut𝑋-Alg(𝐴)) (which is simply the
k-linearization of 𝜋).

Note that since 𝑋-GrpdAlg is a full subcategory of 𝑋-WHA, the morphisms in 𝑋-GrpdAlg
are simply 𝑋-weak Hopf algebra morphisms. As a consequence, (i), (ii), and (iii) above
imply that Sym𝑋-GrpdAlg(𝐴) = k(Aut𝑋-Alg(𝐴)). □

Remark 2.34. Proposition 2.33 has an alternative presentation appearing in [PF13, Proposi-
tion 2.2] using the language of partial actions.

As a corollary, we recover the following well-known result for actions of group algebras,
which is the special case of Proposition 2.33 when |𝑋 | = 1.

Corollary 2.35. Let 𝐴 be a k-algebra. Then 𝐴 is a kAutAlg(𝐴)-module algebra and for a group
𝐺, the following are equivalent.

(i) 𝐴 is a k𝐺-module algebra.

(ii) There exists a Hopf algebra morphism 𝜋 : k𝐺 → k(AutAlg(𝐴)).

Hence SymGrpAlg(𝐴) = k(AutAlg(𝐴)).

2.3 Weak quantum symmetries captured by Lie algebroids

The definition of a Lie algebroid was introduced in [Pra67], using the language of vector
bundles over manifolds (see also [Mac87, Chapter III]). An equivalent, purely algebraic
structure known as a Lie–Rinehart algebra, was introduced in [Rin63]. Although some
Hopf-like structures have been defined for general Lie–Rinehart algebras by means of
Hopf algebroids (see e.g. [Sar20, Sar21]), the study of their actions on k-algebras is still
an open problem. The focus of this section is to study actions of a special subclass of Lie
algebroids [Definition 2.36]. We also extend this result for universal enveloping algebras
of these Lie algebroids [Definition 2.49]. As in previous sections, here 𝑋 denotes a finite
non-empty set [Notation 1.43].

Definition 2.36. An 𝑋-Lie algebroid 𝔊 is a direct sum of vector spaces

𝔊 :=
⊕

𝑥∈𝑋 𝔤𝑥

where 𝔤𝑥 has structure of Lie algebra for all 𝑥 ∈ 𝑋. We regard 𝔊 as having a partially
defined bracket [−,−], which is only defined on pairs of elements from the same component
𝔤𝑥 . Namely, [𝑎, 𝑏] = [𝑎, 𝑏]𝔤𝑥 if 𝑎, 𝑏 ∈ 𝔤𝑥 for some 𝑥 ∈ 𝑋, and is undefined otherwise. Let
𝔊 =

⊕
𝑥∈𝑋 𝔤𝑥 and 𝔊′ =

⊕
𝑥∈𝑋 𝔤′𝑥 be two 𝑋-Lie algebroids. A linear map 𝜏 : 𝔊 → 𝔊′ is

an 𝑋-Lie algebroid morphism if there exists a collection {𝜏𝑥 : 𝔤𝑥 → 𝔤′𝑥}𝑥∈𝑋 of Lie algebra
morphisms such that 𝜏|𝔤𝑥 = 𝜏𝑥 for all 𝑥 ∈ 𝑋. Here, we write 𝜏 = (𝜏𝑥)𝑥∈𝑋 .

As remarked in [Nik01, Section 3.2] an 𝑋-Lie algebroid is an special kind of Lie
algebroid in the sense of [Mac87].
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Definition 2.37 (𝑋-Lie, 𝔊). The𝑋-Lie algebroids together with𝑋-Lie algebroid morphisms
form a category, which we denote by𝑋-Lie. Throughout this section, 𝔊 =

⊕
𝑥∈𝑋 𝔤𝑥 denotes

an 𝑋-Lie algebroid.

Next, we briefly discuss modules and representations over 𝑋-Lie algebroids.

Definition 2.38 (𝔊-module). A 𝔊-module is an 𝑋-decomposable k-vector space 𝑉 =⊕
𝑥∈𝑋 𝑉𝑥 such that𝑉𝑥 is a 𝔤𝑥-module for each 𝑥 ∈ 𝑋. Given two 𝔊-modules𝑉 =

⊕
𝑥∈𝑋 𝑉𝑥

and 𝑊 =
⊕

𝑥∈𝑋𝑊𝑥 , a linear map 𝑓 : 𝑉 → 𝑊 is a 𝔊-module morphism if there exist a
collection { 𝑓𝑥 : 𝑉𝑥 →𝑊𝑥}𝑥∈𝑋 of maps such that 𝑓 |𝑉𝑥 = 𝑓𝑥 and 𝑓𝑥 is a 𝔤𝑥-module morphism
for each 𝑥 ∈ 𝑋. Here, we write 𝑓 = ( 𝑓𝑥)𝑥∈𝑋 .

The composition of two 𝔊-module morphisms is defined component-wise (and is again
a 𝔊-module morphism).

Notation 2.39 (𝔊-mod). Let 𝔊-mod be the category of 𝔊-modules with 𝔊-module mor-
phisms. This category inherits a monoidal structure from the monoidal structures of each
𝔤𝑥-mod. Namely, for 𝑉,𝑊 in 𝔊-mod, we have that 𝑉 ⊗𝔊-mod 𝑊 :=

⊕
𝑥∈𝑋(𝑉𝑥 ⊗𝔤𝑥 -mod 𝑊𝑥) =⊕

𝑥∈𝑋(𝑉𝑥 ⊗𝑊𝑥), and 1𝔊-mod =
⊕

𝑥∈𝑋 1𝔤𝑥 -mod.

Remark 2.40. For a 𝑋-Lie algebroid 𝔊 =
⊕

𝑥∈𝑋 𝔤𝑥 and an 𝑋-decomposable vector space
𝑉 =

⊕
𝑥∈𝑋 𝑉𝑥 , in the language of Remark 2.2, we define

𝔊 ⊠𝑋-Lie 𝑉 = {(𝑝, 𝑣) ∈ 𝔊 ×𝑉 | 𝑝 ∈ 𝔤𝑥 , 𝑣 ∈ 𝑉𝑥}.

Then a left action of 𝔊 on 𝑉 can be viewed as a map 𝔊 ⊠𝑋-Lie 𝑉 → 𝑉 .

Now we introduce a generalization of the Lie algebra 𝔤𝔩(𝑉).
Definition 2.41 (𝔊𝔏𝑋(𝑉), 𝔊𝔏(𝑑1 ,...,𝑑𝑛)(k)). Let 𝑉 =

⊕
𝑥∈𝑋 𝑉𝑥 be an 𝑋-decomposable vector

space. The 𝑋-general linear Lie algebroid of 𝑉 , denoted 𝔊𝔏(𝑉), is the 𝑋-Lie algebroid
𝔊𝔏𝑋(𝑉) :=

⊕
𝑥∈𝑋 𝔤𝔩(𝑉𝑥). If 𝑋 = {1, . . . , 𝑛} and 𝑉𝑖 has dimension 𝑑𝑖 , then we also use the

notation 𝔊𝔏(𝑑1 ,...,𝑑𝑛)(k) where 𝑑1 ≤ 𝑑2 ≤ · · · ≤ 𝑑𝑛 for 𝔊𝔏𝑋(𝑉).
Definition 2.42 (Representation of 𝔊). A representation of 𝔊 is an 𝑋-decomposable vector
space 𝑉 =

⊕
𝑥∈𝑋 𝑉𝑥 equipped with an 𝑋-Lie algebroid morphism 𝜏 : 𝔊 → 𝔊𝔏𝑋(𝑉).

Notation 2.43 (rep(𝔊)). Let rep(𝔊) be the monoidal category of representations of 𝔊,
whose structure is built from {g𝑥-mod}𝑥∈𝑋 [Notation 2.39]. Observe that rep(𝔊) � 𝔊-mod
as monoidal categories where if 𝑉 is in 𝔊-mod, then 𝑉 =

⊕
𝑥∈𝑋 𝑉𝑥 with each 𝑉𝑥 ∈ 𝔤𝑥-mod,

and so we get a Lie algebroid morphism 𝜏𝑥 : 𝔤𝑥 → 𝔤𝔩𝑥∈𝑋(𝑉𝑥) which gives an 𝑋-Lie
algebroid morphism 𝔊 → 𝔊𝔏𝑋(𝑉). Conversely, if 𝑉 is in rep(𝔊), then the component 𝜏𝑥
of 𝜏 : 𝔊 → 𝔊𝔏𝑋(𝑉) gives 𝑉𝑥 the structure of a 𝔤𝑥-module for all 𝑥 ∈ 𝑋, which makes 𝑉 a
𝔊-module.

Now, we change our focus to actions of 𝑋-Lie algebroids on k-algebras. Let 𝔊 be
an 𝑋-Lie algebroid. As we did for the category 𝒢-mod in Remark 1.64, we would like
to understand the connection between algebra objects in 𝔊-mod and k-algebras that are
𝔊-modules.

Remark 2.44. If 𝐴 =
⊕

𝑥∈𝑋 𝐴𝑥 is an 𝑋-decomposable k-algebra, the multiplication map
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𝑚𝐴 : 𝐴 ⊗ 𝐴 → 𝐴 and unit map 𝑢𝐴 : k → 𝐴 immediately decompose into the respective
multiplication map 𝑚𝑥 : 𝐴𝑥 ⊗ 𝐴𝑥 → 𝐴𝑥 and unit map 𝑢𝑥 : k → 𝐴𝑥 of each k-algebra
𝐴𝑥 , for all 𝑥 ∈ 𝑋. If additionally 𝐴 is a 𝔊-module, using the notation of Lemma 2.39,
𝑚𝐴 and 𝑢𝐴 induce 𝑋-decomposable linear maps 𝑚𝐴 := (𝑚𝑥)𝑥∈𝑋 : 𝐴 ⊗𝔊-mod 𝐴 → 𝐴 and
𝑢𝐴 := (𝑢𝑥)𝑥∈𝑋 : 1𝔊-mod → 𝐴, which we call the monoidal multiplication and monoidal unit
of 𝐴, respectively. It is clear that these maps satisfy associativity and unital condition.
However, in general, these maps are not necessarily 𝔊-module morphisms.

Conversely, if 𝐴 is 𝔊-module algebra, then it comes equipped with maps in 𝔊-mod
𝑚𝐴 = (𝑚𝑥)𝑥∈𝑋𝐴 ⊗𝔊-mod 𝐴 → 𝐴 and 𝑢𝐴 = (𝑢𝑥)𝑥∈𝑋 : 1𝔊-mod → 𝐴. These maps extend
naturally to maps 𝑚𝐴 : 𝐴 ⊗ 𝐴 → 𝐴 (where if 𝑎 ∈ 𝐴𝑥 and 𝑏 ∈ 𝐴𝑦 for 𝑥 ≠ 𝑦, we define
𝑚𝐴(𝑎 ⊗ 𝑏) = 0) and 𝑢𝐴 : k→ 𝐴 (defined by k→ 1𝔊-mod → 𝐴 where k→ 1𝔊-mod maps 1k
to (1, 1, · · · , 1)).

By definition, it follows immediately that the monoidal multiplication and monoidal
unit maps are 𝔊-module morphisms precisely when they make 𝐴 a 𝔊-module algebra.
Hence, we have proved the following result.

Lemma 2.45. Let 𝐴 =
⊕

𝑥∈𝑋 𝐴𝑥 be an 𝑋-decomposable k-algebra and let 𝔊 be an 𝑋-Lie algebroid.
Then the following statements are equivalent.

(i) 𝐴 is a 𝔊-module algebra, via the monoidal product 𝑚 : 𝐴 ⊗𝔊-mod 𝐴→ 𝐴 and monoidal unit
𝑢 : 1𝔊-mod → 𝐴 of Remark 2.44.

(ii) 𝐴 is a 𝔊-module, such that

𝑝 · (𝑎𝑏) = 𝑎(𝑝 · 𝑏) + (𝑝 · 𝑎)𝑏, (2.4)
𝑝 · 1𝑥 = 0, (2.5)

for all 𝑝 ∈ 𝔤𝑥 and 𝑎, 𝑏 ∈ 𝐴𝑥 .

As a consequence of this result, an 𝑋-decomposable k-algebra satisfying the conditions
in Lemma 2.45(ii) can be referred to as a 𝔊-module algebra. This terminology emphasizes
that the k-algebra is equipped with a compatible action of the 𝑋-Lie algebroid 𝔊, making
it a monoid object within the category of 𝔊-modules (see also Remark 2.6). To proceed, we
introduce a generalization of the Lie algebra Der(𝐴) consisting of derivations of 𝐴 with
commutator bracket.

Notation 2.46 (Der𝑋(𝐴)). Let 𝐴 =
⊕

𝑥∈𝑋 𝐴𝑥 be an 𝑋-decomposable k-algebra. We denote
by Der𝑋(𝐴) the 𝑋-Lie algebroid Der𝑋(𝐴) =

⊕
𝑥∈𝑋 Der(𝐴𝑥).

Since each Der(𝐴𝑥) is a Lie subalgebra of 𝔤𝔩(𝐴𝑥), we have that Der𝑋(𝐴) is an 𝑋-Lie
subalgebroid of 𝔊𝔏(𝐴). Similar to the groupoid case, when |𝑋 | = 1 we recover the classical
Lie structures.

Proposition 2.47. Let 𝐴 =
⊕

𝑥∈𝑋 𝐴𝑥 be an 𝑋-decomposable k-algebra and let 𝔊 =
⊕

𝑥∈𝑋 𝔤𝑥 be
an 𝑋-Lie algebroid. Then:
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(i) The natural action of Der(𝐴𝑥) on 𝐴𝑥 for all 𝑥 ∈ 𝑋 makes 𝐴 a Der𝑋(𝐴)-module algebra. We
denote this action ℓDer𝑋 (𝐴),𝐴 and write 𝑝⊲𝑎 := ℓDer𝑋 (𝐴),𝐴(𝑝⊠𝑎) for 𝑝⊠𝑎 ∈ Der𝑋(𝐴)⊠𝑋-Lie𝐴.

(ii) Suppose that 𝐴 is a 𝔊-module algebra via ℓ𝔊,𝐴 and denote 𝑝 · 𝑎 := ℓ𝔊,𝐴(𝑝 ⊠ 𝑎) for
𝑝 ⊠ 𝑎 ∈ 𝔊 ⊠𝑋-Lie 𝐴. Then there is a unique 𝑋-Lie algebroid morphism 𝜏 : 𝔊 → Der𝑋(𝐴)
such that 𝑝 · 𝑎 = 𝜏(𝑝) ⊲ 𝑎 for all 𝑝 ⊠ 𝑎 ∈ 𝔊 ⊠𝑋-Lie 𝐴.

(iii) Every 𝑋-Lie algebroid morphism 𝜏 : 𝔊 → Der𝑋(𝐴) gives 𝐴 the structure of a 𝔊-module
algebra via ℓ𝔊,𝐴(𝑝 ⊠ 𝑎) = ℓDer𝑋 (𝐴),𝐴(𝜏(𝑝) ⊠ 𝑎) for all 𝑝 ⊠ 𝑎 ∈ 𝔊 ⊠𝑋-Lie 𝐴.

Hence, Sym𝑋-Lie(𝐴) = Der𝑋(𝐴).

Proof. (i): The natural action of Der(𝐴𝑥) on 𝐴𝑥 is given by letting 𝑝 ⊲ 𝑎 be the image of 𝑎
under the derivation 𝑝, for 𝑎 ∈ 𝐴𝑥 and 𝑝 ∈ Der(𝐴𝑥). It is clear that 𝐴 is an Der𝑋(𝐴)-module
and by Lemma 2.45, it is clear that in fact 𝐴 is a Der𝑋(𝐴)-module algebra.

(ii): If 𝐴 is a 𝔊-module via ·, then there is an associated sub-𝑋-Lie algebroid of 𝔊𝔏𝑋(𝐴)
(see Notation 2.43). This induces a unique 𝑋-Lie algebroid morphism 𝜏 : 𝔊 → 𝔊𝔏𝑋(𝐴).
Moreover, if 𝐴 is a 𝔊-module algebra, then it satisfies (2.4) and (2.5), which are equivalent
to the map 𝜏(𝑝) being a derivation of 𝐴𝑥 for each 𝑝 ∈ 𝔤𝑥 . Hence, the image of 𝜏 is contained
in the sub-𝑋-Lie algebroid Der𝑋(𝐴) of 𝔊𝔏𝑋(𝐴). Corestricting 𝜏 to a map 𝔊 → 𝔊𝔏𝑋(𝐴)
gives the result.

(iii): If 𝜏 : 𝔊 → Der𝑋(𝐴) is any 𝑋-Lie algebroid morphism, then we can define a map
ℓ𝔊,𝐴 : 𝔊 ⊠𝑋-Lie 𝐴→ 𝐴 by ℓ𝔊,𝐴(𝑝 ⊠ 𝑎) = ℓDer𝑋 (𝐴),𝐴(𝜏(𝑝), 𝑎) for all 𝑝 ⊠ 𝑎 ∈ 𝔊 ⊠𝑋-Lie 𝐴. Since 𝜏
is an 𝑋-Lie algebroid morphism, we see that if 𝑝, 𝑞 ∈ Der(𝐴𝑥) and 𝑎 ∈ 𝐴𝑥 , then

[𝑝, 𝑞] · 𝑎 = 𝜏([𝑝, 𝑞]) ⊲ 𝑎 = [𝜏(𝑝), 𝜏(𝑞)] ⊲ 𝑎 = 𝜏(𝑝) ⊲ (𝜏(𝑞) ⊲ 𝑎) − 𝜏(𝑞) ⊲ (𝜏(𝑝) ⊲ 𝑎)
= 𝑝 · (𝑞 · 𝑎) − 𝑞 · (𝑝 · 𝑎),

so 𝐴 is a 𝔊-module. Further, for all 𝑝 ∈ 𝔤𝑥 and 𝑎, 𝑏 ∈ 𝐴𝑥 , we see

𝑝 · (𝑎𝑏) = 𝜏(𝑝) ⊲ (𝑎𝑏) = 𝑎(𝜏(𝑝) ⊲ 𝑏) + (𝜏(𝑝) ⊲ 𝑎)𝑏 = 𝑎(𝑝 · 𝑏) + (𝑝 · 𝑎)𝑏

and
𝑝 · 1𝑥 = 𝜏(𝑝) ⊲ 1𝑥 = 0.

Hence, 𝐴 is a 𝔊-module algebra. □

As a corollary, we recover the following well-known result for actions of Lie algebras,
which is the special case of Proposition 2.47 when |𝑋 | = 1.

Corollary 2.48. For a k-algebra 𝐴, 𝐴 is a Der(𝐴)-module algebra and for a Lie algebra 𝔤, the
following are equivalent.

(i) 𝐴 is a 𝔤-module algebra.

(ii) There exists a Lie algebra morphism 𝜏 : 𝔤 → Der(𝐴).
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Hence, SymLie(𝐴) = Der(𝐴).

Recall that by Proposition 1.31(i), a direct sum of Hopf algebras has a canonical
weak Hopf algebra structure. Following [Nik01, Section 3.2] we recall a construction
that generalizes the notion of the universal enveloping algebra of a Lie algebra to 𝑋-Lie
algebroids.

Definition 2.49 (𝑈𝑋(𝔊), 𝑋-EnvLie). The 𝑋-universal enveloping algebra of 𝔊 is the weak
Hopf algebra𝑈𝑋(𝔊) :=

⊕
𝑥∈𝑋 𝑈(𝔤𝑥), where each𝑈(𝔤𝑥) is the classical universal enveloping

algebra of the Lie algebra 𝔤𝑥 .

Consider the following representation category for𝑈𝑋(𝔊).
Definition 2.50 (rep(𝑈𝑋(𝔊))). Let rep(𝑈𝑋(𝔊)) be the category of representations of𝑈𝑋(𝔊),
that is, objects are 𝑋-decomposable vector spaces 𝑉 =

⊕
𝑥∈𝑋 𝑉𝑥 such that each 𝑉𝑥 is a

representation of𝑈(𝔤𝑥).
Remark 2.51. Observe that rep(𝔊) �

⊕
𝑥∈𝑋 rep(𝔤𝑥) �

⊕
𝑥∈𝑋 rep(𝑈(𝔤𝑥)) � rep(𝑈𝑋(𝔊)); see

Notation 2.43. With this, the monoidal structure of rep(𝔊) passes to rep(𝑈𝑋(𝔊)).

There is a well-known adjunction between the categories Lie of Lie algebras and Hopf of
Hopf algebras given by the universal enveloping algebra functor𝑈(−) and the Lie algebra
of primitve elements functor 𝑃(−). Namely,𝑈(−) ⊣ 𝑃(−), that is, for a Lie algebra 𝔤 and a
Hopf algebra 𝐻, we have a bĳection that is natural in each slot:

HomLie(𝔤, 𝑃(𝐻)) � HomHopf(𝑈(𝔤), 𝐻).

In particular, taking 𝐻 = 𝑈(Der(𝐴)) with its Hopf algebra structure yields a bĳection

HomLie(𝔤,Der(𝐴)) � HomHopf(𝑈(𝔤), 𝑈(Der(𝐴))).

Since, by Definition 2.36, 𝑋-Lie algebroid morphisms preserve the base set 𝑋, and by
Definition 2.26, 𝑋-weak Hopf algebra morphisms also preserve 𝑋, it follows that for an
𝑋-Lie algebroid 𝔊 and an 𝑋-decomposable k-algebra 𝐴, we have a bĳection

Hom𝑋-Lie(𝔊,Der𝑋(𝐴)) � Hom𝑋-WHA(𝑈𝑋(𝔊), 𝑈𝑋(Der𝑋(𝐴))). (2.6)

Finally, we will construct the object Sym𝑋-EnvLie(𝐴) to actions on a k-algebra 𝐴 by
𝑋-universal enveloping algebras can be thought of equivalently in a category-theoretic
and representation-theoretic way.

Proposition 2.52. Let 𝐴 =
⊕

𝑥∈𝑋 𝐴𝑥 be an 𝑋-decomposable k-algebra and 𝔊 be an 𝑋-Lie
algebroid.

(i) The action of 𝑈𝑋(Der𝑋(𝐴)) on 𝐴 induced by the action of Der𝑋(𝐴) on 𝐴 makes 𝐴 a
𝑈𝑋(Der𝑋(𝐴))-module algebra. For the action map ℓ𝑈𝑋 (Der𝑋 (𝐴)),𝐴, we use the notation ℎ ⊲ 𝑎
for ℓ𝑈𝑋 (Der𝑋 (𝐴)),𝐴(ℎ ⊗ 𝑎), where ℎ ∈ 𝑈𝑋(Der𝑋(𝐴)) and 𝑎 ∈ 𝐴.

(ii) Suppose that 𝐴 is a𝑈𝑋(𝔊)-module algebra via ℓ𝑈𝑋 (𝔊),𝐴, where we write ℎ · 𝑎 for ℓ (ℎ ⊗ 𝑎)
for ℎ ∈ 𝑈𝑋(𝔊) and 𝑎 ∈ 𝐴. Then there is a unique 𝑋-weak Hopf algebra morphism
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𝜏̃ : 𝑈𝑋(𝔊) → 𝑈𝑋(Der𝑋(𝐴)) such that ℎ · 𝑎 = 𝜏̃(ℎ) ⊲ 𝑎 for all ℎ ∈ 𝑈𝑋(𝔊) and 𝑎 ∈ 𝐴.

(iii) Every 𝑋-weak Hopf algebra morphism 𝜏̃ : 𝑈𝑋(𝔊) → 𝑈𝑋(Der𝑋(𝐴)) gives 𝐴 the structure of
a𝑈𝑋(𝔊)-module algebra via ℓ𝑈𝑋 (𝔊),𝐴(ℎ ⊗ 𝑎) = ℓ𝑈𝑋 (Der𝑋 (𝐴)),𝐴 (̃𝜏(ℎ) ⊗ 𝑎) for all ℎ ∈ 𝑈𝑋(𝔊)
and 𝑎 ∈ 𝐴 (that is, ℎ · 𝑎 = 𝜏̃(ℎ) ⊲ 𝑎).

Hence, Sym𝑋-EnvLie(𝐴) = 𝑈𝑋(Der𝑋(𝐴)).

Proof. (i): It is clear that each 𝐴𝑥 is a Der(𝐴𝑥)-module algebra. By the classical theory,
therefore each 𝐴𝑥 is a𝑈(Der(𝐴𝑥))-module algebra. Hence, by Proposition 2.24(iii), 𝐴 is a
𝑈𝑋(Der𝑋(𝐴))-module algebra.

(ii)-(iii): By the same argument as above, 𝐴 is a 𝑈𝑋(𝔊)-module algebra if and only
if each 𝐴𝑥 is a 𝑈(𝔤𝑥)-module algebra if and only if each 𝐴𝑥 is a 𝔤𝑥-module algebra. By
Lemma 2.45, this happens if and only if 𝐴 is a 𝔊-module algebra.

By Proposition 2.47, this happens if and only if the action of 𝔊 factors through a unique
𝑋-Lie algebroid morphism 𝜏 : 𝔊 → Der𝑋(𝐴). By (2.6), this if and only if there exists an
𝑋-weak Hopf algebra morphism 𝜏̃ : 𝑈𝑋(𝔊) → 𝑈𝑋(Der𝑋(𝐴)).

Note that since 𝑋-EnvLie is a full subcategory of 𝑋-WHA, the morphisms in 𝑋-EnvLie
are simply 𝑋-weak Hopf algebra morphisms. As a consequence, (i), (ii), and (iii) above
imply that Sym𝑋-EnvLie(𝐴) = 𝑈𝑋(Der𝑋(𝐴)), as desired. □

As a corollary, we recover the following well-known result for actions of enveloping
algebras of Lie algebras, which is the special case of Proposition 2.52 when |𝑋 | = 1.

Corollary 2.53. Let 𝐴 be a k-algebra. Then 𝐴 is a 𝑈(Der(𝐴))-module algebra and for a Lie
algebra 𝔤, the following are equivalent.

(i) 𝐴 is a𝑈(𝔤)-module algebra.

(ii) There exists a Hopf algebra morphism 𝜏̃ : 𝑈(𝔤) → 𝑈(Der(𝐴)).

Hence, SymEnvLie(𝐴) = 𝑈(Der(𝐴)).

2.4 Weak quantum symmetries captured by cocommutative
weak Hopf algebras

In this section our goal is to study the category 𝒞 = 𝑋-CocomWHA of cocommutative
weak Hopf algebras. Our main result identifies Sym𝒞(𝐴). First,we recall the definition of
the smash product over a weak Hopf algebra, which generalizes the construction of the
classical smash product.

Definition 2.54 ([NV02, Section 4.2]). Let 𝐻 be a weak Hopf algebra and let 𝐴 be an
𝐻-module algebra. The smash product algebra 𝐴#𝐻 is defined as the k-vector space 𝐴⊗𝐻𝑡 𝐻,
where 𝐴 is a right 𝐻𝑡-module via 𝑎 · 𝑧 = 𝑆−1(𝑧) · 𝑎 = 𝑎(𝑧 · 1𝐴), for 𝑎 ∈ 𝐴 and 𝑧 ∈ 𝐻𝑡 .
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Multiplication in 𝐴#𝐻 is defined by (𝑎#ℎ)(𝑏#𝑔) = 𝑎(ℎ1 · 𝑏)#ℎ2𝑔. Here 𝑎#ℎ denotes a coset
representative of 𝑎 ⊗𝐻𝑡 ℎ for 𝑎 ∈ 𝐴 and ℎ ∈ 𝐻.

To state Nikshych’s a generalization of the Cartier–Gabriel–Kostant–Milnor–Moore
theorem [Nik01], we describe the weak Hopf algebra structure on this smash product.

Definition 2.55. Let 𝐻 be a weak Hopf algebra. We say that 𝐻 is a 𝑋-decomposable weak
Hopf algebra if there exists a family {𝐻𝑥}𝑥∈𝑋 of weak Hopf algebras (some of which may be
0) such that 𝐻 =

⊕
𝑥∈𝑋 𝐻𝑥 as weak Hopf algebras.

Remark 2.56. (i) Every 𝑋-decomposable weak Hopf algebra is an 𝑋-decomposable
k-algebra [Definition 1.60], whose 𝑋-decomposition also respects the weak Hopf
structure.

(ii) Not every 𝑋-decomposable weak Hopf algebra is as an 𝑋-weak Hopf algebra. For
example, for an 𝑋-groupoid 𝒢, the groupoid algebra k𝒢 is in 𝑋-WHA [Example 2.28].
However, k𝒢 does not meet the requirements of an 𝑋-decomposable algebra. This is
due to the fact that the idempotents 𝑒𝑥𝑥∈𝑋 in k𝒢 may not be central (see Remark 1.61)
Consequently, k𝒢 cannot be classified as an 𝑋-decomposable weak Hopf algebra.

(iii) Conversely, not every𝑋-weak Hopf algebra is an𝑋-decomposable weak Hopf algebra.
For instance, if we have an 𝑋-decomposable weak Hopf algebra 𝐻 =

⊕
𝑥∈𝑋 𝐻𝑥 ,

where some of the 𝐻𝑥 are weak Hopf algebras, the idempotents 1𝑥 in 𝐻 may not
necessarily be grouplike elements as required by Definition 2.26. Consequently, 𝐻
would not satisfy the conditions to be classified as an 𝑋-weak Hopf algebra.

(iv) For every 𝑋-Lie algebroid 𝔊 =
⊕

𝑥∈𝑋 𝔤𝑥 , the 𝑋-universal enveloping algebra𝑈𝑋(𝔊)
is an 𝑋-decomposable weak Hopf algebra.

Definition 2.57 (Aut𝑋-WBA(𝐻)). Let 𝐻 =
⊕

𝑥∈𝑋 𝐻𝑥 be an 𝑋-decomposable weak Hopf
algebra. We define Aut𝑋-WBA(𝐻), the 𝑋-weak bialgebra automorphism groupoid of 𝐻, as
follows:

• the object set is 𝑋,

• for any 𝑥, 𝑦 ∈ 𝑋, HomAut𝑋-WBA(𝐻)(𝐻𝑥 , 𝐻𝑦) is the space of weak bialgebra isomorphisms
between the weak bialgebras 𝐻𝑥 and 𝐻𝑦 .

Clearly, Aut𝑋-WBA(𝐻) is a subgroupoid of Aut𝑋-Alg(𝐻), as defined in Definition 2.9.

Proposition 2.58. Let 𝒢 be an 𝑋-groupoid and 𝐻 =
⊕

𝑥∈𝑋 𝐻𝑥 be an 𝑋-weak Hopf algebra. If 𝐻
is a k𝒢-module algebra via the action ·, then the following statements are equivalent.

(i) For every 𝑔 ∈ 𝒢1 and 𝑎 ∈ 𝐻𝑠(𝑔) the following relations hold:

Δ𝐻(𝑔 · 𝑎) = 𝑔 · 𝑎1 ⊗ 𝑔 · 𝑎2 , (2.7)
𝜀𝐻(𝑔 · 𝑎) = 𝜀𝐻𝑠(𝑔)(𝑎). (2.8)

(ii) There exists an 𝑋-groupoid morphism 𝜋 : 𝒢 → Aut𝑋-WBA(𝐻).
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Moreover, in this case the smash product algebra𝐻#k𝒢 becomes a weak Hopf algebra with operations
given by:

Δ(𝑎#𝑔) = 𝑎1#𝑔 ⊗ 𝑎2#𝑔, 𝜀(𝑎#𝑔) = 𝜀𝐻(𝑎), 𝑆(𝑎#𝑔) = (1𝐻#𝑔−1)(𝑆𝐻(𝑎)#1k𝒢), (2.9)

for all 𝑔 ∈ 𝒢1 and 𝑎 ∈ 𝐻𝑡(𝑔).

Proof. Since 𝐻 is a k𝒢-module algebra, Proposition 2.33 guarantees the existence of a
𝑋-groupoid morphism 𝜋 : 𝒢 → Aut𝑋-Alg(𝐻) that corresponds to the 𝒢-action, that is,
𝜋(𝑔)(𝑎) = 𝑔 · 𝑎 for all 𝑔 ∈ 𝒢1 and 𝑎 ∈ 𝐻𝑠(𝑔); note that if 𝑎 ∈ 𝐻𝑥 with 𝑥 ≠ 𝑠(𝑔) then 𝑔 · 𝑎 = 0
(see Remark 1.47). Equations (2.7) and (2.8) are equivalent to the statement that for all
𝑔 ∈ 𝒢0 the k-algebra map 𝜋(𝑔) : 𝐻𝑠(𝑔) → 𝐻𝑡(𝑔) is a k-coalgebra map. But this is the same
as requiring the image of 𝜋 to be contained in the subgroupoid Aut𝑋-WBA(𝐻). This proves
(i)-(ii).

Now, it is clear that 𝐻#k𝒢 is both a k-algebra and a k-coalgebra, and the maps of (2.9)
are well-defined. Moreover, consider any 𝑔, ℎ ∈ 𝒢1. Suppose that 𝑡(ℎ) = 𝑠(𝑔), 𝑎 ∈ 𝐻𝑡(𝑔)
and 𝑏 ∈ 𝐻𝑠(𝑔), so we have

Δ((𝑎#𝑔)(𝑏#ℎ)) = 𝑎1(𝑔 · 𝑏)1#𝑔ℎ ⊗ 𝑎2(𝑔 · 𝑏)2#𝑔ℎ (2.7)
= 𝑎1(𝑔 · 𝑏1)#𝑔ℎ ⊗ 𝑎2(𝑔 · 𝑏2)#𝑔ℎ

= (𝑎1#𝑔 ⊗ 𝑎2#𝑔)(𝑏1#ℎ ⊗ 𝑏2#ℎ) = Δ(𝑎#𝑔)Δ(𝑏#ℎ).

Otherwise, both sides of the above equation are zero. Hence this proves that Δ is
multiplicative. If 𝑔, ℎ, 𝑙 ∈ 𝒢1 satisfy 𝑡(ℎ) = 𝑠(𝑔) and 𝑡(𝑙) = 𝑠(ℎ), and 𝑎 ∈ 𝐻𝑡(𝑔), 𝑏 ∈ 𝐻𝑠(𝑔),
𝑐 ∈ 𝐻𝑠(ℎ), then

𝜀((𝑎#𝑔)(𝑏#ℎ)(𝑐#𝑙)) = 𝜀(𝑎(𝑔 · 𝑏)(𝑔ℎ · 𝑐)#𝑔ℎ𝑙) = 𝜀𝐻(𝑎(𝑔 · 𝑏)(𝑔ℎ · 𝑐))
(2.7)
= 𝜀𝐻(𝑎(𝑔 · 𝑏1))𝜀𝐻((𝑔 · 𝑏2)(𝑔ℎ · 𝑐)) = 𝜀𝐻(𝑎(𝑔 · 𝑏1))𝜀𝐻(𝑔 · (𝑏2(ℎ · 𝑐)))

(2.8)
= 𝜀𝐻(𝑎(𝑔 · 𝑏1))𝜀𝐻(𝑏2(ℎ · 𝑐)) = 𝜀(𝑎(𝑔 · 𝑏1)#𝑔ℎ)𝜀(𝑏2(ℎ · 𝑐)#ℎ𝑙)
= 𝜀((𝑎#𝑔)(𝑏#ℎ)1)𝜀((𝑏#ℎ)2(𝑐#𝑙)),

and similarly, 𝜀((𝑎#𝑔)(𝑏#ℎ)(𝑐#𝑙)) = 𝜀((𝑎#𝑔)(𝑏#ℎ)2)𝜀((𝑏#ℎ)1(𝑐#𝑙)), so 𝜀 is weak multiplicative.
Further, letting 1 := 1𝐻 , 1𝑥 = 1𝐻𝑥 for all 𝑥 ∈ 𝑋, and 1k𝒢 =

∑
𝑥∈𝑋 𝑒𝑥 , then

(Δ(1#1k𝒢) ⊗ 1#1k𝒢)(1#1k𝒢 ⊗ Δ(1#1k𝒢))

=
©­«
∑
𝑥∈𝑋

Δ(1#𝑒𝑥) ⊗
∑
𝑦∈𝑋

1#𝑒𝑦
ª®¬
(∑
𝑧∈𝑋

1#𝑒𝑧 ⊗
∑
𝑤∈𝑋

Δ(1#𝑒𝑤)
)

=
©­«

∑
𝑥,𝑦∈𝑋

11#𝑒𝑥 ⊗ 12#𝑒𝑥 ⊗ 1#𝑒𝑦
ª®¬
( ∑
𝑧,𝑤∈𝑋

1#𝑒𝑧 ⊗ 1′1#𝑒𝑤 ⊗ 1′2#𝑒𝑤

)
=

∑
𝑥,𝑦,𝑧,𝑤∈𝑋

[11#𝑒𝑥][1#𝑒𝑧] ⊗ [12#𝑒𝑥][1′1#𝑒𝑤] ⊗ [1#𝑒𝑦][1′2#𝑒𝑤]
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=
∑

𝑥,𝑦,𝑧,𝑤∈𝑋
11(𝑒𝑥 · 1)#𝑒𝑥𝑒𝑧 ⊗ 12(𝑒𝑥 · 1′1)#𝑒𝑥𝑒𝑤 ⊗ 𝑒𝑦 · 1′2#𝑒𝑦𝑒𝑤

(∗)
=

∑
𝑥∈𝑋

(1𝑥)1#𝑒𝑥 ⊗ (1𝑥)2(1′𝑥)1#𝑒𝑥 ⊗ (1′𝑥)2#𝑒𝑥

(∗∗)
=

∑
𝑥∈𝑋

(1𝑥)1#𝑒𝑥 ⊗ (1𝑥)2#𝑒𝑥 ⊗ (1𝑥)3#𝑒𝑥
(∗∗∗)
=

∑
𝑥∈𝑋

11#𝑒𝑥 ⊗ 12#𝑒𝑥 ⊗ 13#𝑒𝑥

=
∑
𝑥∈𝑋

Δ(11#𝑒𝑥) ⊗ 12#𝑒𝑥 = Δ2(1#1k𝒢).

In (∗) we used that 𝑒𝑥 · 1 = 1𝑥 and 1𝑥 ∈ 𝐻𝑡 , in (∗∗) that each 𝐻𝑥 is a weak Hopf algebra,
while in (∗ ∗ ∗) that (1𝑦)1#𝑒𝑥 = 0 if 𝑥 ≠ 𝑦; recall (k𝒢)𝑡 =

⊕
𝑥∈𝑋 k𝑒𝑥 . This proves that Δ is

weak comultiplicative and thus the smash product 𝐻#k𝒢 is a weak bialgebra. Finally, we
will use the fact that 𝐻 is an 𝑋-weak Hopf algebra, so Δ(1𝐻) =

∑
𝑥∈𝑋 1𝑥 ⊗ 1𝑥 to show the

following equation. If 𝑔 ∈ 𝒢1 and 𝑎 ∈ 𝐻𝑡(𝑔), then

𝑆(𝑎1#𝑔)(𝑎2#𝑔) = (1#𝑔−1)(𝑆𝐻(𝑎1)#1k𝒢)(𝑎2#𝑔) = 𝑔−1 · (𝑆𝐻(𝑎1)𝑎2)#𝑒𝑠(𝑔)
= 𝑔−1 · (𝜀𝐻)𝑠(𝑎)#𝑒𝑠(𝑔) =

∑
𝑥∈𝑋

(𝑔−1 · 1𝑥#𝑒𝑠(𝑔))𝜀𝐻(𝑎1𝑥)

(∗)
= (1𝑠(𝑔)#𝑒𝑠(𝑔))𝜀𝐻(𝑎1𝑡(𝑔))

(∗∗)
= (1𝑠(𝑔)#𝑒𝑠(𝑔))𝜀𝐻(𝑎(𝑔 · 1𝑠(𝑔)))

(∗∗∗)
= (1𝑠(𝑔)#𝑒𝑠(𝑔))𝜀𝐻(𝑎(𝑔 · 1𝑠(𝑔)))𝜀k𝒢(𝑔𝑒𝑠(𝑔))
= (1𝑠(𝑔)#𝑒𝑠(𝑔))𝜀𝐻#k𝒢(𝑎(𝑔 · 1𝑠(𝑔))#𝑔𝑒𝑠(𝑔))
(∗∗∗∗)
=

∑
𝑥∈𝑋

(1𝑥#𝑒𝑥)𝜀𝐻#k𝒢((𝑎#𝑔)(1𝑥#𝑒𝑥))

= 𝜀𝑠(𝑎#𝑔).

Here (∗) holds due to that fact that 𝑔−1 · 1𝑥 = 𝛿𝑥,𝑡(𝑔)1𝑠(𝑔) and 𝑎1𝑥 = 𝛿𝑥,𝑡(𝑔)𝑎1𝑡(𝑔). In (∗∗),
we use 𝑔 · 1𝑠(𝑔) = 1𝑡(𝑔) and in (∗ ∗ ∗) we use 𝜀k𝒢(𝑔𝑒𝑠(𝑔)) = 1. Lastly, we use (𝑎#𝑔)(1𝑥#𝑒𝑥) =
𝛿𝑥,𝑠(𝑔)𝑎(𝑔 · 1𝑠(𝑔))#𝑔𝑒𝑠(𝑔) in (∗ ∗ ∗∗) and (1𝑦)#𝑒𝑥 = 𝛿𝑥,𝑦1𝑥#𝑒𝑥 in the last equality.

Similarly, one can prove (𝑎1#𝑔)𝑆(𝑎2#𝑔) = 𝜀𝑡(𝑎#𝑔).

𝑆((𝑎#𝑔)1)(𝑎#𝑔)2𝑆((𝑎#𝑔)3) = (1#𝑔−1)(𝑆𝐻(𝑎1)#1k𝒢)(𝑎2#𝑔)(1#𝑔−1)(𝑆𝐻(𝑎3)#1k𝒢)
= (𝑔−1 · (𝑆𝐻(𝑎1)𝑎2)#1k𝒢)(𝑔−1 · 𝑆𝐻(𝑎3)#𝑔−1)

= 𝑔−1 · (𝑆𝐻(𝑎1)𝑎2𝑆𝐻(𝑎3))#𝑔−1 (∗)
= 𝑔−1 · 𝑆𝐻(𝑎)#𝑔−1

= (1#𝑔−1)(𝑆𝐻(𝑎)#1k𝒢) = 𝑆(𝑎#𝑔).

Here, we used in (∗) that 𝑆𝐻 is an antipode for 𝐻. Therefore, 𝐻#k𝒢 is a weak Hopf
algebra. □

Lemma 2.59. Let 𝐻 be a cocommutative weak Hopf algebra of the form 𝑈𝑋(𝔊)#k𝒢 for an 𝑋-
groupoid 𝒢 acting on an 𝑋-Lie algebroid 𝔊. Then { 𝑓𝑥 := 1𝑈(𝔤𝑥) ⊗k𝒢0 𝑒𝑥}𝑥∈𝑋 is a complete set of
orthogonal primitive idempotents of 𝐻 satisfying Δ( 𝑓𝑥) = 𝑓𝑥 ⊗ 𝑓𝑥 . Hence, 𝐻 is an 𝑋-weak Hopf



CHAPTER 2. WEAK QUANTUM SYMMETRIES 59

algebra.

Proof. Note that 𝑈𝑋(𝔊) is a k𝒢-module algebra, and also is a right k𝒢0-module via
𝑝 · 𝑒𝑥 = 𝑆−1(𝑒𝑥) · 𝑝 = 𝑝(𝑒𝑥 · 1𝑈𝑋 (𝔊)) for all 𝑥 ∈ 𝒢0 = 𝑋 and 𝑝 ∈ 𝑈𝑋(𝔊). Moreover,
𝑈𝑋(𝔊)#k𝒢 = 𝑈𝑋(𝔊) ⊗k𝒢0 k𝒢 as coalgebras. Now we compute:

Δ(1𝐻) = Δ(1𝑈𝑋 (𝔊) ⊗k𝒢0 1k𝒢) =
∑
𝑥,𝑦∈𝑋(1𝑈(𝔤𝑥) ⊗k𝒢0 𝑒𝑦) ⊗ (1𝑈(𝔤𝑥) ⊗k𝒢0 𝑒𝑦). (2.10)

Therefore, 𝐻𝑡 = 𝐻𝑠 = Spank{1𝑈(𝔤𝑥) ⊗k𝒢0 𝑒𝑦 | 𝑥, 𝑦 ∈ 𝑋}. Also, for 𝑥, 𝑦 ∈ 𝑋, we have

1𝑈(𝔤𝑥)#𝑒𝑦 = 1𝑈(𝔤𝑥) ⊗k𝒢0 𝑒𝑦
(𝑒2
𝑦=𝑒𝑦)
= 1𝑈(𝔤𝑥) · 𝑒𝑦 ⊗k𝒢0 𝑒𝑦

= 1𝑈(𝔤𝑥)(𝑒𝑦 · 1𝑈𝑋 (𝔊)) ⊗k𝒢0 𝑒𝑦 = 𝛿𝑥, 𝑦1𝑈(𝔤𝑥) ⊗k𝒢0 𝑒𝑥

= 𝛿𝑥, 𝑦1𝑈(𝔤𝑥)#𝑒𝑥 .

(2.11)

Hence, { 𝑓𝑥 = 1𝑈(𝔤𝑥) ⊗k𝒢0 𝑒𝑥 | 𝑥 ∈ 𝑋} is a basis of 𝐻𝑠 . Moreover, we have that as k-algebras,
𝐻𝑡 = 𝐻𝑠 � 𝑈𝑋(𝔊)𝑠 � (k𝒢)𝑠 � k𝒢0. Now the result follows from Proposition 2.24(i). □

Remark 2.60. (i) Let 𝒢 be an 𝑋-groupoid acting by conjugation on an 𝑋-Lie algebroid
𝔊. This induces an action of the groupoid algebra k𝒢 on the 𝑋-universal enveloping
algebra𝑈𝑋(𝔊) satisfying the conditions of Proposition 2.58(i). Thus𝑈𝑋(𝔊)#k𝒢 is a
weak Hopf algebra.

(ii) Let 𝐺 be a group and 𝐻 be a Hopf algebra. If 𝐻 is a k𝐺-module algebra, then
Proposition 2.58 translates into the following classical well-known result: if there
is a group morphism from 𝐺 to the group of bialgebra automorphisms of 𝐻,
𝜋 : 𝐺 → AutBialg(𝐻), or equivalently, if the maps 𝜋𝑔 : 𝐻 → 𝐻 given by 𝑎 ↦→ 𝑔 · 𝑎
for 𝑔 ∈ 𝐺 are all coalgebra morphisms, then the smash product algebra 𝐻#k𝐺 has
structure of Hopf algebra with operations as in (2.9).

Next, we recall Nikshych’s generalization of the Cartier–Gabriel–Kostant–Milnor–
Moore theorem to the weak Hopf setting.

Theorem 2.61 ([Nik01, Theorem 3.2.4]). Any cocommutative weak Hopf algebra𝐻 is isomorphic
to𝑈𝑋(𝔊)#k𝒢 as weak Hopf algebras, for some 𝑋-Lie algebroid 𝔊 and 𝑋-groupoid 𝒢.

Lemma 2.62. Let 𝐴 =
⊕

𝑥∈𝑋 𝐴𝑥 be an 𝑋-decomposable k-algebra. Then 𝐴 is a
𝑈𝑋(Der𝑋(𝐴))#k(Aut𝑋-Alg(𝐴))-module algebra.

Proof. It follows from Proposition 2.58 that 𝑈𝑋(Der𝑋(𝐴))#k(Aut𝑋-Alg(𝐴)) is a cocommu-
tative weak Hopf algebra. By Propositions 2.52 and 2.33, 𝐴 is a 𝑈𝑋(Der𝑋(𝐴)) and
k(Aut𝑋-Alg(𝐴)) module algebra. Define a 𝑈𝑋(Der𝑋(𝐴))#k(Aut𝑋-Alg(𝐴)) action on 𝐴 via
( 𝑓 #𝑔) · 𝑎 = 𝑓 · (𝑔 · 𝑎) for all 𝑎 ∈ 𝐴 and all 𝑓 #𝑔 ∈ 𝑈𝑋(Der𝑋(𝐴))#k(Aut𝑋-Alg(𝐴)). One can
check that indeed, 𝐴 is a𝑈𝑋(Der𝑋(𝐴))#k(Aut𝑋-Alg(𝐴))-module algebra. □

Definition 2.63. Let 𝑅 and 𝑆 be two k-algebras and let 𝛽 : 𝑅 → 𝑆 be a k-algebra morphism.
Let 𝑀 ∈ 𝑅-mod and𝑁 ∈ 𝑆-mod. We call a group morphism 𝛼 : 𝑀 → 𝑁 a 𝛽-linear morphism
if 𝛼(𝑟 · 𝑚) = 𝛽(𝑟) · 𝛼(𝑚) for all 𝑚 ∈ 𝑀 and 𝑟 ∈ 𝑅.
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Using all the previous result, we are finally able to state our main and final results in
this chapter.

Lemma 2.64. Let 𝐻 and 𝐻′ be cocommutative 𝑋-weak Hopf algebras. Write 𝐻 = 𝑈𝑋(𝔊)#k𝒢 and
𝐻′ = 𝑈𝑋(𝔊′)#k𝒢′ where 𝒢 and 𝒢′ are 𝑋-groupoids, 𝔊 and 𝔊′ are 𝑋-Lie algebroids and𝑈𝑋(𝔊)
is a 𝒢-module algebra and𝑈𝑋(𝔊′) is a 𝒢′-module algebra.

(i) Suppose that 𝜋 : 𝒢 → 𝒢′ is an 𝑋-groupoid morphism and 𝜏 : 𝔊 → 𝔊′ is an 𝑋-Lie algebroid
morphism such that for the corresponding 𝑋-weak Hopf algebra morphisms 𝜋 : k𝒢 → k𝒢′

and 𝜏̃ : 𝑈𝑋(𝔊) → 𝑈𝑋(𝔊′), 𝜏̃ is a 𝜋-linear morphism. Then there is an induced 𝑋-weak
Hopf algebra morphism 𝐻 → 𝐻′.

(ii) Every 𝑋-weak Hopf algebra morphism 𝐻 → 𝐻′ arises in this way.

Theorem 2.65. Let 𝐴 =
⊕

𝑥∈𝑋 𝐴𝑥 be an 𝑋-decomposable k-algebra, let

𝐾 = 𝑈𝑋(Der𝑋(𝐴))#k(Aut𝑋-Alg(𝐴)),

and let 𝐻 be a cocommutative weak Hopf algebra. Write 𝐻 = 𝑈𝑋(𝔊)#k𝒢 for an 𝑋-Lie algebroid 𝔊

and an 𝑋-groupoid 𝒢. Then:

(i) The natural actions of 𝑈𝑋(Der𝑋(𝐴)) and k(Aut𝑋-Alg(𝐴)) on 𝐴 give 𝐴 the structure of
a 𝐾-module algebra. We denote this action ℓ𝐾,𝐴 and write 𝑘 ⊲ 𝑎 := ℓ𝐾,𝐴(𝑘 ⊗ 𝑎) where
𝑘 ⊗ 𝑎 ∈ 𝐾 ⊗ 𝐴.

(ii) Suppose that 𝐴 is an 𝐻-module algebra via ℓ𝐻,𝐴 and denote ℎ · 𝑎 := ℓ𝐻,𝐴(ℎ ⊗ 𝑎) for
ℎ ⊗ 𝑎 ∈ 𝐻 ⊗ 𝐴. Then there is a unique 𝑋-weak Hopf algebra morphism 𝜙 : 𝐻 → 𝐾 such
that ℎ · 𝑎 = 𝜙(ℎ) ⊲ 𝑎 for all ℎ ⊗ 𝑎 ∈ 𝐻 ⊗ 𝐴.

(iii) Every 𝑋-weak Hopf algebra morphism 𝜙 : 𝐻 → 𝐾 gives 𝐴 the structure of an 𝐻-module
algebra via ℓ𝐻,𝐴(ℎ ⊗ 𝑎) = ℓ𝐾,𝐴(𝜙(ℎ) ⊗ 𝑎) for all ℎ ⊗ 𝑎 ∈ 𝐻 ⊗ 𝐴.

Hence, Sym𝑋-CocomWHA(𝐴) = 𝐾.

Proof. (i): We can define a k𝒢-module algebra structure on 𝐴 via 𝑔 · 𝑎 := (1𝑈𝑋 (𝔊)#𝑔) · 𝑎 for
𝑔 ∈ 𝒢 and 𝑎 ∈ 𝐴. It is clear that 𝐴 is a k𝒢-module. By (2.11), we have that

1𝑈(𝔤𝑥)#𝑔 = 1𝑈(𝔤𝑥)#𝑒𝑡(𝑔)𝑔 = 𝛿𝑥, 𝑡(𝑔)1𝑈(𝔤𝑥)#𝑔, (2.12)

and therefore

1𝑈𝑋 (𝔊)#𝑔 =
∑
𝑥

1𝑈(𝔤𝑥)#𝑔 =
∑
𝑥

𝛿𝑥, 𝑡(𝑔)1𝑈(𝔤𝑥)#𝑔 = 1𝑈(𝔤𝑡(𝑔))#𝑔. (2.13)
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Now we compute:

𝑔 · (𝑎𝑏) = (1𝑈𝑋 (𝔊)#𝑔) · (𝑎𝑏)
=

∑
𝑥∈𝑋

(
(1𝑈(𝔤𝑥)#𝑔) · 𝑎

) (
(1𝑈(𝔤𝑥)#𝑔) · 𝑏

)
(2.12)
= ((1𝑈(𝔤𝑡(𝑔))#𝑔) · 𝑎)((1𝑈(𝔤𝑡(𝑔))#𝑔) · 𝑏)

(2.13)
= ((1𝑈𝑋 (𝔊)#𝑔) · 𝑎)((1𝑈𝑋 (𝔊)#𝑔) · 𝑏)

= (𝑔 · 𝑎)(𝑔 · 𝑏).

Note that 𝜀𝑡(𝑔) =
∑
𝑥∈𝒢0 𝜀(𝑒𝑥 𝑔)𝑒𝑥 = 𝑒𝑡(𝑔). Next we check that

𝑔 · 1𝐴 = (1𝑈𝑋 (𝔊)#𝑔) · 1𝐴
1.28
= 𝜀𝑡(1𝑈𝑋 (𝔊)#𝑔) · 1𝐴

2.59
=

(∑
𝑥∈𝑋 𝜀((1𝑈(𝔤𝑥)#𝑒𝑥)(1𝑈𝑋 (𝔊)#𝑔))(1𝑈(𝔤𝑥)#𝑒𝑥)

)
· 1𝐴

=
(∑

𝑥∈𝑋 𝜀(1𝑈(𝔤𝑥)(𝑒𝑥 · 1𝑈𝑋 (𝔊))#𝑒𝑥 𝑔))(1𝑈(𝔤𝑥)#𝑒𝑥)
)
· 1𝐴

(∗)
=

(∑
𝑥∈𝑋 𝜀(1𝑈(𝔤𝑥)#𝑒𝑥 𝑔)(1𝑈(𝔤𝑥)#𝑒𝑥)

)
· 1𝐴

(∗∗)
= 𝜀(1𝑈(𝔤𝑡(𝑔))#𝑔)(1𝑈(𝔤𝑡(𝑔))#𝑒𝑡(𝑔)) · 1𝐴
(∗∗∗)
=

(
1𝑈(𝔤𝑡(𝑔))#𝑒𝑡(𝑔)

)
· 1𝐴

(2.13)
= (1𝑈𝑋 (𝔊)#𝑒𝑡(𝑔)) · 1𝐴

= 𝑒𝑡(𝑔) · 1𝐴
= 𝜀𝑡(𝑔) · 1𝐴.

Here, (∗) holds since 𝑒𝑥 · 1𝑈𝑋 (𝔊) = 1𝑈(𝔤𝑥); (∗∗) holds since 𝑒𝑥 𝑔 = 𝛿𝑥, 𝑡(𝑔)𝑒𝑡(𝑔)𝑔 = 𝛿𝑥,𝑡(𝑔)𝑔; and
(∗ ∗ ∗) holds since 1𝑈(𝔤𝑡(𝑔)) and 𝑔 are grouplike, and thus, 𝜀(1𝑈(𝔤𝑡(𝑔))#𝑔) = 1k. So 𝐴 is a
k𝒢-module algebra.

Next, one can define a 𝑈𝑋(𝔊)-module structure on 𝐴 via 𝑝𝑥 · 𝑏 := (𝑝𝑥#1k𝐺) · 𝑏 for all
𝑝𝑥 ∈ 𝔤𝑥 with 𝑏 ∈ 𝐴. By a similar argument of (2.11), we show 𝑝𝑥#𝑒𝑦 = 𝛿𝑥,𝑦𝑝𝑥#𝑒𝑥 and so
(𝑝𝑥#1k𝒢) = (𝑝𝑥#𝑒𝑥) for 𝑝𝑥 ∈ 𝔤𝑥 . It is straightforward to check that

𝑝𝑦 · (𝑎𝑏) = (𝑝𝑦 · 𝑎)(1𝑈(𝔤𝑦) · 𝑏) + (1𝑈(𝔤𝑦) · 𝑎)(𝑝𝑦 · 𝑏),
𝑝𝑦 · 1𝐴 = 0 = 𝜀𝑡(𝑝𝑦) · 1𝐴 ,

since 𝜀𝑡(𝑝𝑦) = (𝑝𝑦)1𝑆((𝑝𝑦)2) = 1𝑈(𝔤𝑦)𝑆(𝑝𝑦) + 𝑝𝑦𝑆(1𝑈(𝔤𝑦) = −𝑝𝑦 + 𝑝𝑦 = 0, for 𝑝𝑦 ∈ 𝔤𝑦 and
𝑎, 𝑏 ∈ 𝐴. By Propositions 2.47 and 2.52, 𝐴 is then a𝑈𝑋(𝔊)-module algebra.

Now there exists an 𝑋-groupoid map 𝜋 : 𝒢 → Aut𝑋-Alg(𝐴) by Proposition 2.11, and an
𝑋-Lie algebroid map 𝜏 = (𝜏𝑥)𝑥∈𝑋 : 𝔊 → Der𝑋(𝐴) by Proposition 2.52. So there exists an
𝑋-weak Hopf algebra map 𝜋 := 𝜈k(Aut𝑋-Alg(𝐴))k(𝜋) : k𝒢 → k(Aut𝑋-Alg(𝐴)) by Theorem 2.31
and 𝜏̃ : 𝑈𝑋(𝔊) → 𝑈𝑋(Der𝑋(𝐴)) by Proposition 2.52.

Further, by Lemma 1.58 and Notation 2.43,

𝜋(𝑔)(𝑎) = 𝑔 · 𝑎 = (1𝑈𝑋 (𝔊)#𝑔) · 𝑎 and 𝜏(𝑝)(𝑏) = 𝑝 · 𝑏 = (𝑝#1k𝒢) · 𝑏
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for all 𝑔 ∈ 𝒢 with 𝑎 ∈ 𝐴𝑠(𝑔), and all 𝑝 ∈ 𝔤𝑥 with 𝑏 ∈ 𝐴𝑥 . Since for all 𝑔 ∈ 𝒢 and 𝑝 ∈ 𝔤𝑠(𝑔),
both 𝜏̃(𝑔 · 𝑝) and 𝜋(𝑔) · 𝜏̃(𝑝) are in 𝑈(Der(𝐴𝑡(𝑔))), to obtain the remaining part of (ii), we
shall show 𝜏̃(𝑔 · 𝑝)(𝑎) = (𝜋(𝑔) · 𝜏̃(𝑝))(𝑎) for all 𝑎 ∈ 𝐴𝑡(𝑔). Indeed:

(𝜋(𝑔) · 𝜏̃(𝑝))(𝑎) = 𝜋(𝑔) ◦ 𝜏̃(𝑝) ◦ 𝜋(𝑔−1)(𝑎) = (1𝑈𝑋 (𝔊)#𝑔)(𝑝#1k𝒢)(1𝑈𝑋 (𝔊)#𝑔−1) · 𝑎
= ((𝑔 · 𝑝)#1k𝒢) · 𝑎 = 𝜏̃(𝑔 · 𝑝)(𝑎).

(ii): Given the 𝑋-weak Hopf algebra morphisms 𝜋, 𝜏̃ constructed in (i), define the map

𝜙 : 𝑈𝑋(𝔊)#k𝒢 −→ 𝑈𝑋(Der𝑋(𝐴))#k(Aut𝑋-Alg(𝐴)), 𝑝𝑥#𝑔 ↦→ 𝜏̃𝑥(𝑝𝑥)#𝜋(𝑔),

where 𝑝𝑥 ∈ 𝔤𝑥 , 𝑔 ∈ 𝒢, for 𝑥 ∈ 𝑋. First, we will show that 𝜙 is well-defined. Suppose that
𝑝⊗k𝒢0 𝑔 = 𝑞⊗k𝒢0 ℎ in𝑈𝑋(𝔊)#k𝒢. Then there exists 𝛽 ∈ k𝒢0 such that 𝑝 = 𝑞 ·𝛽−1 = 𝑆−1(𝛽−1)·𝑞
and 𝑔 = 𝛽ℎ. Since 𝜏̃ is a 𝜋-linear morphism, we have 𝜏̃(𝑔 · 𝑝) = 𝜋(𝑔) · 𝜏̃(𝑝) for 𝑝 ∈ 𝔊 and
𝑔 ∈ 𝒢. Then

𝜏̃(𝑝)#𝜋(𝑔) = 𝜏̃(𝑆−1(𝛽−1) · 𝑞)#𝜋(𝛽ℎ) = (𝜋(𝑆−1(𝛽−1)) · 𝜏̃(𝑞))#𝜋(𝛽ℎ)
= (̃𝜏(𝑞) · 𝑆(𝜋(𝑆−1(𝛽−1))))#𝜋(𝛽ℎ) = 𝜏̃(𝑞)#𝜋(𝛽−1)𝜋(𝛽ℎ)
= 𝜏̃(𝑞)#𝜋(ℎ).

The second-to-last equality holds since 𝜋 is a weak Hopf algebra morphism.

Now 𝜙 is a k-coalgebra map since 𝜋 and 𝜏̃ are coalgebra maps. Moreover, 𝜙 is unital
as 𝜋 and 𝜏̃ are unital. Finally, 𝜙 is multiplicative:

𝜙((𝑝#𝑔)(𝑞#ℎ)) = 𝜙(𝑝(𝑔 · 𝑞) # 𝑔ℎ)) = 𝜏̃(𝑝(𝑔 · 𝑞)) # 𝜋(𝑔ℎ)

= 𝜏̃(𝑝)̃𝜏(𝑔 · 𝑞) # 𝜋(𝑔)𝜋(ℎ) (∗)
= 𝜏̃(𝑝)(𝜋(𝑔) · 𝜏̃(𝑞)) # 𝜋(𝑔)𝜋(ℎ)

(∗∗)
= (̃𝜏(𝑝) # 𝜋(𝑔))(̃𝜏(𝑞) # 𝜋(ℎ)) = 𝜙(𝑝#𝑔)𝜙(𝑞#ℎ),

for 𝑔, ℎ ∈ 𝒢 and 𝑝, 𝑞 ∈ 𝔊. Here, (∗) holds because 𝜏̃ is a 𝜋-linear morphism, and (∗∗)
holds because the definition of multiplication in the smash product algebra. Lastly,
𝜙(1𝑈(𝔤𝑥)#𝑒𝑥) = 𝜏̃(1𝑈(𝔤𝑥))#𝜋(𝑒𝑥) = 1𝑈(Der(𝐴𝑥))#𝑒𝑥 . So 𝜙 preserves the base 𝑋.

(iii): By Lemma 2.62, 𝐴 =
⊕

𝑥∈𝑋 𝐴𝑥 is a module algebra over the smash product weak
Hopf algebra 𝐾 := 𝑈𝑋(Der𝑋(𝐴))#k(Aut𝑋-Alg(𝐴)) via (𝛿#𝛼) · 𝑎 = 𝛿 · (𝛼 · 𝑎) for 𝛼 ∈ Aut𝑋-Alg(𝐴)
with 𝑎 ∈ 𝐴𝑠(𝛼) and 𝛿 ∈ 𝑈(Der(𝐴𝑡(𝛼))), otherwise 0. Now given the weak Hopf algebra
morphism 𝜙, we have that 𝐴 is an 𝐻-module algebra via ℎ · 𝑎 := 𝜙(ℎ) · 𝑎, for all ℎ ∈ 𝐻 and
𝑎 ∈ 𝐴. Namely, (ℎℎ′) · 𝑎 = ℎ · (ℎ′ · 𝑎) since 𝜙 is multiplicative; 1𝐻 · 𝑎 = 𝑎 since 𝜙 is unital;
ℎ · (𝑎𝑎′) = (ℎ1 · 𝑎)(ℎ2 · 𝑎′) since 𝜙 is comultiplicative, for ℎ, ℎ′ ∈ 𝐻 and 𝑎, 𝑎′ ∈ 𝐴. Since 𝜙 is
a weak Hopf algebra morphism, it follows that

𝜙((1𝐻)1) ⊗ 𝜙((1𝐻)2) = Δ(𝜙(1𝐻)) = Δ(1𝐾) = (1𝐾)1 ⊗ (1𝐾)2. (2.14)
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Thus,

ℎ · 1𝐴 = 𝜙(ℎ) · 1𝐴 = (𝜀𝐾)𝑡(𝜙(ℎ)) · 1𝐴
(2.14)
=

(∑
𝜀𝐾(𝜙((1𝐻)1)𝜙(ℎ))𝜙((1𝐻)2)

)
· 1𝐴 = (𝜀𝐾𝜙 ⊗ 𝜙)((1𝐻)1ℎ ⊗ (1𝐻)2) · 1𝐴

(∗)
= (𝜀𝐻 ⊗ 𝜙)((1𝐻)1ℎ ⊗ (1𝐻)2) · 1𝐴 = 𝜙 ((𝜀𝐻)𝑡(ℎ)) · 1𝐴
(∗∗)
= (𝜀𝐻)𝑡(ℎ) · 1𝐴

as desired. Here, (∗) follows from 𝜙 being a counital map, and (∗∗) is by the action of 𝐻 on
𝐴.

Finally, Sym𝑋-CocomWHA(𝐴) = 𝐾 follows from this proof and Lemma 2.62. □

As an immediate consequence, we have the following corollary.

Corollary 2.66. Let𝐴 be a k-algebra. Let 𝐾 = 𝑈(Der(𝐴))#k(AutAlg(𝐴)). Then𝐴 is a 𝐾-module
algebra and for a cocommutative Hopf algebra 𝐻, the following are equivalent.

(i) 𝐴 is an 𝐻-module algebra.

(ii) There exists a Hopf algebra morphism 𝜙 : 𝐻 → 𝐾.

Hence, SymCocomHopf(𝐴) = 𝐾.

Remark 2.67. As mentioned earlier, one potential research direction is to extend the results
to the non-cocommutative case. For instance, there has been much recent activity on partial
actions of Hopf-like structures in this case (see, e.g., [FMS21, FMF20, FMS22, MPDS22]).

2.5 Examples: Actions on polynomial algebras

In this section we illustrate the results above for actions on polynomial algebras by
general linear Hopf-like structures. As a warm up, we begin by studying the (classical)
indecomposable case before considering the 𝑋-decomposable case where |𝑋 | ≥ 2.

2.5.1 Indecomposable module algebra case

Let 𝐴 := k[𝑥1 , . . . , 𝑥𝑛] be a polynomial algebra, which is isomorphic to the symmetric
algebra 𝑆(𝑉) on an 𝑛-dimensional vector space 𝑉 . We consider the following group and
Lie algebra, respectively,

𝑇𝑛 := AutAlg(𝐴) and 𝑊𝑛 := Der(𝐴).

When 𝑛 ≥ 3, the group𝑇𝑛 contains an automorphism of wild type [SU04] and so is not fully
understood. Hence, we restrict our attention to the subgroup of graded automorphisms of
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𝐴, which we identify with the general linear group:

GL𝑛(k) = GL(𝑉) =: AutGrAlg(𝐴).

On the other hand, 𝑊𝑛 is well-known to be the infinite-dimensional Lie algebra
consisting of derivations of the form 𝑓1(𝑥) 𝜕

𝜕𝑥1
+· · ·+ 𝑓𝑛(𝑥) 𝜕

𝜕𝑥𝑛
, for 𝑓𝑖(𝑥) ∈ 𝐴 (see, e.g., [Bah21,

Section 1.2]). The general linear Lie algebra is a Lie subalgebra of𝑊𝑛 given as follows:

𝔤𝔩𝑛(k) = spank
{
𝑥𝑖

𝜕
𝜕𝑥 𝑗

}
𝑖 , 𝑗=1,...,𝑛

=: DerLin(𝐴).

Moreover, GL𝑛(k) acts on 𝔤𝔩𝑛(k) by conjugation after identifying 𝑥𝑖 𝜕
𝜕𝑥 𝑗

with the elementary
matrix 𝐸𝑖 , 𝑗 . With the maps,

𝜋 : GL𝑛(k) −→ 𝑇𝑛 (inclusion of groups), 𝜏 : 𝔤𝔩𝑛(k) −→𝑊𝑛 (inclusion of Lie algebras),

we obtain the Hopf algebra maps,

𝜋 : kGL𝑛(k) −→ k𝑇𝑛 and 𝜏̃ : 𝑈(𝔤𝔩𝑛(k)) −→ 𝑈(𝑊𝑛)

and 𝜏̃ is 𝜋-linear. Hence by Corollaries 2.13, 2.35, 2.48, 2.53, and 2.66, we obtain the
following result.

Proposition 2.68. The polynomial algebra k[𝑥1 , . . . , 𝑥𝑛] is a module algebra over the following
general linear Hopf-like structures:

GL𝑛(k), 𝔤𝔩𝑛(k), kGL𝑛(k), 𝑈(𝔤𝔩𝑛(k)), 𝑈(𝔤𝔩𝑛(k))#kGL𝑛(k).

2.5.2 Decomposable module algebra case

Now suppose |𝑋 | > 2. For 𝑥 ∈ 𝑋, let 𝐴𝑥 := 𝑆(𝑉𝑥) be the symmetric algebra on a
finite-dimensional vector space 𝑉𝑥 . Let 𝑛𝑥 denote dim(𝑉𝑥). Take 𝑉 :=

⊕
𝑥∈𝑋 𝑉𝑥 to be the

corresponding 𝑋-decomposable vector space, and 𝐴 :=
⊕

𝑥∈𝑋 𝐴𝑥 to be the corresponding
𝑋-decomposable k-algebra. Take

𝑇𝑋 := Aut𝑋-Alg(𝐴),

to be the groupoid from Definition 2.9, that is, the objects of 𝑇𝑋 are the elements of 𝑋 and
for 𝑥, 𝑦 ∈ 𝑋, the morphisms Hom𝑇𝑋 (𝑥, 𝑦) are the unital k-algebra isomorphisms 𝐴𝑥 → 𝐴𝑦 .

Since GL(𝑉𝑥) is a subgroupoid of the groupoid GL𝑋(𝑉) from Definition 1.52, with
objects𝑋 and morphisms being vector space isomorphisms between𝑉𝑥 and𝑉𝑦 , for 𝑥, 𝑦 ∈ 𝑋.
With this, the result below is straightforward, where the second statement follows from
Theorem 2.31(ii) (or Proposition 2.33).

Lemma 2.69. There exists an 𝑋-groupoid morphism

𝜋 : GL𝑋(𝑉) −→ 𝑇𝑋 .
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This also yields an 𝑋-weak Hopf algebra morphism:

𝜋 : kGL𝑋(𝑉) −→ k𝑇𝑋 .

On the other hand, take

𝑊𝑋 := Der𝑋(𝐴) :=
⊕

𝑥∈𝑋 Der(𝐴𝑥),

to be the 𝑋-Lie algebroid from Definition 2.36 and Notation 2.46. The next result is
straightforward, with the second statement following from Proposition 2.52.

Lemma 2.70. There is an 𝑋-Lie algebroid morphism

𝜏 : 𝔊𝔏𝑋(𝑉) → Der𝑋(𝐴),

given by inclusion. This also yields an 𝑋-weak Hopf algebra morphism:

𝜏̃ : 𝑈𝑋(𝔊𝔏𝑋(𝑉)) −→ 𝑈𝑋(Der𝑋(𝐴)).

Working component-wise, we also have the following result.

Lemma 2.71. Given 𝜋 from Lemma 2.69, we have that 𝜏̃ from Lemma 2.70 is 𝜋-linear.

Finally, Lemmas 2.69, 2.70, and 2.71 yield the following consequences of Proposi-
tions 2.11, 2.33, and 2.47 and Theorem 2.65.

Proposition 2.72. For an 𝑋-decomposable vector space 𝑉 :=
⊕

𝑥∈𝑋 𝑉𝑥 , the 𝑋-decomposable
k-algebra

⊕
𝑥∈𝑋 𝑆(𝑉𝑥) is a module algebra over the following general linear 𝑋-Hopf-like structures:

GL𝑋(𝑉), 𝔊𝔏𝑋(𝑉), kGL𝑋(𝑉), 𝑈𝑋(𝔊𝔏𝑋(𝑉)),
⊕
𝑥∈𝑋

𝑈𝑋(𝔊𝔏𝑋(𝑉))#kGL𝑋(𝑉).



CHAPTER 3

Algebraic properties of face algebras

Recently, Huang, Walton, Wicks, and Won [HWWW23, Theorem 4.17] established
a framework for studying universal coactions on non-connected graded algebras via
coactions of weak bialgebras. Their main result is that the weak bialgebras that coact
universally on the path algebra k𝑄 (either from the left, from the right, or from both
directions compatibly) are each isomorphic to Hayashi’s face algebra ℌ(𝑄) attached to
𝑄 [Example 1.10]. It was inquired in [HWWW23, Question 6.5] whether ℌ(𝑄) and k𝑄
share nice algebraic properties. Consequently, the primary objective of this chapter is
to investigate this connection. To achieve this, we begin by delving into the study of
Kronecker squares of a quiver, which serves as a fundamental technique throughout our
results. Subsequently, we present our main findings and results, shedding light on the
relationship between ℌ(𝑄) and k𝑄. Finally, we provide several examples to illustrate the
concepts discussed, including quivers of Dynkin type ADE.

3.1 On the Kronecker square of a quiver and its path algebra

The construction of the quiver below plays a key role in this work.

Definition 3.1 (𝑄). Let 𝑄 = (𝑄0 , 𝑄1 , 𝑠 , 𝑡) be a quiver. We define the Kronecker square 𝑄 of
𝑄 as the quiver 𝑄 = (𝑄0 , 𝑄1 , 𝑠̂ , 𝑡̂) given by

𝑄0 = {[𝑖 , 𝑗]}𝑖 , 𝑗∈𝑄0 , 𝑄1 = {[𝑝, 𝑞]}𝑝,𝑞∈𝑄1 ,

𝑠̂([𝑝, 𝑞]) = [𝑠(𝑝), 𝑠(𝑞)], 𝑡̂([𝑝, 𝑞]) = [𝑡(𝑝), 𝑡(𝑞)], for all 𝑝, 𝑞 ∈ 𝑄1.

Any path in 𝑄 is of the form [𝑝1 · · · 𝑝𝑘 , 𝑞1 · · · 𝑞𝑘] := [𝑝1 , 𝑞1][𝑝2 , 𝑞2] · · · [𝑝𝑘 , 𝑞𝑘] where
𝑝1 · · · 𝑝𝑘 , 𝑞1 · · · 𝑞𝑘 ∈ 𝑄𝑘 . By construction, |𝑄0 | = |𝑄0 |2 and |𝑄1 | = |𝑄1 |2. Moreover, 𝑄 can
be identified with the subquiver of 𝑄 formed with the vertices {[𝑖 , 𝑖]}𝑖∈𝑄0 and arrows
{[𝑝, 𝑝]}𝑝∈𝑄1 . Therefore, we have an embedding of path algebras k𝑄 ↩→ k𝑄. The reader
may wish to refer to Table 3.1 below for examples of quivers 𝑄, their Kronecker square 𝑄,
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and their corresponding path algebras.

Next, we compare graph-theoretic properties of a quiver 𝑄 with that of its Kronecker
square 𝑄, which will be used in the proof of Theorem 3.5 below. Recall Notation 1.72.

Proposition 3.2. Let 𝑄 = (𝑄0 , 𝑄1 , 𝑠 , 𝑡) be a quiver. Then, the following statements hold.

(i) (a) 𝑄 is finite (resp., acyclic) if and only if 𝑄 is finite (resp., acyclic).
(b) |𝑄𝑘 | = |𝑄𝑘 |2, 𝑘 ≥ 0.
(c) The adjacency matrix 𝐶𝑘 of 𝑄𝑘 is given by 𝐶𝑘 = 𝐶𝑘 ⊗ 𝐶𝑘 , for 𝑘 ≥ 0, where ⊗ is the

tensor product of matrices.

(ii) 𝑄 satisfies the exclusive condition if and only if 𝑄 satisfies the exclusive condition. In this
case, if the maximal length of chains of cycles in 𝑄 is 𝑛, then the maximal length of chains of
cycles in 𝑄 is 2𝑛 − 1.

(iii) 𝑄 has a source (resp., sink) cycle if and only if 𝑄 has a source (resp., sink) cycle.

(iv) (a) 𝑄 is pairwise strongly connected if and only if 𝑄 is strongly connected.
(b) If 𝑄 is strongly connected and has at least one cycle, then 𝑄 is strongly connected.

Conversely, if 𝑄 is strongly connected, then 𝑄 is strongly connected.

(v) 𝑄 is path reversible if and only if 𝑄 is path reversible.

(vi) 𝑄 is arrowless if and only if 𝑄 is arrowless.

Proof. (i)(a): The statement about the finite condition follows from the definition of 𝑄.

If 𝑄 is acyclic, then by identifying 𝑄 as a subquiver of 𝑄, we see that 𝑄 is also acyclic.
On the other hand, if there is a cycle [𝑝1𝑝2 · · · 𝑝𝑘 , 𝑞1𝑞2 · · · 𝑞𝑘] ∈ 𝑄𝑘 , then

[𝑠(𝑝1), 𝑠(𝑞1)] = 𝑠̂([𝑝1 , 𝑞1]) = 𝑡̂([𝑝𝑘 , 𝑞𝑘]) = [𝑡(𝑝𝑘), 𝑡(𝑞𝑘)].

This implies that 𝑄 contains the cycles 𝑝1 · · · 𝑝𝑘 and 𝑞1 · · · 𝑞𝑘 .

(i)(b): Any path [𝑝1 · · · 𝑝𝑘 , 𝑞1 · · · 𝑞𝑘] of length 𝑘 in 𝑄 uniquely corresponds to the pair of
paths 𝑝1 · · · 𝑝𝑘 and 𝑞1 · · · 𝑞𝑘 in𝑄. This means that the sets𝑄𝑘 and𝑄𝑘 ×𝑄𝑘 are in one-to-one
correspondence. Thus, |𝑄𝑘 | = |𝑄𝑘 |2.

(i)(c): Consider the adjacency matrix of paths of length 𝑘 in 𝑄:

𝐶𝑘 =
(
𝑑
(𝑘)
[𝑖 ,𝑖′],[𝑗 , 𝑗′]

)
𝑖 ,𝑖′, 𝑗 , 𝑗′∈𝑄0

.

On the other hand, each entry of 𝐶𝑘 ⊗ 𝐶𝑘 is of the form 𝑐
(𝑘)
𝑖 , 𝑗
𝑐
(𝑘)
𝑖′, 𝑗′, with 𝑖 , 𝑖′, 𝑗 , 𝑗′ ∈ 𝑄0.

Suppose that 𝑐(𝑘)
𝑖 , 𝑗

= 𝑛 ≥ 0 and 𝑐
(𝑘)
𝑖′, 𝑗′ = 𝑚 ≥ 0, that is, there are 𝑛 paths of length 𝑘 from 𝑖

to 𝑗, and 𝑚 paths of length 𝑘 from 𝑖′ to 𝑗′. This determines 𝑛𝑚 paths of length 𝑘 from
[𝑖 , 𝑖′] to [𝑗 , 𝑗′] in 𝑄, and no other of such paths can be formed. So, 𝑑(𝑘)[𝑖 ,𝑖′],[𝑗 , 𝑗′] = 𝑛𝑚. Hence,

𝐶𝑘 = 𝐶𝑘 ⊗ 𝐶𝑘 .
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(ii): Suppose that there exists a non-exclusive cycle 𝑐̂ = [𝑝1 · · · 𝑝𝑘 , 𝑞1 · · · 𝑞𝑘] in 𝑄. Then,
there is another cycle 𝑐′ = [𝑝′1 · · · 𝑝

′
𝑙
, 𝑞′1 · · · 𝑞

′
𝑙
] in 𝑄 such that [𝑠(𝑝𝑖), 𝑠(𝑞𝑖)] = [𝑠(𝑝′

𝑗
), 𝑠(𝑞′

𝑗
)] for

some 𝑖 = 1, . . . , 𝑘 and 𝑗 = 1, . . . , 𝑙. This yields cycles 𝑐1 = 𝑝1 · · · 𝑝𝑘 and 𝑐2 = 𝑞1 · · · 𝑞𝑘 in 𝑄
that are non-exclusive: 𝑐1 is not disjoint with 𝑐′1 = 𝑝′1 · · · 𝑝

′
𝑙
for 𝑠(𝑝𝑖) = 𝑠(𝑝′

𝑗
), and 𝑐2 is not

disjoint with 𝑐′2 = 𝑞′1 · · · 𝑞
′
𝑙
, for 𝑠(𝑞𝑖) = 𝑠(𝑞′

𝑗
). Therefore, 𝑄 also fails the exclusive condition.

Conversely, suppose that 𝑄 fails the exclusive condition. Then, using the fact that 𝑄
can be identified with a sub-quiver of 𝑄, we see that if two cycles in 𝑄 were not disjoint,
they would be also non-disjoint in 𝑄. Thus, 𝑄 fails the exclusive condition.

For the second part, denote the maximum length of a chain of cycles in𝑄 by cyc. len(𝑄).
We aim to show that cyc. len(𝑄) = 2 cyc. len(𝑄) − 1. This is done with the notes below.

1. Given two distinct cycles 𝑐 = 𝑝1𝑝2 · · · 𝑐𝑘 , 𝑑 = 𝑞1𝑞2 · · · 𝑞𝑙 in 𝑄, construct the cycle 𝑐, 𝑑
in 𝑄 given by

𝑠̂([𝑐𝑢 , 𝑑𝑣]) = [𝑠(𝑝1), 𝑠(𝑞1)] = [𝑡(𝑝𝑘), 𝑡(𝑞𝑙)] = 𝑡̂([𝑐𝑢 , 𝑑𝑣]),

for 𝑢 := lcm(𝑘, 𝑙)/𝑘 and 𝑣 := lcm(𝑘, 𝑙)/𝑙. Indeed,

length(𝑐𝑢) = 𝑢 length(𝑐) = 𝑢𝑘 = 𝑣𝑙 = 𝑣 length(𝑑) = length(𝑑𝑣).

2. Note that all simple cycles in 𝑄 are of the form 𝑐, 𝑑 for some (not necessarily distinct)
cycles 𝑐, 𝑑 in 𝑄.

3. Note that if 𝑐1 , 𝑐2 , 𝑑1 , 𝑑2 are cycles in 𝑄 such that 𝑐1 ⇒ 𝑑1 and 𝑐2 ⇒ 𝑑2, we have that�𝑐1 , 𝑑1 ⇒ �𝑐2 , 𝑑2 in 𝑄.

4. If �𝑐1 , 𝑑1 , �𝑐2 , 𝑑2 are simple cycles in 𝑄 such that �𝑐1 , 𝑑1 ⇒ �𝑐2 , 𝑑2, then 𝑐1 ⇒ 𝑐2 and
𝑑1 ⇒ 𝑑2 in 𝑄.

5. Any chain of cycles of length 𝑛 in 𝑄 induces a chain of cycles of length 2𝑛 − 1 in 𝑄.
Indeed, let 𝑐1 ⇒ 𝑐2 ⇒ · · · ⇒ 𝑐𝑛 be a chain of cycles of length 𝑛 in 𝑄. Then the chain
of cycles

�𝑐1 , 𝑐1 ⇒ �𝑐1 , 𝑐2 ⇒ · · · ⇒ �𝑐1 , 𝑐𝑛 ⇒ �𝑐2 , 𝑐𝑛 ⇒ �𝑐3 , 𝑐𝑛 ⇒ · · · ⇒ �𝑐𝑛 , 𝑐𝑛
in 𝑄 has length 𝑛 + (𝑛 − 1) = 2𝑛 − 1. The arrows were constructed as in Note 3.

To prove the claim, observe that by the result already proven in this part, 𝑄 satisfies
the exclusive condition, and hence all cycles 𝑄 are either simple (of the form 𝑐, 𝑑 by
Notes 1 and 2), or powers of simple cycles. Therefore, in any chain of cycles in 𝑄, we
can assume that all cycles are simple. Let 𝑛 := cyc. len(𝑄), and suppose that there
is a chain of cycles �𝑐1 , 𝑑1 ⇒ �𝑐2 , 𝑑2 ⇒ · · · ⇒ �𝑐𝑚 , 𝑑𝑚 in 𝑄. Then by Note 4, we have
𝑐1 ⇒ 𝑐2 , 𝑐2 ⇒ 𝑐3 , . . . , 𝑐𝑚−1 ⇒ 𝑐𝑚 in 𝑄. Observe that we only have at most 𝑛 distinct
choices for the 𝑐𝑖 . A similar argument can be done for the 𝑑𝑖 to deduce that there are at
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most 𝑛 distinct choices. So when constructing the cycles, �𝑐𝑖 , 𝑑𝑖 , at most 𝑛 + (𝑛 − 1) = 2𝑛 − 1
distinct pairs are possible, that is, 𝑚 ≤ 2𝑛 − 1. Hence, cyc. len(𝑄) ≤ 2 cyc. len(𝑄) − 1. But
in Note 5 we used a chain of cycles of length 𝑛 in 𝑄 to construct a chain of cycles of length
exactly 2𝑛 − 1 in 𝑄. So, cyc. len(𝑄) = 2 cyc. len(𝑄) − 1, as desired.

(iii): Suppose that 𝑄 has a source cycle 𝑐 := 𝑝1𝑝2 · · · 𝑝𝑘 with arrow 𝑝 ∈ 𝑄1, not in 𝑐,
such that 𝑠(𝑝) = 𝑠(𝑝𝑖) for some 𝑖 = 1, . . . , 𝑘. Then 𝑐̂ = [𝑝1 · · · 𝑝𝑘 , 𝑝1 · · · 𝑝𝑘] will be a source
cycle in 𝑄, where [𝑝, 𝑝] is an arrow leaving 𝑐̂ at [𝑝𝑖 , 𝑝𝑖].

Conversely, suppose that 𝑄 has a source cycle, that is, a cycle 𝑐̂ = [𝑝1 · · · 𝑝𝑘 , 𝑞1 · · · 𝑞𝑘]
with arrow [𝑝, 𝑞] ∈ 𝑄1, not in 𝑐̂, such that [𝑠(𝑝), 𝑠(𝑞)] = [𝑠(𝑝𝑖), 𝑠(𝑞𝑖)] for some 𝑖 = 1, . . . , 𝑘.
This intermediately induces two source cycles in 𝑄: 𝑐1 = 𝑝1 · · · 𝑝𝑘 with arrow 𝑝 leaving at
𝑝𝑖 and 𝑐2 = 𝑞1 · · · 𝑞𝑘 with arrow 𝑞 leaving at 𝑞𝑖 .

The argument for sink cycles is similar.

(iv)(a): Suppose that 𝑄 is pairwise strongly connected. Then for every pair of vertices
[𝑖 , 𝑖′], [𝑗 , 𝑗′] ∈ 𝑄0 with [𝑖 , 𝑖′] ≠ [𝑗 , 𝑗′], there exist paths of the same length 𝑝1 · · · 𝑝𝑘 and
𝑞1 · · · 𝑞𝑘 such that 𝑠(𝑝1) = 𝑖, 𝑡(𝑝𝑘) = 𝑗, 𝑠(𝑞1) = 𝑖′ and 𝑡(𝑞𝑘) = 𝑗′. Thus, we have the path
[𝑝1 · · · 𝑝𝑘 , 𝑞1 · · · 𝑞𝑘] ∈ 𝑄𝑘 connecting [𝑖 , 𝑖′] and [𝑗 , 𝑗′]. Hence 𝑄 is strongly connected.

Conversely, if 𝑖 , 𝑖′, 𝑗 , 𝑗′ ∈ 𝑄0 are such that [𝑖 , 𝑖′] ≠ [𝑗 , 𝑗′] in 𝑄0, then 𝑄 being strongly
connected implies that there exists a path [𝑝1 · · · 𝑝𝑘 , 𝑞1 · · · 𝑞𝑘] ∈ 𝑄𝑘 with 𝑠̂[𝑝1 , 𝑞1] = [𝑖 , 𝑖′]
and 𝑡̂[𝑝𝑘 , 𝑞𝑘] = [𝑗 , 𝑗′]. Therefore, the paths 𝑝1 · · · 𝑝𝑘 , 𝑞1 · · · 𝑞𝑘 ∈ 𝑄𝑘 are such that 𝑠(𝑝1) = 𝑖,
𝑡(𝑝𝑘) = 𝑗, 𝑠(𝑞1) = 𝑖′, and 𝑡(𝑞𝑘) = 𝑗′. Hence, 𝑄 is pairwise strongly connected.

(iv)(b): Suppose that𝑄 is strongly connected and has a cycle 𝑐. Take 𝑖 , 𝑖′, 𝑗 , 𝑗′ ∈ 𝑄0 such
that 𝑖 ≠ 𝑗 and 𝑖′ ≠ 𝑗′. If 𝑥 ∈ 𝑄0 is a vertex of the cycle 𝑐 in 𝑄, then take the following paths
in 𝑄: 𝑝1 · · · 𝑝𝑛 connecting 𝑖 with 𝑥, and 𝑝1 · · · 𝑝𝑚 connecting 𝑥 with 𝑗, 𝑞1 · · · 𝑞𝑢 connecting
𝑖′ with 𝑥, and 𝑞1 · · · 𝑞𝑣 connecting 𝑥 with 𝑗′. Then

𝑝1 · · · 𝑝𝑛𝑐𝑢+𝑣𝑝1 · · · 𝑝𝑚 , 𝑞1 · · · 𝑞𝑢𝑐𝑛+𝑚𝑞1 · · · 𝑞𝑣 ∈ 𝑄𝑛+𝑚+𝑢+𝑣

are paths (of the same length) that connect 𝑖 with 𝑗, and 𝑖′ with 𝑗′, respectively. Then, 𝑄 is
pairwise strongly connected, and thus 𝑄 is strongly connected by (iv.a).

Conversely, suppose that 𝑄 is strongly connected. If 𝑖 , 𝑗 ∈ 𝑄0 are such that 𝑖 ≠ 𝑗, then
[𝑖 , 𝑖] ≠ [𝑗 , 𝑗] in 𝑄0. By the hypothesis, there exists a path [𝑝1 · · · 𝑝𝑘 , 𝑞1 · · · 𝑞𝑘] connecting
[𝑖 , 𝑖] with [𝑗 , 𝑗] in 𝑄. Hence, 𝑝1 · · · 𝑝𝑘 and 𝑞1 · · · 𝑞𝑘 are both paths connecting 𝑖 with 𝑗 in 𝑄.
That is, 𝑄 is strongly connected.

(v): Suppose that 𝑄 is path reversible, and take a path 𝑝1 · · · 𝑝𝑘 in 𝑄. Consider the
corresponding path [𝑝1 · · · 𝑝𝑘 , 𝑝1 · · · 𝑝𝑘] in 𝑄. Then there exists a path [𝑞1 · · · 𝑞𝑙 , 𝑞′1 · · · 𝑞

′
𝑙
]

in 𝑄 such that [𝑠(𝑝1), 𝑠(𝑝1)] = 𝑠̂[𝑝1 , 𝑝1] = 𝑡̂[𝑞𝑙 , 𝑞′𝑙] = [𝑡(𝑞𝑙), 𝑡(𝑞′𝑙)] and [𝑠(𝑞1), 𝑠(𝑞1)] =

𝑠̂[𝑞1 , 𝑞1] = 𝑡̂[𝑝𝑘 , 𝑝𝑘] = [𝑡(𝑝𝑘), 𝑡(𝑝𝑘)]. That is, the paths 𝑞1 · · · 𝑞𝑙 , 𝑞′1 · · · 𝑞
′
𝑙
∈ 𝑄𝑙 are both

reverse paths for 𝑝1 · · · 𝑝𝑘 , and 𝑄 is path reversible.

Towards the converse, we prove the following statement: if 𝑄 is path reversible, then
given any two paths of the same length, their respective reverse paths can be taken also of
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the same length. Indeed, if 𝑎, 𝑏 ∈ 𝑄𝑘 are two paths of 𝑄, there are reverse paths 𝑎′ ∈ 𝑄𝑢

and 𝑏′ ∈ 𝑄𝑣 resp., with 𝑢 not necessarily is equal to 𝑣. If we take

𝑎′′ := 𝑎′(𝑎𝑎′)𝑘+𝑣−1 and 𝑏′′ := 𝑏′(𝑏𝑏′)𝑘+𝑢−1 ,

notice that 𝑠(𝑎′′) = 𝑠(𝑎′) = 𝑡(𝑎), 𝑡(𝑎′′) = 𝑡(𝑎′) = 𝑠(𝑎), 𝑠(𝑏′′) = 𝑠(𝑏′) = 𝑡(𝑏) and 𝑡(𝑏′′) = 𝑡(𝑏′) =
𝑠(𝑏). Moreover,

length(𝑎′′) = 𝑢 + (𝑘 + 𝑣 − 1)(𝑘 + 𝑢) = 𝑣 + (𝑘 + 𝑢 − 1)(𝑘 + 𝑣) = length(𝑏′′).

Hence, 𝑎′′, 𝑏′′ are reverse paths of 𝑎, 𝑏, resp., of the same length.

Now take [𝑝1 · · · 𝑝𝑘 , 𝑞1 · · · 𝑞𝑘] ∈ 𝑄𝑘 and suppose that𝑄 is path reversible. Since 𝑝1 · · · 𝑝𝑘
and 𝑞1 · · · 𝑞𝑘 ∈ 𝑄𝑘 are paths of 𝑄 of the same length, by the above, there exist reverse path
of the same length 𝑝′1 · · · 𝑝

′
𝑙
, 𝑞′1 · · · 𝑞

′
𝑙
∈ 𝑄𝑙 . That is, [𝑝′1 · · · 𝑝

′
𝑙
, 𝑞′1 · · · 𝑞

′
𝑙
] is the reverse path of

[𝑝1 · · · 𝑝𝑘 , 𝑞1 · · · 𝑞𝑘] in 𝑄.

(vi): This follows from the definition of 𝑄. □

Remark 3.3. Regarding Proposition 3.2(iv)(b), being strongly connected does not necessarily
imply that 𝑄 is strongly connected, as shown in Figure 3.1 below.

• •
• •

• •
𝑄 is strongly connected 𝑄 is not strongly connected

Figure 3.1: On the strongly connected condition

3.2 On Hayashi’s face algebra ℌ(𝑄)

We provide the main result on algebraic properties of Hayashi’s face algebras ℌ(𝑄)
[Definition 1.10] in this section. Before this, we need the following preliminary result,
which was also mentioned in [Pfe11, Remark 3.3].

Proposition 3.4. Let 𝑄 be a quiver, and consider its Kronecker square 𝑄 [Definition 3.1]. Then,
ℌ(𝑄) � k𝑄 as unital N-graded k-algebras.

Proof. First, notice that the product of paths in k𝑄 is defined in terms of the concatenation
of paths in 𝑄, that is, [𝑎, 𝑏][𝑐, 𝑑] = 𝛿𝑡(𝑎),𝑠(𝑐)𝛿𝑡(𝑏),𝑠(𝑑)[𝑎𝑐, 𝑏𝑑] for any paths 𝑎, 𝑏, and paths 𝑐, 𝑑,
of the same length. The unit of k𝑄 is given by 1

k𝑄
=

∑
𝑖 , 𝑗∈𝑄0 𝑒[𝑖 , 𝑗] , where 𝑒[𝑖 , 𝑗] denotes the

trivial path at vertex [𝑖 , 𝑗] ∈ 𝑄0. Now consider the map 𝜑 : ℌ(𝑄) → k𝑄 given by

𝜑(𝑥𝑎,𝑏) = [𝑎, 𝑏], 𝑎, 𝑏 ∈ 𝑄𝑘 , 𝑘 ≥ 1 and 𝜑(𝑥𝑖 , 𝑗) = 𝑒[𝑖 , 𝑗] , 𝑖 , 𝑗 ∈ 𝑄0.
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Since ℌ(𝑄) =
⊕

𝑘≥0;𝑎,𝑏∈𝑄𝑘
k𝑥𝑎,𝑏 as k-vector spaces, 𝜑 is a k-linear map. Moreover,

𝜑(𝑥𝑎,𝑏𝑥𝑐,𝑑) = 𝛿𝑡(𝑎),𝑠(𝑐)𝛿𝑡(𝑏),𝑠(𝑑)𝜑(𝑥𝑎𝑐,𝑏𝑑) = 𝛿𝑡(𝑎),𝑠(𝑐)𝛿𝑡(𝑏),𝑠(𝑑)[𝑎𝑐, 𝑏𝑑] = 𝜑(𝑥𝑎,𝑏)𝜑(𝑥𝑐,𝑑),

𝜑(1ℌ(𝑄)) = 𝜑
(∑

𝑖 , 𝑗∈𝑄0 𝑥𝑖 , 𝑗

)
=

∑
𝑖 , 𝑗∈𝑄0 𝜑(𝑥𝑖 , 𝑗) =

∑
𝑖 , 𝑗∈𝑄0 𝑒[𝑖 , 𝑗] = 1

k𝑄
.

Therefore, 𝜑 is a unital k-algebra map, which is clearly bĳective and graded. □

This brings us to the main result on algebraic properties of the face algebra ℌ(𝑄).
Theorem 3.5. Let 𝑄 be a quiver, and recall Notation 1.72. Then, the following hold.

(i) k𝑄 is finite dimensional if and only if ℌ(𝑄) is finite dimensional. In this case,

dimk(ℌ(𝑄)) = ∑
𝑖 , 𝑗∈𝑄0 , 𝑘≥0 (𝑐(𝑘)

𝑖 , 𝑗
)2.

In general, the Hilbert series of ℌ(𝑄) is given by

𝐻ℌ(𝑄)(𝑡) = (𝐼 ⊗ 𝐼) + (𝐶 ⊗ 𝐶)𝑡 + (𝐶2 ⊗ 𝐶2)𝑡2 + · · · ,

where 𝐼 is the |𝑄0 | × |𝑄0 | identity matrix, and ⊗ is the tensor product of matrices.

(ii) k𝑄 has finite GK-dimension if and only if ℌ(𝑄) has finite GK-dimension. In this case,
GKdim(ℌ(𝑄)) = 2 GKdim(k𝑄) − 1.

(iii) k𝑄 is (left, right) Noetherian if and only if ℌ(𝑄) is (left, right) Noetherian.

(iv) If k𝑄 is prime and𝑄 has at least one cycle, then ℌ(𝑄) is prime. Conversely, if ℌ(𝑄) is prime,
then k𝑄 is prime.

(v) k𝑄 is semiprime if and only if ℌ(𝑄) is semiprime.

(vi) gldim(k𝑄) = gldim(ℌ(𝑄)); in particular, ℌ(𝑄) is hereditary.

(vii) k𝑄 and ℌ(𝑄) are Koszul.

Proof. By Proposition 3.4, it suffices to establish the statements above with k𝑄 in place
of ℌ(𝑄). Now the statements (i)-(vi) follow from Propositions 1.73 and 3.2, respectively.
Part (vii) holds as the path algebra k𝑄 (resp., k𝑄 � ℌ(𝑄)) is realized as a tensor algebra
𝑇k𝑄0(k𝑄1) (resp., 𝑇

k𝑄0
(k𝑄1), and tensor algebras are Koszul. □

Remark 3.6. For 𝑄 acyclic, k𝑄 being prime may not imply ℌ(𝑄) is prime [Remark 3.3].

3.3 Examples

In Table 3.1 below, we present some quivers 𝑄 and 𝑄 and their corresponding path
algebras illustrating the results obtained in the previous sections. Moreover, in Table 3.2
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below, we present a summary of the results for dimension of path algebras of quivers
having as underlying graph a Dynkin diagram; note that orientation of the quiver is
relevant.

𝑄 k𝑄 𝑄 k𝑄 � ℌ(𝑄)

•1 •2 · · · •𝑛 k𝑛
•[1,1] · · · •[1,𝑛]
...

. . .
...

•[𝑛,1] · · · •[𝑛,𝑛]
k𝑛

2

•
𝑝1

𝑝2

···
𝑝𝑛

k⟨𝑡1 , . . . , 𝑡𝑛⟩ •
[𝑝1 ,𝑝1]

···
[𝑝𝑖 ,𝑝 𝑗]

··· [𝑝𝑛 ,𝑝𝑛]

k⟨𝑡𝑖 , 𝑗⟩𝑛𝑖,𝑗=1

• • 𝑇2(k) =
[
k k
0 k

] • •

• •
𝑇2(k) × k2

• • • 𝑇3(k) =

k k k
0 k k
0 0 k


• • •

• • •

• • •

𝑇3(k) × 𝑇2(k)2 × k2

• • •

k 0 0
k k 0
k 0 k


• • •

• • •

• • •


k 0 0 0 0
k k 0 0 0
k 0 k 0 0
k 0 0 k 0
k 0 0 0 k


× k4

• • • • 𝑇2(k)2

• • • •

• • • •

• • • •

• • • •

𝑇2(k)4 × k8

• •
[
k k2

0 k

] • •

• •

[
k k4

0 k

]
× k2

• •
[
k[𝑡] k[𝑡]

0 k

] • •

• •


k[𝑡] k[𝑡] k[𝑡] k[𝑡]

0 k 0 0
0 0 k 0
0 0 0 k


Table 3.1: Examples of 𝑄, 𝑄, and their path algebras
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𝑄 dimk k𝑄 dimk ℌ(𝑄)
•1 •2 · · · •𝑛 𝑛 ≥ 1 𝑛(𝑛+1)

2
𝑛(𝑛+1)(2𝑛+1)

6
•1 •2 · · · • •2𝑛

or
•1 •2 · · · • •2𝑛−1

𝑛 ≥ 2 2𝑛 − 1 2𝑛2 − 2𝑛 + 1

•1

•3 · · · •𝑛

•2

𝑛 ≥ 4 𝑛(𝑛+1)
2 − 1 𝑛(𝑛+1)(2𝑛+1)

6 − 1

•1

•3 · · · •𝑛

•2

𝑛 ≥ 4 𝑛2−3𝑛+10
2

2𝑛3−9𝑛2+61𝑛−78
6

•

• • • • •
19 87

•

• • • • • •
25 131

•

• • • • • • •
32 188

Table 3.2: dimk k𝑄 and dimk ℌ(𝑄) for some 𝑄 of Dynkin type ADE
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