FILTERED FROBENIUS ALGEBRAS
IN MONOIDAL CATEGORIES

CHELSEA WALTON
RICE UNIVERSITY

JOINT WORK WITH HARSHIT JADAV

ARXIV: 2106.01999

MOTIVATION 1

(FROM THE PERSPECTIVE OF NONCOMMUTATIVE RING THEORY)

NICE ALGEBRAIC PROPERTIES PRESERVED UNDER
FILTERED DEFORMATION...

TAKE AN \mathbb{N}_0-FILTERED ALGEBRA/ MODULE

$A = \bigcup_{i \in \mathbb{N}_0} A_i$, $A_i \cdot A_j \subseteq A_{i+j}$

$1_A \in \mathbb{N}_0$

ITS ASSOCIATED GRADED ALGEBRA

$gr(A) = \bigoplus_{i \in \mathbb{N}_0} A_i/A_{i-1}$

... "IF $gr(A)$ IS (X),

THEN SO IS A.

EXAMPLES

A	$gr(A)$
$U_q(g)$ | $\delta_q(g)$
$Weyl(v)$ | $\delta(v)$
$Cl(V, B)$ | $\Lambda(v)$

EXAMPLES OF (X)
AN INTEGRAL DOMAIN
PRIME
NOETHERIAN
Motivation 2

(From the perspective of Quantum Algebra)

Building Frobenius Algebras in Monoidal Categories...

Monoidal Category $(\mathcal{C}, \otimes, \mathbb{1})$
- Category \mathcal{C} equipped with
- Bifunctor $\otimes : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$
- Distinguished object $\mathbb{1}$
- That mimic the structure of a monoid
 (subject to compatibility conditions)

Frobenius Algebra in \mathcal{C}
- Is a 5-tuple:
 - $\mathbb{1}$, object in \mathcal{C}
 - $\Delta : A \otimes A \rightarrow A$, morphism in \mathcal{C}
 - $\varepsilon : A \rightarrow \mathbb{1}$, morphism in \mathcal{C}

Applications in

- Morita Theory
- TQFTs & CFTs
- Computer Science

Motivation 1

(From Noncommutative Ring Theory)

Nice algebraic properties preserved under filtered deformation

Goal: Generalize

Theorem (Bongale, 1947)

Let A be a finite-dim/l, connected, filtered algebra over $\mathbb{1}$.

If $q(A)$ is a Frobenius algebra over $\mathbb{1}$, then so is A.

Motivation 2

(From Quantum Algebra)

Building Frobenius Algebras in Monoidal Categories

Frobenius Algebras over \mathcal{C}

$$\text{Frobenius Algebras over } \mathcal{C} \\ (\text{Vec}_{\mathbb{1}}, \otimes = \otimes_{\mathbb{1}}, 1 = \mathbb{1})$$

\[\text{where: } \Delta \text{m} \quad (\alpha \otimes \beta) \otimes \gamma \quad \text{and} \quad (\alpha \otimes \beta)^{\otimes 3} \]

\[\Delta \text{m} \quad (\alpha \otimes \beta) \otimes \gamma \quad \text{and} \quad (\alpha \otimes \beta)^{\otimes 3} \]

\[\beta \otimes (\alpha \otimes \gamma) \quad \text{and} \quad \beta \otimes (\alpha \otimes \gamma) \]

\[\beta \otimes (\alpha \otimes \gamma) \quad \text{and} \quad \beta \otimes (\alpha \otimes \gamma) \]

\[\beta \otimes (\alpha \otimes \gamma) \quad \text{and} \quad \beta \otimes (\alpha \otimes \gamma) \]

\[\beta \otimes (\alpha \otimes \gamma) \quad \text{and} \quad \beta \otimes (\alpha \otimes \gamma) \]
Main Theorem (W-Yadav)

Let \(\mathcal{C} \) be an Abelian, rigid monoidal category.

\[A = \mathbb{1} \]

Let \(A \) be a connected, filtered alg. in \(\mathcal{C} \) with finite filtration.

If \(\text{gr}(A) \) is a Frobenius algebra in \(\mathcal{C} \), then so is \(A \).

Need to Develop Categorical Tools

\[\equiv \text{Categorical Filtered-Graded Structures} \equiv \]

\[\equiv \text{Categorical Characterization} \equiv \]

Of Frobenius Algebras

1st Tool Developed (W-Yadav)

Filtered-Graded Tool -

For \(\mathcal{C} \) Abelian, monoidal, with \(\otimes \) Biexact:

- Constructed a monoidal associated graded functor \(\text{gr} : \text{Fil}(\mathcal{C}) \rightarrow \text{Gr}(\mathcal{C}) \)

\[\begin{array}{c}
(A, F_A) \\
\text{objects: } (x \in \mathcal{C}, F_x : A \rightarrow \mathcal{C} \text{ function}) \\
\text{objects: } x = \bigsqcup_{i \in \mathbb{N}_0} x_i \in \text{Ind}(\mathcal{C}) \\
\text{morphisms: } (x \rightarrow y \in \mathcal{C} \text{ that prei. filin}) \\
\text{morphisms: } (x \rightarrow y \in \mathcal{C} \text{ compatible w/ II decomposition})
\end{array} \]

\[\begin{array}{c}
(x, F_x) \otimes (y, F_y) = (x \otimes y, \text{the conv of } F_x + F_y) \\
\otimes \text{ given by } (x \otimes y)_k = \bigsqcup_{i+j=k} (x_i \otimes y_j)
\end{array} \]

(IF \(A \) is an algebra in \(\text{Fil}(\mathcal{C}) \),

THEN \(\text{gr}(A) \) is an algebra in \(\text{Gr}(\mathcal{C}) \).
2nd Tool Developed (W-Yadav)

Categorical Characterization of Frobenius Algebras

Recall:

Frobenius algebra in \(\mathcal{C} \)

Is a 5-tuple:

\[
\begin{align*}
(A, \text{object in } \mathcal{C}) & \quad \text{forms an alg in } \mathcal{C} \\
\Delta: A \otimes A & \rightarrow A, \text{ morphism in } \mathcal{C} \\
\varepsilon: A & \rightarrow \text{Id}_{\mathcal{C}}, \text{ morphism in } \mathcal{C} \\
\end{align*}
\]

Where:

\[
\begin{align*}
\Delta \otimes \text{Id}_{\mathcal{C}} & \rightarrow \Delta \\
\text{Id}_{\mathcal{C}} \otimes \Delta & \rightarrow \Delta \\
\end{align*}
\]

\[
\begin{align*}
\varepsilon \circ \Delta & = \text{Id}_{A} \\
\varepsilon \circ \text{Id}_{A} & = \text{Id}_{\mathcal{C}} \\
\end{align*}
\]

Let \(\mathcal{C} \) be a rigid monoidal category.

\((A, m, u)\) algebra in \(\mathcal{C} \) is Frobenius

\[\Leftrightarrow \exists \mu: A \rightarrow 1 \text{ in } \mathcal{C} \implies \text{any left/right ideal of } A \text{ that factors through } \ker(\mu) \text{ is zero.} \]

That is, \(A \) has a "Frobenius form."

Main Theorem (W-Yadav)

Let \(\mathcal{C} \) be an abelian, rigid monoidal category.

Let \(A \) be a connected, filtered alg. in \(\mathcal{C} \) w/ finite filtration

If \(g_f(A) \) is a Frobenius algebra in \(\mathcal{C} \), then so is \(A \).

Rough Sketch of Proof:

- \((A_f, F)\) filtered alg. in \(\mathcal{C} \) w/ finite filtration \(\Rightarrow \) \(A \simeq F_k(n) \) for some \(k \in \mathbb{N}_0 \).

- **Take morphism** \(\psi: A \rightarrow F_k(n) \) \(\Rightarrow F_k(n)/F_{k-1}(n) \rightarrow \text{Id} \) because \(A \) is connected.

- **Take ideal** \(I \) of \(A \) so that \(\ker(\psi) \rightarrow A \rightarrow 1 \).

 By Tool 2,

 It suffices to show \(I = 0 \)

- **Consider** \(g_f(\psi): g_f(I) \rightarrow g_f(A) \) **via Tool 2.**

 Show \(g_f(\psi) \) factors through Frobenius kernel of Frobenius form on \(g_f(A) \)

 \[\therefore \text{ Tool 2 } \Rightarrow g_f(I) = 0\]

 \[\therefore I = 0 \checkmark\]
Main Theorem (W-Yadav)

Let \mathcal{C} be an abelian, rigid monoidal category.

Let A be a connected, filtered alg. in \mathcal{C} w/ finite filtration.

If $\gamma(A)$ is a Frobenius algebra in \mathcal{C}, then so is A.

Source of Examples: "Braided Clifford Algebras"

Recall for $\mathcal{C} = \text{Vec}_k$, and $V \in \text{Vec}_k$, $B : V \otimes V \to k$ sym. bilinear form.

$$\text{Cl}(V,B) = T(V)/(v\otimes w + w \otimes v - B(v \otimes w)),$$

V is a filtered deformation of Clifford algebra.

$$\wedge(V) = T(V)/(v \otimes w + w \otimes v), \forall v,w \in V$$

$\wedge(V)$ Frobenius \Rightarrow $\text{Cl}(V,B)$ Frobenius.

Bangale

Main Thm for $\mathcal{C} = \text{Vec}_k$.

Take $(\mathcal{C}, \otimes, 1, \circ)$ symmetric monoidal category.

Natural isom. $c_{X,Y} : X \otimes Y \cong Y \otimes X$. $c^* = \text{id}$ (ex. for $\mathcal{C} = \text{Vec}_k$).

Take $V \in \mathcal{C}$:

Bespalov et al. (1997, 2000) defined braided exterior algebra $\wedge_c(V)$.

Take morphism $B : V \otimes V \to A$ in \mathcal{C}.

$B = B_{c_{V,V}}$.

W-Yadav pose combinatorial problem to define braided Clifford algebra $\text{Cl}_c(V,B)$.

Proposition (W-Yadav)

Under certain finiteness conditions,

we have that $\wedge_c(V)$ is a Frobenius algebra in \mathcal{C}, and if problem resolved, so is $\text{Cl}_c(V,B)$.
Motivation 1
(from noncommutative ring theory)

Nice algebraic properties
preserved under
filtered deformation

Motivation 2
(from quantum algebra)

Building Frobenius algebras
in monoidal categories

Main Theorem (W. Yadav)

Let \mathcal{C} be an abelian, rigid monoidal category.

Let A be a connected, filtered alg. in \mathcal{C} w/ finite filtration.

If $\mathcal{F}(A)$ is a Frobenius algebra in \mathcal{C}, then so is A.

Further Direction

Generalize & study other
ring-theoretic properties that
lift under filtered deformation
(ex. domain, prime, noetherian)

In the context of alg. in \mathcal{C} cateQs.
MAIN THEOREM (W. YADAV)

Let \(\mathcal{C} \) be an abelian, rigid monoidal category.

Let \(A \) be a connected, filtered alg. in \(\mathcal{C} \) w/ finite filtration.

If \(\gamma_c(A) \) is a Frobenius algebra in \(\mathcal{C} \), then so is \(A \).

FURTHER DIRECTION

2-d TQFTs w/ values in \(\mathcal{C} \)

= Comm. Frob. Algebras in \(\mathcal{C} \).

Graded/filtered Frob. algs in \(\mathcal{C} \)

play a role in “open-closed” TQFTs.

Study connection to main thm.

FILTERED FROBENIUS ALGEBRAS

IN MONOIDAL CATEGORIES

Thanks for listening!

notlaw@rice.edu