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Abstract

Frobenius algebras in vector spaces are classical algebraic structures. However, because
of their discovered connections to various fields, including computer science and
topological quantum field theories, there is a growing interest in exploring their
generalizations within the framework of monoidal categories. Inspired by these
connections, this thesis delves into the problem of functorially constructing ‘nice’
Frobenius algebra objects in such categories.

We introduce unimodular module categories and employ them to provide a functo-
rial construction of Frobenius algebras in the Drinfeld center of a finite tensor category.
We also classify unimodular module categories over the category of representations of
a finite dimensional Hopf algebra.
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Chapter 1

Introduction

This thesis is inspired by algebraic structures that arise in the axiomatic study of
Quantum Field Theories (QFTs). Quantum field theory is a fascinating and challenging
area of modern physics, where the laws of quantum mechanics and special relativity
converge. In layman’s terms, a field theory is a mathematical theory describing the
time evolution of a field in space, like the electric or magnetic field. Examples of field
theories are Maxwell’s theory of electromagnetism or Newton’s theory of gravitation.
These field theories, however, do not explain the phenomenon like special relativity
and quantum mechanics. A field theory that incorporates these phenomenon is called
a quantum field theory (QFT). Its intricate algebraic structures have attracted the
attention of mathematicians for the last four decades, leading to a deep and fruitful
cross-fertilization between physics and mathematics.

Although the previous discourse offers an informal guide of what a quantum field
theory (QFT) should look like, still there is no universal axiomatic framework to define
QFT after extensive attempts from mathematicians and physicists. To establish a
reliable mathematical construct, one has to enforce supplementary constraints leading
to various diverse QFTs. The most extensively studied amongst these happen to be
the topological quantum field theories (TQFTs) and conformal field theories (CFTs).

The algebraic structures that arise in the context of axiomatic quantum field
theories like 3-dimensional TQFTs and 2-dimensional CFTs have been the driving
force behind this thesis. While TQFTs and CFTs do not represent the full complexity
of QFTs, they are crucial models that provide invaluable insights into the overarching
framework.

Topological Quantum Field Theories

TQFTs are a class of QFTs that possess the desirable property of being independent
of spacetime metrics – in other words, they only depend on the underlying manifold
topology. Notably, this theory becomes particularly intriguing when restricted to
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3-dimensional contexts, largely due to its fascinating topological properties. Roughly,
a 3D-TQFT is defined as a certain functor, from a category of 3D manifolds to the
category of vector spaces, that behaves nicely with respect to gluing and cutting
manifolds. This connection between topology and algebra, as formulated by the
definition of a TQFT, has served as a catalyst for developing invariants of knots and
3-dimensional manifolds, such as the Reshetikhin-Turaev invariants [RT91].

Conformal Field Theories

In this work, by a CFT, we will mean an axiomatic model of QFT which is invariant
under conformal transformations of the spacetime. As condensed matter systems are
often conformally invariant at their critical points, CFTs have important applications
to condensed matter physics and string theory. Due to their complexity, the 2-
dimensional case is currently the most mathematically interesting one. In particular,
the study of 2D-CFTs has led to the development of a rich mathematical theory, which
has been used to study various mathematical objects such as vertex operator algebras
[Hua97].

Modular tensor categories (MTCs)

3D-TQFTs and 2D-CFTs are mathematically described by certain algebraic objects
called modular tensor categories, which are fascinating objects of study in their own
right. On the one hand, major works in the last three decades have established
that the main source of producing 3D-TQFTs are modular tensor categories [Tur92,
KL01, BDSPV15, TV17, DRGG+22]. Hence, to produce new rich new invariants of
manifolds, one needs new examples of TQFTs and this in turn is achieved by finding
new MTCs. On the other hand, MTCs are important models for the mathematical
study of 2-dimensional rational Conformal Field Theories as well [FRS02]. In addition,
MTCs also play an important role in quantum computing [Wan13].

1.1 Problem description

The overarching objective of this thesis is to enhance our understanding of modular
tensor categories. One way to do so is by analyzing already known constructions of
producing MTCs.
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In the literature, there are numerous techniques of producing new MTCs from a
given MTC. We list the major ones below:

• taking Deligne product of two MTCs,
• by gauging symmetry of MTCs [CGPW16],
• by zesting [DGP+21], or
• by forming the category of local modules over a ‘nice’ Frobenius algebra object

in a MTC [Par95, Sch01, KJO02, LW22a].

To narrow down our problem, we focus on the last technique of constructing new
MTCs by using local modules over a Frobenius algebra object. Because of this, we
focus on the role of Frobenius algebras in MTCs. Thus, the above discussion raises
the following important problem.

Problem. Provide a construction of Frobenius algebras in a modular tensor categories.

Our investigation started with this mathematical question. While previous works
such as [FFRS06] have addressed the construction of Frobenius algebra objects in
semisimple MTCs, recent research on non-semisimple CFTs [FS21a] and TQFTs
[DRGG+22] has created a need for new constructions of Frobenius algebra objects in
general MTCs.

There are various sources of MTCs. Below we list the major ones.

• category of representations categories of quantum groups [KJO02, LW22b],
• category of representations of vertex operator algebras [Hua05], and
• Drinfeld centers of spherical finite tensor categories [Müg03, Shi17].

Our work aims to address the problem mentioned above for MTCs that are obtained
as Drinfeld centers of spherical tensor categories. Moreover, we go beyond this specific
case to address the general problem of constructing ‘nice’ Frobenius algebra objects
in the Drinfeld center Z(C) of any finite tensor category. In this context, we use the
term ‘nice’ to refer to Frobenius algebra objects that are suitable for constructing new
MTCs using local modules. To qualify as ‘nice’, these Frobenius algebra objects must
satisfy additional conditions, such as being special, symmetric, commutative, and so
on.

Moreover, we aim to present constructions that are amenable to algebraic manipula-
tions, and to do so, we need functorial constructions. Here, by functorial construction,
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we mean a construction that involves building the Frobenius algebra object as the
image of certain functors, called Frobenius monoidal functors. These functors allow
for the transfer of Frobenius algebras from the source to the target category. If a
Frobenius monoidal functor preserves additional properties of the Frobenius algebra
such as being special or symmetric, we refer to it as a special or pivotal Frobenius
monoidal functor, respectively. The study of these functors is a central focus of this
thesis.

Thus, we have narrowed down our problem of the following goal.

Goal. Construct ‘nice’ Frobenius monoidal functors whose target categories are Drin-
feld centers of finite tensor categories.

1.2 Main results

To achieve our goal of constructing Frobenius monoidal functors whose target categories
are Drinfeld centers of finite tensor categories, we utilize Balan’s findings. In her
publication [Bal17], she provided necessary conditions under which the left adjoint of
a strong monoidal functor is a Frobenius monoidal functor. By, slightly rephrasing
her results, we obtain the following result.

Theorem 1.1. (Theorem 3.5) Let U : C → D be a strong monoidal functor between
abelian monoidal categories admitting a right adjoint R, such that R is exact, faithful
and the adjunction U ⊣ R is coHopf. Then, we get that R is a Frobenius monoidal
functor if and only if R(1D) is a Frobenius algebra in C.

This result provides us the following heuristic for constructing Frobenius monoidal
functors.

(a) Start with a strong monoidal functor U : Z(C) → R where Z(C) is the Drinfeld
center of a finite tensor category C and R is any abelian monoidal category.

(b) Find a right adjoint R to U such that the adjunction U ⊣ R is coHopf and R is
exact and faithful.

(c) Find the appropriate conditions (†) on U , C and R such that R(1R) is a Frobenius
algebra in Z(C).

Once the above mentioned steps are completed, we get that if U , C and R satisfy
the conditions (†), then the right adjoint of, namely U ra : R → Z(C), is a Frobenius
monoidal functor.
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One good candidate for the functor U in step (a) is the following forgetful functor
from the Drinfeld center Z(C) to C, which forgets the half-braiding on the objects of
Z(C).

U : Z(C) → C, (X, σ) 7→ X

When C is a finite tensor category, the right adjoint R of U satisfies all the conditions
required for step (b). Therefore, R is a Frobenius monoidal functor if and only if
R(1C) is a Frobenius algebra in Z(C).

A finite tensor category C is called unimodular if its distinguished invertible object
(defined as the socle of projective cover of 1C) is isomorphism to the unit object 1C of
C. Now, we can use the following result of Shimizu to complete step (c) and achieve
our goal.

Theorem 1.2. ([Shi16, Corollary 5.10]) Let C be a finite tensor category. Let U :
Z(C) → C denote the forgetful functor from the Drinfeld center to C and R its right
adjoint. Then, C is unimodular if and only if R(1) is a Frobenius algebra in C.

Thus, the condition (†) is that C is unimodular. By combining Theorems 1.1 and
1.2, we obtain the following result.

Theorem 1.3. Let C be a finite tensor category. Let U : Z(C) → C denote the forgetful
functor from the Drinfeld center to C and R its right adjoint. Then, C is unimodular
if and only if R is a Frobenius monoidal functor.

This is the blueprint that we follow to construct Frobenius monoidal functors to
the Drinfeld center of a finite tensor category. In this thesis, we generalize Theorem 1.3
in two directions.

First, for constructing local modules, we need special and symmetric Frobenius
algebras. Thus, we need to construct special and pivotal Frobenius monoidal functors
with target Z(C). To do so, we establish the following generalization of Theorem 1.1.

Theorem 1.4. Let U : C → D be a strong monoidal functor between abelian monoidal
categories admitting a right adjoint R, such that R is exact, faithful and the adjunction
U ⊣ R is coHopf. Then, we get that R is a ⊛ monoidal functor if and only if R(1D)
is a ⋇ algebra in C, as summarized in the table below.
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Reference
Input R(1D) R

C D U ⋇ ⊛

Thm. 3.9 ⊗ ⊗ strong ⊗ separable Frob. separable Frob.
Thm. 3.9 ⊗ ⊗ strong ⊗ special Frob. special Frob.
Thm. 3.11 pivotal pivotal pivotal, strong ⊗ symmetric Frob. pivotal Frob.
Thm. 3.13 ribbon ribbon ribbon symmetric Frob. ribbon Frob.

Second, we consider a generalization of the forgetful functor U : Z(C) → C. More
precisely, we consider the following functor which depends on an exact left C-module
category (M, ▷).

Ψ := ΨM : Z(C) → RexC(M), (c, σ) 7→ (c ▷−, sσ).

This functor was introduced in [Shi20]. When we take M = C, we recover the forgetful
functor U from the Drinfeld center Z(C) to C. In Proposition 4.14, we show that when
M is an indecomposable exact left C-module category, the right adjoint Ψra of the
functor Ψ is exact, faithful and the adjunction Ψ ⊣ Ψra is coHopf. Thus, by applying
Theorem 1.4 to the adjunctions Ψ ⊣ Ψra, we get the following result.

Theorem 1.5. Let C be a finite tensor category and M be an indecomposable, exact
left C-module category. Then the following statements hold.

(a) Ψra is a (resp., separable, special) Frobenius monoidal functor if and only if
Ψra(IdM) is (resp., separable, special) Frobenius algebra in Z(C).

(b) If C is pivotal and M is a pivotal C-module category, then Ψra is a pivotal functor
if and only if Ψra(IdM) is a symmetric Frobenius algebra in Z(C).

This theorem highlights the importance of the algebra Ψra(IdM) for constructing
Frobenius monoidal functors to the Drinfeld center. In particular, we are interested in
the question of when this algebra is (symmetric) Frobenius.

One of the major contributions of this thesis is the following notion of unimodularity
for exact left C-module categories. The following definition is inspired by [FSS20,
Remark 4.27].

Definition 1.6. An exact left C-module category M is called unimodular if the
multitensor category RexC(M) of right exact, left C-module endofunctors of M is
unimodular.
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Using this notion, we are able to answer the question of when the algebra AM is
Frobenius. In particular, we obtain the following result.

Theorem 1.7. (Theorem 4.15) Let C be a finite tensor category and M an indecom-
posable, exact, left C-module category. Then, the following are equivalent.

(a) M is a unimodular module category.
(b) RexC(M) is a unimodular tensor category.
(c) Ψra(IdM) is a Frobenius algebra in Z(C).
(d) Ψra is a Frobenius monoidal functor.

Here, for any functor F , F la (resp., F ra) denotes the left (resp., right) adjoint of F .
Part (d) yields a supply of Frobenius algebras in the Drinfeld center. Furthermore,
the following result describes when the functor Ψra and the algebra obtained using it
are separable or special.

Theorem 1.8. (Theorem 4.16) Let C be a finite tensor category and M be an
indecomposable, unimodular left C-module category. Then, Ψra is a separable (resp.
special) Frobenius monoidal functor if and only if the Frobenius algebra Ψra(IdM) in
Z(C) is separable (resp. special).

Recall that our goal is to construct special, symmetric Frobenius algebras. However,
to discuss symmetric Frobenius algebras, we have to move to the pivotal setting. When
C is pivotal and M is a pivotal left C-module category, then the categories Z(C) and
RexC(M) are pivotal [Sch15, Shi19], and Ψ is a pivotal functor. Then, the following
result describes sufficient conditions needed to ensure that the functor Ψra is a pivotal
functor. When these conditions are satisfied, Ψra becomes a tool of producing special,
symmetric Frobenius algebras in Z(C).

Theorem 1.9. (Theorems 4.21, 4.22) Let C be a pivotal finite tensor category and M
an indecomposable, unimodular, pivotal left C-module category. Then,

(a) Ψra is a pivotal Frobenius monoidal functor.
(b) Furthermore, Ψra is a special pivotal Frobenius monoidal functor if and only if

dim(Ψra(IdM)) ̸= 0.

To provide a concrete example, we consider the case when C := Rep(H) is the
category of finite-dimensional representations of a finite-dimensional Hopf algebra H.
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In this case, every exact left C-module category M is of the form Rep(A) for A a
left H-comodule algebra. We employ results from [Shi19, SS21, FGJS22] to calculate
the distinguished invertible object DRexC(M) of RexC(M). Additionally, to understand
when RexC(M) is unimodular, that is, when DRexC(M) and IdM are isomorphic, we
introduce unimodular elements of an exact H-comodule algebras (Definition 6.2) and
obtain the following result.

Theorem 1.10. (Theorem 6.3) Let H be a finite-dimensional Hopf algebra and A

an exact left H-comodule algebra. Then the left Rep(H)-module category Rep(A) is
unimodular if and only if A admits a unimodular element.

The question of unimodularity of M (which, by definition, is equivalent to the
unimodularity of RexC(M)) has also recently been investigated in [Shi22] in the case
when the algebra A admits a grouplike cointegral. Theorem 1.10 provides explicit
conditions for when the module category Rep(A) is unimodular without any such
assumption, thereby answering [Shi22, Question 7.25]. Furthermore, Theorem 1.10
reduces to Shimizu’s result [Shi22, Corollary 7.10], when the comodule algebra A

admits a grouplike cointegral; see Corollary 6.6.
A natural question to ask is, whether every finite tensor category admits a uni-

modular module category. We obtain the following result which provides a negative
answer to this question.

Theorem 1.11. (Theorem 6.7) Let T (ω) denote the Taft algebra. Then, the category
Rep(T (ω)) does not admit a unimodular module category.

The results above have first appeared in our preprints [Yad22] and [Yad23].

1.3 Structure of the thesis

This thesis is organized as follows. In Chapter 2, we recall the background material
on tensor categories and modules categories. Chapter 3 is dedicated to establishing
general results on when the right adjoint of a strong monoidal functor is pivotal,
Frobenius monoidal. In particular, we prove Theorem 1.4 in Chapter 3.

In Chapter 4, we study unimodular module categories and use them to achieve
our goal of constructing Frobenius monoidal functors to Z(C). Namely, we prove
Theorems 1.7, 1.8 and 1.9 in Chapter 4. After introducing background material
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on Hopf algebras H in Chapter 5, we classify unimodular module categories over
C = Rep(H) in Chapter 6 and prove Theorem 1.10.

We end this thesis with some remarks and open questions in Section 6.5.
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Chapter 2

Background

In this chapter, we introduce the background material on tensor categories. We review
monoidal categories in Section 2.1, module categories in Section 2.2, rigid and pivotal
categories in Section 2.3, algebras in monoidal categories in Section 2.4, adjunctions in
Section 2.5, and finite tensor categories and their module categories in Section 2.6. We
refer the reader to the textbooks [ML13], [EGNO16] and [TV17] for further details.

Convention 2.1. Unless otherwise specified, throughout this work, k will denote an
algebraically closed field, algebraic structures will be over k. By k×, we will denote
the multiplicative set k \ {0}.

2.1 Monoidal categories

We begin by presenting the algebraic structures that will play a key role in our study,
namely monoidal categories. Monoidal categories are categories that possess a tensor
product, similar to the way in which we can construct a tensor product of k-vector
spaces.

Definition 2.2 (C,⊗,1). A category C equipped with a functor ⊗ : C ×C → C (called
the tensor product), an object 1 ∈ C (called the unit object) and natural isomorphisms

X ⊗ (Y ⊗ Z) ∼= (Z ⊗ Y ) ⊗ Z, (2.1)
X ⊗ 1 ∼= X ∼= 1⊗X, (2.2)

for all X, Y, Z ∈ C, is called a monoidal category if the isomorphisms in (2.1) satisfy
the pentagon and the triangle axioms. If these isomorphisms are identities, we call C
a strict monoidal category.

Remark 2.3. By Mac Lane’s coherence theorem [ML13, VII.2], we can and will
assume that all monoidal categories are strict. We let Crev denote the category C with
the opposite tensor product ⊗rev, that is, X ⊗rev Y := Y ⊗X. We denote the opposite
category of C as Cop. Then both (Cop,⊗,1) and (Crev,⊗rev,1) are monoidal categories.
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Given two vector spaces V and W , we have a flip map V ⊗W → W ⊗ V . Next,
we define monoidal categories that come equipped with such maps.

Definition 2.4 (C, c). A braided monoidal category is a monoidal category (C,⊗,1)
equipped with a natural isomorphism

c = {cX,Y : X ⊗ Y → Y ⊗X}X,Y ∈C

(called a braiding) satisfying the hexagon axiom.

Remark 2.5. The mirror c′ of a braiding c on C is defined by c′
X,Y := c−1

Y,X . We will
let Cmir denote the braided monoidal category (C,⊗,1, c′).

2.1.1 Monoidal functors

Next, we define functors that preserve monoidal structure. Let (C,⊗C,1C) and
(D,⊗D,1D) be two monoidal categories.

Definition 2.6 (F, F2, F0). A monoidal functor (F, F2, F0) : C → D consists of the
following:

• a functor F : C → D,
• a natural transformation

F2 = {F2(X,X ′) : F (X) ⊗D F (X ′) → F (X ⊗C X
′)}X,X′∈C,

• a morphism F0 : 1D → F (1C) in D,

that satisfy the following associativity and unitality constraints, for X,X ′, X ′′ ∈ C:

F2(X,X ′ ⊗C X
′′)(IdF (X) ⊗D F2(X ′, X ′′)) = F2(X ⊗C X

′, X ′′)(F2(X,X ′) ⊗D IdF (X′′)),
F2(1C, X)(F0 ⊗D IdF (X)) = IdF (X),

F2(X,1C)(IdF (X) ⊗D F0) = IdF (X).

We call a monoidal functor (F, F2, F0) strong (resp., strict) if F2 and F0 are isomor-
phisms (resp., identity maps) in D. If F is strong monoidal and an equivalence between
the underlying categories, we call it a monoidal equivalence.

Definition 2.7 (F, F 2, F 0). A comonoidal functor (F, F 2, F 0) : C → D consists of

• a functor F : C → D,
• a natural transformation F 2 = {F 2(X, Y ) : F (X⊗C Y ) → F (X)⊗DF (Y )}X,Y ∈C,

and
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• a morphism F 0 : F (1C) → 1D

such that (F op, (F 2)op, (F 0)op) : Cop → Dop is a monoidal functor.

Next we introduce a weaker version of strong monoidal functors which will be
crucial for our purposes.

Definition 2.8 (F, F2, F0, F
2, F 0). A Frobenius monoidal functor [DP08, Defini-

tion 1] is a tuple (F, F0, F2, F
2, F 0) where (F, F2, F0) : C → D is a monoidal functor,

(F, F 2, F 0) : C → D is a comonoidal functor and for all X, Y, Z ∈ C, the following
holds:

(IdF (X) ⊗D F2(Y, Z)) (F 2(X, Y ) ⊗D IdF (Z)) = F 2(X, Y ⊗C Z)F2(X ⊗C Y, Z),
(F2(X, Y ) ⊗D IdF (Z)) (IdF (X) ⊗D F

2(Y, Z)) = F 2(X ⊗C Y, Z)F2(X, Y ⊗C Z).

Remark 2.9. From Definition 2.8, it is clear that, a functor F is Frobenius monoidal
if and only if F op is.

Before we introduce the next definition, we need to introduce k-linear categories.

Definition 2.10. A category C is called k-linear if the hom spaces HomC(X, Y ) are
k-vector spaces for all X, Y ∈ C and the composition map

HomC(Y, Z) × HomC(X, Y ) → HomC(X,Z) (X, Y, Z ∈ C)

is a k-linear map.

Now consider the following definition.

Definition 2.11 (β2, β0). Let (F, F2, F0, F
2, F 0) be a Frobenius monoidal functor

between k-linear monoidal categories C, D. Then,

• We call F separable if it satisfies F2(X, Y ) ◦ F 2(X, Y ) = β2 IdF (X⊗Y ) for some
β2 ∈ k×.

• If in addition, F 0 ◦ F0 = β0 Id1 holds for some β0 ∈ k×, we call F special.

Next, we consider functors between braided categories.

Definition 2.12. A monoidal functor (F, F2, F0) between braided categories (C, c)
and (D, d) is called braided if it satisfies

F2(Y,X) ◦ dF (X),F (Y ) = F (cX,Y ) ◦ F2(X, Y ) (X, Y ∈ C).
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A braided functor that is also a monoidal equivalence is called a braided equivalence.
A comonoidal functor (F, F 2, F 0) between braided categories (C, c) and (D, d) is called
cobraided if (F op, (F 2)op, (F 0)op) is braided.

The following lemma is straightforward.

Lemma 2.13. A braided strong monoidal functor is cobraided as well.

2.1.2 Monoidal natural transformations

Next, we introduce natural transformation between monoidal functors.

Definition 2.14. Let F, G : C → D be monoidal functors. Then, we call a natural
transformations α : F ⇒ G, a monoidal natural transformation if the following
condition is satisfied

G2(X, Y ) ◦ (αX ⊗D αY ) = αX⊗CY ◦ F2(X, Y ), α1 ◦ F0 = G0.

Definition 2.15. Let F, G : C → D be comonoidal functors. A comonoidal natural
transformation α : F → G is a natural transformation α such that αop (defined as
αop

X = (αX)op) is a monoidal natural transformation.

2.2 Module categories

Similar to the way we define modules over a k-algebras, one can define module
categories over monoidal categories. In this section, we recall some basic facts about
module categories.

Let C be a monoidal category.

Definition 2.16 (M, ▷). A category M equipped with a functor ▷ : C × M → M
(called the action of C) and natural isomorphisms

(X ⊗ Y ) ▷ M ∼= X ▷ (Y ▷ M), (2.3)
1 ▷ M ∼= M, (2.4)

for all X, Y ∈ C and M ∈ M, is called a left C-module category if the isomorphisms
above satisfy certain coherence conditions.

Analogously, one can define right C-module categories and bimodule categories.
By a variant of Mac Lane’s coherence theorem (see [EGNO16, Remark 7.2.4]), we can
(and will) assume that the isomorphisms (2.3) are identity maps.
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Example 2.17 (F M, ▷F ). Let C, D be monoidal categories and (M, ▷) a left D-
module category. Given a strong monoidal functor F : C → D, we will denote by
(F M, ▷F ) the category M with C-action given by

X ▷F M := F (X) ▷ M, (X ∈ C,M ∈ M).

Then (F M, ▷F ) is a left C-module category. In this case, we call M a (F -)twisted left
C-module category.

2.2.1 C-module functors and natural transformations

Next, we define functors and natural transformations that preserve the C-action. Let
(M, ▷M) and (N , ▷N ) be left C-module categories.

Definition 2.18 (F, s). A left C-module functor from (M, ▷M) to (N , ▷N ) is a tuple
(F, s) where:

• F : M → N is a functor, and
• s = {sX,M : F (X ▷M M) → X ▷N F (M)}X∈C,M∈M is a natural isomorphism

satisfying

sX⊗Y,M = (IdX ▷N sY,M)◦ sX,Y ▷M , s1,M = IdF (M) (X, Y ∈ C,M ∈ M).

One can define right C-module functors and C-bimodule functors in a similar
manner.

Definition 2.19. Let (F, sF ), (G, sG) : (M, ▷M) → (N , ▷N ) be left C-module functors.
A left C-module natural transformation is a natural transformation η : F ⇒ G

satisfying

(IdX ▷N ηM) ◦ sF
X,M = sG

X,M ◦ ηX▷MM (∀ X ∈ C,M ∈ M).

2.3 Duality in monoidal categories

In the category of vector spaces, one can define the dual vector space of any vector
space. Next, we define a similar notion for monoidal categories.

Definition 2.20 (∨X,X ∨, ev, coev). A monoidal category is called rigid if every object
X in C comes equipped with a left and right dual, i.e., there exist an object ∨X (left
dual) along with co/evaluation maps

evX : ∨X ⊗X → 1, coevX : 1 → X ⊗ ∨X
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and an object X ∨ (right dual) with co/evaluation maps

ẽvX : X ⊗X ∨ → 1, c̃oevX : 1 → X ∨ ⊗X

satisfying the following relations:

(IdX ⊗ evX)(coevX ⊗ IdX) = IdX = (ẽvX ⊗ IdX)(IdX ⊗ c̃oevX),
(evX ⊗ Id∨X)(Id∨X ⊗ coevX) = Id∨X (IdX ∨ ⊗ ẽvX)(c̃oevX ⊗ IdX ∨) = IdX ∨.

Remark 2.21. The maps X 7→ ∨X and X 7→ X ∨ extend to monoidal equivalences
from Crev to Cop. We can and will replace C by an equivalent monoidal category and
choose duals in a suitable way to ensure that ∨(−) and (−)∨ are strict monoidal and
mutually inverse to each other (see [Shi15, Lemma 5.4] for further details).

2.3.1 Frobenius monoidal functors and duality

In this section, we see that Frobenius monoidal functors preserve duality.
Say we have a Frobenius monoidal functor (F, F2, F0, F

2, F 0) between rigid cate-
gories C, D. Then by [DP08, Theorem 2],

(F (∨X), evF (X) = F 0 ◦ F (evX) ◦ F2(∨X,X), coevF (X) = F 2(X, ∨X) ◦ F (coevX) ◦ F0)

is a left dual of F (X) for all X ∈ C. Thus, by uniqueness of dual objects, we have a
unique family of natural isomorphisms

ζF
X : F (∨X) → ∨F (X)

called the duality transformation of F (see [Shi15, Section 3.1], [NS07, Section 1]).
Explicitly, ζF

X and its inverse are given by

ζF
X = (evF (X) ⊗ Id∨F (X)) ◦ (IdF (∨X) ⊗ coevF (X)),

(ζF
X)−1 = (evF (X) ⊗ F (∨X)) ◦ (Id∨F (X) ⊗ coevF (X)).

(2.5)

Also, define the natural isomorphism

ξF
X := ∨((ζF

X)−1) ◦ ζF
∨X : F (∨∨X) → ∨∨F (X). (2.6)

Then, we obtain the following result.

Lemma 2.22. [Shi15, Lemma 3.1] Let C F−→ D G−→ E be a sequence of Frobenius
monoidal functors between rigid monoidal categories. Then, we have that

ζGF
X = ζG

F (X) ◦G(ζF
X) and ξGF

X = ξG
F (X) ◦G(ξF

X). (2.7)
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2.3.2 Pivotal categories

Given any vector space V , we have a canonical isomorphism ϕV : V → V ∗∗, where
V ∗∗ is the dual of the dual of V . This isomorphism is given be sending v ∈ V to the
evaluation map at v, namely ϕV (v)(f) := f(v). In this section, we introduce monoidal
categories which come equipped with a similar natural isomorphism.

Definition 2.23 (p). Let C be a monoidal category equipped with left duals. We call
C pivotal if it is further equipped with a natural isomorphism

p = {pX : X → ∨∨X}X∈C

satisfying

pX⊗Y = pX ⊗ pY

for all X, Y ∈ C.

An immediate consequence of the above definition is that in pivotal categories,
we have p−1

∨X = ∨pX . Also, for each object X, ∨X is also a right dual to X with
co/evaluation maps

c̃oevX := (Id∨X ⊗ p−1
X )coev∨X and ẽvX := ev∨X(pX ⊗ Id∨X).

Definition 2.24. The (quantum) dimension of an object X ∈ C (with respect to a
pivotal structure p) is defined as the following endomorphism of the unit object.

dim(X) := dimp
C(X) = ẽvX ◦ coevX ∈ End(1C).

If C is k-linear and End(1C) ∼= k, then dim(X) is a scalar.

2.3.3 Pivotal functors

Next we introduce functors which preserve pivotal structures. In [NS07], the notion of
a strong monoidal functor preserving pivotal structure was introduced. Generalizing
it, we give the following definition.

Definition 2.25. A Frobenius monoidal functor F : (C, pC) → (D, pD) between pivotal
categories is said to pivotal if it satisfies

pD
F (X) = ξF

X ◦ F (pC
X) (X ∈ C). (2.8)
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Consider the following result about composition of Frobenius monoidal functors.

Lemma 2.26. Let C F−→ D G−→ E be a sequence of Frobenius monoidal functors between
rigid monoidal categories. If C, D, E are pivotal and F, G are pivotal functors, then
so is their composition G ◦ F .

Proof. By, [DP08, Proposition 4] G ◦ F is Frobenius monoidal. Also,

pE
GF (X)

(2.8)= ξG
F (X) ◦G(pD

F (X))
(2.8)= ξG

F (X) ◦G(ξF
X ◦ F (pC

X)) (2.7)= ξGF
X ◦GF (pC

X).

Hence, GF is a pivotal Frobenius functor.

Next, we see how the dimension of an object X in C is related to the dimension of
F (X) in D when F is a pivotal Frobenius monoidal functor.

Lemma 2.27. Let F : (C, p) → (D, q) be a pivotal Frobenius monoidal functor. Then

dimq(F (X)) = F 0 F (ẽvX) F2(X, ∨X) F 2(X, ∨X) F (coevX) F0. (2.9)

Proof. This follows from a straightforward calculation using the definition of ζF
X .

Lemma 2.28. Let (F, F2, F0, F
2, F 0) : C → D be a pivotal, special, Frobenius monoidal

functor (with constants β0, β2) between pivotal monoidal categories (C, p) and (D, q).
If End(1C) ∼= k, then,

dimq(F (X)) = β2β0 dimp(X) Id1D .

Proof. The following calculation proves the result.

dimq(F (X)) (2.9)= F 0 F (ẽvX) F2(X, ∨X) F 2(X, ∨X) F (coevX) F0

= F 0 F (ẽvX) (β2IdF (X⊗∨X)) F (coevX) F0

= β2 F
0 F (ẽvX ◦ coevX) F0

= β2 dimp(X) F 0 F0 Id1D

= β2β0 dimp(X) Id1D .

2.3.4 Ribbon categories and functors

In this section, we introduce the notion of a ribbon category and a ribbon functor.

Definition 2.29 (θl, θr). A ribbon category C is a braided pivotal category such that
the left and right twists coincide, that is, θl

X = θr
X (:= θX) for any object X of C,

where

θl
X := (evX ⊗ IdX)(Id∨X ⊗ cX,X)(c̃oevX ⊗ IdX),
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θr
X := (IdX ⊗ ẽvX)(cX,X ⊗ Id∨X)(IdX ⊗ coevX).

Definition 2.30. A braided functor F : C → D between ribbon categories is called a
ribbon functor if it preserves twists, that is, F (θC

X) = θD
F (X) for all X in C.

We will need the following result later.

Proposition 2.31. [Mul22, Proposition 4.4] A braided Frobenius functor F : C → D
between ribbon categories is ribbon if and only if it is pivotal and cobraided.

2.4 Algebras in monoidal categories

Next, we recall the notion of an algebra in a monoidal category.

2.4.1 Algebras, coalgebras and Frobenius algebras

Definition 2.32 (m,u,Alg(C),∆, ν, Frob(C)). Take C to be a monoidal category, and
consider the (categories of) algebraic structures below.

(a) An algebra in C is a triple (A,m, u) consisting of an object A ∈ C, and morphisms
m : A⊗A → A, u : 1 → A in C, satisfying associativity and unitality constraints:
m(m⊗ idA) = m(idA ⊗m), and m(u⊗ idA) = idA = m(idA ⊗ u). A morphism
of algebras (A,mA, uA) and (B,mB, uB) is a morphism f : A → B in C so that
fmA = mB(f ⊗ f) and fuA = uB. Algebras and their morphisms in C form a
category, which we denote by Alg(C).

(b) A coalgebra in C is a triple (A,∆, ν) consisting of an object A ∈ C, and morphisms
∆ : A → A ⊗ A, ν : A → 1 in C, satisfying coassociativity and counitality
constraints: (∆ ⊗ idA)∆ = (idA ⊗ ∆)∆ and (ν ⊗ idA)∆ = idA = (idA ⊗ ν)∆. A
morphism of coalgebras (A,∆A, νA) and (B,∆B, νB) is a morphism f : A → B

in C so that ∆Bf = (f ⊗ f)∆A and νBf = νA. Coalgebras and their morphisms
in C form a category, which we denote by Coalg(C).

(c) A Frobenius algebra in C is a 5-tuple (A,m, u,∆, ν) where (A,m, u) ∈ Alg(C) and
(A,∆, ν) ∈ Coalg(C) so that (m⊗ idA)(idA ⊗ ∆) = ∆m = (idA ⊗m)(∆ ⊗ idA).
A morphism of Frobenius algebras f : A → B is a map in Alg(C) ∩ Coalg(C).
Frobenius algebras and their morphisms in C form a category, which we denote
by Frob(C).
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Definition 2.33. Let C be a braided monoidal category. Then an algebra (A,m, u) ∈ C
is called (braided) commutative if it satisfies m cA,A = m. We call a coalgebra (C,∆, ν)
in a C cocommutative is it satisfies cC,C ∆ = ∆.

2.4.2 Symmetric, separable and special Frobenius algebras

Definition 2.34. ([FFRS06, Definition 2.22]) A Frobenius algebra (A,m, u,∆, ν) in
a pivotal monoidal category (C, p) is called symmetric if it satisfies

(ν m⊗ Id∨A)(IdA ⊗ coevA) = (IdA ⊗ ν m)(Id∨A ⊗ p−1
A ⊗ IdA)(coev∨A ⊗ IdA). (2.10)

Next, we consider some basic results that will be used in the sequel.

Lemma 2.35. Let (A,m, u,∆, ν) be a Frobenius algebra in a pivotal category C. Then
A is symmetric if and only if the following holds

(evA ⊗ IdA)(Id∨A ⊗ ∆ u) = (IdA ⊗ ev∨A)(IdA ⊗ pA ⊗ Id∨A)(∆ u⊗ Id∨A).

Proof. Observe that, (IdA ⊗ ev∨A)(IdA ⊗ pA ⊗ Id∨A)(∆ u ⊗ Id∨A) is the inverse of
(IdA ⊗ ν m)(Id∨A ⊗ p−1

A ⊗ IdA)(coev∨A ⊗ IdA). Similarly, (evA ⊗ IdA)(Id∨A ⊗ ∆ u) is the
inverse of (ν m⊗ Id∨A)(IdA ⊗ coevA). Thus by (2.10), the claim follows.

From here on, we assume that our monoidal category C is k-linear.

Definition 2.36 (βA, β1). [FFRS06] Consider a Frobenius algebra (A,m, u,∆, ν) in
a k-linear monoidal category C.

• If m ◦ ∆ = βAIdA holds for some βA ∈ k, we call the Frobenius algebra separable.
• If furthermore, ν ◦ u = β1Idk for some β1 ∈ k, we call it special.

Lemma 2.37. Let C be a pivotal monoidal category. Then, A = X⊗∨X is a symmetric
Frobenius algebra for any object X ∈ C. Furthermore, A is separable if and only if
dim(∨X) ̸= 0. If in addition, dim(X) ̸= 0, then A is a special Frobenius algebra in C.

Proof. We define

m = Id∨X ⊗ evX ⊗ IdX , u = coevX , ∆ = IdX ⊗ c̃oevX ⊗ Id∨X , ν = ẽvX

With the above maps, the it is straightforward to check the claim.

Lemma 2.38. Let (A,m, u,∆, ν) be a connected, Frobenius algebra in a k-linear
pivotal category C. If dim(A) ̸= 0, then A is a special Frobenius algebra in C.



20

Proof. As Frobenius algebras are self dual, we have that dim(A) = ν m∆u. Also,
m,∆ are maps of left A-modules in C. Thus, m∆ ∈ HomA(A,A) ∼= HomC(1, A) ∼= k.
If m∆ = 0, then we will have that dim(A) = 0. Therefore, we get that m∆ = β2IdA

for some β2 ∈ k×. Hence, dim(A) = β2νu. Since dim(A) ̸= 0, we have that νu = β0Id1
for some β0 ∈ k×. Thus, A is a special Frobenius algebra.

2.4.3 Frobenius monoidal functors preserve Frobenius algebras

It is well known that (co)monoidal functors preserve (co)algebras. In this section, we
will show that Frobenius monoidal functors preserve Frobenius algebras. The following
lemma summarizes the relationship between the various functors and Frobenius
algebras that we have defined above.

Lemma 2.39. Let (F, F2, F0, F
2, F 0) be a Frobenius monoidal functor between monoidal

categories C,D. Take (A,m, u,∆, ν) a Frobenius algebra in C. Then the following
statements hold.

(a) (F (A), F (m)F2(A,A), F (u)F0, F
2(A,A)F (∆), F 0F (ν)) is a Frobenius algebra

in D.
(b) If F is separable (resp., special) and A is separable (resp., special) Frobenius

algebra, then F (A) is a separable (resp., special) Frobenius algebra.
(c) If C,D are pivotal categories, F is a pivotal monoidal functor and A is a

symmetric Frobenius algebra, then F (A) is symmetric Frobenius as well.

Proof. Part (a) is [DP08, Corollary 5], part (b) is straightforward, and part (c) is
[Mul22, Proposition 4.8].

Is it straightforward to see that if F : C → D is a braided (resp., ribbon) functor
between C,D are braided (resp., ribbon) categories and A is commutative algebra,
then F (A) is a commutative algebra.

Lemma 2.40. Let (F, F2, F0) be a braided monoidal functor between braided monoidal
categories C,D. Take (A,m, u) a commutative algebra in C. Then the algebra
(F (A), F (m)F2(A,A), F (u)F0) is a commutative algebra in D.

2.4.4 Frobenius algebras in abelian rigid monoidal categories

Next, we recall from [WY22] an alternate characterization of Frobenius algebras in
multitensor categories as we will soon need it. Let C be a multitensor category and A
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an algebra in C. Then, a left ideal I of A is a tuple (I, λ, ϕ) where λ : A⊗ I → I is
morphism that satisfies the relations λ(m⊗ IdI) = λ(IdA ⊗ λ), λ(u⊗ IdI) = IdI and
ϕ : I → A is a monic map satisfying ϕλI = m(IdA ⊗ λ). Now, consider the following
result.

Theorem 2.41. [WY22, Theorem 5.3] Let C be an abelian rigid monoidal category.
An algebra (A,m, u) is a Frobenius algebra in C if and only if there exists a morphism
ν : A → 1 so that if a left or right ideal (I, λ, ϕ) of A factors through ker(ν), then ϕ

is a zero morphism in C.

Now, let C be an abelian rigid monoidal category. Recall that an abelian category
is additive, and hence it admits direct sums of objects. This means for any two objects
X1, X2 ∈ C, there exists an object X1 ⊕X2 ∈ C along with maps ιk : Xk → X1 ⊕X2

and pk : X1 ⊕X2 → Xk where k ∈ {1, 2} such that the following relations hold,

ι1p1 + ι2p2 = IdX1⊕X2 and pjιk = δj,kIdXk
for j, k ∈ {1, 2}.

It is well known that if (Ai,mi, ui) (i ∈ 1, 2) are algebras in C, then so is (A1 ⊕
A2,m12, u12) with

m12 =
∑

k∈{1,2}
ιkmk(pk ⊗ pk) and u12 =

∑
k∈{1,2}

ιkuk

Now consider the following result which strengthens [FRS02, Proposition 3.21].

Proposition 2.42. Let {(Ai,mi, ui)}i∈I be a finite set of algebras in a multitensor
category C. Then, A = ⊕i∈IAi is a Frobenius algebra in C if and only if each Ai is a
Frobenius algebra in C.

Proof. It suffices to prove the result when |I| = 2, that is, when A = A1 ⊕ A2.
(⇐) If (Ak,mk, uk,∆k, νk) ∈ Frob(C) for k ∈ {1, 2}, then by [FRS02, Proposi-

tion 3.21], we have that the algebra (A1 ⊕ A2,m12, u12,∆12, ν12) ∈ Frob(C) with

∆12 =
∑

k∈{1,2}
(ιk ⊗ ιk)∆kpk and ν12 =

∑
k∈{1,2}

νkpk.

(⇒) By assumption, (A = A1 ⊕ A2,m12, u12) is a Frobenius algebra in C. Then,
by Theorem 2.41, there exists a morphism ν : A → 1 such that ker(ν) contains no
left or right ideal of A. Set νk = ν ◦ ιk for k ∈ {1, 2}. In order to prove that A1 and
A2 are Frobenius, we will show that ker(νk) contains no left or right ideal of Ak for
k ∈ {1, 2}.
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Suppose that the algebra A1 admits a left ideal (I, λ1, ϕ1) that factors through
ker(ν1). Let ι : ker(ν1) → A1 denote the inclusion map. Then, there exists a map
f : I → ker(ν1) such that the lower triangle (†) in the following diagram commutes.

ker(ν)

%%

ker(ν1)

(‡)

ι //

g
::

A1
ι1 // A1 ⊕ A2

ν // 1

I

f

OO

ϕ

99

(†)

As the composition ν ι1 ι is equal to the zero map, by the universal property of the
kernel ker(ν), there exists a unique map g making the diagram (‡) commute. Now
consider the tuple (I, (ι1 ⊗ IdI)λ, ι1ϕ). As both ι1 and ϕ are monic, their composition
ι1 ϕ is monic as well. A straightforward check shows that (I, (ι1 ⊗ IdI)λ, ι1ϕ) is a left
ideal of A1 ⊕ A2 that factors through ker(ν). This contradicts the assumption that
A1 ⊕ A2 is Frobenius by Theorem 2.41.

In a similar manner we can show that A1 does not admit a right ideal that factors
through ker(ν1). Repeating the same argument for A2 we conclude that both A1 and
A2 are Frobenius.

2.5 Adjunctions

This section is dedicated to recalling adjoint functors and their generalizations to
monoidal categories.

2.5.1 Adjoint functors

We will use the following notations going forward.

Notation 2.43. Given a functor F : C → D, 1F : F ⇒ F will denote the identity
natural transformation. We denote horizontal composition of natural transformations
α : F ⇒ G and β : F ′ ⇒ G′ as β ◦ α : F ′ ◦ F ⇒ G′ ◦ G. Moreover, the vertical
composition of α : F ⇒ G and α′ : G ⇒ H is denoted as α′ · α.

Consider the following definition.

Definition 2.44 (L,R,⊣, (−)ra, (−)la). An adjoint pair (L,R, η, ε) is a pair of func-
tors L : C → D and R : D → C between categories C and D along with natural
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transformations η = {ηX : X → RL(X)}X∈C and ε = {εY : LR(Y ) → Y }Y ∈D such
that the following equations are satisfied.

R(εY ) ηR(Y ) = IdR(Y ) εL(X) L(ηX) = IdL(X). (2.11)

In this situation, we call L the left adjoint of R and denote it as Rla. Similarly, we
call R the right adjoint of L and denote it as Lra. We will also use the notation L ⊣ R

to mean the L, R form an adjoint pair with L as the left adjoint.

Remark 2.45. We have that L ⊣ R if and only if Rop ⊣ Lop.

2.5.2 (Co)Monoidal adjunctions

Now, suppose that C, D are monoidal categories. The, we obtain the following notion.

Definition 2.46. [BLV11, Section 2.5] A (co)monoidal adjunction is an adjunction
L ⊣ R, between monoidal categories such that L,R are (co)monoidal functors, and
the unit, counit of the adjunction are (co)monoidal natural transformations.

2.5.3 (co)Hopf adjunctions

We first recall the notion of (co)Hopf adjunctions from [BLV11, Section 2.8]. Suppose
that we have two functors L : C → D and R : D → C between monoidal categories C
and D.

Definition 2.47. A Hopf adjunction is a comonoidal adjunction L ⊣ R such that the
following Hopf operator morphisms are invertible for all X ∈ C and Y ∈ D.

H l
X,Y : L(X ⊗R(Y )) L2(X,R(Y ))−−−−−−−→ L(X) ⊗ LR(Y )

IdL(X)⊗εY−−−−−−→ L(X) ⊗ Y,

Hr
Y,X : L(R(Y ) ⊗X) L2(R(Y ),X)−−−−−−−→ LR(Y ) ⊗ L(X)

εY ⊗IdL(X)−−−−−−→ Y ⊗ L(X).
(2.12)

In this thesis, we will primarily work with the following dual notion.

Definition 2.48. A coHopf adjunction is a monoidal adjunction L ⊣ R such that the
following coHopf operator morphisms are invertible for all X ∈ C and Y ∈ D.

hl
Y,X : R(Y ) ⊗X

IdR(Y )⊗ηX−−−−−−→ R(Y ) ⊗RL(X) R2(Y,L(X))−−−−−−→ R(Y ⊗ L(X)),

hr
X,Y : X ⊗R(Y )

ηX⊗IdR(Y )−−−−−−→ RL(X) ⊗R(Y ) R2(L(Y ),X)−−−−−−−→ R(L(X) ⊗ Y ).
(2.13)
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Remark 2.49. From the definitions, it is clear that L ⊣ R is a coHopf adjunction if
and only if Rop ⊣ Lop is a Hopf adjunction.

Now consider the following results.

Theorem 2.50. Let L : C → D be left adjoint to R : D → C with unit η and counit ε.
Then the following hold:

(a) If L is strong monoidal with structure maps L2, L0, then R admits the following
monoidal structure making the adjunction L ⊣ R monoidal:

R2(Y, Y ′) = R(εY ⊗ εY ′) ◦ R(L2(R(Y ), R(Y ′))) ◦ ηR(Y )⊗R(Y ′), R0 = R(L0) ◦ η1C .

(b) If C,D are rigid, then any comonoidal adjunction between them is Hopf and any
monoidal adjunction is coHopf.

Proof. Part (a) is a classical result of Kelly [Kel74, Section 2.1]. Part (b) follows from
[BLV11, Proposition 3.5].

2.6 Finite multitensor categories and their module categories

In this section, we introduce multitensor categories and module categories over them.

Notation 2.51. For a k-algebra A, Rep(A) will denote the category of finite dimen-
sional left A-modules over k.

A finite abelian category is a k-linear category that is equivalent to Rep(A) for
some finite dimensional k-algebra A.

Definition 2.52. A finite multitensor category is a rigid monoidal category that is
finite abelian and the tensor product functor ⊗ is k-linear in each variable. If further
the unit object 1 is simple, we call it a finite tensor category. A tensor functor is an
exact, faithful, k-linear, strong monoidal functor between finite multitensor categories.

Definition 2.53. Let C be a finite multitensor category. A finite left C-module category
is a left C-module category M such that M is a finite abelian category and the action
of C on M is k-bilinear and right exact in each variable. Such a category is called
exact if for all objects M ∈ M and all projective objects P ∈ C, P ▷M is projective
in M. A module category is called indecomposable if it is not equivalent to a direct
sum of two non-trivial module categories.
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Notation 2.54. We will use the following notations going forward.

(a) For M,N two finite left C-module categories, RexC(M,N ) will denote the
category of right exact C-module functors from M to N . If M = N , we call it
RexC(M).

(b) Given (F, sF ), (G, sG) two left C-module functors, we will use the notation
F ∼=C G to mean that F and G are isomorphic as left C-module functors.

(c) For X ∈ C and F ∈ RexC(M,N ), we use the notation X ▷ F to denote the
functor from M to N defined as follows: (X ▷ F )(M) = X ▷ F (M).

2.6.1 Internal Homs

We refer the reader to [EGNO16, Section 7.4] for a more detailed exposition. Let C
be a monoidal category and (M, ▷) be a left C-module category. Consider the functor

YM : C → M, X 7→ X ▷M.

If YM admits a right adjoint, we will denote it by

Hom(M,−) := HomC
M(M,−) : M → C

and call Hom(M,N) as the internal Hom of M and N . In this case, by definition of
adjoint functors, we get the following isomorphism of hom spaces:

HomM(X ▷M,N) ∼= HomC(X,Hom(M,N)) (2.14)

For C a finite multitensor category and M a finite left C-module category, the functor
YM is a right exact functor between finite abelian categories. Hence, it admits a right
adjoint, that is, internal Homs exist. In fact, the internal Hom extends to a functor

Hom(−,−) : Mop × M → C

in such a way that the isomorphism (2.14) is natural in both M and N [Shi20, §2.4].

2.6.2 Canonical Vec action

Let Vec denote the category of finite dimensional k-vector spaces. Every finite abelian
category M comes equipped with a canonical action of Vec given by

▶ : Vec × M → M

and defined via the following isomorphism.

HomM(V ▶M,N) ∼= Homk(V,HomM(M,N))
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With this action, every finite abelian category becomes a left Vec-module category.
From here on, we will use the notation ▶ to denote this action of Vec on any finite
abelian category.

2.6.3 Relative Serre functors

Let C be a finite multitensor category and M a finite left C-module category. A
relative (right) Serre functor [FSS20, Definition 4.22] of M is a pair (S, ϕ) where

S := SC
M : M → M

is a functor and

ϕ := ϕr = {ϕr
M,M ′ : ∨Hom(M,M ′) → Hom(M ′,S(M))}M,M ′∈M

is a natural isomorphism. If we want to emphasize the categories C,M, we will write
SC

M instead of S. Similarly, a relative (left) Serre functor is an endofunctor S of M
together with a natural isomorphism

ϕl = {ϕl
M,M ′ : Hom(M,M ′)∨ → Hom(S(M ′),M)}M,M ′∈M.

We refer the reader to the works [Sch15, FSS20, Shi19] for further details. Below, we
recall some important results about Serre functors.

Theorem 2.55. [FSS20, Lemma 4.23, Proposition 4.24] Let C be a finite tensor
category and M a finite left C-module category.

(a) M is exact if and only if a relative Serre functor S exists.
(b) If M is exact, S is a category equivalence with quasi-inverse S.
(c) If M is exact, S is a C-module functor from M → ∨∨(−)M, that is, we have

natural isomorphisms sX,M : S(X ▷ M) ∼−→ ∨∨X ▷ S(M) satisfying the module
compatibility conditions.

2.6.4 Nakayama functors

We assume that the reader is familiar with ends and coends, see [ML13, IX] for details.
For M a finite abelian category, define the left, right Nakayama functors [FSS20,
Definition 3.14] to be the endofunctors N,N : M → M, respectively, given by

NM(M) =
∫

M ′∈M HomM(M ′,M)▶M ′, NM(M) =
∫ M ′∈M HomM(M,M ′)∗ ▶M ′

If the category M is clear from the context, we will often drop it from the subscript.
Below we collect some properties of the Nakayama functor that will be needed later.
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Theorem 2.56. [FSS20, Theorem 4.5, Corollary 4.7] Let C be a finite multitensor
category and M a finite left C-module category. Then,

(a) N is a left C-module functor from M → (−)∨∨M, that is, we have natural
isomorphisms nX,M : N(X▷M) ∼−→ X ∨∨▷N(M) satisfying the module compatibility
conditions.

(b) If M is exact, then N is a category equivalence with quasi-inverse N.

Remark 2.57. Theorems 2.55 and 2.56 were proved in [FSS20] under the assumption
that C is a finite tensor category. However, the same arguments work for multitensor
categories.

2.6.5 Unimodular multitensor categories

Let C be a finite multitensor category over k.

Definition 2.58. The distinguished invertible object of C, denoted DC, is defined as
the object NC(1C) ∈ C. We call C unimodular if DC ∼= 1.

Remark 2.59. By assumption, k is algebraically closed, and hence perfect. Thus, we
can employ results from [Shi16] about the distinguished invertible object. In particular,
by [Shi16, Lemma 5.1], we get that the above definition of the object DC matches the
one given in [ENO04, EGNO16].

As C is a multitensor category, following [ENO04, §4.3], we can write 1 = ⊕i∈I1i

for some finite set I, where the objects 1i are simple and pairwise non-isomorphic.
The categories Cij := 1i ⊗ C ⊗ 1j are called as the component subcategories of C and
we have that C = ⊕i,j∈ICij. Here, for all i ∈ I, Cii is a finite tensor category with unit
object 1i. Now, consider the following result.

Lemma 2.60. We have that C is unimodular if and only if all its component subcate-
gories Cii are unimodular.

Proof. By [Shi16, Theorem 5.3], DC = ⊕i∈IDCii
. If each Cii is unimodular, then

DCii
∼= 1i. Hence,

1C = ⊕i∈I1i = ⊕i∈IDCii
∼= DC.

Thus, C is unimodular. Conversely, if C is unimodular, then we get that ⊕i∈I1i =
⊕i∈IDCii

. Tensoring both sides with 1j, we get that DCjj
∼= 1j. Hence, each one of

the categories Cii is unimodular.
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Every finite tensor category C comes equipped with a natural isomorphism

R = {RX : ∨∨X ⊗D → D ⊗X ∨∨}X∈C (2.15)

called the Radford isomorphism of C [ENO04]. The following results provides a relation
between the relative Serre functor and the Nakayama functor of an exact C-module
category M.

Theorem 2.61. [FSS20, Theorem 4.26] Let C be a finite tensor category and M be
an exact left C-module category. Then, SM ∼=C D ▷NM as a twisted C-module functor
and its C-module constraints are given by

sX,M := D ▷N(X ▷M) Id ▷ nX,M−−−−−→ D ▷ (X ∨∨ ▷N(M))
R−1

X ▷ Id
−−−−→ ∨∨X ▷ (D ▷N(M))

for all X ∈ C and M ∈ M.

2.6.6 Drinfeld centers

Let C be a monoidal category. Then the Drinfeld center of C, denoted Z(C), is defined
as the category with objects as pairs (X, σ), where X is an object in C, and

σ = {σY : Y ⊗X → X ⊗ Y }Y ∈C

is a natural isomorphism (called a half-braiding) satisfying

σY ⊗Z = (σY ⊗ IdZ)(IdY ⊗ σZ), (Y, Z ∈ C).

Morphisms (X, σ) → (Y, σ′) are given by f ∈ HomC(X, Y ) satisfying

(f ⊗ IdZ)σZ = σ′
Z(IdZ ⊗ f).

The monoidal product is given by (X, σ) ⊗ (Y, σ′) = (X ⊗ Y, γ) where

γZ := (IdX ⊗ σ′
Z)(σZ ⊗ IdY ).

We have the forgetful functor

U := UC : Z(C) → C, (X, σ) 7→ X,

which is strong monoidal. Drinfeld centers are important because they are braided
monoidal categories with braiding c(X,σ),(Y,σ′) := σ′

X . Furthermore, if C is a (finite)
tensor category, then Z(C) is a braided (finite) tensor category and UC is a k-linear,
exact functor. The map (X, σ) 7→ (X, σ−1) : Z(Crev) → Z(C) is a canonical equivalence
of monoidal categories [EGNO16, Exercise 7.13.5]. If we take the braidings into account
as well, then this is a braided equivalence Z(Crev) → Z(C)mir [EGNO16, Exercise 8.5.2].
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Let C be a finite tensor category. Then, the forgetful functor UC admits a right
adjoint RC, which is monoidal. The following theorem collects important known results
which we will need later.

Theorem 2.62. Let C be a finite tensor category. Then, we get the following results.

(a) The algebra RC(1) in Z(C) is commutative.
(b) The algebra RC(1) is a Frobenius algebra in Z(C) if and only if C is unimodular.
(c) If C is pivotal and unimodular, then RC(1) is a symmetric Frobenius algebra in

Z(C).

Proof. Parts (a) follow from [BN11, Proposition 6.1] and part (b) from [Shi16, Theo-
rem 5.6(3)]. Part (c) is [SW22, Lemma 7.1].
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Chapter 3

Frobenius monoidal functors from coHopf
adjunctions

The chapter is based on our article [Yad22]. The goal of this chapter is to give the
right adjoint functor R in a coHopf adjunctions U ⊣ R the structure of a separable,
special, pivotal, ribbon Frobenius monoidal functors. To do this, we start by recalling
results from [Bal17] which established sufficient conditions under which the right
adjoint R is Frobenius monoidal (see Theorem 3.5). This and some preliminaries are
discussed in Section 3.1. After that, Balan’s result is generalized to the separable and
special Frobenius setting in Section 3.2, to the pivotal setting in Section 3.3, and to
the ribbon setting in Section 3.4.

3.1 Preliminaries

In this following, we will often replace ⊗ by ·, in order to fit equations. Equalities
marked as (N) will commute because of naturality. Consider the following conditions
on a functor U : C → D, which will be used throughout the rest of this section.

Condition 3.1. (U : C → D, U2, U0) is a strong monoidal functor between abelian
monoidal categories admitting a right adjoint R (with unit ηr, counit εr) such that:

(a) U ⊣ R is a coHopf adjunction,
(b) R is exact, and
(c) R is faithful.

Remark 3.2. Under these conditions, R is monoidal with structure maps R2, R0

in Theorem 2.50(a) making U ⊣ R a monoidal adjunction. Hence, condition (a) is
satisfied when C,D are rigid [Theorem 2.50(b)]. In other words, the left and right
coHopf operators hl, hr of (2.13) are invertible in this case.

Next, we collect a few consequences of Condition 3.1 which we will need in the
following.
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Lemma 3.3. Suppose that we have functors U : C → D and R : D → C between
monoidal categories. Then, we get the following results.

(a) If R ⊣ U is a Hopf adjunction, then ((R(1D), σ), R2(1,1), R0) is a cocommutative
coalgebra in Z(C) with half-braiding ρX = H l

1,X(Hr
X,1)−1 : X⊗R(1) → R(1)⊗X.

(b) If U ⊣ R is a coHopf adjunction, then ((R(1D), σ), R2(1,1), R0) is a commutative
algebra in Z(C) with half-braiding σX = (hl

1,X)−1hr
X,1 : X ⊗R(1) → R(1) ⊗X.

Proof. Part (a) follows from [BLV11, Corollary 6.7]. For part (b), apply part (a) to
the Hopf adjunction Rop ⊣ Uop.

Consider an adjoint pair L ⊣ Lra with L : A → B. Let ε be the counit and
T = LraL be the corresponding monad on A [ML13, Chapter 6]. Then, there is a
unique functor K : B → AT , where AT is the category of T -modules. The adjunction
L ⊣ Lra is called premonadic if the functor K is full and faithful. Dually, for a functor
U , an adjunction U la ⊣ U is called precomonadic if Uop ⊣ (U la)op is premonadic. By
[BW00, Corollary 3.9 and Theorem 3.11], the following are equivalent:

(a) L ⊣ Lra is precomonadic;
(b) εX is the cokernel of some parallel pair of morphisms ∀ X ∈ B;

(c) LLraLLra(X) LLra(X) X,
LLra(εX)

εLLra(X)

εX is a coequalizer ∀ X ∈ B. (3.1)

The following lemma is probably well-known, but we could not find a proof.

Lemma 3.4. Adjunctions L ⊣ R : B → A between abelian categories satisfy that:

L ⊣ R is precomonadic ⇐⇒ εX is epic ∀ X ∈ B ⇐⇒ R is faithful.

Proof. By the definition of an abelian category, a morphism f in it is an epimorphism
if and only if it is a cokernel of some parallel pair of morphisms. Thus, using the
equivalent definition of being precomonadic given in (3.1), we get that εX is an
epimorphism if and only if L ⊣ R is precomonadic. Lastly, εX is epic if and only if R
is faithful [ML13, Chapter 4]. Thus, the proof is finished.

Now consider the following result connecting the Frobenius properties of the right
adjoint R and the algebra R(1).

Theorem 3.5. Suppose that Condition 3.1 is satisfied. Then, R is Frobenius monoidal
if and only if the algebra R(1) is a Frobenius algebra in C.
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In particular, when R(1) is Frobenius with comultiplication ∆ and counit ν, then
we get the following results:

(a) R is Frobenius monoidal with the following comonoidal constraints:

R2(X, Y ) = (hl
X,R(Y ))−1 ◦R(IdX ⊗ ηl

Y ), R0 = ν.

(b) R ⊣ U with the counit εl defined as the following composition:

εl(X) : RU(X) = R(1⊗ U(X))
(hl
1,X)−1

−−−−−→ R(1) ⊗X
ν⊗IdX−−−→ X,

and the unit ηl : X → UR(X) as the unique morphism making the following
equation hold:

ηl
X ◦εr

X = UR(εr
X)◦εr

URUR(X) ◦U(hl
1,RUR(X))◦U(IdR(1) ·hl

1,R(X))◦U(∆u · IdR(X)).
(3.2)

Also, the adjunction (R ⊣ U, ηl, εl) is a Hopf adjunction.

Proof. (⇒): Suppose that R is Frobenius monoidal. Then, since 1 is Frobenius, R(1)
is Frobenius by Lemma 2.39(a).
(⇐): By Condition 3.1(b), U ⊣ R is a coHopf adjunction, which implies that Rop ⊣ Uop

is Hopf adjunction. Also, R(1) is a Frobenius algebra in C; this implies that Rop(1)
is a Frobenius algebra in Cop. As R is faithful, by Lemma 3.4, we get that R is
premonadic. Hence, Rop is precomonadic. Thus, we can apply [Bal17, Proposition 4.5]
to the adjunction Rop ⊣ Uop to get that Rop is Frobenius monoidal. Hence, R is
Frobenius monoidal.

The claim about the expressions for εl, ηl, R2, R0 follows by translating the expres-
sions in [Bal17] into our setting. The claim about R ⊣ U being a Hopf adjunction
follows from [Bal17, Theorem 4.4].

The next properties of the coHopf operators hl of (2.13) will be used in the following
sections.

Lemma 3.6. The coHopf operate hl satisfies the following relations:

(a) R2(X, Y ⊗ UR(Z)) ◦ (IdR(X) ⊗ hl
Y,R(Z)) = hl

X⊗Y,R(Z) ◦ (R2(X, Y ) ⊗ IdR(Z)),
(b) εr

X⊗UR(Y ) ◦ U(hl
X,R(Y )) = (εr

X ⊗ IdUR(Y )) ◦ U−1
2 (R(X), R(Y )),

(c) R(IdX ⊗ εr
Y ) ◦ hl

X,R(Y ) = R2(X, Y ),
(d) R(IdX ⊗ U−1

2 (Y, Z)) ◦ hl
X,Y ⊗Z = hl

X⊗U(Y ),Z ◦ (hl
X,Y ⊗ IdZ).
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Proof. We prove part (a) here, parts (b), (c) and (d) are proved in a similar manner.

LHS = R2(X, Y ⊗ UR(Z)) ◦ (IdR(X) ⊗ hl
Y,R(Z))

(2.13)= R2(X, Y ⊗ UR(Z)) ◦ (IdR(X) ⊗R2(Y, UR(Z))) ◦ (IdR(X)⊗R(Y ) ⊗ ηr
R(Z))

(♡)= R2(X ⊗ Y, UR(Z)) ◦ (R2(X, Y ) ⊗ IdRUR(Z)) ◦ (IdR(X)⊗R(Y ) ⊗ ηr
R(Z))

(N)= R2(X ⊗ Y, UR(Z)) ◦ (IdR(X⊗Y ) ⊗ ηr
R(Z)) ◦ (R2(X, Y ) ⊗ IdR(Z))

(2.13)= hl
X⊗Y,R(Z) ◦ (R2(X, Y ) ⊗ IdR(Z)).

Here, the equality (♡) holds because R is a monoidal functor.

Lemma 3.7. Suppose that Condition 3.1 is satisfied and R(1) is a Frobenius algebra
in C with comultiplication ∆ and counit ν. Then, R2(1,1) = ∆.

Proof. By Theorem 3.5, R2(1,1) = (hl
1,R(1))−1 ◦R(Id1 ⊗ ηl

1). As εr
1 is epic and R is

exact, R(εr
1) is epic. Thus, to prove the claim, it suffices to show

(hl
1,R(1))−1 ◦R(ηl

1) ◦R(εr
1) = ∆ ◦R(εr

1).
This in turn is equivalent to showing that hl

1,R(1) ◦ ∆ ◦ R(εr
1) = R(ηl

1 ◦ εr
1). Now,

consider the following diagram.

RUR(1) R(1)R(1) R(1)R(1) R(1)

RU(R(1)R(1)) R(1)R(1)R(1) R(1)R(1)

RU(R(1)R(1)R(1)) R(1)R(1)R(1)R(1) R(1)R(1)R(1) R(1)R(1)

RU(R(1)RUR(1)) RU(R(1)R(1)) RUR(1)R(1) R(1)R(1)

RU(R(1)RUR(1)) R(UR(1)URUR(1)) R(UR(1)UR(1)) RUR(1)

RURURUR(1) RURUR(1) RUR(1)

RU(u·Id)

RU(∆·Id)

RU(Id·hl
1,R(1))

R(εr
URUR(1)) RUR(εr

1)

R(εr
1)

(hl
1,R(1))−1

∆(hl
1,R(1)R(1))−1

(hl
1,R(1)R(1)R(1))−1

Id·∆·Id

Id·u·Id

RU(Id·m)

RU(Id·R(εr
1))

m

hl
1,R(1)·Id

hl
UR(1),R(1)

R(εr
1 ·Id)

R(Id·UR(εr
1))

R(U−1
2 )

(hl
1,R(1)R(1))−1

Id·Id·m m·Id

R(εr
1)·Id

Id·∆

Id·m

RU(hl
1,RUR(1))

R(U−1
2 )

hl
1,R(1)

R(εr
1 ·Id)

(3.6(c))

(N) (♢)

(♡)

(♡)(N)

(N) (3.6(c))

(N)

(N)(3.6(b))

(3.6(d))

(3.6(c))

(N)

Using (3.2), the bottom path of this above diagram equals R(ηl
X ◦ εr

X). Also, the top
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path reads hl
1,R(1) ◦ ∆ ◦R(εr

X). Thus, we get that R2(1,1) = ∆.

Proposition 3.8. Suppose that Condition (3.1) is satisfied and R(1) is a Frobenius
algebra in C with comultiplication ∆ and counit ν. Then,

((R(1), σ), R2(1,1), R0, ∆, ν)

is a Frobenius algebra in Z(C). Here σX = (hl
1,X)−1hr

X,1 is the half-braiding on the
object R(1).

Proof. By assumption, U ⊣ R is a coHopf adjunction. Thus, by Lemma 3.3,
((R(1), σ), R2(1,1), R0) is an algebra in Z(C) where σX = (hl

1,X)−1hr
X,1.

Also, by Theorem 3.5, R ⊣ U is a Hopf adjunction. Thus, by Lemma 3.3,
((R(1), ρ), R2(1,1), R0) is a coalgebra in Z(C) where ρX = H l

1,X(Hr
X,1)−1. But, by

Lemma 3.7, R2(1,1) = ∆. Furthermore, R0 = ν.
By [Bal17, Remark 4.3(3)], Hr

X,Y = (hr
X,Y )−1 and H l

X,Y = (hl
X,Y )−1 for all X, Y ∈ C.

Thus, it is clear that σX = ρX for all X ∈ C.
Thus, ((R(1), σ), R2(1,1), R0,∆, ν) is a Frobenius algebra in Z(C).

3.2 Separable and special Frobenius case

Now consider the following result.

Theorem 3.9. Assume that Condition 3.1 satisfied. Then, (R(1),m, u,∆, ν) is a
separable (resp., special) Frobenius algebra in C if and only if R is a separable (resp.,
special) Frobenius monoidal functor.

Proof. (⇒): Suppose that R(1) is a separable Frobenius algebra. To start, consider
the following commutative diagram.

R(X) ·R(Y )
ηr

R(X)·R(Y )
//

(N)

RU(R(X) ·R(Y ))

R(U−1
2 )

��

R(X · Y )
R(Id·ηl

Y )
// R(X · UR(Y ))

(hl
X,R(Y ))−1

77

ηr
X·UR(Y )

//

IdR(X·UR(Y ))

''

RUR(X · UR(Y ))

R(εr
R(X·UR(Y )))

��

(2.11)

RU((hl
X,R(Y ))−1)

66

(3.6(b)) R(UR(X) · UR(Y ))

R(εr
X ·IdUR(Y ))

vv

R(εr
X ·εr

Y )

��

R(X · UR(Y ))
R(IdX ·εr

Y )
// R(X · Y )

(N)
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Using Theorems 2.50(a) and 3.5(a) we get that the compositions along the top of
the diagram is equal to R2(X, Y ) R2(X, Y ). Thus, we get that

R2(X, Y ) R2(X, Y ) = R(IdX ⊗ εr
Y ηl

Y ).

Now, observe that εr
Y ηl

Y εr
Y is equal to

(3.5(b))= εr
Y ◦ UR(εr

Y ) ◦ εr
URUR(Y ) ◦ U(hl

1,RUR(Y )) ◦ U(IdR(1) · hl
1,R(Y )) ◦ U(∆u · IdR(Y ))

(3.1)= εr
Y ◦ εr

UR(Y ) ◦ εr
URUR(Y ) ◦ U(hl

1,RUR(Y )) ◦ U(IdR(1) · hl
1,R(Y )) ◦ U(∆u · IdR(Y ))

(3.1)= εr
Y ◦ εr

UR(Y ) ◦ UR(εr
UR(Y )) ◦ U(hl

1,RUR(Y )) ◦ U(IdR(1) · hl
1,R(Y )) ◦ U(∆u · IdR(Y ))

(3.1)= εr
Y ◦ UR(εr

Y ) ◦ UR(εr
UR(Y )) ◦ U(hl

1,RUR(Y )) ◦ U(IdR(1) · hl
1,R(Y )) ◦ U(∆u · IdR(Y ))

= εr
Y ◦ UR(εr

Y ) ◦ U [R(Id1 · εr
UR(Y ))(hl

1,RUR(Y ))] ◦ U(IdR(1) · hl
1,R(Y ))

◦ U(∆u · IdR(Y ))
(3.6(c))= εr

Y ◦ UR(εr
Y ) ◦ U(R2(1, UR(Y ))) ◦ U(IdR(1) · hl

1,R(Y )) ◦ U(∆u · IdR(Y ))
(3.6(a))= εr

Y ◦ UR(εr
Y ) ◦ U(hl

1,R(Y )) ◦ U(R2(1,1) · IdR(Y )) ◦ U(∆u · IdR(Y ))
(3.6(c))= εr

Y ◦ U(R2(1, Y )) ◦ U(R2(1,1) · IdR(Y )) ◦ U(∆u · IdR(Y ))
= εr

Y ◦ U(R2(1, Y )) ◦ U((R2(1,1) ◦ ∆) · IdR(Y )) ◦ U(u · IdR(Y ))
(♢)= εr

Y ◦ U(R2(1, Y )) ◦ U(u · IdR(Y ))
u=R0= εr

Y ◦ U(R2(1, Y ) ◦ (R0 · IdR(Y )))
(♠)= εr

Y .

Here, the equality (♢) holds because R(1) is separable and the equality (♠) holds
because R is a monoidal functor. By Condition 3.1, εr

Y is an coequalizer, and therefore,
it is epic. Hence, we get that εr

Y ηl
Y = IdY , thereby proving that R2(X, Y ) R2(X, Y ) =

IdR(X⊗Y ). Hence, R is separable Frobenius.
Lastly, observe that R0 R0 = ν u = Id1 is equal to the identity map on 1 if and

only if R(1) is special Frobenius. Hence, this direction of the proof is finished.
(⇐): As the unit object is separable (resp., special) Frobenius, by Lemma 2.39(b), it
follows that R(1) is separable (resp., special) Frobenius.

3.3 Pivotal case

Recall the definitions of pivotal categories and functors from Section 2.3.

Proposition 3.10. Let C be a monoidal category.

(a) Suppose that ((A, σ),m, u,∆, ν) ∈ Frob(Z(C)), then F = A ⊗ − : C → C is a
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Frobenius monoidal functor with structure maps:

F2(X, Y ) := (m ⊗ IdX ⊗ IdY )(IdA ⊗ σX ⊗ IdY ) : A ⊗ X ⊗ A ⊗ Y → A ⊗ X ⊗ Y

F 2(X, Y ) := (IdA ⊗ σ−1
X ⊗ IdY )(∆ ⊗ IdX ⊗ IdY ) : A ⊗ X ⊗ Y → A ⊗ X ⊗ A ⊗ Y

F0 := u : 1 → A F 0 := ν : A → 1.

(b) If C is pivotal and (A,m, u,∆, ν) is a symmetric Frobenius algebra in Z(C), then
A⊗ − : C → C is a pivotal functor with the above structure maps.

Proof. The proof of (a) is straightforward, so we will only prove (b). Let p denote
the pivotal structure of C. By the definition of a pivotal functor (Definition 2.25), we
need to prove that

ξA⊗−
X ◦ (IdA ⊗ pX) = pA⊗X : A⊗ ∨∨X → ∨∨(A⊗X) = ∨∨A⊗ ∨∨X.

where ξA⊗−
X

(2.6)= ∨((ζA⊗−
X )−1) ◦ ζA⊗−

∨X . We first calculate that

ζA⊗−
X

(2.5)= ([F 0 ◦ F (evX) ◦ F2(∨X, X)] ⊗ Id∨F (X)) (IdF (∨X) ⊗ coevF (X))
(♠)= (ν m ⊗ evX ⊗ Id∨(A⊗X))(IdA ⊗ σ∨X⊗X⊗∨(A⊗X))(IdA⊗∨X ⊗ coevA⊗X)
(♢)= (ν m ⊗ Id∨X⊗∨A)(IdA ⊗ σ∨X ⊗ Id∨A)(IdA⊗∨X ⊗ coevA).

Here, the equality (♠) is obtained by plugging in the description of F 2, F2, F
0, F0

from part (a), and the equality (♢) using that coevA·X = (IdA ⊗ coevX ⊗ Id∨A)coevA

and the snake relation. A similar calculation shows that

(ζA⊗−
X )−1 = σ∨X (Id∨X ⊗ evA ⊗ IdA)(Id∨X·∨A ⊗ u ∆).

Using the descriptions of ζA⊗−
X and (ζA⊗−

X )−1 above, we get an expression for ξA⊗−
X .

Using the naturality of σ and the snake relation one can simplify further to get that
ξA⊗−

X = κA ⊗ Id∨∨X , where κA : A → ∨∨A is the following morphism

= (νm ⊗ Id∨∨A)(IdA ⊗ evA ⊗ IdA ⊗ Id∨∨A)(IdA ⊗ Id∨A ⊗ ∆u ⊗ Id∨∨A)(IdA ⊗ coev∨A)
(2.35)= (νm ⊗ Id∨∨A)(IdA ⊗ IdA ⊗ ev∨A(pA ⊗ Id∨A) ⊗ Id∨∨A)(IdA ⊗ ∆u ⊗ coev∨A)
(N)= (ev∨A ⊗ Id∨∨A)(Id∨∨A ⊗ coev∨A)pA(νm ⊗ IdA)(IdA ⊗ ∆u)
(♡)= (ev∨A ⊗ Id∨∨A)(Id∨∨A ⊗ coev∨A)pA = pA.

Here, the equality (♡) holds because A is a Frobenius algebra. Finally,

ξA⊗−
X ◦ (IdA ⊗ pX) = (pA ⊗ Id∨∨X)(IdA ⊗ pX) = (pA ⊗ pX) = pA⊗X .

Hence, the proof is finished.
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Now, we are ready to prove the main result of this section.

Theorem 3.11. Suppose that Condition 3.1 is satisfied with U : C → D a pivotal
functor (thus, C is pivotal). Then, R(1) is a symmetric Frobenius algebra in C if and
only if R is a pivotal Frobenius functor.

Proof. We will prove the forward direction; the converse follows by Lemma 2.39(c).
By Proposition 3.8, R(1) is a Frobenius algebra in Z(C). Thus, in particular, R(1)
is a symmetric Frobenius algebra in Z(C). Hence, by Proposition 3.10(b), R(1) ⊗ −
is a pivotal functor. Since U ⊣ R is a coHopf adjunction by assumption, we get
that hl

1,X : R(1) ⊗X → R(1⊗ U(X)) = RU(X) is a monoidal natural isomorphism
between the functors R(1) ⊗ − and RU . Therefore, we get that RU is pivotal. Now,
observe that

ξR
X ◦R(pD

X) ◦R(εr
X) (N)= ξR

X ◦R(∨∨εr
X) ◦R(pD

UR(X))
(N)= ∨∨R(εr

X) ◦ ξR
UR(X) ◦R(pD

UR(X))
(2.8)= ∨∨R(εr

X) ◦ ξR
UR(X) ◦R(ξU

R(X)) ◦RU(pC
R(X))

(2.22)= ∨∨R(εr
X) ◦ ξRU

R(X) ◦RU(pC
R(X))

(2.8)= ∨∨R(εr
X) ◦ pC

RUR(X)
(N)= pC

R(X) ◦R(εr
X).

As εr
X is epic and R is exact, R(εr

X) is epic. Consequently, ξR
X ◦R(pD

X) = pC
R(X), thereby

proving that R is pivotal.

3.4 Ribbon case

In this section, we equip our categories with braidings and further strengthen the
results obtained in previous sections.

Lemma 3.12. Let U : (C, c) → (D, d) be a braided strong monoidal functor between
braided monoidal categories. Then, U ra is braided and U la is cobraided.

Proof. Let R := U ra. Observe that R(dX,Y ) ◦R2(X, Y ) is
(2.50(a))= R(dX,Y ) ◦R(εX · εY ) ◦R(U−1

2 (R(X), R(Y ))) ◦ ηR(X)·R(Y )
(N)= R(εY · εX) ◦R(dUR(X),UR(Y )) ◦R(U−1

2 (R(X), R(Y ))) ◦ ηR(X)·R(Y )
(♢)= R(εY · εX) ◦R(U−1

2 (R(Y ), R(X))) ◦RU(cR(X),R(Y )) ◦ ηR(X)·R(Y )
(N)= R(εY · εX) ◦R(U−1

2 (R(Y ), R(X))) ◦ ηR(Y )·R(X) ◦ cR(X),R(Y )
(2.50(a))= R2(Y,X) ◦ cR(X),R(Y ).
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Here, the equality (♢) holds because U is braided. Thus, R is braided.
By Lemma 2.13, we know that U is cobraided. Hence, Uop is a braided strong

monoidal functor. Then, the claim about L := U la follows by applying the above
result to the adjunction Uop ⊣ Lop.

Theorem 3.13. Let U : C → D be a ribbon functor between ribbon categories satisfying
Condition 3.1. Then R(1) is a symmetric Frobenius algebra in C if and only if R is a
ribbon Frobenius functor.

Proof. By Theorem 3.5, U la = U ra = R. Since U is braided, by Lemma 3.12, we get
that U la = R is cobraided and U ra = R is braided. Finally, as R(1) is symmetric
Frobenius, we obtain that R is pivotal and Frobenius by Theorem 3.11. Now, by
Proposition 2.31, R is a ribbon Frobenius functor. The converse is straightforward.
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Chapter 4

Unimodular module categories

Unimodularity is a classical notion, with roots in linear algebra. Building upon the
definition of a unimodular matrix (determinant = ±1), unimodularity of lattices,
bilinear forms, topological groups, Hopf algebras, Poisson algebras, tensor categories,
etc. is defined. In this thesis, we are interested in unimodular tensor categories.
Research in this direction began with work on locally compact topological groups.
Such a group is equipped with a left and a right invariant Haar measure, and when
the left invariant Haar measure is also right invariant, we call the group unimodular.
Generalizing this, Sweedler [Swe69] introduced the notions of left and right integrals
for Hopf algebras. Then, a finite dimensional Hopf algebra is said be unimodular if its
distinguished character, which measures how far a left integral is from being a right
integral, is identically 1 [LS69]. Etingof and Ostrik [EO04] defined an analogue of the
distinguished character called the distinguished invertible object, and denoted as D,
for any tensor category C. This section is devoted to studying unimodular module
categories.

Unimodularity of a tensor category is a crucial property for topological applications.
Non-semisimple generalizations of the Reshetikhin-Turaev invariants [RT91], which
are defined using certain tensor categories as input, require the input category to be
unimodular. Another important class of invariants, the Turaev-Viro invariants [TV92],
are built using spherical fusion categories as input. However, in the non-semisimple
setting, the definition of a spherical tensor category [DSPS18] requires the underlying
category to be unimodular. Recent works like [BDR22] have also employed unimodular
(ribbon) tensor categories to construct invariants of 4-dimensional manifolds.

In this chapter, we introduce unimodular module categories. We discuss their
basic properties and collect various characterizations in Section 4.1. In Section 4.2, we
employ unimodular module categories to construct Frobenius algebras in the Drinfeld
center. In Section 4.3, we construct symmetric Frobenius algebras using pivotal
categories. This chapter is based on our article [Yad23].
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4.1 Definition and basic properties

Let C be a finite tensor category and M an exact left C-module category. Recall
that S and N are left C-module functors with module constraints s and n given
in Theorem 2.55(c) and Theorem 2.56(a), respectively. Thus, SN is left C-module
endofunctor of M with module constraints

dX,M : SN(X ▷M) S(nX,M )−−−−→ S(X ∨∨ ▷N(M))
sX ∨∨,N(M)−−−−−−→ X ▷ SN(M)

Similarly, NS ∈ RexC(M). Using Theorems 2.56(b) and 2.55(b), we get that SN =
(NS)−1 in RexC(M). It was shown in [FGJS22, Proposition 4.13] that DRexC(M) ∼=C

NS. Thus,

RexC(M) is unimodular ⇐⇒ N S ∼=C IdM ⇐⇒ SN ∼=C IdM. (4.1)

The above discussion motivates the following definition.

Definition 4.1. A unimodular structure on an exact left C-module category M is
a C-module natural isomorphism u : IdM → S N such that the following diagram
commutes for all X ∈ C and M ∈ M.

X ▷M

uX▷M

��

IdX▷uM // X ▷ S N(M)

S N(X ▷M)
S(nX,M )

// S(X ∨∨ ▷N(M))

sX ∨∨,N(M)

OO

(4.2)

An exact, left C-module category is called unimodular if it admits a unimodular
structure u.

Lemma 4.2. Definitions 1.6 and 4.1 of a unimodular module category are equivalent.

Proof. According to Definition 1.6, M is unimodular if and only if RexC(M) is
unimodular. By equation (4.1), RexC(M) is unimodular if and only if there exists a
C-module natural isomorphism u : IdM → SN, that is a unimodular structure on M.
Thus, the claim follows.

Remark 4.3. Since N is an equivalence with quasi-inverse N by Theorem 2.56(b),
M is unimodular if and only if there exists a natural isomorphism N ∼= S of C-
module functors. Thus, Definition 4.1 is the same as the one suggested in [FSS20,
Remark 4.27].

Next, we present some examples of unimodular module categories.
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Example 4.4. (i) Let C be a finite tensor category. Then, M = C considered as a left
C-module category is unimodular if and only if C is a unimodular tensor category.
(ii) Let C be a nondegenerate (i.e. global dimension of C is nonzero) fusion tensor
category. For instance, the category Rep(H) for H a semisimple and cosemisimple Hopf
algebra is a nondegenerate fusion category. Then, by [ENO04, ], C is unimodular. If
M is a semisimple left C-module category, then by [ENO05, Theorem 2.18], RexC(M)
is multifusion. Hence, by Lemma 4.2, M is a unimodular left C-module category.
(iii) Let H be a finite dimensional Hopf algebra. Then the category C = Rep(H)
is a finite tensor category. The forgetful functor F : Rep(H) → Vec turns Vec
into a left Rep(H)-module category. By [EGNO16, Example 7.12.26], we have that
RexC(Vec) ∼= Rep(H∗), where H∗ is the dual Hopf algebra of H. Therefore, Vec is a
unimodular Rep(H)-module category if and only if H∗ is a unimodular Hopf algebra.
This happens if and only if the distinguished grouplike element gH of H is equal to its
unit 1H .

In Chapter 6, we generalize Example 4.4(iii) and classify unimodular Rep(H)-
module categories over for any finite dimensional Hopf algebra H.

The next remark shows that tensor categories that are not unimodular can admit
unimodular module categories.

Remark 4.5. Let C be a finite tensor category that is not unimodular (DC ≇ 1). For
instance, one can take C to be the category of representation of the Taft algebra. Now,
consider the category D = C ⊠ Crev. Then, we get that

DC⊠Crev = NC⊠Crev(1C⊠Crev)
(†)∼= (NC⊠NCrev)(1⊠1)

(‡)∼= NC(1)⊠NC(1) = DC⊠DC ≇ 1⊠1.

Here, the isomorphism (†) follows from [FSS20, Proposition 3.20]. Since, C = Crev as
categories, we have that NC = NCrev . Thus, the isomorphism (‡) holds. Consequently,
we get that D is not unimodular. Now, consider the left D-module category M := C
with actions defined as

(X ⊠ Y ) ▷ M := X ⊗M ⊗ Y.

Then, we claim that the D-module category M is unimodular. Indeed, by [EGNO16,
7.13.8], we have that RexD(M) ∼= Z(C). Further, by [EGNO16, Proposition 8.6.3],
Z(C) is factorizable and by [EGNO16, 8.10.10], factorizable finite tensor categories are
unimodular. Thus, Z(C) is unimodular. Equivalently, M is a unimodular D-module
category.
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Next, we collect a few basic results about unimodular module categories. The
following result shows that unimodular module categories are closed under direct
sums.

Lemma 4.6. Suppose that M = ⊕i∈IMi where the set I is finite and each Mi is an
indecomposable, exact left C-module category. Then M is unimodular if and only each
Mi is unimodular.

Proof. Since M is decomposable, D := RexC(M) is a multitensor category. Thus, we
can write D as a direct sum of its component subcategories Dij := RexC(M)ij. But
Dij = RexC(Mi,Mj) by Lemma [EGNO16, Lemma 7.12.6]. Now, by the following
equivalences, the claim follows.

M unimodular ⇐⇒ DD ∼=C IdM
(2.60)⇐⇒ DDii

∼=C IdMi
∀i ∈ I

⇐⇒ Mi unimodular ∀i ∈ I.

Lemma 4.7. Let M be an indecomposable, exact, left C-module category. Then, a
unimodular structure on M, if it exists, is unique up to a scalar multiple.

Proof. Since M is indecomposable, IdM is a simple object in RexC(M). Now, given
two unimodular structures u and u′ on M, u′ ◦u−1 is an endomorphism of IdM. Hence,
by Schur’s Lemma,

u′ ◦ u−1 = k IdM for some k ∈ k ⇒ u′ = k u.

Proposition 4.8. Let M be a unimodular left C-module category satisfying N ∼= IdM.
Then, for any M ∈ M, the internal End object Hom(M,M), is a Frobenius algebra
in C.

Proof. Since M is unimodular, we have a natural isomorphism u : IdM → S N. We
also have a natural isomorphism τ : N → IdM. By combining these two isomorphisms,
we get a natural isomorphism p : IdM

u−→ S N S τ−→ S, thereby providing an isomorphism
pM : M → S(M) for all M ∈ M. Now, by [Shi19, Theorem 3.14], it follows that
Hom(M,M) is a Frobenius algebra in C.

Remark 4.9. A finite linear category M is said to be symmetric Frobenius if M is
equivalent to the category of modules over a symmetric Frobenius algebra A [FSS20,
Definition 3.23]. This definition is justified because the property of being a symmetric
Frobenius algebra is Morita invariant. By [FSS20, Proposition 3.24], M is symmetric
Frobenius if and only if NM ∼= IdM. Thus, symmetric Frobenius module categories
provide natural candidates to which the above proposition can be applied.
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4.2 Frobenius algebras from unimodular module categories

In this section, we use unimodular module categories to provide a construction of
(separable, special) Frobenius algebras in the Drinfeld center Z(C). We accomplish
this by constructing appropriate Frobenius monoidal functors with target Z(C). To
construct such functors, we employ the strategy outlined in [Yad22]. Namely, we
consider the right adjoint of the functor Ψ defined below.

Definition 4.10. [Shi20, Section 3.6] Let C be a finite tensor category and M a left
C-module category. Consider the functor below

Ψ : Z(C) → RexC(M), (X, σ) 7→ (X ▷−, sσ), (4.3)

where the left C-module structure of X ▷− is

sσ
Y,M : Y ▷ (X ▷ (M)) = (Y ⊗X) ▷ M σY ▷IdM−−−−→ (X ⊗ Y ) ▷ M = X ▷ (Y ▷ M).

In order to better understand Ψ, we define the following functors.

Definition 4.11. Set D := RexC(M).

• For any monoidal category C, consider the forgetful functor

U ′
C : Z(C)mir → C (X, σ) 7→ X. (4.4)

As a monoidal functor, UC and U ′
C are identical. Thus, many facts about UC also

hold true for U ′
C. In particular, U ′

C is a strong monoidal functor. When C is a
finite tensor category, U ′

C admits a right adjoint RC.
• Schauenburg’s [Sch01, Theorem 3.3] established the following braided equivalence

between the Drinfeld centers of C and Drev.

ΘM : Z(C) ∼−→ Z(Drev), (X, σ) 7→ ((X ▷−, sσ),Σ). (4.5)

For the definition of Σ, see [Shi20, Section 3.7].
• For any monoidal category C, by [EGNO16, Exercise 8.5.2], we have the following

braided equivalence

ΩC : Z(Crev) ∼= Z(C)mir, (X, σ) 7→ (X, σ−1). (4.6)

Now consider the following result.

Lemma 4.12. [Shi20, Theorem 3.14] The functor Ψ is equal to the composition
U ′

D ◦ ΩD ◦ ΘM. Further, Ψ is an exact, strong monoidal functor.



44

Proof. Observe that

U ′
D ◦ ΩD ◦ ΘM(X, σ) (4.5)= U ′

D ◦ ΩD((X ▷ −, sσ), Σ) (4.6)= U ′
D((X ▷ −, sσ), Σ−1)

(4.4)= (X ▷ −, sσ). (4.3)= Ψ(X, σ).

Since U ′
D, ΩD and ΘM are each strong monoidal, Ψ is a strong monoidal functor.

Furthermore, by [Shi20, Theorem 3.11], Ψ admits a right adjoint Ψra. Since the
categories Z(C) and RexC(M) are rigid, a left adjoint also exists. Since, Z(C) and
RexC(M) are finite categories, the existence of adjoints implies that Ψ is exact.

In the following discussion, the algebra object Ψra(IdM) ∈ Z(C) will be very
important. By Theorem 2.62(a), Ψra(IdM) is a commutative algebra in Z(C). To start,
consider the following result, which follows from the work in [Shi20].

Theorem 4.13. Let C be a finite tensor category and M a finite left C-module category.
Then, M is unimodular if and only if Ψra(IdM) is a Frobenius algebra in Z(C).

Proof. Let Θ−1,Ω−1, respectively, denote the quasi-inverse of the equivalences Θ,Ω.
Then,

Ψra ∼= Θra ◦ Ωra ◦ U ′ra ∼= Θ−1 ◦ Ω−1 ◦R (4.7)

Suppose that M is indecomposable. Then, we get the following equivalences.

Ψra(IdM) ∈ Frob(Z(C)) (♢)⇐⇒ R(IdM) ∈ Frob(Z(RexC(M)))
(♠)⇐⇒ RexC(M) unimodular
(4.2)⇐⇒ M unimodular.

The equivalence (♢) holds because Θ−1 and Ω−1 are monoidal equivalences, and thereby
they preserve Frobenius algebras. The equivalence (♠) follows from Theorem 2.62(b)
because RexC(M) is a finite tensor category.

Now suppose that M is decomposable and M = ⊕i∈IMi where Mi are indecom-
posable C-module categories and the set I is finite. First observe that

Ψra
M(IdM) = Ψra

M(⊕i∈I IdMi
) = ⊕i∈IΨra

Mi
(IdMi

)

Now by the following equivalences, the claim follows. Below, we write Frob to denote
Frob(Z(C)).

Ψra
M(IdM) ∈ Frob (2.42)⇐⇒ Ψra

Mi
(IdMi

) ∈ Frob ∀i ∈ I ⇐⇒ Mi unimodular ∀i ∈ I
(4.6)⇐⇒ M unimodular.
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Proposition 4.14. The adjunction Ψ ⊣ Ψra satisfies Condition 3.1.

Proof. We know that Ψ is a strong monoidal functor between abelian monoidal
categories. Since it is an exact functor (by Lemma 4.12) between finite abelian
categories, it admits a right adjoint Ψra. By Theorem 2.50(a), Ψ ⊣ Ψra is a comonoidal
adjunction.

(a) As Z(C), RexC(M) are rigid, by Remark 3.2, Ψ ⊣ Ψra is a coHopf adjunction.
(b) The functor Ψra admits a left adjoint, namely Ψ. Since Ψra is a functor between

rigid categories, it also admits a right adjoint. Thus, Ψra is a functor between
finite tensor categories, Z(C) and RexC(M), admitting both adjoints. This
implies that Ψra is exact.

(c) Since M is indecomposable, D = RexC(M) satisfies EndD(IdM) ∼= k. Thus, by
[Shi16, Corollary 5.9], we get that the functor (U ′

D)ra is faithful. Since Θra
M and

ΩD are category equivalences, we get that Ψra = Θra
M ◦ Ωra

D ◦ U ′ra
D is faithful.

In the following theorem, we collect many characterizations of unimodular module
categories. This result also highlights the importance of the functor Ψra to the problem
of constructing commutative Frobenius algebras in the Drinfeld center.

Theorem 4.15. Let C be a finite tensor category and M an exact, left C-module
category. Then, the following are equivalent.

(a) M is a unimodular module category.
(b) RexC(M) is a unimodular multitensor category.
(c) S N ∼= IdM as left C-module functors.
(d) Ψra(IdM) is a Frobenius algebra in Z(C).

If furthermore, M is indecomposable, then above conditions are equivalent to the
following.

(e) Ψra is a Frobenius monoidal functor.

Proof. (a)⇔(c) and (a) ⇔(b) are clear from Definition 4.1 and Lemma 4.2, respectively.
Also, (a)⇔(d) is known by Theorem 4.13.

Lastly, we need to show that when M is indecomposable, (d)⇔(e). By Proposi-
tion 4.14, the adjunctions Ψ ⊣ Ψra satisfies Condition 3.1. Thus, by Theorem 3.5, the
claim follows.
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By applying Theorem 3.9 to the functor Ψ, we get the following result.

Theorem 4.16. Let C be a finite tensor category and M be an indecomposable,
unimodular left C-module category. Then, Ψra is a separable (resp. special) Frobenius
monoidal functor if and only if the Frobenius algebra Ψra(IdM) in Z(C) is separable
(resp. special).

Proof. By Proposition 4.14, the adjunctions Ψ ⊣ Ψra satisfies Condition 3.1. Thus, by
Theorem 3.9 the claim follows.

For future use, we also record the following result.

Lemma 4.17. Let M be an indecomposable left C-module category. Then, Ψra(IdM)
is connected.

Proof. The proof follows from the following computation.

HomZ(C)(1Z(C),Ψra(IdM)) ∼= HomRexC(M)(Ψ(1Z(C)), IdM) = HomRexC(M)(IdM, IdM)
∼= k.

4.3 Pivotal case

Next, we consider the pivotal case when C is a pivotal finite tensor category. This
assumption is needed in order to construct symmetric Frobenius algebras in Z(C).

Let C be a pivotal tensor category with pivotal structure p : IdC
∼=−→ ∨∨(−). Recall

that, by Theorem 2.55(a), if M is an exact left C-module category, then the (right)
relative Serre functor S of M exists. Then, S is a left C-module functor with module
constraint given by

S(X ▷M) sX,M−−−→ ∨∨X ▷ S(M)
p−1

X ▷IdM−−−−−→ X ▷ S(M).

This allows one to define a pivotal structure on an exact C-module category.

Definition 4.18. [Shi19, Definition 3.11] Let C be a pivotal tensor category. An
pivotal structure on an exact left C-module category M is a left C-module natural
isomorphism p̃ : IdM → S. A pivotal left C-module category is an exact left C-module
category equipped with a pivotal structure.

Shimizu proved the following interesting property of pivotal module categories.
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Theorem 4.19. [Shi19, Theorem 3.13] If C is a pivotal finite tensor category and
M is a pivotal left C-module category, then (RexCM)rev is a pivotal finite multitensor
category.

We use the notation F lla := (F la)la and F rra = (F ra)ra. Under the assumptions of
Theorem 4.19, RexC(M) is also a pivotal monoidal category. In particular, its pivotal
structure is given by:

p
RexC(M)
F := (F F ◦̃p−−→ F ◦ S

ω−1
F lla−−→ S ◦ F lla p̃−1◦F lla

−−−−→ F lla),

where ωF : SN ◦ F → F rra ◦ SM for F ∈ RexC(M) is the natural isomorphism of
functors from [Shi19, Theorem 3.10].

Lemma 4.20. If C is a pivotal finite tensor category and M is a pivotal left C-module
category, then Ψ is a pivotal functor.

Proof. By Lemma 4.12, Ψ = U ′
D ◦ ΩD ◦ ΘM. By [FGJS22, Proposition 5.14], ΘM is

a pivotal functor. It is straightforward to check that ΩD is a pivotal functor. Also,
for any pivotal monoidal category D, the forgetful functor Z(D) → D is pivotal (see
e.g. [TV17, Section 5.2.2]). Thus, U ′

D is pivotal. By Lemma 2.26, the composition of
pivotal functors is pivotal. Hence, we conclude that Ψ is pivotal.

Next, we prove the two main result of this section.

Theorem 4.21. Let C be a pivotal finite tensor category and M be a indecomposable,
pivotal, unimodular left C-module category. Then Ψra is a pivotal Frobenius monoidal
functor.

Proof. By Proposition 4.14, the adjunctions Ψ ⊣ Ψra satisfies Condition 3.1. Thus,
by applying Theorem 3.11 to the adjunction Ψ ⊣ Ψra, we obtain that Ψra is a pivotal
functor if Ψra(IdM) is a symmetric Frobenius algebra in Z(C). First, recall that
Ψ = U ′ ◦ Ω ◦ Θ. Thus, by (4.7),

Ψra(IdM) ∼= Θ−1 ◦ Ω−1 ◦ (U ′)ra(IdM).

As RexC(M) is pivotal finite tensor category, by Theorem 2.62(c), (U ′)ra(IdM) is a
symmetric Frobenius algebra. It is straightforward that Ω is a pivotal equivalence
and by [FGJS22, Proposition 1], Θ is a pivotal equivalence as well. Hence, Ω−1, Θ−1

are also pivotal functors, and, by Lemma 2.26, so is Ω−1 ◦ Θ−1. As pivotal functors
preserve symmetric Frobenius algebras, we conclude that Ψra(IdM) is a symmetric
Frobenius algebra in Z(C). So, we are done by Theorem 3.11.
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Theorem 4.22. Let C be a pivotal finite tensor category and M be a indecomposable,
pivotal, unimodular left C-module category. Then, Ψra is a special, pivotal Frobenius
monoidal functor if and only if dim(Ψra(IdM)) ̸= 0.

Proof. By Theorem 4.21, we know that Ψra is a pivotal Frobenius pivotal functor.
As such functors preserve symmetric Frobenius algebras, and IdM is a symmetric
Frobenius algebra in RexC(M), it follows that Ψra(IdM) is a symmetric Frobenius
algebra in Z(C).

(⇒) Suppose that Ψra is special with nonzero constants β0 and β2. Then, by
Lemma 2.28,

dim(Ψra(IdM)) = β0β2 dim(IdM) = β0β2 ̸= 0.

(⇐) We know that Ψra(IdM) is a connected (Lemma 4.17) Frobenius algebra of
nonzero dimension. Thus, by Lemma 2.38, Ψra(IdM) is special Frobenius. Hence, by
Theorem 4.16, Ψra is a special, pivotal Frobenius monoidal functor.

Remark 4.23. The starting point for our work [Yad23] was the work [FS21b] in which
a recipe for constructing (commutative) symmetric Frobenius algebras in the Drinfeld
center was provided. Concretely, for C a finite tensor category and M, N exact left
C-module categories, the authors used right exact C-module functors F,G : M → N
to construct certain objects Nat(F,G) in the Drinfeld center Z(C).

We observed that the objects Nat(F,G) can be obtained functorially as follows.
Consider the following functor.

ΨM : Z(C) → RexC(M), (c, σ) 7→ (c ▷−, sσ).

Then we get observed that Nat(F,G) = Ψra
N (F ◦Gla) . Hence, we can use the functor

Ψra for constructing Frobenius algebras in Z(C). This prompted us to investigate the
functor ΨM and its right adjoint Ψra

M.
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Chapter 5

Tensor category of representations of a Hopf
algebras

Let H be a finite dimensional Hopf algebra. In this chapter, we study the category
C = Rep(H) of finite dimensional left H-modules. In particular, we collect various
results about C and also its module categories. These results will be used in Chapter 6
to classify unimodular C-module categories.

The material in this chapter is based on [Yad23, Sections 4.1 and 4.2]. We start in
Section 5.1 by providing background material on exact H-comodule algebras A. We
explicitly describing the Nakayama functor of the Rep(H)-module category Rep(A) and
its twisted Rep(H)-module structure. Using this, we describe the Radford isomorphism
of Rep(H) and the relative Serre functor of its module categories Rep(A) in Section 5.2.

Definition 5.1. A bialgebra is a tuple (H,m, u,∆, ε) such that

• (H,m, u) is an algebra over k,
• (H,∆, ε) is a coalgebra over k, and
• ∆, ε are algebra maps.

In this section and the next one, we will frequently use the Sweedler notation for
denoting coproducts and coations. For example, ∆(h) will be denoted as h1 ⊗ h2.

Definition 5.2. A bialgebra (H,m, u,∆, ε) is called a Hopf algebra is it admits a map
S : H → H (called the antipode) which satisfies that S(h2)h2 = ε(h)1H = h1S(h2).

Here are a few immediate properties that we will need in the following. See [Rad11]
for details.

(a) H finite dimensional ⇒ S is bijective.
(b) H∗ = Hom(H,k) is also a Hopf algebra over k.

From here on, we fix C = Rep(H) for H a finite dimensional Hopf algebra over k.
Then, we get the following result.
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Lemma 5.3. Let H be a finite-dimensional Hopf algebra. Then, C = Rep(H) is a
finite tensor category.

Proof. Observe that

• C is k-linear, abelian.
• C is monoidal: unit object is k ∈ C with action h · 1k = ε(h); for X, Y ∈ C,
X ⊗ Y ∈ C via action h · (x⊗ y) = h1 · x⊗ h2 · y.

• C is rigid: for X ∈ C, define ∨X,X ∨ = Hom(X, k) = X∗ as vector spaces. Then
∨X ∈ C via (h · f)(v) = f(S(h) · v) and X ∨ ∈ C via (h · f)(v) = f(S−1(h) · v) .

• The tensor product bifunctor ⊗ : C × C → C is biexact and End(1) ∼= k.

Thus, C is a finite tensor category.

5.1 Exact comodule algebras and the Nakayama functor

A left H-comodule algebra is a left H-comodule (A, ρ) with an algebra structure such
that the multiplication and unit maps are H-comodule maps, that is,

ρ(aa′) = a(−1)a
′
(−1) ⊗k a(0)a

′
(0), ρ(1A) = 1H ⊗k 1A (∀ a, a′ ∈ A) (5.1)

where ρ(a) is denoted as a(−1) ⊗ a(0) ∈ H ⊗ A. Then the category Rep(A) is a
left Rep(H)-module category via the action ▷ : Rep(H) × Rep(A) → Rep(A) where
X ▷M = X ⊗k M as vector space, and the A-action on X ▷M is defined as

a · (x⊗m) = a(−1)x⊗ a(0)m (a ∈ A, x ∈ X, m ∈ M).

In fact, by [AM07], every left C-module category M is of the form M = Rep(A) for
A a left H-comodule algebra. In this setting, A is called exact (resp., indecomposable)
if the C-module category M is exact (resp., indecomposable).

By [Shi19, Lemma 4.5] (see also [Skr07]), every exact left H-comodule algebra A
is a Frobenius algebra. Thus, we can endow A with a Frobenius system, that is, a
triple (λA, {ai}, {bi}) with 1 ≤ i ≤ r = dim(A). Here λA : A → k is a linear map and
{ai}, {bi} are two bases of A such that ⟨λA, a

ibj⟩ = δi,j for all i, j = 1, . . . , r. The
Nakayama automorphism of A (with respect to λA) is the unique algebra automorphism
ν := νA : A → A characterized by

⟨λA, ab⟩ = ⟨λA, νA(b)a⟩ (a, b ∈ A). (5.2)

By [Shi19, Lemma 4.2] , the following equalities hold for all c ∈ A:

⟨λA, a
i⟩bi = 1A = ⟨λA, bi⟩ai, aic⊗ bi = ai ⊗ cbi, νA(c)ai ⊗ bi = ai ⊗ bic. (5.3)
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Notation 5.4. We will use the following notations going forward.

(a) For a vector space M , we will denote the basis of M by mi and the dual basis
of M∗ by mi. These satisfy ⟨mi,m⟩mi = m for all m ∈ M .

(b) If (X, ·) is a left H-module and f : H ′ → H is an algebra map. We use the
notation (fX, ·f) to denote the H ′-module X with action given by h′ ·f x :=
f(h′) · x for h′ ∈ H ′, x ∈ X.

(c) ϕN
M : M∗ ⊗AN

∼−→ HomA(M,N) is an isomorphism given by m∗ ⊗An 7→ ⟨m∗, ?⟩n
with inverse f 7→ mi ⊗A ⟨f,mi⟩.

Nakayama functor of Rep(A)

Let A be a Frobenius algebra. We first provide a description of the Nakayama functor
of Rep(A).

Theorem 5.5. Let A be a Frobenius algebra with Nakayama automorphism ν. Then,
we have that

NRep(A)(M) =
∫ N∈Rep(A)

HomA(M,N)∗ ▶N = νM. (5.4)

The projection maps iM,N : HomA(M,N)∗ ▶N → νM of the coend are given by

iM,N(ξ ⊗k n) = ⟨ξ, ϕN
M(mi ⊗A a

j · n)⟩ν(bj) ·mi (5.5)

for all ξ ∈ HomA(M,N)∗ and n ∈ N .

While this result is well-known to the experts, we could not find a direct proof of
it in the literature. Hence, for the reader’s convenience, we provide a direct proof in
Appendix A.0.1.

Now suppose that A is an exact left H-comodule algebra. Then, by Theo-
rem 2.56(b), NRep(A) is a twisted left Rep(H)-module functor. The following result
explicitly describes this structure.

Theorem 5.6. Let A be an exact left H-comodule algebra. The twisted left Rep(H)-
module structure nl

X,M : ν(X ▷M) → X ∨∨ ▷ νM of the Nakayama functor N of Rep(A)
is given by

nl
X,M(x⊗k m) = ⟨λA, a

i
(0)⟩ϕX(S−1(ai

−1) · x) ⊗k ν(bi) ·m. (5.6)

The inverse of nl
X,M is given by

nl
X,M(ϕX(x) ⊗k m) = ⟨λA, a

i
(0)⟩ν(bi) ·

(
S−2(ai

(−1)) · x⊗k m
)
. (5.7)
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Now, let B be a right H-comodule algebra. Then Rep(B) is a right Rep(H)-module
category. In this case, the Nakayama functor NRep(B) is a twisted right Rep(H)-module
functor and the following result describes this structure.

Theorem 5.7. Let B be an exact right H-comodule algebra. The twisted right C-
module structure nr

X,M : ν(M ◁X) → νM ◁ ∨∨X of the Nakayama functor N of Rep(B)
is given by

nr
X,M(m⊗k x) = ⟨λB, a

i
(0)⟩ν(bi) ·m⊗k ϕX(S(ai

(1)) · x). (5.8)

The inverse of nr
X,M is given by

nr
X,M(m⊗k ϕX(x)) = ⟨λB, a

i
(0)⟩ν(bi) ·

(
m⊗k S

2(ai
(1)) · x

)
. (5.9)

The proof of Theorem 5.7, which can be inferred from [SS21, Theorem 7.3], is
provided in Appendix A.0.2. Then, Theorem 5.6 is proved by applying Theorem 5.7
to the exact right H-comodule algebra Aop.

5.2 Radford’s isomorphism and the Serre functor

In this section, we calculate the Radford isomorphism (2.15) for the finite tensor
category C = Rep(H). This will allow us to explicitly describe the Serre functor of the
module category Rep(A). We emphasize the Radford isomorphism for Rep(H) and
Serre functor of Rep(A) are known by prior work of Shimizu [Shi19].

5.2.1 (Co)integrals of a Hopf algebra

Definition 5.8. Let H be a finite-dimensional Hopf algebras. Going forward, we will
need the following notions:

(a) An element g ∈ H is called a grouplike elements of H if it satisfies that ∆(g) =
g ⊗ g and ε(g) = 1.

(b) An element Λ ∈ H satisfying hΛ = ε(h)Λ for all h ∈ H is called a left integral
of H.

(c) A right cointegral of H is any element λH ∈ H∗ satisfying

⟨λH , h(1)⟩h(2) = ⟨λH , h⟩1H for all h ∈ H. (5.10)

(d) For any left integral Λ, Λh = ΛαH(h) for some αH ∈ G(H∗). Here αH is called
the distinguished character of H∗.
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(e) The distinguished grouplike element of H is an element gH ∈ H satisfying

h(1)⟨λH , h(2)⟩ = ⟨λH , h⟩gH for all h ∈ H. (5.11)

Next, we recall from [Rad11] certain results about (co)integrals that will be needed
in later sections.

Theorem 5.9. (a) Every finite dimensional Hopf algebra admits a non-zero left
integral Λ and a non-zero right integral λH . We can choose Λ and λH such that
⟨λH ,Λ⟩ = 1.

(b) Invertible elements are in bijection with G(H∗) Given β ∈ G(H∗), the corre-
sponding invertible object is kβ which is k as a vector space and H-action is
given by h · c := β(h)c.

(c) Every finite dimensional Hopf algebra is a Frobenius algebra with any right
cointegral λH as the Frobenius form.

(d) The Nakayama automorphism∗ ν of the Frobenius algebra (H,λ) is ν(h) =
α(y1)S2(y2).

Notation 5.10. In light of Theorem 5.9(a), for every f.d. Hopf algebra H, we fix a
left integral Λ and right cointegral λH satisfying ⟨λH ,Λ⟩ = 1. Also, set αH := αH ◦ S
and gH := g−1

H .

5.2.2 Radford isomorphism

It is well known that finite dimensional Hopf algebras are Frobenius with the Frobenius
form given by any right cointegral λ. By [Rad94, Theorem 3(a,b)], we get that the
Nakayama automorphism of H is given by νH(h) = ⟨αH , h1⟩S2(h2) and its inverse ν is

νH(h) = S2(gHh1gH)⟨αH , gHS(h2)gH⟩ (†)= S2(gHh1gH)⟨αH , S(h2)⟩.

Here the equality (†) holds because α is grouplike. Thus,

⟨αH , gHS(h2)gH⟩ = ⟨αH , gH⟩⟨αH , S(h2)⟩⟨αH , gH⟩ = ⟨αH , S(h2)⟩.

Lemma 5.11. We have the following results for 1Rep(H) = k.

(a) NRep(H)(k) = k as a vector space with H-action given by h ⋆ c := ⟨αH , h⟩c.
(b) NRep(H)(k) = k as vector space with H-action given by h⋆c := ⟨αH , S(h)⟩c.

∗ν is defined as the unique automorphism of H such that λ(xy) = λ(ν(y)x). By, [Rad11,
Theorem 10.5.4(e)] the claim follows.
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Proof. By Theorem 5.5, N(k) = νk. Since, the H-action on k is given by h·c = ⟨εH , h⟩c,
we get that that the H-action ⋆ on νH

k is given by

h ⋆ c = ⟨εH , νH(h)⟩c = ⟨αH , h1⟩⟨εH , S
2(h2)⟩c = ⟨αH , h1⟩⟨εH , h2⟩ = ⟨αH , h⟩c. (5.12)

As the functor N is the quasi-inverse of N, it clear that N(M) = νM . Now using the
same argument as above, the claim follows.

The following material is based on the discussion in [SS21, §6.3]. The vector
space H is a left and right H-comodule algebras. Thus, the category Rep(H) is
Rep(H)-bimodule category. By using Theorems 5.6 and 5.7 with A = B = H, we get
the following map.

gX : N(1) ◁ ∨∨X
nr

X,1−−→ N(1 ◁ X) flip−→ N(X ▷ 1)
nl

X,1−−→ X ∨∨ ▷N(1) (5.13)

By [FSS20, Lemma 4.11], D = N(1) is the right dual of N(1). The evaluation and
coevaluation maps are trivial identity maps. As explained in [Shi17, Remark 4.11],
the map RX from [ENO04] is equal to the following composition.
∨∨X⊗D

coevD⊗Id−−−−−→ D⊗N(1)⊗ ∨∨X⊗D
Id⊗gX⊗Id−−−−−→ D⊗X ∨∨⊗N(1)⊗D

Id⊗evD−−−−→ D⊗X ∨∨

(5.14)
We follow this strategy to calculate the Radford isomorphism. To start, we calculate
the map gX .

Lemma 5.12. The map gX in (5.13) is given by c⊗k ϕX(x) 7→ ϕX(gH · x) ⊗k c.

Proof. Fix any Frobenius system (λH , {ai}, {bi}) of H where λH is a right integral of
H.

c⊗k ϕX(x) 7→ nl
X,1 ◦ flip ◦ nr

X,1(c⊗k ϕX(x))
(5.9)= nl

X,1 ◦ flip
[
⟨λH , a

i
(1)⟩ν(bi) ·

(
c⊗k S

2(ai
1) · x

)]
= nl

X,1

[
⟨λH , a

i
(1)⟩

(
ν(bi)(2)S

2(ai
2) · x⊗k ν(bi)(1) · c

)]
(5.6)= ⟨λH , a

j
(2)⟩⟨λH , a

i
(1)⟩ϕX(S−1(aj

1)ν(bi)(2)S
2(ai

2) · x) ⊗k ν(bj)ν(bi)(1) · c
(5.10,5.11)= ⟨λH , a

j⟩⟨λH , a
i⟩ϕX(S−1(gH)ν(bi)(2)S

2(1H) · x) ⊗k ν(bj)ν(bi)(1) · c
(5.3)= ϕX(gH · x) ⊗k c

Remark 5.13. For every finite dimensional Hopf algebra H, Radford [Rad76] proved
that

S4(h) = gH [αH(h1)h2αH(h3)]gH .
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The fact that gX is a morphism of left H-modules is equivalent to above mentioned
formula for the fourth power of antipode after plugging h = αH ⇀ S−2(h).

Proposition 5.14. The Radford isomorphism (2.15) for C = Rep(H) is given by

RX : ∨∨X ⊗D → D ⊗X ∨∨, ϕX(x) ⊗ c 7→ c⊗ ϕX(gH · x) for c ∈ D, x ∈ X.

(5.15)

Proof. Plugging the formula for gX into (5.14), we that

ϕX(x)⊗kc
coevD⊗Id7−→ 1⊗k1⊗kϕX(c)⊗kc

Id⊗gX⊗Id7−→ 1⊗kϕX(gH ·x)⊗k1⊗kc
Id⊗evD7−→ c⊗kϕX(gH ·x).

Hence, the claim follows.

5.2.3 Serre functor

By [FSS20, Theorem 4.26], the relative Serre functor satisfies that S ∼= D ▷N as a left
C-module functor. Since, the Serre functor is unique up to isomorphism, we take the
above as the definition of it. Then we get the following result.

Theorem 5.15. The Serre functor of Rep(A) is given by S(M) = ν′(M) where

ν ′(a) = ⟨αH , S(a(−1))⟩ν(a(0)). (5.16)

The twisted left Rep(H)-module structure sl
X,M : ν′(X ▷M) ∼−→ ∨∨X ▷ ν′M is given by

s(x⊗k m) = ⟨λ, ai
(0)⟩ϕX(gHS

−1(ai
(−1)) · x) ⊗k ν(bi) ·m (5.17)

Proof. The formula (5.16) from the formula of the Nakayama functor (5.4) and the
description of D in Lemma 5.11(b). The formula (5.17) follows by composing the
twisted left Rep(H)-module structure of NRep(A) given in (5.6) the inverse R−1

X of the
Radford isomorphism (5.15).

Remark 5.16. A different formula for the relative Serre functor was also provided in
[Shi19].
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Chapter 6

Unimodular structures on Rep(A)

Let H be a finite-dimensional Hopf algebra. In this chapter, we classify unimodular
Rep(H)-module categories. This chapter is based on [Yad23, Sections 4.3-4.5].

We use the description of the Nakayama functor and the relative Serre functor
of Rep(A) provided in Sections 5.1 and 5.2.3, respectively, to describe the C-module
functor SRep(A)NRep(A) in Section 6.1. Then we introduce unimodular elements of an
exact H-comodule algebra A. Using them, in Section 6.2, we characterize unimodular
structures on Rep(A). As the definition of unimodular elements is involved, in
Section 6.3 we discuss the simpler case when A admits a grouplike cointegral. In this
case, the definition of unimodular elements is much simpler. To illustrate our results,
we consider the example of Taft Hopf algebras in Section 6.4. Finally, we end with
some remarks and question in Section 6.5.

6.1 Description of the functor SRep(A)NRep(A)

Theorem 6.1. For M ∈ Rep(A), we have that SN(M) = ν̃M ∈ Rep(A) where

ν̃(a) = ⟨αH , S(a−1)⟩ν2(a0). (6.1)

The left C-module structure of SN is given by

dX,M(x ▷ m) = (ℑH · x) ▷ (ℑL ·m), where (6.2)

ℑ = ℑH ⊗ ℑL := ⟨λA, a
i
0⟩⟨λA, a

j
0⟩ gHS

−3(aj
−1)S−1(ai

−1) ⊗k ν(bjbi) ∈ H ⊗k L. (6.3)

Proof. By the descriptions of the Nakayama functor (5.4) and the relative Serre functor
(5.16), it is clear that as a functor, SN is given by (6.1). Further, using the the twisted
left C-module structures of the relative Serre functor (5.17) and the Nakayama functor
(5.6) , we get that, SN : M → M is a left C-module functor with the left C-module
structure dX,M given by the following composition.

dX,M : SN(X ▷M) S(nX,M )−−−−→ S(X ∨∨ ▷N(M))
sX ∨∨,N(M)−−−−−−→ ∨∨X ∨∨ ▷ SN(M) = X ▷ SN(M).
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The following calculation yields an explicit description of the left C-module structure
of the functor SN.

x⊗k m
S(nX,M )7−−−−→ ⟨λ, ai

0⟩ϕX(S−1(ai
−1) · x) ⊗k ν(bi) ·m

sX ∨∨,N(M)7−−−−−−→⟨λA, a
j
0⟩⟨λA, a

i
0⟩ϕX ∨∨(gHS

−1(aj
−1) · ϕX(S−1(ai

−1) · x)) ⊗k ν(bj)ν(bi) ·m
(♠)= ⟨λA, a

j
0⟩⟨λA, a

i
0⟩ϕX ∨∨ ◦ ϕX(S−2(gHS

−1(aj
−1))S−1(ai

−1) · x) ⊗k ν(bj)ν(bi) ·m
(♢)= ⟨λA, a

j
0⟩⟨λA, a

i
0⟩S−2(gHS

−1(aj
−1))S−1(ai

−1) · x⊗k ν(bjbi) ·m
(♡)= ⟨λA, a

j
0⟩⟨λA, a

i
0⟩gHS

−3(aj
−1)S−1(ai

−1) · x⊗k ν(bjbi) ·m

Here (λA, {ai}, {bi}) and (λA, {aj}, {bj}) are Frobenius systems of A. The equality
(♠) holds because the left action of H on X ∨∨ is given h ·ϕX(x) = ϕX(S−2(h) ·x). The
equality (♢) holds because we identify X and ∨∨X ∨∨ via the map ϕX ∨∨ ◦ϕX and ν is an
algebra map. Lastly, (♡) holds because gH is grouplike. From the above computation,
it follows that the left C-module structure of S N is as described by equations (6.2)
and (6.3).

6.2 Unimodular elements in exact H-comodule algebras

From Definition 4.1, recall that Rep(A) is a unimodular Rep(H)-module category if
and only if there exists a C-module natural isomorphism u : IdM → S N. Next, we will
use Theorem 6.1, to characterize such natural isomorphisms using certain invertible
elements of the algebra A. To this end, consider the following notion.

Definition 6.2. Let A be an exact, left H-comodule algebra. A unimodular element
of A is an invertible element g̃ ∈ A satisfying the following two relations:

g̃ag̃−1 = ν̃(a) (∀ a ∈ A) (6.4)
1H ⊗ g̃ = ℑ · δ(g̃) (6.5)

Here δ is comodule structure of A. For the definition of ν̃ and ℑ, see (6.1) and (6.2),
respectively.

Using this, we obtain the following result.

Theorem 6.3. Let A be an exact, left H-comodule algebra. Then, unimodular
structures on the Rep(H)-module category Rep(A) are in bijection with unimodular
elements of A.
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Proof. Suppose that we have a unimodular structure u : IdM → SN (6.1)= ν̃(−). Then,
we get the element g̃ = uA(1A) ∈ A. By naturality of u, it follows that uX(x) = g̃ · x
for all x ∈ X and X ∈ Rep(A). As uA is an isomorphism, g̃ is an invertible element in
A.

• As uA = g̃ · (−) : A → ν̃A is a map of left A-modules, condition (6.4) is satisfied.
• As u is a C-module natural isomorphism, the diagram (4.2) commutes. Using

uX(x) = g̃ · x and that the C-module structure of SN is given by ℑ (6.2), we get
that (6.5) is satisfied.

Thus, g̃ is a unimodular element of A.
Conversely, given a unimodular element g̃ of A, we define the natural isomorphism

u = {uM : M → S N(M), m 7→ g̃ ·m}M∈Rep(A).

Then, repeating the above arguments backwards, we get that u = {uM} is a unimodular
structure on Rep(A).

6.3 Grouplike cointegrals on comodule algebras

Consider the following notion.

Definition 6.4. [Kas18] Let H be a Hopf algebra and A a left H-comodule algebra.
A grouplike cointegral on A is a pair (g, λ) consisting of a grouplike element g ∈ H

and a linear form λ : A → k such that the equation

a(−1)⟨λ, a(0)⟩ = ⟨λ, a⟩g (6.6)

holds for all elements a ∈ A. In this situation, λ is called a g-cointegral on A. If λ is
a Frobenius form on A, the g-cointegral λ is called non-degenerate.

Next, we see the the C-module structure of the functor SN simplifies when we
have a grouplike cointegral on A.

Theorem 6.5. Recall the element ℑ from (6.3) and the left C-module structure of
DRexC(M) = S N (6.2). If the Frobenius form λA of A is a gA-grouplike integral for
some grouplike element gA ∈ H, then we have that

ℑ = g−2
A gH ⊗ 1A. (6.7)

Thus, for X ∈ C and M ∈ M, the left C-module structure of SN given by:

S N(X ▷M) → X ▷ S N(M), x ▷ m 7→ ϕX(g−2
A gH · x) ▷ m.
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Proof. Observe that

ℑ (6.3)= ⟨λA, a
i
0⟩⟨λA, a

j
0⟩ gHS

−3(aj
−1)S−1(ai

−1) ⊗k ν(bjbi)
(6.6)= ⟨λA, a

i⟩⟨λA, a
j⟩ gHS

−3(gA)S−1(gA) ⊗k ν(bjbi)
(5.3)= gHS

−3(gA)S−1(gA) ⊗k ν(1A)
(♠)= gHg

−1
A g−1

A ⊗ 1A

(♢)= g−2
A gH ⊗ 1A.

Here, the equality (♠) holds because gA is grouplike element of H and ν is an algebra
map. The equality (♢) holds because gH commutes with all grouplike elements of
H.

When the Frobenius form on the H-comodule algebra under consideration is a
grouplike cointegral, Theorem 6.3 simplifies a lot and we recover [Shi22, Corollary 7.10].

Corollary 6.6. If the Frobenius form λA of A is a gA-grouplike cointegral for some
gA ∈ H, then, the unimodular structures on Rep(A) are in bijection with invertible
elements g̃ ∈ A satisfying:

g̃ag̃−1 = ν̃(a) = ⟨αH , S(a−1)⟩ν2(a0), g−1
H g2

A ⊗ g̃ = δ(g̃) ∀ a ∈ A. (6.8)

The category Vec = Rep(k) is an exact left H-module category as k is an exact
left H-comodule algebra with the H-coaction given by 1 7→ 1H ⊗ 1. Then, by
applying Corollary 6.6 to the H-comodule algebra k, we obtain k admits a unimodular
structure if and only if gH = 1H , that is, H∗ is unimodular. This is consistent with
our observation in Example 4.4(iii).

6.4 Taft algebras example

In this section, we study the case of C = Rep(H) for H being the Taft algebra T (ω).
Let k be an algebraically closed field of characteristic 0. To define Taft algebras, fix
an integer N > 1 and a primitive N -th root of unity ω ∈ k. Then T (ω) is defined as
the k-algebra generated by g and x subject to the relations

xN = 0, gN = 1 and gx = ωxg. (6.9)
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Equipped with the following comultiplication and antipode maps, T (ω) becomes a
Hopf algebra.

∆(g) = g ⊗ g, ∆(x) = x⊗ 1 + g ⊗ x and S(g) = g−1, S(x) = −g−1x. (6.10)

From this, we get the following information.

• The element Λl = ∑N−1
i=0 gixN−1 is a non-zero left integral of T (ω). The distin-

guished character of T (ω) is given by αT (ω)(g) = ω and αT (ω)(x) = 0.
• The functional λT (ω) : T (ω) → k given by λT (ω)(xrgs) = δr,N−1δs,0 for r, s =

0, . . . , N − 1 is a right cointegral of T (ω). The distinguished grouplike element
of T (ω) is given by gT (ω) = g−1.

As gT (ω) ̸= 1H , we have that T (ω)∗ is not unimodular. Thus, by Example 4.4, we
have that Vec is not a unimodular Rep(T (ω))-module category. In fact, as we will see
below, Rep(T (ω)) does not admit a unimodular module category.

Indecomposable, left, exact T (ω)-comodule algebras (or equivalently, indecom-
posable, exact Rep(T (ω))-module categories) were classified by Mombelli [Mom10].
Shimizu [Shi19, §5.1] showed that these comodule algebras admit grouplike cointegrals
and described them explicitly. Using these results and Corollary 6.6, we obtain the
following result on non-existence of unimodular module categories.

Theorem 6.7. The Taft algebra T (ω) does not admit a unimodular comodule algebra.
In other words, the category Rep(T (ω)) does not admit a unimodular module category.

Proof. Choose a divisor d|N and an element ξ ∈ k. Set m = N/d and consider the
following algebras:

(a) A0(d) = k⟨G|Gd = 1⟩.
(b) A1(d, ξ) = k⟨G,X|Gd = 1, XN = ξ,GX = ωmXG⟩.

They are T (ω)-comodule algebras with the coaction determined by

δ(G) = gm ⊗G , δ(X) = x⊗ 1 + g ⊗X. (6.11)

By [Mom10, Proposition 8.3], every indecomposable exact left module category over
Rep(T (ω)) is equivalent to Rep(A) where A is one of the comodule algebras listed
above. Next, we recall the grouplike cointegrals for these comodule algebras and use
them to show that the module categories Rep(A) are not unimodular.
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The comodule algebras A0(d): Define the linear map λA : A0(d) → k by λA(Gr) = δ0,r

(for r ∈ Z/dZ). Then, by [Shi19, Section 5.1.1], λA is a gA-grouplike cointegral
with gA = 1 on A0(d). Further, λA is a Frobenius form on A0(d). The Nakayama
automorphism with respect to λA is ν = IdA0(d). Next, we calculate the automorphism
ν̃ defined in (6.1).

ν̃(G) = ⟨αT (ω), S(gm)⟩ν2(G) = ⟨αT (ω), g
−m⟩G = ω−mG

Plugging this, gT (ω) = g−1 and gA = 1 into Corollary 6.6, we get that A admits a
unimodular structure if and only if there exists an element G̃ ∈ A0(d) such that

G̃Gr = ν̃(Gr)G̃ = ω−mrGrG̃ = ω−mrG̃Gr and g ⊗k G̃ = δ(G̃) hold ∀ r ∈ Z/dZ.
(6.12)

The first condition of (6.12) is satisfied if and only if ω−mr = 1 for all r. This is
satisfied only if m = N and d = 1. With this choice d, A0(d) ∼= k. Then, the second
condition of (6.12) is not satisfied for any G̃. Hence, the module categories Rep(A0(d))
are not unimodular for any d.

The comodule algebras A1(d, ξ): Observe that the set {XrGs|r = 0, . . . , N − 1; s =
0, . . . , d − 1} is a basis of A1(d, ξ). By [Shi19, Section 5.1.2], the linear map λA :
A1(d, ξ) → k given by

λA(XrGs) = δr,N−1δs,0 (for r ∈ {0, . . . , N − 1} and s ∈ Z/dZ)

is a g−1-cointegral and a Frobenius form on A1(d, ξ). The Nakayama permutation ν

with respect to λA is given by ν(X) = X, ν(G) = ωmG. Using the formula (6.1), we
get that

ν̃(G) = ⟨αT (ω), S(gm)⟩ν2(G) = ωmG,

ν̃(X) = ⟨αT (ω), S(x)⟩ν2(1) + ⟨αT (ω), S(g)⟩ν2(X) = ω−1X.

Hence, ν̃(XrGs) = ωms−rXrGs. For A1(d, ξ) to be unimodular, by the first condition
of (6.8), we want ν̃ to be an inner automorphism. As in [Shi19, Section 5.1.2], by a
case-by-case analysis, we show that ν̃ is not an inner automorphism.

• ξ = 0, d > 1: Consider the non-zero algebra map ϵ : A1(d, ξ) → k given by
ϵ(X) = 0 and ϵ(G) = 1. Then, ϵ ◦ ν̃(G) = ωm ̸= 1 as m < N . Thus,
ϵ ◦ ν̃(G) ̸= ϵ(G), and so ν̃ is can not be an inner automorphism.

• ξ = 0, d = 1: In this case, the only invertible element in A1(d, ξ) is 1. But,
ν̃(X) = ω−1X ̸= X. Hence, ν̃ is not inner.
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• ξ ̸= 0, d < N : Fix a N -th root ζ of ξ. Define the left A1(d, ξ)-module V as
follows. A basis of V is given by {vi}i∈Z/dZ and the action is given by

X · vi = ζvi+1, G · vi = ωmivi (i ∈ Z/dZ).

Also, consider the ν̃-twisted module ν̃V . Then Xd acts on V and ν̃V as scalars
ζd and ω−dζd, respectively. As d < N , we have that ω−d ̸= 1. Thus, V and
ν̃V are not isomorphic as left A1(d, ξ)-modules. Hence, ν̃ can not be an inner
automorphism.

• ξ ̸= 0, d = N : Consider the non-zero algebra map ϵ : A1(N, ξ) → k given by
ϵ(G) = 1 and ϵ(X) = ζ for ζ a N -th root of ξ. Then, ϵ ◦ ν̃(X) = ω−1ζ ≠ ζ.
Thus, ϵ ◦ ν̃(X) ̸= ϵ(X), and so ν̃ is not an inner automorphism.

Hence, the module categories Rep(A1(d, ξ)) are not unimodular for any d and ξ.

6.5 Further remarks and questions

We end this section by listing some remarks and directions for further investigation.
First, we show that Theorem 6.3 answers a question of Shimizu [Shi22, Ques-

tion 7.15]. Take H to be a finite dimensional Hopf algebra over a field k. Let
D = Corep(H) denote the category of left H-comodules. Consider a left H-comodule
algebra A. Then, A is nothing but an algebra object in the category D. Further-
more, the category of A-bimodules in the D, denoted ADA, monoidally equivalent to
RexC(M) for C = Rep(H) and M = Rep(A). Moreover, when A is exact, both these
are multitensor categories. So, one can ask when they are unimodular. In [Shi22], the
unimodularity of ADA was studied under the assumption that the algebra A admits a
grouplike cointegral, see Definition 6.4. Further, in [Shi22, §7.5], an example of an
exact left H-comodule algebra that does not admit a grouplike cointegral was provided
and it was asked if there is an easy criterion for determining the unimodularity of
ADA in the general case.

By Lemma 4.2, the multitensor category RexC(M) (or ADA) is unimodular if
and only if M is a unimodular C-module category. Thus, the following Corollary of
Theorem 6.3 provides an answer to Shimizu’s question.

Corollary 6.8. For C = Rep(H) and M = Rep(A), the category RexC(M) is unimod-
ular if and only if A admits a unimodular element.
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While Corollary 6.8 answers Shimizu’s question, it is not an easy criterion in
general. For instance, see Section 6.4 for an example of a computation. This inspires
the following discussion.

A finite dimensional Hopf algebras is unimodular if and only if it admits a two
sided integral. To define the integrals, the counit ε, which is an algebra map from H

to k, is crucially used. It would be interesting to find a similar characterization of
unimodularity of exact H-comodule algebras. However, we do not know whether such
algebras A admits an algebra map to k. This raises the following question.

Question 1. Let A be an exact left H-comodule algebra. Is there a way to define
left and right integrals for A. If so, can the integrals be used to characterize the
unimodularity of the exact left Rep(H)-module category Rep(A)?

Next, two finite tensor categories C,D are called categorically Morita equivalent
is there exists an indecomposable exact left C-module category M such that Drev ∼=
RexC(M) as finite tensor categories. It is clear that a tensor category admits a
unimodular module category if and only if it is categorically Morita equivalent to
a unimodular tensor category. Thus, Theorem 6.7 established that the category
Rep(T (ω)) is not categorically Morita equivalent to a unimodular tensor category.
This naturally leads to the following question.

Question 2. Find a characterization of finite tensor categories that do not admit a
unimodular module category.

Remark 6.9. Let (C, p) be a pivotal finite tensor category. Then, we call C trace-
spherical if dim(X) = dim(∨X) holds for all objects X ∈ C. On the other hand,
a pivotal finite tensor category (C, p) is called (DSPS-)spherical [DSPS18] if C is
unimodular and it satisfies that

pX ◦ pX ∨∨ = (RX)−1 : X ∨∨ → ∨∨X for all X ∈ C.

It is known that these two notion of sphericality are not the same. For instance, it
was shown in [DSPS18] that Rep(T (ω)) is trace-spherical but not DSPS-spherical. By
Theorem 6.7, we obtain that Rep(T (ω)) is not categorically Morita equivalent to a
unimodular tensor category. This, in particular, implies that Rep(T (ω)) can not be
categorically Morita equivalent to a DSPS-spherical tensor category. This establishes
that the two notions of sphericality are not equivalent even when one considers the
weaker notion of categorical Morita equivalence.
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Appendix A

Nakayama functor of Rep(A) and its twisted
Rep(H)-module structure

Let H be a finite-dimensional Hopf algebra and A be a left H-comodule algebra. In
this appendix we provide proofs of Theorems 5.5, 5.6 and 5.7 which pertain to the
(right) Nakayama functor of the Rep(H)-module category Rep(A) and its twisted
module structure.

Notation A.1. Consider three k-vector spaces M,N,N ′ and a k-linear map f : N →
N ′. We will denote by f ♮ : Hom(M,N) → Hom(M,N ′), the map g 7→ f ♮(g) = f ◦ g.
Also, for any algebra A, we have that A∗ is a A-bimodule via the actions

⟨a′ ⇀ f ↼ a′′, a⟩ := ⟨f, a′′aa′⟩ (a, a′, a′′ ∈ A, f ∈ A∗). (A.1)

For this section, we fix A to be an exact left H-comodule algebra. Let λA and ν

denote the Frobenius form and the Nakayama automorphism of A, respectively. We
will need the following result.

Lemma A.2. Let A be an exact left H-comodule algebra. Then, the following results
hold.

(a) For V ∈ Vec and M ∈ Rep(A), the canonical Vec action is given by V ▶M =
V ⊗k M as a vector space and a · (v ⊗k m) = v ⊗k a ·m.

(b) If A is a left H-comodule algebra, A∗ also becomes a left H-comodule with the
coaction given by ρA∗(f) := f(−1) ⊗ f(0) ∈ H ⊗ A∗ where,

f(−1)⟨f(0), a⟩ = ⟨f, a(0)⟩S−1(a(−1)) (a ∈ A, f ∈ A∗). (A.2)

(c) Let M, N be left A-modules. Then, the map ψ : N∗ ⊗A M → HomA(M,N)∗

given by n∗ ⊗A m 7→ ⟨n∗, ?(m)⟩ is an isomorphism of vector spaces .
(d) The endofunctors (ν)(−) and A∗ ⊗A − of the category Rep(A) are isomorphic via

the following natural isomorphisms

αM : A∗ ⊗A M → νM, f ⊗A m 7→ ⟨f, ai⟩νA(bi) ·m. (A.3)
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βM : νM → A∗ ⊗A M, m 7→ λA ⊗A m, (A.4)

Proof. Parts (a) and (b) are straightforward to check. Part (c) is [SS21, Lemma 4.1].
Thus, we only prove part (d) below.

It is straightforward to check that αM and βM are natural in M and are maps of
left A-modules. Below, we check they are isomorphisms.

βM [αM(f ⊗L m)] (A.3)= βM [⟨f, ai⟩ν(bi) ·m] (A.4)= λA ⊗A ⟨f, ai⟩ν(bi) ·m
(♢)= ⟨f, ai⟩ (λL ↼ ν(bi)) ⊗A m

(A.1)= ⟨f, ai⟩ ⟨λA, ν(bi) ?⟩ ⊗A m
(5.2)= ⟨f, ai⟩ ⟨λA, ? bi⟩ ⊗A m

(5.3)= ⟨f, ai ?⟩ ⟨λA, bi⟩ ⊗A m

= ⟨f, ai⟨λA, bi⟩ ?⟩ ⊗A m
(5.3)= f ⊗A m,

αM [βM(m)] (A.4)= αM [λA ⊗A m] (A.3)= ⟨λM , a
i⟩ν(bi) ·m

= ν(⟨λM , a
i⟩bi) ·m (5.3)= ν(1A) ·m = m.

Here the equality (♢) holds because ν(bi) ∈ A, hence we can move it across the tensor
product over A. Thus α is natural isomorphism with inverse β.

A.0.1 Proof of Theorem 5.5

Recall from (5.5) that the maps iM,N : HomA(M,N)∗ ▶M → νM are given by

iM,N(ξ ⊗k n) = ⟨ξ, ϕN
M(mi ⊗A a

j · n)⟩ν(bj) ·mi (ξ ∈ HomA(M,N)∗, n ∈ N)

We first show that the component maps iM,N admit a right inverse.

Lemma A.3. The map ω : νM → HomA(M,A)∗ ▶A given by m 7→ ⟨λA, ?(m)⟩ ⊗k 1A

satisfies that iM,A ◦ ω = IdνM .

Proof. Observe that

iM,A ◦ ω(m) = iM,A

(
⟨λA, ?(m)⟩ ⊗k 1A

)
= ⟨⟨λA, ?(m)⟩, ϕA

M(mi ⊗A a
j1A)⟩ ν(bj) ·mi

= ⟨λA, ⟨mi,m⟩aj⟩ ν(bj) ·mi = ⟨λA, a
j⟩ν(bj) ·m = m.

Thus, iM,A admits a right inverse.

To establish that νM is equal to the coend N(M), we show that the maps iM,N

are dinatural.

Lemma A.4. The maps iM,N are morphism in Rep(A), and they are dinatural.



66

Proof. Observe that

iM,N(a · (ξ ⊗k n)) = iM,N(ξ ⊗k a · n)
= ⟨ξ, ϕN

M(mi ⊗A a
ja · n)⟩ν(bj) ·mi

= ⟨ξ, ϕN
M(mi ↼ aja⊗A n)⟩ν(bj) ·mi

(5.3)= ⟨ξ, ϕN
M(mi ⊗A n)⟩(ν(bj)aja) ·mi

(5.3)= ⟨ξ, ϕN
M(mi ⊗A n)⟩(ν(abj)aj) ·mi

= ν(a) · iM,N(ξ ⊗k n) = a ·ν iM,N(ξ ⊗k n)

Thus, iM,N is a map of left A-modules. Further, for f : N → N ′ ∈ Rep(A) and
ξ ∈ HomA(M,N ′)∗, we get that

iM,N ′(ξ ⊗k f(n)) = ⟨ξ, ϕN ′

M (mi ⊗A a
j · f(n))⟩ν(bj) ·mi

= ⟨ξ, f ◦ ϕN
M(mi ⊗A n)⟩ν(bj)aj ·mi

= iM,N(ξ ◦ f ♮ ⊗k n)

This proves dinaturality.

Next, we show that the pair (νM, iM) satisfies the universal property of coends.

Lemma A.5. The pair (νM, iM) satisfies the universal property of coends.

Proof. Suppose that there exists an object X ∈ Rep(A) along with dinatural maps

jM,N : HomA(M,N)∗ ▶N → X.

We will show that there exists a unique map κX : νM → X such that κX ◦iM,N = jM,N

for all M ∈ M. Since j is dinatural in N , we get that for all ξ ∈ HomM(M,N)∗,
n ∈ N and f : N → N ′

jM,N ′(ξ ⊗k f(n)) = jM,N(ξ ◦ f ♮ ⊗k n) (A.5)

Plugging fn : A → N where a 7→ a · n in the above equation yields us

jM,N(ξ ⊗k fn(a)) = jM,A(ξ ◦ f ♮
n ⊗k a) (A.6)

With a = 1A, LHS is equal to jM,N(ξ ⊗k n). On the other hand,

ω ◦ iM,N(ξ ⊗k n) = ω
(
⟨ξ, ϕN

M(mi ⊗A a
j · n)⟩ν(bj) ·mi

)
= ⟨ξ, ϕN

M(mi ⊗A a
j · n)⟩⟨λA, ?(ν(bj) ·mi)⟩ ⊗k 1A

= ⟨ξ, ϕN
M(mi ⊗A a

j · n)⟩⟨λA, ν(bj)?(mi)⟩ ⊗k 1A
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= ⟨ξ, ϕN
M(mi ⊗A a

j · n)⟩⟨λA, ?(mi)bj⟩ ⊗k 1A

= ⟨ξ, ϕN
M(mi ⊗A a

j?(mi) · n)⟩⟨λA, bj⟩ ⊗k 1A

= ⟨ξ, ϕN
M(mi⊗A?(mi) · n)⟩ ⊗k 1A

= ⟨ξ, ϕN
M(mi⊗A?(mi) · fn(1A))⟩ ⊗k 1A

= ⟨ξ, ϕN
M(mi ⊗A fn(?(mi)))⟩ ⊗k 1A

= ⟨ξ, fn(ϕN
M(mi⊗A?(mi)))⟩ ⊗k 1A

= ⟨ξ ◦ f ♮
n, ϕ

N
M(mi⊗A?(mi))⟩ ⊗k 1A

= ⟨ξ ◦ f ♮
n, ?⟩ ⊗k 1A = ξ ◦ f ♮

n ⊗k 1A

Plugging the above formula in (A.6) at a = 1, we get that for all N ∈ Rep(A)

jM,N(ξ⊗k n) = jM,A(ξ ◦ f ♮
n ⊗k 1L) = jM,A ◦ω ◦ iM,N(ξ⊗k n) = κ ◦ iM,N(ξ⊗k n), (A.7)

where κX = jM,A ◦ω. In order to check that κX is the unique map so that (A.7) holds,
we plug N = A in (A.7) to get jM,A = κX ◦ iM,A. By Lemma A.3, iM,A admits a right
inverse ω. Therefore, κX is the unique map such that jM,N = κX ◦ iM,N holds.

Proof of Theorem 5.5. Together Lemma A.4 and Lemma A.5 imply the claim.

A.0.2 Proof of Theorem 5.7

Let A be an exact right H-comodule algebra. By Lemma A.2(d), we know that
A∗ ⊗A M

∼−→ νM . Thus, we will employ [SS21, Theorem 7.3], which provided the
twisted right C-module structure of the functor A∗ ⊗A − : Rep(A) → Rep(A), to get
the twisted right C-module structure of N(M) = νM .

Using [SS21, Theorem 7.3], the twisted right C-module structure

ΨM,X : (A∗ ⊗A M) ◁ ∨∨X → A∗ ⊗A (M ◁X) (A.8)

of the functor A∗ ⊗A − : Rep(A) → Rep(A) is given by

ΨM,X [(a∗ ⊗A m) ⊗k ϕX(x)] = a∗
(0) ⊗A (m⊗k S(a∗

(1)) · x) (A.9)

Thus, the that twisted right C-module structure of N(M) = νM is given by

nr
X,M = (αM◁X ◦ ΨM,X ◦ (βM ◁ Id∨∨X)) : νM ◁ ∨∨X → ν(M ◁X).

The following computation provides an explicit formula for nr
X,M .

nr
X,M(m⊗k ϕX(x)) = αM◁X ◦ ΨM,X ◦ (βM ◁ Id∨∨X)

(
m⊗k ϕX(x)

)
= αM◁X ◦ ΨM,X

(
(λ⊗A m) ⊗k ϕX(x)

)
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= αM◁X

(
λ(0) ⊗A (m⊗k S(λ(1)) · x)

)
= ⟨λ(0), a

i⟩ν(bi) · [m⊗k S(λ(1)) · x]
= ⟨λ, ai

(0)⟩ν(bi) · [m⊗k S(S(ai
1)) · x]

One can check that the inverse of the map (A.8) is given by

Ψ−1
M,X [a∗ ⊗A (m⊗k x)] = (a∗

(0) ⊗A m) ⊗k ϕX(a∗
(1) · x)

Now again using the isomorphism A∗ ⊗A M
∼=−→ νM from Lemma A.2(d), we get that

the maps nr
X,M : ν(M ◁X) → νM ◁ ∨∨X is given by the following map.

nr
X,M(m⊗k x) = (αM ◁ Id∨∨X) ◦ Ψ−1

M,X ◦ βM◁X

(
m⊗k x

)
= (αM ◁ Id∨∨X) ◦ Ψ−1

M,X

(
λ⊗A (m⊗k x)

)
= (αM ◁ Id∨∨X)

(
(λ(0) ⊗A m) ⊗k ϕX(λ(1) · x)

)
= ⟨λ(0), a

i⟩ν(bi) ·m⊗k ϕX(λ(1) · x)
= ⟨λ, ai

(0)⟩ν(bi) ·m⊗k ϕX(S(ai
(1)) · x)

Hence, the proof is finished.
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