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Categorifying Algebra

Definition. A monoidal category is a category  equipped with a 
monoidal product , a unit object , and 
natural isomorphisms 
•  
•  
•

𝒞
⊗ : 𝒞 × 𝒞 → 𝒞 1 ∈ 𝒞

a := {aX,Y,Z : (X ⊗ Y) ⊗ Z ∼ X ⊗ (Y ⊗ Z)}X,Y,Z∈𝒞
r := {rX : X ⊗ 1 ∼ X}X∈𝒞
ℓ := {1 ⊗ X ∼ X}X∈𝒞

Monoidal Categories

Ref: Tensor Categories by EGNO, 20155
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Algebra in Monoidal Categories

Algebra in : 
A vector space  with a 
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element  satisfying 

 
 

𝖵𝖾𝖼
A
⋅ 𝖵𝖾𝖼

1A ∈ A
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Categorifying Algebra
Modules

(x(1),(1) ⊗ x(1),(2)) ⊗ x(2) = x(1) ⊗ (x(2),(1) ⊗ x(2),(2))

ε(x(1))x(2) = x = x(1)ε(x(2))
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Example
Vectors with action map given by scaling: 

2 ⊳ (3,4) = (6,8)
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Division Algebra over a Field
Definition. Let  be a non-zero, associative, unital -algebra. 

We say  is a division algebra over  if every non-zero 
element of  is left invertible.

A 𝕜
A 𝕜

A

a ∈ A

a ≠ 0
⇒ a−1 ∈ A such that a ⋅ a−1 = a−1 ⋅ a = 1A
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Division Algebras over a Field
Proposition. Let  be a non-zero, associative, unital -algebra. The 
following are equivalent: 
(i)  is a division algebra (every non-zero element of  is left invertible); 
(ii) Every left (or right) -module is free; 
(iii) The regular left (or right) -module is a simple module.

A 𝕜

A A
A

A
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Example
Take  to be .(𝒞, ⊗ , 1) (𝖵𝖾𝖼, ⊗𝕜 , 𝕜)

Every division algebra over  is both simplistic and essential in .𝕜 𝖵𝖾𝖼
In particular,  is both a simplistic and essential division algebra in .𝕜 𝖵𝖾𝖼

What about the unit object  in a general monoidal category ?1 (𝒞, ⊗ , 1)

Simplistic?

Since , 
 is simplistic if and only if it is 

a simple object in .

1-mod(𝒞) ≅ 𝒞
1

𝒞

Essential?

Since , 
 is always essential in .

1 ⊗ X ≅ X
1 𝒞
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Implication?
Proposition. (K-Walton, 2025) If  is rigid and semisimple with simple unit, 

then essential  simplistic.
𝒞

⇒

But they are still not equivalent! 
(We produce simplistic, non-essential division algebra in  

the Fibonacci fusion category and in .)𝖿𝖽𝖱𝖾𝗉(𝖦)
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Definition. Let  be a non-zero algebra in . We say  is a left (resp. right) 
essential division algebra in  if the free module functor 

 (resp. ) is essentially 
surjective.

A 𝒞 A
𝒞

A ⊗ − : 𝒞 → A-mod(𝒞) − ⊗ A : 𝒞 → mod -A(𝒞)

On Essential Division Algebras

16



For  an abelian monoidal category: 

Definition. A non-zero algebra  in  is an essential division algebra in  if 
the free module functor  is essentially surjective.
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On Essential Division Algebras

 has more than one isoclass 
of modules.

A
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 is a monad!A ⊗ − : 𝒜 → 𝒜
T : 𝒜 → 𝒜

T ∘ T ⇒ T
(Multiplication)

Id𝒜 ⇒ T
(Unit)

All modules over the monad  
 are free.A ⊗ − : 𝒜 → 𝒜
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Monadic Division Algebras
For  any monoidal category: 

Definition. (K-Walton, 2025) 
A non-trivial algebra  in  is a monadic division algebra in  if the 
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Definition. (K-Walton, 2025)  
A non-trivial algebra  in  is a monadic division algebra in  if the 
monad  has equivalent EM and Kleisli categories. 

Proposition. (K-Walton, 2025)  
Monadic  Essential.

𝒜
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Proposition. (K-Walton, 2025) Let  be a strict monoidal category, and 

 a monad.  

If  satisfies  and has equivalent EM and Kleisli 
categories, then  is an essential division algebra in .
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T(1) 𝒜
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Further Directions
•Division monads? 

•Essential vs. Simplistic? 

•Left vs. Right? 
-Theorem (Nakamura-Shibata-Shimizu, 2025). The left/right distinction of 
simplistic division algebras is not necessary in finite tensor categories.
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Extended Frobenius Structures in 
Monoidal Categories
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Topological Quantum Field Theories

 is a category 

 is a bifunctor 

 is the unit for  
( ) 

 

+ Axioms

𝒞

⊗ : 𝒞 ⊗ 𝒞 → 𝒞

1 ∈ 𝒞 ⊗
1 ⊗ X ≅ X ≅ X ⊗ 1

c := {cX,Y : X ⊗ Y ∼→ Y ⊗ X}

For : 
Objects: Oriented, closed, 1-manifolds 
Morphisms: Orientation preserving cobordisms 

(2-manifolds having the objects of  
as boundary)  

Example:

2 − 𝖢𝗈𝖻

2 − 𝖢𝗈𝖻

Ref: Kock’s 2-TQFT Book22
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• A structure in  satisfying the same relations as  is called a 
commutative Frobenius algebra in .  

• Specifically, in any monoidal category, we can define these in a purely 
categorical way: 

 A Frobenius algebra in  is a tuple  satisfying 
- ; 
- ; 
-

𝒞 Z(S1)
𝒞

𝒞 (A, m, u, Δ, ε)
(A, m, u) ∈ 𝖠𝗅𝗀(𝒞)
(A, Δ, ε) ∈ 𝖢𝗈𝖺𝗅𝗀(𝒞)
(idA ⊗ m)(Δ ⊗ idA) = Δm = (m ⊗ idA)(idA ⊗ Δ)

Topological Quantum Field Theories
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Topological Quantum Field Theories
• In fact, commutative Frobenius algebras completely describe 2-TQFTs via 

the following result: 

 

• This is then extended in a number of ways.  
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Unoriented 2-TQFTs

 is generated by all the 
generators of  along with 
two new cobordisms: 

1. A cobordism from  to  that 
switches the orientation of the circle. 

2. The mobius band, which can be 
considered a cobordism from  to . 

2 − 𝖴𝖢𝗈𝖻
2 − 𝖢𝗈𝖻

S1 S1

∅ S1

Glue these two circles 
by a reflection

(2-𝖴𝖢𝗈𝖻, ⊔ , ∅, 𝖿𝗅𝗂𝗉) (𝒞, ⊗ , 1, c)Z
Symmetric monoidal functor
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An extended Frobenius algebra in  is a Frobenius algebra  
equipped with two additional morphisms  and  (called 
the extended structure) satisfying 

-  is an involution of Frobenius algebras 
-  
-  

𝒞 (A, m, u, Δ, ε)
ϕ : A → A θ : 1 → A

ϕ
ϕm(θ ⊗ idA) = m(θ ⊗ idA)
m(ϕ ⊗ idA)Δu = m(θ ⊗ θ) =

=

θ θ

θ θ
u

ϕ

ϕ

Unoriented 2-TQFTs

Ref: Tuarev-Turner, 200628
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(i.e. is the zero map  
 

if it exists)
01,A : 1 → A
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• Again, extended Frobenius algebras completely describe 2-uTQFTs via the 
following result: 

 
 

• Our work builds on this set up in three main directions: 
- Understanding and classifying extended Frobenius algebras over ; 
- Constructing extended Frobenius algebras in a variety of symmetric 

monoidal categories; 
- Understanding which functors preserve extended Frobenius algebras.

2-𝗎𝖳𝖰𝖥𝖳(𝒞) ⊗≃ 𝖤𝗑𝗍𝖥𝗋𝗈𝖻𝖠𝗅𝗀(𝒞)
Z ↦ Z(S1)

𝕜

Unoriented 2-TQFTs
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Theorem. (Czenky-K-Quinonez-Walton, 2024)  
The extended structures of the following well known -Frobenius algebras are 
classified. 

(a) All extensions of  are -trivial; 
(b) All extensions of  are - or - trivial; 
(c)Extensions of  are either -trivial, -trivial, or  maps a generator  

of  to ; 
(d) All extensions of  are -trivial. 

NOTE: Many of the Frobenius algebras above are f.d. Hopf algebras.

𝕜

𝕜 ϕ
𝕜C2 ϕ θ

𝕜C4 ϕ θ ϕ g
C4 ω4g3

T2(−1) := 𝕜⟨g, x⟩/(g2 − 1,x2, gx + xg) ϕ

Extended Frobenius Algebras over 𝕜

Recall: Extended Frobenius algebra = Frobenius algebra + Extended structure
(A, m, u, Δ, ε) (ϕ, θ)

30
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Every f.d. Hopf algebra over  admits a -trivial extended Frobenius structure.𝕜 ϕ
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Categorical Constructions

These preserve algebras!
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Functorial Constructions

These preserve algebras!
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These preserve algebras!

Algebra in : 

•Object ; 

• ; 

• ; 

•Axioms.

𝒞
A ∈ 𝒞

m : A ⊗ A → A

u : 1 → A

Monoidal Functor : 

•Functor ; 

• ; 

• ; 

•Axioms.

(𝒞, ⊗ , 1) → (𝒞′ , ⊗′ , 1′ )
F : 𝒞 → 𝒞′ 

F(2) : F( − ) ⊗′ F( − ) ⇒ F( − ⊗ − )

F(0) : 1′ → F(1)

↝
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Functorial Constructions
Frobenius Algebra in : 

•Object ; 

•Algebra structure ; 

•Coalgebra structure ; 

•  satisfy Frobenius Law; 

•Axioms.

𝒞
A ∈ 𝒞

(m, u)

(Δ, ε)

m and Δ

Frobenius Monoidal Functor: 
•Functor ; 

•Monoidal structure ; 

•Comonoidal structure ; 

•  satisfy Frobenius Law; 

•Axioms.

F : 𝒞 → 𝒞′ 

(F(2), F(0))

(F(2), F(0))

F(2) and F(2)

↝

Frobenius Monoidal Functors Preserve Frobenius Algebras!
Ref: Day-Pastro, 200934
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Functorial Constructions
Extended Frobenius Algebra in : 

• ; 

•Extended structure ; 

•  

•  

•Axioms.

𝒞
(A, m, u, Δ, ε) ∈ 𝖥𝗋𝗈𝖻𝖠𝗅𝗀(𝒞)

(ϕ, θ)

ϕm(θ ⊗ idA) = m(θ ⊗ idA)

m(ϕ ⊗ idA)Δu = m(θ ⊗ θ)

Extended Frobenius Monoidal Functor : 
•Frobenius monoidal functor ; 

•Extended structure ; 

• ; 

•  

•  

•Axioms.

𝒞 → 𝒞′ 

(F, F(2), F(0), F(2), F(0))

( ̂F, F̌)

̂F1⊗X ∘ F(2)
1,X ∘ (F̌ ⊗′ idF(X)) = F(2)

1,X ∘ (F̌ ⊗′ idF(X))

F(2)
1,1 ∘ ( ̂F1 ⊗′ idF(1)) ∘ F1,1

(2) ∘ F(0) = F(2)
1,1 ∘ (F̌ ⊗′ F̌)

F(2)
X,Y ∘ ( ̂FX ⊗′ idF(Y)) ∘ FX,Y

(2) = F(2)
X⊗Y,1 ∘ ( ̂FX⊗Y ⊗′ idF(1)) ∘ FX⊗Y,1

(2)

↝

(Czenky-K-Quinonez-Walton, 2024)
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Functorial Constructions
Theorem. (Czenky-K-Quinonez-Walton, 2024)  
Extended Frobenius monoidal functors preserve extended Frobenius algebras. 
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Summary
• Algebraic objects in monoidal categories has become an active area of 

current research. 
• We explored division algebras and extended Frobenius algebras in the 

monoidal setting, with particular interest in examples and constructions. 
• Division Algebras: 
- Simplistic vs. Essential; 
- Internal Hom constructions; 
- Monoidal constructions. 

• Extended Frobenius algebras: 
- Examples over ; 
- Categorical constructions; 
- Connection to Hopf algebras; 
- Functorial constructions.

𝕜
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