Division algebras and extended Frobenius
structures in monoidal categories

Thesis Defense
Rice University Department of Mathematics

Jacob Kesten
July 10, 2025



Overview

1. Introduction to categorical algebra
2. Division algebras in monoidal categories

3. Extended Frobenius structures in monoidal categories



Introduction to Categorical
Algebra



Categories and Functors



Categories and Functors

® A category is a collection of objects and the maps between them.



Categories and Functors

® A category is a collection of objects and the maps between them.

/

“Morphisms”



Categories and Functors

® A category is a collection of objects and the maps between them.

“Morphisms” \4

“Arrows”



Categories and Functors

® A category is a collection of objects and the maps between them.

“Morphisms” \4

“Arrows”
f:X-Y
or

x2y



Categories and Functors

® A category is a collection of objects and the maps between them.
- Axioms: Composition and Existence of Identities



Categories and Functors

® A category is a collection of objects and the maps between them.
- Axioms: Composition and Existence of Identities

/

Givenf: X —> Yandg:Y — Z,
we can compose to get
gof: X — Z.



Categories and Functors

® A category is a collection of objects and the maps between them.
- Axioms: Composition and Existence of Identities

/ \

Givenf: X — Yandg:Y — Z, For every object X,
we can compose to get there isamap 1dy : X — X

gof: X — Z satisfying 1dy o f = f = f o 1d,.
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Categories and Functors

® A category is a collection of objects and the maps between them.

- Axioms: Composition and Existence of Identities

Examples

Category

Set
Monoid
Vec
Org

Neur

Objects

Sets
Monoids
Vector Spaces

Cells

Neural activity over
time and space
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Morphisms

Functions
Monoid Homs
Linear Maps
Effector signaling

Identities Only
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® A category is a collection of objects and the maps between them.
- Axioms: Composition and Existence of Identities

* A functor is a nice map between categories.

Examples

Forg : Monoid — Set
Free : Set — Vec
— Q. V: Vec — Vec

Stimulus : Neur-Pre — Neur-Post
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Categories and Functors

® A category is a collection of objects and the maps between them.
- Axioms: Composition and Existence of Identities

* A functor is a nice map between categories.

* A natural transformation is a nice map between functors.
- For F, G : ¢ — &, a natural transformation ¢ : F' = G is a collection of

morphisms ¢y : F(X) — G(X) in & that is natural.

|

“Plays well with morphisms”
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Categorifying Algebra

e Monoid in Set: e Algebra in Vec:
A set M with a multiplication - A vector space A with a
and a unit element e € M multiplication - in Vec and a unit
satistying element 1, € A satisfying
(a-b)-c=a-(b-c) x-y)-z=x-(y-2)

€e-d=—d=d-¢€ \\ IA-)C:)C:)C'lA

The same structure!!
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Categorifying Algebra
Monoidal Categories

Definition. A monoidal category is a category 6 equipped with

a monoidal product @ : € X € — &, a unit object 1 € 6,
and three natural isomorphisms

a:={ayy;  XQY)®Z->XQ Y Q2Z)}xyzee
ri={ry: X®1->X}ycer, and 7 := {1 R X - X} yce-

Example
Vec is a monoidal category with monoidal product &, and unit k, since
(V& W)Q U=V, (W, U),
VR, k=V, and k®, V=V.

)



Categorifying Algebra

Algebra in Monoidal Categories



Categorifying Algebra

Algebra in Monoidal Categories

Algebra in Vec:
A vector space A with a
multiplication - in Vec and a unit
element 1, € A satisfying
(x-y)-z=x-(y-2)
ly -~ x=x=x-1,



Categorifying Algebra

Algebra in Monoidal Categories

Algebra in Vec: Algebrain (¢, ® ,1):

A vector space A with a ~ An object A € € with a
multiplication - in Vec and a unit multiplicationm : AQA - Ain €
element 1, € A satisfying and a unit # : 1 — A in & satisfying
(x-y)-z=x-(y-2) m(idy @ m) = m(m @ 1d,)



Categorifying Algebra

Algebra in Monoidal Categories

Algebra in Vec: Algebrain (¢, ® ,1):

A vector space A with a ~ An object A € ¢ with a
multiplication - in Vec and a unit multiplicationm : AQA - Ain €
element 1, € A satisfying and a unit # : 1 — A in & satisfying
x-y)-z=x-(y-2) m(id, @ m) = m(m @ 1d )



Categorifying Algebra

Algebra in Monoidal Categories

Algebra in Vec: Algebrain (¢, ® ,1):

A vector space A with a ~ An object A € € with a
multiplication - in Vec and a unit multiplicationm : AQ@A - Ain €
element 1, € A satisfying and a unit # : 1 — A in & satisfying
x-y)-z=x-(y-2) m(id, @ m) = m(m @ 1d )



Categorifying Algebra

Algebra in Monoidal Categories

Algebra in Vec: Algebrain (¢, ® ,1):

A vector space A with a ~ An object A € € with a
multiplication - in Vec and a unit multiplicationm : AQA - Ain €
element |1, € A satisfying and a unit v : 1 — A in @ satisfying
(x-y)-z=x-(y-2) m(idy @ m) = m(m @ 1d,)



Categorifying Algebra

Algebra in Monoidal Categories

Algebra in Vec: Algebrain (¢, ® ,1):

A vector space A with a ~ An object A € € with a
multiplication - in Vec and a unit multiplicationm : AQA - Ain €
element |1, € A satisfying and a unit v : 1 — A in @ satisfying
x-y)-z=x(y:2) m(id, @ m) =m(m Q 1d,)
1A.x:x=§x\.\\\ mu ® id,) = id, = m(id, ® u)

k - A 1in Vec



Categorifying Algebra

Algebra in Monoidal Categories

Algebra in Vec: Algebrain (¢, ® ,1):

A vector space A with a ~ An object A € € with a
multiplication - in Vec and a unit multiplicationm : AQA - Ain €
element 1, € A satisfying and a unit # : 1 — A in & satisfying
x-y)-z=x-(y-2) m(idy @ m) = m(m @ 1d,)



Categorifying Algebra

Algebra in Monoidal Categories

Algebra in Vec: Algebrain (¢, ® ,1):

A vector space A with a ~ An object A € € with a
multiplication - in Vec and a unit multiplicationm : AQA - Ain €
element 1, € A satisfying and a unit # : 1 — A in & satisfying
(x-y)-z=x-(y-2) m(idy @ m) = m(m @ 1d,)



Categorifying Algebra

Algebra in Monoidal Categories

Algebra in Vec: Algebrain (¢, ® ,1):

A vector space A with a ~ An object A € € with a
multiplication - in Vec and a unit multiplicationm : AQA - Ain €
element 1, € A satisfying and a unit # : 1 — A in & satisfying
(x-y) z=x-(-2) m(id, ® m) = m(m ® id,)
l,-x=x=x-1, mu®id,) =1d, = m(id, ® u)

Examples



Categorifying Algebra

Algebra in Monoidal Categories

Algebra in Vec: ~ Algebrain (6, ® ,1):
A vector space A with a An object A € € with a
multiplication - in Vec and a unit multiplicationm : AQA - Ain €
element 1, € A satisfying and a unit # : 1 — A in & satisfying
(x-y)-z=x-(y-2) m(idy @ m) = m(m @ 1d,)
l,-x=x=x-1, mu®id,) =1d, = m(id, ® u)
Examples

Algebra objects in Vec are algebras!



Categorifying Algebra

Algebra in Monoidal Categories

Algebra in Vec: ~ Algebrain (6, ® ,1):
A vector space A with a An object A € € with a
multiplication - in Vec and a unit multiplicationm : AQA - Ain €
element 1, € A satisfying and a unit # : 1 — A in & satisfying
(x-y)-z=x-(y-2) m(idy @ m) = m(m @ 1d,)
l,-x=x=x-1, mu®id,) =1d, = m(id, ® u)

Examples
Algebra objects in Vec are algebras!
Algebra objects in Set are monoids!



Categorifying Algebra

Algebra in Monoidal Categories

Algebra in Vec: Algebrain (¢, ® ,1):

A vector space A with a ~ An object A € € with a
multiplication - in Vec and a unit multiplicationm : AQA - Ain €
element 1, € A satisfying and a unit # : 1 — A in & satisfying
(x-y) z=x-(-2) m(id, ® m) = m(m ® id,)
l,-x=x=x-1, mu®id,) =1d, = m(id, ® u)

Examples
Algebra objects in Vec are algebras!
Algebra objects in Set are monoids!
1 is always an algebra objects.



Categorifying Algebra

Algebra in Monoidal Categories

Algebra in Vec: Algebrain (¢, ® ,1):

A vector space A with a ~ An object A € € with a

multiplication - in Vec and a unit multiplicationm : AQA - Ain €

element 1, € A satisfying and a unit # : 1 — A in & satisfying

(x-y)-z=x-(y-2) m(idy @ m) = m(m @ 1d,)

l,-x=x=x-1, mu®id,) =1d, = m(id, ® u)
Examples

Algebra objects in Vec are algebras!
Algebra objects in Set are monoids!
1 is always an algebra objects.

0 is an algebra object (when it exists).
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Modules

(Left) Module over A in Vec: (Left) Module over A in (6, ® , 1):
A vector space M with a linear ~1  An object M € ¢ with an action
actionmap >:AQ M —-> M map>:AQM —- Min€
satisfying satisfying
a>(b>x)=(ab) > x > (1d, @ > ) =D (mQ 1dy,)
l,>x=x > (u ®1d,,) =1d,,

Example Example

Vectors with action map given by scaling: The algebra A over itself with action map

2> (3,4) = (6,8) given by multiplication:

>=m:ARRA - A
This is called the regular (left) A-module.
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Division Algebras over a Field

Definition. Let A be a non-zero, associative, unital k-algebra.
We say A is a division algebra over [k if every non-zero
element of A is left invertible.

a e A

-1 1,
040 = d a €A such that a™ ra=1,
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Division Algebras over a Field - Motivation

Theorem. (Frobenius-Hurwitz, 1878-1922)
The only real division algebras are R, C, and H.

(Also non-associative Q)

Theorem. (Cartan-Artin-Wedderburn-Noether-Hopkins, 1898-1939)
e Every simple algebra over a field is precisely a matrix algebra over a
division algebra.

e Every semisimple algebra over a field is a product of matrix algebras over
division algebras.

10
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(i) A is a division algebra (every non-zero element of A is left invertible);
(ii) Every left A-module is free;

MeA-mod > M2APAD - PA=AQ, V
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Proposition. Let A be a non-zero, associative, unital k-algebra. The
following are equivalent:

(i) A is a division algebra (every non-zero element of A is left invertible);
(ii) Every left A-module is free;
(iii) The regular left A-module is a simple module.
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Division Algebras over a Field

Proposition. Let A be a non-zero, associative, unital k-algebra. The
following are equivalent:

(i) A is a division algebra (every non-zero element of A is left invertible);
(ii) Every left A-module is free;
(iii) The regular left A-module is a simple module.

\ \

(A, m) € A-mod The only submodules of A
are 0 and A

11
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Division Algebras in a Monoidal Category

Definition. (K-Walton, 2025) A non-zero algebra A in ¢ (abelian monoidal) is a
simplistic division algebra in &
—
the regular left A-module is a simple module.
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Division Algebras in a Monoidal Category

Definition. (K-Walton, 2025) A non-zero algebra A in € (abelian monoidal) is an
essential division algebra in €
N

the free module functorA @ — : € — A-Mod(6)
is essentially surjective.
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Example
Take (¢, ® , 1) to be (Vec, ®; , k).

Every division algebra over k is both simplistic and essential in Vec.

In particular, k is always a simplistic and essential division algebra in Vec.

What about the unit object 1 in a general monoidal category (6, ® ,1)?

Simplistic? Essential?

Since 1-mod(¥¢) = €,

' 1R X=X
1 is simplistic if and only if it is since 1 & )

1 is al tial in €.
a simple object in %. is always essential in

14 Ref: K-Walton, 2025
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Implication?

Proposition. (K-Walton, 2025) If € is rigid and semisimple with simple unit,
then essential = simplistic.
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Implication?

Proposition. (K-Walton, 2025) If € is rigid and semisimple with simple unit,
then essential = simplistic.

But they are still not equivalent!
(We produce simplistic, non-essential division algebra in

the Fibonacci fusion category and in fdRep(G).)
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For € an abelian monoidal category:

Definition. A non-zero algebra A in € is an essential division algebra in € if
the free module functor A @ — : € — A-mod(%) is essentially surjective.

16



On Essential Division Algebras

For &/ an ebelian monoidal category:

Definition. A non-zero algebra A in &/ is an essential division algebra in & if
the free module functor A @ — : &/ — A-mod(&) is essentially surjective.

16



On Essential Division Algebras

For &/ an ebelian monoidal category:

Definition. A nen—zere algebra A in & is an essential division algebra in & if
the free module fanctor A @ — : &f — A-mod(&¥) is essentially surjective.

A has more than one isoclass
of modules.
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On Essential Division Algebras

For &/ an ebelian monoidal category:

... Non-trivial . S .
Definition. A nen-zere algebra A in & is an essential division algebra in & if

the free module functor A @ — : &/ — A-mod(&) is essentially surjective.
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On Essential Division Algebras
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Proposition. (K-Walton, 2025) Let &/ be a strict monoidal category, and
T: 9 — o/ amonad.

If T satisfies T(X) @ ¥ = T(X ® Y) and has equivalent EM and Kleisli
categories, then 7(1) is an essential division algebra in &.

Example
eTake &f = (Set, U ,d), a non-abelian monoidal category.
eThe monad 7( — ) := ( — U { % }) satisfies the two required conditions.
Hence 7(@) = @ U { x } = { % } is a right essential division algebra in Set.
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e Division monads?

e Essential vs. Simplistic?

*Left vs. Right?
-Theorem (Nakamura-Shibata-Shimizu, 2025). The left/right distinction of
simplistic division algebras is not necessary in finite tensor categories.
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e In fact, commutative Frobenius algebras completely describe 2-TQFTs via
the following result:

2-TQFT (%) g ComFrobAlg(6)

e This is then extended in a number of ways.
- n-TQFTs are symmetric monoidal functors from n-Cob to a symmetric

monoidal category 6.
- Un-orient our cobordism categories and consider symmetric monoidal

functors from n-UCob to a symmetric monoidal category 6.
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Symmetric monoidal functor

2-UCob is generated by all the

generators of 2-Cob along with two
new cobordisms:

| | | p.A—A
1. A cobordism from $" to §" that , »  satisfying
switches the orientation of the circle. ¢° =id,

A special element
2. The mobius band, which can be . of A-

considered a cobordism from @ to S'. 0:1— A

These two cobordisms also satistfy some other relations,
giving us relations that @ and @ satisfy.
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- m(p @ 1dy)Au =m0 Q 0)

An extended Frobenius algebra is ¢-trivial if ¢) = 1d, and is O-trivial if = 0.
(i.e. is the zero map
Oj4:1—2A
if it exists)
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* Again, extended Frobenius algebras completely describe 2-uTQFTs via the
following result:

2-UTQFT(%) £ ExtFrobAlg(%)
Z — Z(ShH

® Our work builds on this set up in three main directions:

- Understanding and classifying extended Frobenius algebras over k;

- Constructing extended Frobenius algebras in a variety of symmetric
monoidal categories;

- Understanding which functors preserve extended Frobenius algebras.
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Extended Frobenius Algebras over

Recall: Extended Frobenius algebra = Frobenius algebra + Extended structure
(A,m,u, A, ¢) (¢, 0)
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Theorem. (Czenky-K-Quinonez-Walton, 2024)

The extended structures of the following well known k-Frobenius algebras are
classified.

(a) k over itself: all extensions are ¢@-trivial;
(b) The group algebra k(,: all extensions are ¢- or 6- trivial;
(c) The Sweedler algebra 7,(—1) := k{g,x)/(g* —1,x*, gx + xg2):

all extensions are ¢-trivial.

Proposition. (Czenky-K-Quinonez-Walton, 2024)
Every f.d. Hopf algebra over k admits a ¢-trivial extended Frobenius structure.
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Theorem. (Czenky-K-Quinonez-Walton, 2024)

The extended structures of the following well known k-Frobenius algebras are
classified.

(a) k over itself: all extensions are ¢@-trivial;
(b) The group algebra k(,: all extensions are ¢- or 6- trivial;

(c) The Sweedler algebra 7,(—1) := k{g,x)/(g* —1,x*, gx + xg2):
all extensions are ¢-trivial.

(d) The group algebra k(C,: extensions are either ¢-trivial, 6-trivial,
or ¢ maps a generator g of C, to w,g>.
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Proposition. (Czenky-K-Quinonez-Walton, 2024)
Every separable Frobenius algebra admits an extended Frobenius algebra structure.
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Proposition. (Czenky-K-Quinonez-Walton, 2024)

Hopf algebras with additional structure admit an extended Frobenius structure.

\ ° ° °
not necessarily ¢-trivial
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Hopf algebras with additional structure admit an extended Frobenius structure.

Proposition. (Czenky-K-Quinonez-Walton, 2024)
The monoidal product of two extended Frobenius algebras is again extendable.

Proposition. (Czenky-K-Quinonez-Walton, 2024)
The bi-product of two extended Frobenius algebras is again extendable.
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Functorial Constructions

Algebra in 6
*Object A € 6;

em:AQRA - A;
u:l1-A;

e AXioms.



Functorial Constructions

Algebra in 6 : Monoidal Functor (¢, ® ,1) - (6, &', 1):
*Object A € 6; eFunctor ' : € — 6€;
em:AQRA - A; 'F(2)2F(—)®'F(—)=>F(—®—);
eu:l - A; FO 1" 5 F(1);

e AXioms. e AXioms.
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Functorial Constructions

Algebra in 6 ~ Monoidal Functor (¢, ® ,1) - (6, &', 1):
*Object A € 6; eFunctor ' : € — 6€;
em:ARA — A; -F(z):F(—)(X)’F(—):}F(—(X)—);
u:1— A; FO - 1" 5 F1);
* AX10ms. * AX10ms.

Monoidal Functors Preserve Algebras!
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Functorial Constructions

Coalgebra in 6
*Object A € 6;

‘A:A->ARA:
u:A—-1;

e AXioms.
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Functorial Constructions

Coalgebra in 6 ; Comonoidal Functor (¢, ® ,1) - (€', ®',1"):
eObject A € €G: eFunctor F' : € —» €
*‘A:A->ARA; oy 1 F(=® =)= F(-)® F(—);

® AXiomS. ° AxiomS.
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Functorial Constructions

Coalgebra in 6 ; Comonoidal Functor (¢, ® ,1) —» (6, ®",1):
eObject A € €G: eFunctor F': € — €
*‘A:A->ARA; oy 1 F(=® =)= F(-)® F(—);
* AXioms. * AXioms.

Comonoidal Functors Preserve Coalgebras!
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Functorial Constructions

Frobenius Algebra in 6
*Object A € 6;

* Algebra structure (m, u);
e Coalgebra structure (A, €);

em and A satisfy Frobenius Law;

e AXioms.
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Frobenius Algebra in € Frobenius Monoidal Functor:
*Object A € G —~ eFunctor F' : € — €;
e Algebra structure (7, u); » Monoidal structure (F®, F(V);
e Coalgebra structure (A, €); » Comonoidal structure (F,), F(());
em and A satisfy Frobenius Law; e F®) and F (2) satisty Frobenius Law;

e AXioms. e AXi0ms.

34



Functorial Constructions

Frobenius Algebra in € Frobenius Monoidal Functor:
*Object A € G —~ eFunctor F' : € — €;
e Algebra structure (7, u); * Monoidal structure (F®, F()));
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Frobenius Monoidal Functors Preserve Frobenius Algebras!
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Functorial Constructions

Extended Frobenius Algebra in 6
*(A,m,u, A, e) € FrobAlg(6);

e Extended structure (¢, 0);

cpm(0 ®1d,) = m(0 Q 1d,)

em(¢p @ 1d,)Au = m(0 Q 0)
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Functorial Constructions
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e AXioms.

35



(Czenky-K-Quinonez-Walton, 2024)

Functorial Constructions

Extended Frobenius Algebra in 6
*(A,m,u, A, e) € FrobAlg(6);

e Extended structure (¢, 0);

Y O\
A—->A 1-5A

P’ = 1d,

em(¢p @ 1d,)Au = m(0 Q 0)

e AXioms.

35



(Czenky-K-Quinonez-Walton, 2024)

Functorial Constructions

Extended Frobenius Algebra in 6

Extended Frobenius Monoidal Functor € — €
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r y e 2 - /T
.F{?;o (Fi ®'idgy) e Fi5l o FO = F1<,1> o (F®'F)

(2)
(2) - /e o FX.Y — (2) o - E o FX®Y,1
‘FX,Y o (FX ® ldF(Y)) F(z) —_ FX@Y,I (FX®Y ® ldF(l)) F(Z)

e AXi0oms.
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e Extended structure (f’ JF);

¥\
A};:F 1'— FQ1)
F~=1d

Frgxe Fiy o (F ®'idpy) = F1) o (F ®' idp));

- / 2 - I T
F17 o (F1 ®'idp) e Fiy o FO = Fiie (F®'F)

(2) - , XY _ (2 o r , o FX®Y.1
‘FX,Y ° (Fx @ 1dpy)) © F(z) N FX@Y,I (Fxgy @ 1dp()) F(z)

e AXi0oms.
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Functorial Constructions

Theorem. (Czenky-K-Quinonez-Walton, 2024)
Extended Frobenius monoidal functors preserve extended Frobenius algebras.

Proposition. (Czenky-K-Quinonez-Walton, 2024)
Every separable Frobenius monoidal functor, F, is extended by taking

\ "4

F=Id and F=FO

Examples
Let A be an extended Frobenius algebra in 6.
e AR — : € — € is an extended Frobenius monoidal functor.
e ALl— : ¢ — % is an extended Frobenius monoidal functor.

(These functors are separable Frobenius = the algebra A is separable Frobenius)
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Summary

e Algebraic objects in monoidal categories has become an active area of
current research.
* We explored division algebras and extended Frobenius algebras in the
monoidal setting, with particular interest in examples and constructions.
® Division Algebras:
- Simplistic vs. Essential;
- Internal Hom constructions;
- Monadic constructions.
e Extended Frobenius algebras:

- Examples over k;
- Categorical constructions;
- Functorial constructions.
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