Division algebras and extended Frobenius structures in monoidal categories

Thesis Defense Rice University Department of Mathematics

> Jacob Kesten July 10, 2025

Overview

- 1. Introduction to categorical algebra
- 2. Division algebras in monoidal categories
- 3. Extended Frobenius structures in monoidal categories

Introduction to Categorical Algebra

Categories and Functors

Categories and Functors

"Morphisms"

Categories and Functors

"Morphisms"

Categories and Functors

"Morphisms"

"Arrows" $f: X \to Y$ or $X \xrightarrow{f} Y$

Categories and Functors

> Given $f: X \to Y$ and $g: Y \to Z$, we can compose to get $g \circ f : X \to Z.$

Categories and Functors

> Given $f: X \to Y$ and $g: Y \to Z$, we can compose to get $g \circ f : X \to Z.$

Categories and Functors

For every object *X*, there is a map $\operatorname{id}_X : X \to X$ satisfying $\operatorname{id}_X \circ f = f = f \circ \operatorname{id}_X$.

Examples

<u>Category</u>

Categories and Functors

Objects

Morphisms

Examples

<u>Category</u>

Set

Categories and Functors

<u>Objects</u>

Sets

Morphisms

Functions

Examples

<u>Category</u>

Set

Monoid

Categories and Functors

<u>Objects</u>

Sets

Monoids

Morphisms

Functions Monoid Homs

Examples

<u>Category</u>	<u>O</u>
Set	
Monoid	Μ
Vec	Vecto

Categories and Functors

<u>bjects</u>

Sets

lonoids

or Spaces

Morphisms Functions Monoid Homs Linear Maps

Examples

<u>Morphisms</u> <u>Objects</u> <u>Category</u> Set Functions Sets Monoids Monoid Homs Monoid Vector Spaces Linear Maps Vec Cells Effector signaling Org

Categories and Functors

Ref: Burgos and Salcedo, "A qualitative mathematical model of immunocompetence with applications to SARS-CoV-2 immunity." 2021

Examples

<u>Category</u>	<u>O</u>
Set	
Monoid	M
Vec	Vecto
Org	
Neur	Neural
	time

Categories and Functors

<u>Dbjects</u>

Sets

[onoids

or Spaces

Cells

3

activity over

time and space

<u>Morphisms</u> Functions Monoid Homs Linear Maps Effector signaling Identities Only

Ref: Northoff, Tsuchiya, and Saigo, "Mathematics and the Brain: A category theoretical approach to go beyond the neural correlates of consciousness." 2019

- A *category* is a collection of objects and the maps between them. - Axioms: Composition and Existence of Identities
- A *functor* is a nice map between categories.

- A category is a collection of objects and the maps between them. - Axioms: Composition and Existence of Identities
- A *functor* is a nice map between categories.

(Both objects and morphisms)

• A *functor* is a nice map between categories. Examples

Categories and Functors

• A *functor* is a nice map between categories. Examples

Forg : Monoid \rightarrow Set

Categories and Functors

• A *functor* is a nice map between categories. Examples

> Forg : Monoid \rightarrow Set Free : Set \rightarrow Vec

Categories and Functors

• A *functor* is a nice map between categories. Examples

> Forg : Monoid \rightarrow Set Free : Set \rightarrow Vec $-\bigotimes_{\Bbbk} V : \operatorname{Vec} \to \operatorname{Vec}$

Categories and Functors

• A *functor* is a nice map between categories. Examples

> Forg : Monoid \rightarrow Set Free : Set \rightarrow Vec $-\bigotimes_{\Bbbk} V : \operatorname{Vec} \to \operatorname{Vec}$

Stimulus : Neur-Pre \rightarrow Neur-Post

Categories and Functors

Ref: Northoff, Tsuchiya, and Saigo, "Mathematics" and the Brain: A category theoretical approach to go beyond the neural correlates of consciousness." 2019

- A category is a collection of objects and the maps between them. - Axioms: Composition and Existence of Identities
- A *functor* is a nice map between categories.
- A natural transformation is a nice map between functors.

- A category is a collection of objects and the maps between them. - Axioms: Composition and Existence of Identities
- A *functor* is a nice map between categories.
- A natural transformation is a nice map between functors. - For $F, G: \mathscr{C} \to \mathscr{D}$, a natural transformation $\phi: F \Rightarrow G$ is a collection of morphisms $\phi_X : F(X) \to G(X)$ in \mathcal{D} that is natural.

- A *category* is a collection of objects and the maps between them. - Axioms: Composition and Existence of Identities
- A *functor* is a nice map between categories.
- A natural transformation is a nice map between functors.
 - morphisms $\phi_X : F(X) \to G(X)$ in \mathscr{D} that is natural.

- For $F, G: \mathscr{C} \to \mathscr{D}$, a natural transformation $\phi: F \Rightarrow G$ is a collection of

"Plays well with morphisms"

• Monoid in Set:

Monoid in Set:
 A set *M* with a multiplication ·
 and a unit element *e* ∈ *M*

Monoid in Set:
 A set *M* with a multiplication ·
 and a unit element *e* ∈ *M* satisfying

 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

 $e \cdot a = a = a \cdot e$

Monoid in Set:
 A set *M* with a multiplication ·
 and a unit element *e* ∈ *M* satisfying

 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

 $e \cdot a = a = a \cdot e$

• Algebra in Vec:

Monoid in Set:
 A set *M* with a multiplication ·
 and a unit element *e* ∈ *M* satisfying

 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

 $e \cdot a = a = a \cdot e$

• Algebra in Vec: A vector space A with a multiplication \cdot and a unit element $1_A \in A$

Monoid in Set:
 A set *M* with a multiplication ·
 and a unit element *e* ∈ *M* satisfying

 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

 $e \cdot a = a = a \cdot e$

• Algebra in Vec:

A vector space *A* with a multiplication \cdot and a unit element $1_A \in A$ satisfying $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $1_A \cdot x = x = x \cdot 1_A$ $x \cdot (y + z) = x \cdot y + x \cdot z$ $(x + y) \cdot z = x \cdot z + y \cdot z$ $(ax) \cdot (by) = ab(x \cdot y)$

• Monoid in Set: A set M with a multiplication \cdot and a unit element $e \in M$ satisfying

 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

 $e \cdot a = a = a \cdot e$

• Algebra in Vec: A vector space A with a multiplication \cdot and a unit element $1_A \in A$ satisfying $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $1_A \cdot x = x = x \cdot 1_A$ $\cdot \text{ is a linear map} \begin{cases} x \cdot (y+z) = x \cdot y + x \cdot z \\ (x+y) \cdot z = x \cdot z + y \cdot z \\ (ax) \cdot (by) = ab(x \cdot y) \end{cases}$

• Monoid in Set: A set M with a multiplication \cdot and a unit element $e \in M$ satisfying

 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

 $e \cdot a = a = a \cdot e$

• Algebra in Vec: A vector space A with a multiplication \cdot and a unit element $1_A \in A$ satisfying $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $1_A \cdot x = x = x \cdot 1_A$ $\cdot \text{ is a morphism} \left\{ \begin{array}{l} x \cdot (y+z) = x \cdot y + x \cdot z \\ (x+y) \cdot z = x \cdot z + y \cdot z \\ (ax) \cdot (by) = ab(x \cdot y) \end{array} \right.$

Categorifying Algebra

Monoid in Set:
 A set *M* with a multiplication ·
 and a unit element *e* ∈ *M* satisfying

 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

 $e \cdot a = a = a \cdot e$

Algebra in Vec:

A vector space A with a multiplication \cdot in Vec and a unit element $1_A \in A$ satisfying

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$1_A \cdot x = x = x \cdot 1_A$$

Categorifying Algebra

Monoid in Set:
 A set *M* with a multiplication ·
 and a unit element *e* ∈ *M* satisfying

 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

 $e \cdot a = a = a \cdot e$

• Algebra in Vec: A vector space A with a

multiplication \cdot in Vec and a unit

element $1_A \in A$ satisfying

 $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $1_A \cdot x = x = x \cdot 1_A$

The same structure!!

Definition.

Definition. A monoidal category is a category \mathscr{C}

Definition. A monoidal category is a category \mathscr{C} equipped with a monoidal product $\otimes : \mathscr{C} \times \mathscr{C} \to \mathscr{C}$, a unit object $1 \in \mathscr{C}$,

Definition. A monoidal category is a category \mathscr{C} equipped with a monoidal product $\otimes : \mathscr{C} \times \mathscr{C} \to \mathscr{C}$, a unit object $1 \in \mathscr{C}$, and three natural isomorphisms

Definition. A monoidal category is a category \mathscr{C} equipped with a monoidal product $\otimes : \mathscr{C} \times \mathscr{C} \to \mathscr{C}$, a unit object $\mathbf{1} \in \mathscr{C}$, and three natural isomorphisms

 $a := \{a_{X,Y,Z} : (X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes (Y \otimes Z)\}_{X,Y,Z \in \mathscr{C}},$

Definition. A monoidal category is a category \mathscr{C} equipped with a monoidal product $\otimes : \mathscr{C} \times \mathscr{C} \to \mathscr{C}$, a unit object $1 \in \mathscr{C}$, and three natural isomorphisms

 $a := \{a_{X,Y,Z} : (X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes (Y \otimes Z)\}_{X,Y,Z \in \mathscr{C}},\$ $r := \{r_X : X \otimes 1 \xrightarrow{\sim} X\}_{X \in \mathscr{C}}, \text{ and } \mathscr{C} := \{1 \otimes X \xrightarrow{\sim} X\}_{X \in \mathscr{C}}.$

$$a := \{a_{X,Y,Z} : (X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes (Y \otimes Z)\}_{X,Y,Z \in \mathscr{C}},$$
$$r := \{r_X : X \otimes \mathbf{1} \xrightarrow{\sim} X\}_{X \in \mathscr{C}}, \text{ and } \mathscr{\ell} := \{\mathbf{1} \otimes X \xrightarrow{\sim} X\}_{X \in \mathscr{C}}.$$

- Example

Definition. A monoidal category is a category \mathscr{C} equipped with a monoidal product $\otimes : \mathscr{C} \times \mathscr{C} \to \mathscr{C}$, a unit object $1 \in \mathscr{C}$, and three natural isomorphisms

Vec is a monoidal category with monoidal product $\bigotimes_{\mathbb{k}}$ and unit \mathbb{k} , since

 $(V \otimes_{\Bbbk} W) \otimes_{\Bbbk} U \cong V \otimes_{\Bbbk} (W \otimes_{\Bbbk} U),$

 $V \otimes_{\Bbbk} \Bbbk \cong V$, and $\Bbbk \otimes_{\Bbbk} V \cong V$. Ref: *Tensor Categories* by EGNO, 2015 5

Algebra in Vec: A vector space A with a multiplication \cdot in Vec and a unit element $1_A \in A$ satisfying $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $1_A \cdot x = x = x \cdot 1_A$

Algebra in Vec: A vector space A with a multiplication \cdot in Vec and a unit element $1_A \in A$ satisfying $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $1_A \cdot x = x = x \cdot 1_A$

Algebra in $(\mathscr{C}, \bigotimes, 1)$: An object $A \in \mathscr{C}$ with a multiplication $m : A \otimes A \to A$ in \mathscr{C} and a unit $u : \mathbf{1} \to A$ in \mathscr{C} satisfying $m(\mathrm{id}_A \otimes m) = m(m \otimes \mathrm{id}_A)$ $m(u \otimes id_A) = id_A = m(id_A \otimes u)$

Algebra in Vec: A vector space A with a multiplication \cdot in Vec and a unit element $1_A \in A$ satisfying $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $1_A \cdot x = x = x \cdot 1_A$

Algebra in $(\mathscr{C}, \bigotimes, 1)$: An object $A \in \mathscr{C}$ with a multiplication $m : A \otimes A \to A$ in \mathscr{C} and a unit $u : \mathbf{1} \to A$ in \mathscr{C} satisfying $m(\mathrm{id}_A \otimes m) = m(m \otimes \mathrm{id}_A)$ $m(u \otimes id_A) = id_A = m(id_A \otimes u)$

Algebra in $(\mathscr{C}, \bigotimes, 1)$: An object $A \in \mathscr{C}$ with a Algebra in Vec: A vector space A with a multiplication $m : A \otimes A \rightarrow A$ in \mathscr{C} multiplication \cdot in Vec and a unit and a unit $u : \mathbf{1} \to A$ in \mathscr{C} satisfying element $1_A \in A$ satisfying $m(\mathrm{id}_A \otimes m) = m(m \otimes \mathrm{id}_A)$ $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $m(u \otimes id_A) = id_A = m(id_A \otimes u)$ $1_A \cdot x = x = x \cdot 1_A$

Algebra in Vec: A vector space A with a multiplication \cdot in Vec and a unit element $1_A \in A$ satisfying $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $1_A \cdot x = x = x \cdot 1_A$

Algebra in $(\mathscr{C}, \bigotimes, 1)$: An object $A \in \mathscr{C}$ with a multiplication $m : A \otimes A \to A$ in \mathscr{C} and a unit $u : 1 \to A$ in \mathscr{C} satisfying $m(\mathrm{id}_A \otimes m) = m(m \otimes \mathrm{id}_A)$ $m(u \otimes id_A) = id_A = m(id_A \otimes u)$

Algebra in Vec: A vector space A with a multiplication \cdot in Vec and a unit element $1_A \in A$ satisfying $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $1_A \cdot x = x = x \cdot 1_A$ $\Bbbk \to A$ in Vec

Algebra in $(\mathscr{C}, \bigotimes, 1)$: An object $A \in \mathscr{C}$ with a multiplication $m : A \otimes A \to A$ in \mathscr{C} and a unit $u : 1 \to A$ in \mathscr{C} satisfying $m(\mathrm{id}_A \otimes m) = m(m \otimes \mathrm{id}_A)$ $m(u \otimes id_A) = id_A = m(id_A \otimes u)$

Algebra in Vec: A vector space A with a multiplication \cdot in Vec and a unit element $1_A \in A$ satisfying $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $1_A \cdot x = x = x \cdot 1_A$

Algebra in $(\mathscr{C}, \bigotimes, 1)$: An object $A \in \mathscr{C}$ with a multiplication $m : A \otimes A \to A$ in \mathscr{C} and a unit $u : \mathbf{1} \to A$ in \mathscr{C} satisfying $m(\mathrm{id}_A \otimes m) = m(m \otimes \mathrm{id}_A)$ $m(u \otimes id_A) = id_A = m(id_A \otimes u)$

Algebra in Vec: A vector space A with a multiplication \cdot in Vec and a unit element $1_A \in A$ satisfying $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $1_A \cdot x = x = x \cdot 1_A$

Algebra in $(\mathscr{C}, \bigotimes, 1)$: An object $A \in \mathscr{C}$ with a multiplication $m : A \otimes A \to A$ in \mathscr{C} and a unit $u : \mathbf{1} \to A$ in \mathscr{C} satisfying $m(\mathrm{id}_A \otimes m) = m(m \otimes \mathrm{id}_A)$ $m(u \otimes id_A) = id_A = m(id_A \otimes u)$

Algebra in $(\mathscr{C}, \bigotimes, 1)$: An object $A \in \mathscr{C}$ with a Algebra in Vec: A vector space A with a multiplication $m : A \otimes A \to A$ in \mathscr{C} multiplication \cdot in Vec and a unit and a unit $u : \mathbf{1} \to A$ in \mathscr{C} satisfying element $1_A \in A$ satisfying $m(\mathrm{id}_A \otimes m) = m(m \otimes \mathrm{id}_A)$ $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $m(u \otimes id_A) = id_A = m(id_A \otimes u)$ $1_A \cdot x = x = x \cdot 1_A$ Examples

Algebra in Vec: A vector space A with a multiplication \cdot in Vec and a unit element $1_A \in A$ satisfying $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $1_A \cdot x = x = x \cdot 1_A$

Algebra in $(\mathscr{C}, \bigotimes, 1)$: An object $A \in \mathscr{C}$ with a multiplication $m : A \otimes A \to A$ in \mathscr{C} and a unit $u : \mathbf{1} \to A$ in \mathscr{C} satisfying $m(\mathrm{id}_A \otimes m) = m(m \otimes \mathrm{id}_A)$ $m(u \otimes id_A) = id_A = m(id_A \otimes u)$

Examples

Algebra objects in **Vec** are algebras!

Algebra in Vec: A vector space A with a multiplication \cdot in Vec and a unit element $1_A \in A$ satisfying $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $1_A \cdot x = x = x \cdot 1_A$

Algebra in $(\mathscr{C}, \bigotimes, 1)$: An object $A \in \mathscr{C}$ with a multiplication $m : A \otimes A \to A$ in \mathscr{C} and a unit $u : \mathbf{1} \to A$ in \mathscr{C} satisfying $m(\mathrm{id}_A \otimes m) = m(m \otimes \mathrm{id}_A)$ $m(u \otimes id_A) = id_A = m(id_A \otimes u)$

Examples

Algebra objects in **Vec** are algebras! Algebra objects in **Set** are monoids!

Algebra in Vec: A vector space A with a multiplication \cdot in Vec and a unit element $1_A \in A$ satisfying $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $1_A \cdot x = x = x \cdot 1_A$

Algebra in $(\mathscr{C}, \bigotimes, 1)$: An object $A \in \mathscr{C}$ with a multiplication $m : A \otimes A \to A$ in \mathscr{C} and a unit $u : \mathbf{1} \to A$ in \mathscr{C} satisfying $m(\mathrm{id}_A \otimes m) = m(m \otimes \mathrm{id}_A)$ $m(u \otimes id_A) = id_A = m(id_A \otimes u)$

Examples

Algebra objects in **Vec** are algebras! Algebra objects in **Set** are monoids! **1** is always an algebra objects.

Algebra in Vec: A vector space A with a multiplication \cdot in Vec and a unit element $1_A \in A$ satisfying $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $1_A \cdot x = x = x \cdot 1_A$

Algebra in $(\mathscr{C}, \bigotimes, 1)$: An object $A \in \mathscr{C}$ with a multiplication $m : A \otimes A \to A$ in \mathscr{C} and a unit $u : \mathbf{1} \to A$ in \mathscr{C} satisfying $m(\mathrm{id}_A \otimes m) = m(m \otimes \mathrm{id}_A)$ $m(u \otimes id_A) = id_A = m(id_A \otimes u)$

Examples

6

Algebra objects in **Vec** are algebras! Algebra objects in **Set** are monoids! **1** is always an algebra objects.

0 is an algebra object (when it exists). Ref: *Tensor Categories* by EGNO, 2015

(Left) Module over A in Vec: A vector space *M* with a linear action map $\triangleright : A \otimes_{\mathbb{k}} M \to M$ satisfying $a \triangleright (b \triangleright x) = (ab) \triangleright x$ $1_A \triangleright x = x$

(Left) Module over A in Vec: A vector space M with a linear action map $\triangleright : A \otimes_{\mathbb{k}} M \to M$ satisfying $a \triangleright (b \triangleright x) = (ab) \triangleright x$

 $1_A \triangleright x = x$

Example

Vectors with action map given by scaling: $2 \triangleright (3,4) = (6,8)$

(Left) Module over A in Vec: A vector space M with a linear action map $\triangleright : A \otimes_{\mathbb{k}} M \to M$

satisfying

 $a \triangleright (b \triangleright x) = (ab) \triangleright x$

 $1_A \triangleright x = x$

Example

Vectors with action map given by scaling: $2 \triangleright (3,4) = (6,8)$

(Left) Module over A in $(\mathcal{C}, \otimes, \mathbf{1})$: An object $M \in \mathscr{C}$ with an action $\operatorname{map} \triangleright : A \otimes M \to M \operatorname{in} \mathscr{C}$ satisfying \triangleright (id_A $\otimes \triangleright$) = \triangleright ($m \otimes id_M$) \triangleright ($u \otimes id_M$) = id_M

(Left) Module over A in Vec: A vector space *M* with a linear action map $\triangleright : A \otimes_{\mathbb{k}} M \to M$

satisfying

 $a \triangleright (b \triangleright x) = (ab) \triangleright x$

 $1_A \triangleright x = x$

Example

Vectors with action map given by scaling: $2 \triangleright (3,4) = (6,8)$

(Left) Module over A in $(\mathscr{C}, \bigotimes, \mathbf{1})$: An object $M \in \mathscr{C}$ with an action $\operatorname{map} \triangleright : A \otimes M \to M \operatorname{in} \mathscr{C}$ satisfying \triangleright (id_A $\otimes \triangleright$) = \triangleright ($m \otimes id_M$) \triangleright ($u \otimes id_M$) = id_M

Example

The algebra A over itself with action map given by multiplication:

 $\triangleright = m : A \otimes A \to A$

(Left) Module over A in Vec: A vector space *M* with a linear action map $\triangleright : A \otimes_{\mathbb{k}} M \to M$

satisfying

 $a \triangleright (b \triangleright x) = (ab) \triangleright x$

 $1_A \triangleright x = x$

Example

Vectors with action map given by scaling: $2 \triangleright (3,4) = (6,8)$

(Left) Module over A in $(\mathscr{C}, \bigotimes, \mathbf{1})$: An object $M \in \mathscr{C}$ with an action $\operatorname{map} \triangleright : A \otimes M \to M \operatorname{in} \mathscr{C}$ satisfying \triangleright (id_A $\otimes \triangleright$) = \triangleright ($m \otimes id_M$) \triangleright ($u \otimes id_M$) = id_M

Example

The algebra A over itself with action map given by multiplication:

 $\triangleright = m : A \otimes A \to A$

This is called the regular (left) A-module.

Division Algebras in Monoidal Categories

Division Algebra over a Field

Definition.

Division Algebra over a Field

Definition. Let A be a non-zero, associative, unital k-algebra. We say A is a division algebra over k if every non-zero element of A is left invertible.

Division Algebra over a Field

Definition. Let *A* be a non-zero, associative, unital \Bbbk -algebra. We say *A* is a *division algebra over* \Bbbk if every non-zero element of *A* is left invertible.

 $a \in A$ $a \neq 0$

Division Algebras over a Field

Definition. Let *A* be a non-zero, associative, unital \Bbbk -algebra. We say *A* is a *division algebra over* \Bbbk if every non-zero element of *A* is left invertible.

$$\begin{array}{c} a \in A \\ a \neq 0 \end{array} \Rightarrow \exists a^{-1} \end{array}$$

 $^{-1} \in A$ such that $a^{-1} \cdot a = 1_A$

Division Algebras over a Field - Motivation

Division Algebras over a Field - Motivation

Theorem. (Frobenius-Hurwitz, 1878-1922)
The only real division algebras are ℝ, ℂ, and ℍ.
(Also non-associative ℂ)

Division Algebras over a Field - Motivation **Theorem.** (Frobenius-Hurwitz, 1878-1922) The only real division algebras are \mathbb{R} , \mathbb{C} , and \mathbb{H} .

(Also non-associative \mathbb{O})

Theorem. (Cartan-Artin-Wedderburn-Noether-Hopkins, 1898-1939) • Every simple algebra over a field is precisely a matrix algebra over a division algebra.

Division Algebras over a Field - Motivation **Theorem.** (Frobenius-Hurwitz, 1878-1922) The only real division algebras are \mathbb{R} , \mathbb{C} , and \mathbb{H} .

(Also non-associative \mathbb{O})

Theorem. (Cartan-Artin-Wedderburn-Noether-Hopkins, 1898-1939) • Every simple algebra over a field is precisely a matrix algebra over a

- division algebra.
- division algebras.

• Every semisimple algebra over a field is a product of matrix algebras over

Proposition.

Proposition. Let *A* be a non-zero, associative, unital \Bbbk -algebra. The following are equivalent:

Proposition. Let *A* be a non-zero, associative, unital \Bbbk -algebra. The following are equivalent: (i) *A* is a division algebra (every non-zero element of *A* is left invertible);

Proposition. Let A be a non-zero, associative, unital k-algebra. The following are equivalent:
(i) A is a division algebra (every non-zero element of A is left invertible);
(ii) Every left A-module is free;

Proposition. Let A be a non-zero, associative, unital k-algebra. The following are equivalent:
(i) A is a division algebra (every non-zero element of A is left invertible);
(ii) Every left A-module is free;

 $M \in A \operatorname{-mod}$

Proposition. Let A be a non-zero, associative, unital k-algebra. The following are equivalent: (i) A is a division algebra (every non-zero element of A is left invertible); (ii) Every left A-module is free;

$M \in A \operatorname{-mod} \Rightarrow M \cong A \oplus A \oplus \cdots \oplus A$

Proposition. Let *A* be a non-zero, associative, unital \Bbbk -algebra. The following are equivalent: (i) *A* is a division algebra (every non-zero element of *A* is left invertible); (ii) Every left *A*-module is free;

$M \in A \operatorname{-mod} \quad \Rightarrow \quad M \cong A \oplus A \oplus \cdots \oplus A \cong A \otimes_{\Bbbk} \left(\bigoplus^{\Bbbk} \right)$

Proposition. Let A be a non-zero, associative, unital k-algebra. The following are equivalent: (i) A is a division algebra (every non-zero element of A is left invertible); (ii) Every left A-module is free;

$M \in A \operatorname{-mod} \ \Rightarrow \ M \cong A \oplus A \oplus \cdots \oplus A \cong A \otimes_{\Bbbk} V$

Proposition. Let A be a non-zero, associative, unital k-algebra. The following are equivalent:
(i) A is a division algebra (every non-zero element of A is left invertible);
(ii) Every left A-module is free;
(iii) The regular left A-module is a simple module.

Proposition. Let A be a non-zero, associative, unital k-algebra. The following are equivalent: (i) A is a division algebra (every non-zero element of A is left invertible); (ii) Every left A-module is free; (iii) The regular left A-module is a simple module. $(A, m) \in A \operatorname{-mod}$

Proposition. Let A be a non-zero, associative, unital k-algebra. The following are equivalent: (i) A is a division algebra (every non-zero element of A is left invertible); (ii) Every left A-module is free; (iii) The regular left A-module is a simple module. The only submodules of A $(A, m) \in A \operatorname{-mod}$ are 0 and A

A non-zero, associative, unital k-algebra A is a division algebra over k

- the regular left A-module is a simple module.

- A non-zero, associative, unital k-algebra A is a division algebra over k

 - the regular left A-module is a simple module.

- **Definition.** (K-Walton, 2025) A non-zero algebra A in \mathscr{C} (abelian monoidal) is a simplistic division algebra in \mathscr{C}

 - the regular left A-module is a simple module.

Ref: Grossman-Snyder, 2016; Grossman, 2019; Kong-Zheng, 2019.

A non-zero, associative, unital k-algebra A is a division algebra over k

every left A-module is free.

 \iff

A non-zero, associative, unital k-algebra A is a division algebra over k

every left A (Every module $M \in A$

- \iff
- every left A-module is free.
- (Every module $M \in A$ -mod is of the form $A \otimes_{\Bbbk} V$)

the free module functo is essentia

- A non-zero, associative, unital k-algebra A is a division algebra over k

 - every left A-module is free.
 - (Every module $M \in A$ -mod is of the form $A \otimes_{\Bbbk} V$)

Definition. (K-Walton, 2025) A non-zero algebra A in \mathscr{C} (abelian monoidal) is an essential division algebra in \mathscr{C}

$$\Leftrightarrow$$

or $A \otimes - : \mathscr{C} \to A \operatorname{-}\mathsf{Mod}(\mathscr{C})$
ally surjective.

Example Take ($\mathscr{C}, \otimes, 1$) to be (Vec, \otimes_{\Bbbk}, \Bbbk).

- Take $(\mathscr{C}, \bigotimes, \mathbf{1})$ to be $(\text{Vec}, \bigotimes_{\Bbbk}, \Bbbk)$.
- Every division algebra over k is both simplistic and essential in Vec.

- Take $(\mathscr{C}, \bigotimes, \mathbf{1})$ to be $(\mathsf{Vec}, \bigotimes_{\Bbbk}, \Bbbk)$.
- Every division algebra over \Bbbk is both simplistic and essential in Vec.
- In particular, k is always a simplistic and essential division algebra in Vec.

- Take $(\mathscr{C}, \otimes, \mathbf{1})$ to be $(\text{Vec}, \otimes_{\Bbbk}, \Bbbk)$.
- Every division algebra over \Bbbk is both simplistic and essential in Vec.
- In particular, k is always a simplistic and essential division algebra in Vec.

What about the unit object 1 in a general monoidal category $(\mathscr{C}, \bigotimes, 1)$?

- Take $(\mathscr{C}, \bigotimes, \mathbf{1})$ to be $(\text{Vec}, \bigotimes_{\Bbbk}, \Bbbk)$.
- Every division algebra over \Bbbk is both simplistic and essential in Vec.
- In particular, k is always a simplistic and essential division algebra in Vec.

Simplistic?

What about the unit object 1 in a general monoidal category $(\mathscr{C}, \otimes, 1)$?

Essential?

- Take $(\mathscr{C}, \bigotimes, \mathbf{1})$ to be (Vec, $\bigotimes_{\Bbbk}, \Bbbk$).
- Every division algebra over k is both simplistic and essential in Vec.
- In particular, k is always a simplistic and essential division algebra in Vec.

Simplistic?

What about the unit object 1 in a general monoidal category $(\mathscr{C}, \otimes, 1)$?

Essential?

Since $\mathbf{1} \otimes X \cong X$, **1** is always essential in \mathscr{C} .

Ref: K-Walton, 2025

- Take $(\mathscr{C}, \bigotimes, \mathbf{1})$ to be (Vec, $\bigotimes_{\Bbbk}, \Bbbk$).
- Every division algebra over k is both simplistic and essential in Vec.
- In particular, k is always a simplistic and essential division algebra in Vec.

Simplistic? Since 1-mod(\mathscr{C}) $\cong \mathscr{C}$, **1** is simplistic if and only if it is a simple object in \mathscr{C} .

What about the unit object 1 in a general monoidal category $(\mathscr{C}, \otimes, 1)$?

Essential?

Since $\mathbf{1} \otimes X \cong X$, **1** is always essential in \mathscr{C} .

Ref: K-Walton, 2025

Proposition. (K-Walton, 2025) If \mathscr{C} is rigid and semisimple with simple unit,

Proposition. (K-Walton, 2025) If \mathscr{C} is rigid and semisimple with simple unit, then essential \Rightarrow simplistic.

Proposition. (K-Walton, 2025) If \mathscr{C} is rigid and semisimple with simple unit, then essential \Rightarrow simplistic.

> But they are still not equivalent! (We produce simplistic, non-essential division algebra in the Fibonacci fusion category and in fdRep(G).)

For \mathscr{C} an *abelian* monoidal category:

Definition. A non-zero algebra A in C is an essential division algebra in C if the free module functor $A \otimes - : \mathscr{C} \to A \operatorname{-mod}(\mathscr{C})$ is essentially surjective.

For \mathscr{A} an *abelian* monoidal category:

Definition. A non-zero algebra A in \mathscr{A} is an essential division algebra in \mathscr{A} if the free module functor $A \otimes - : \mathscr{A} \to A \operatorname{-mod}(\mathscr{A})$ is essentially surjective.

For \mathscr{A} an *abelian* monoidal category:

A has more than one isoclass of modules.

Definition. A non-zero algebra A in \mathscr{A} is an *essential division algebra in* \mathscr{A} if the free module functor $A \otimes - : \mathscr{A} \to A \operatorname{-mod}(\mathscr{A})$ is essentially surjective.

For \mathscr{A} an *abelian* monoidal category:

Non-trivial

For \mathscr{A} an *abelian* monoidal category:

Non-trivial

 $A \otimes - : \mathcal{A} \to \mathcal{A}$ is a monad!

For \mathscr{A} an *abelian* monoidal category:

Non-trivial

 $A \bigotimes \overline{-} : \mathscr{A} \to \mathscr{A} \text{ is a monad!}$ $T : \mathscr{A} \to \mathscr{A}$

For \mathscr{A} an *abelian* monoidal category:

Non-trivial

 $T \circ T \Rightarrow T$

(Multiplication)

For \mathscr{A} an *abelian* monoidal category:

Non-trivial

(Multiplication)

For \mathscr{A} an *abelian* monoidal category:

Non-trivial **Definition.** A non-zero algebra A in \mathscr{A} is an essential division algebra in \mathscr{A} if the free module functor $A \otimes - : \mathscr{A} \to A \operatorname{-mod}(\mathscr{A})$ is essentially surjective.

 $A \otimes \stackrel{\checkmark}{-} : \mathscr{A} \to \mathscr{A} \text{ is a monad!}$

(Multiplication)

All modules over the monad $A \otimes - : \mathscr{A} \to \mathscr{A}$ are free.

For \mathscr{A} any monoidal category:

Definition. (K-Walton, 2025) monad $A \otimes - : \mathscr{A} \to \mathscr{A}$ has equivalent EM and Kleisli categories.

A non-trivial algebra A in \mathscr{A} is a monadic division algebra in \mathscr{A} if the

For \mathscr{A} any monoidal category:

Definition. (K-Walton, 2025) A non-trivial algebra A in \mathscr{A} is a monadic division algebra in \mathscr{A} if the monad $A \otimes - : \mathscr{A} \to \mathscr{A}$ has equivalent EM and Kleisli categories.

Modules over the monad

For \mathscr{A} any monoidal category:

Definition. (K-Walton, 2025) A non-trivial algebra A in \mathscr{A} is a *monadic division algebra in* \mathscr{A} if the monad $A \otimes - : \mathscr{A} \to \mathscr{A}$ has equivalent EM and Kleisli categories.

Modules over the monad

Free modules over the monad

For \mathscr{A} any monoidal category:

Definition. (K-Walton, 2025) A non-trivial algebra A in \mathscr{A} is a *monadic division algebra in* \mathscr{A} if the monad $A \otimes - : \mathscr{A} \to \mathscr{A}$ has equivalent EM and Kleisli categories.

Modules over the monad

Proposition. (K-Walton, 2025) Monadic ↔ Essential. Free modules over the monad

•In defining monadic division algebrate to the monad.

- to the monad.
- •What if we want to start with the monad? Which monads will produce division algebras?

- to the monad.
- •What if we want to start with the monad? Which monads will produce division algebras?
- •Need 2 things: 1. T(1) needs to be an algebra in \mathscr{A} ;

- to the monad.
- •What if we want to start with the monad? Which monads will produce division algebras?
- •Need 2 things: 1. T(1) needs to be an algebra in \mathscr{A} ;
 - 2. T(1) needs to be a monadic division algebra in \mathscr{A} .

- to the monad.
- •What if we want to start with the monad? Which monads will produce division algebras?
- •Need 2 things: 1. T(1) needs to be an algebra in \mathscr{A} ;
 - 2. T(1) needs to be a monadic division algebra in \mathscr{A} .

•In defining monadic division algebras, we started with the algebra and went

T needs to be compatible with the monoidal structure of \mathscr{A} . $T(X) \otimes Y \cong T(X \otimes Y)$

- to the monad.
- •What if we want to start with the monad? Which monads will produce division algebras?
- •Need 2 things: 1. T(1) needs to be an algebra in \mathcal{A} ;
 - 2. T(1) needs to be a monadic division algebra in \mathscr{A} .

•In defining monadic division algebras, we started with the algebra and went

T needs to be compatible with the monoidal structure of \mathscr{A} . $T(X) \otimes Y \cong T(X \otimes Y)$

T needs to have equivalent EM and Kleisli categories.

Proposition. (K-Walton, 2025) Let \mathscr{A} be a strict monoidal category, and $T: \mathscr{A} \to \mathscr{A}$ a monad.

If *T* satisfies $T(X) \otimes Y \cong T(X \otimes Y)$ and has equivalent EM and Kleisli categories, then $T(\mathbf{1})$ is an essential division algebra in \mathscr{A} .

Proposition. (K-Walton, 2025) Let \mathscr{A} be a strict monoidal category, and $T: \mathscr{A} \to \mathscr{A}$ a monad.

If *T* satisfies $T(X) \otimes Y \cong T(X \otimes Y)$ and has equivalent EM and Kleisli categories, then $T(\mathbf{1})$ is an essential division algebra in \mathscr{A} .

Example

Proposition. (K-Walton, 2025) Let \mathscr{A} be a strict monoidal category, and $T: \mathscr{A} \to \mathscr{A}$ a monad.

If *T* satisfies $T(X) \otimes Y \cong T(X \otimes Y)$ and has equivalent EM and Kleisli categories, then $T(\mathbf{1})$ is an essential division algebra in \mathscr{A} .

Example

• Take $\mathscr{A} = (Set, \sqcup, \mathscr{O})$, a non-abelian monoidal category.

Proposition. (K-Walton, 2025) Let \mathscr{A} be a strict monoidal category, and $T: \mathscr{A} \to \mathscr{A}$ a monad.

If T satisfies $T(X) \otimes Y \cong T(X \otimes Y)$ and has equivalent EM and Kleisli categories, then $T(\mathbf{1})$ is an essential division algebra in \mathscr{A} .

Example

- Take $\mathscr{A} = (Set, \sqcup, \emptyset)$, a non-abelian monoidal category.

• The monad $T(-) := (- \sqcup \{ \star \})$ satisfies the two required conditions.

Proposition. (K-Walton, 2025) Let \mathscr{A} be a strict monoidal category, and $T: \mathscr{A} \to \mathscr{A}$ a monad.

If T satisfies $T(X) \otimes Y \cong T(X \otimes Y)$ and has equivalent EM and Kleisli categories, then $T(\mathbf{1})$ is an essential division algebra in \mathscr{A} .

Example

- Take $\mathscr{A} = (Set, \sqcup, \mathscr{O})$, a non-abelian monoidal category.

• The monad $T(-) := (- \sqcup \{ \star \})$ satisfies the two required conditions.

•Hence $T(\emptyset) = \emptyset \sqcup \{ \star \} = \{ \star \}$ is a right essential division algebra in Set.

Further Directions

• Division monads?

Further Directions

- Division monads?
- Essential vs. Simplistic?

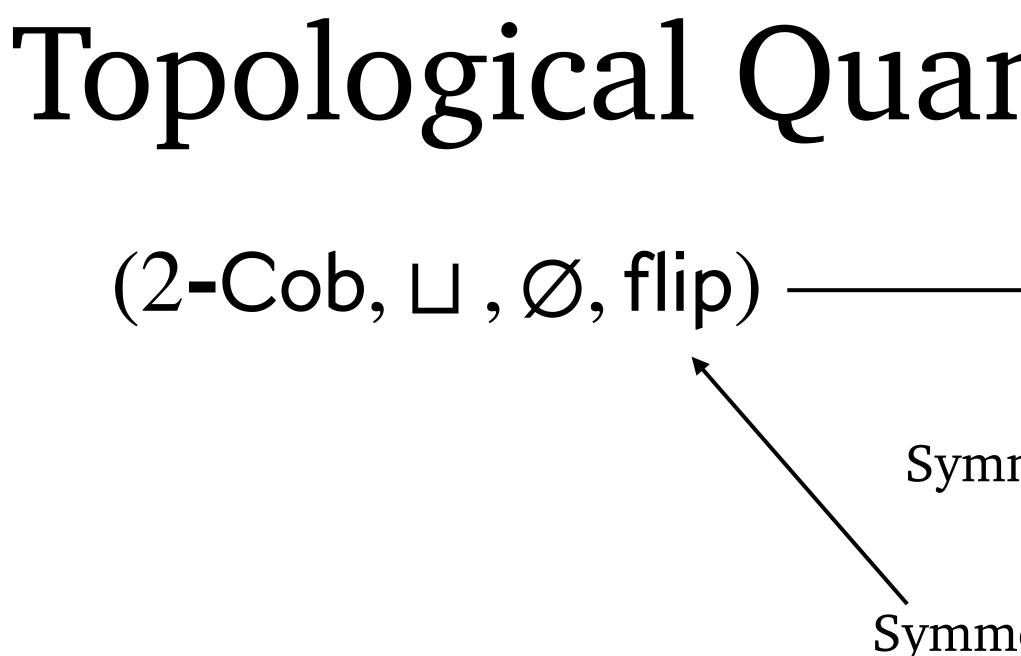
Further Directions

- Division monads?
- Essential vs. Simplistic?
- •Left vs. Right? simplistic division algebras is not necessary in finite tensor categories.

Further Directions

-Theorem (Nakamura-Shibata-Shimizu, 2025). The left/right distinction of

Extended Frobenius Structures in Monoidal Categories



 $\rightarrow (\mathscr{C}, \otimes, \mathbf{1}, \mathbf{C})$

Symmetric monoidal functor

Symmetric monoidal categories

 $(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, 1, \mathcal{C})$ Symmetric monoidal functor

 $(\mathscr{C}, \bigotimes, \mathbf{1})$ is a monoidal category;

 $(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, \mathbf{1}, c)$

 $(\mathscr{C}, \bigotimes, \mathbf{1})$ is a monoidal category;

 $c := \{c_{X,Y} : X \otimes Y \xrightarrow{\sim} Y \otimes X\}$

 $(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, \mathbf{1}, c)$

 $(\mathscr{C}, \bigotimes, \mathbf{1})$ is a monoidal category;

 $c := \{c_{X,Y} : X \otimes Y \xrightarrow{\sim} Y \otimes X\}$ $c^2 = \mathrm{Id}$

 $(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, \mathbf{1}, \mathcal{C})$ Symmetric monoidal functor

 $(\mathscr{C}, \bigotimes, \mathbf{1})$ is a monoidal category;

 $c := \{c_{X,Y} : X \otimes Y \xrightarrow{\sim} Y \otimes X\}$ $c^2 = \mathrm{Id}$

+ Axioms

For 2 - Cob:

 $(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, \mathbf{1}, \mathcal{C})$ Symmetric monoidal functor

 $(\mathscr{C}, \bigotimes, \mathbf{1})$ is a monoidal category;

 $c := \{c_{X,Y} : X \otimes Y \xrightarrow{\sim} Y \otimes X\}$ $c^2 = \mathrm{Id}$

+ Axioms

For 2 - Cob: **Objects**: Oriented, closed, 1-manifolds

 $(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, \mathbf{1}, \mathcal{C})$

 $(\mathscr{C}, \bigotimes, \mathbf{1})$ is a monoidal category;

 $c := \{c_{X,Y} : X \otimes Y \xrightarrow{\sim} Y \otimes X\}$ $c^2 = \mathrm{Id}$

+ Axioms

For 2 - Cob:

Objects: Oriented, closed, 1-manifolds **Morphisms**: Orientation preserving cobordisms

(2-manifolds having the objects of 2-Cob as boundary)

$(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, 1, c)$

 $(\mathscr{C}, \bigotimes, \mathbf{1})$ is a monoidal category;

 $c := \{c_{X,Y} : X \otimes Y \xrightarrow{\sim} Y \otimes X\}$ $c^2 = \mathrm{Id}$

+ Axioms

For 2 - Cob:

Objects: Oriented, closed, 1-manifolds Morphisms: Orientation preserving cobordisms (2-manifolds having the objects of 2-Cob as boundary)

Example:

$(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, \mathbf{1}, \mathcal{C})$

 $(\mathscr{C}, \bigotimes, \mathbf{1})$ is a monoidal category;

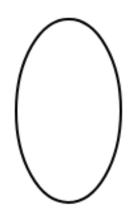
 $c := \{c_{X,Y} : X \otimes Y \xrightarrow{\sim} Y \otimes X\}$ $c^2 = \mathrm{Id}$

+ Axioms

For 2 - Cob:

Objects: Oriented, closed, 1-manifolds **Morphisms**: Orientation preserving cobordisms (2-manifolds having the objects of 2-Cob as boundary)

Example:



$(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, \mathbf{1}, c)$

 $(\mathscr{C}, \bigotimes, \mathbf{1})$ is a monoidal category;

 $c := \{c_{X,Y} : X \otimes Y \xrightarrow{\sim} Y \otimes X\}$ $c^2 = \mathrm{Id}$

+ Axioms

For 2 - Cob:

Objects: Oriented, closed, 1-manifolds **Morphisms**: Orientation preserving cobordisms (2-manifolds having the objects of 2-Cob as boundary)

Example:

$(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, 1, \mathcal{C})$

 $(\mathscr{C}, \bigotimes, \mathbf{1})$ is a monoidal category;

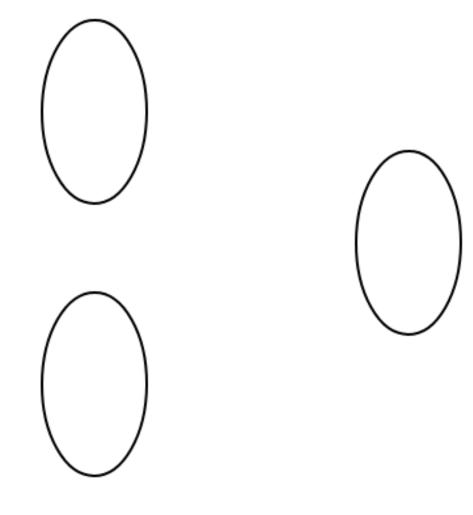
 $c := \{c_{X,Y} : X \otimes Y \xrightarrow{\sim} Y \otimes X\}$ $c^2 = \mathrm{Id}$

+ Axioms

For 2 - Cob:

Objects: Oriented, closed, 1-manifolds **Morphisms**: Orientation preserving cobordisms (2-manifolds having the objects of 2-Cob as boundary)

Example:



$(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, 1, c)$

 $(\mathscr{C}, \bigotimes, \mathbf{1})$ is a monoidal category;

 $c := \{c_{X,Y} : X \otimes Y \xrightarrow{\sim} Y \otimes X\}$ $c^2 = \mathrm{Id}$

+ Axioms

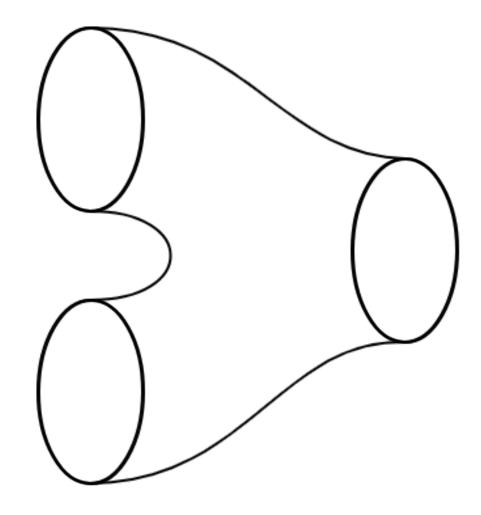
 $(2-Cob, \sqcup, \emptyset, flip) \longrightarrow Z$ Symmetric monoidal functor

For 2 - Cob:

Objects: Oriented, closed, 1-manifolds **Morphisms**: Orientation preserving cobordisms (2-manifolds having the objects of 2-Cob

as boundary)

Example:



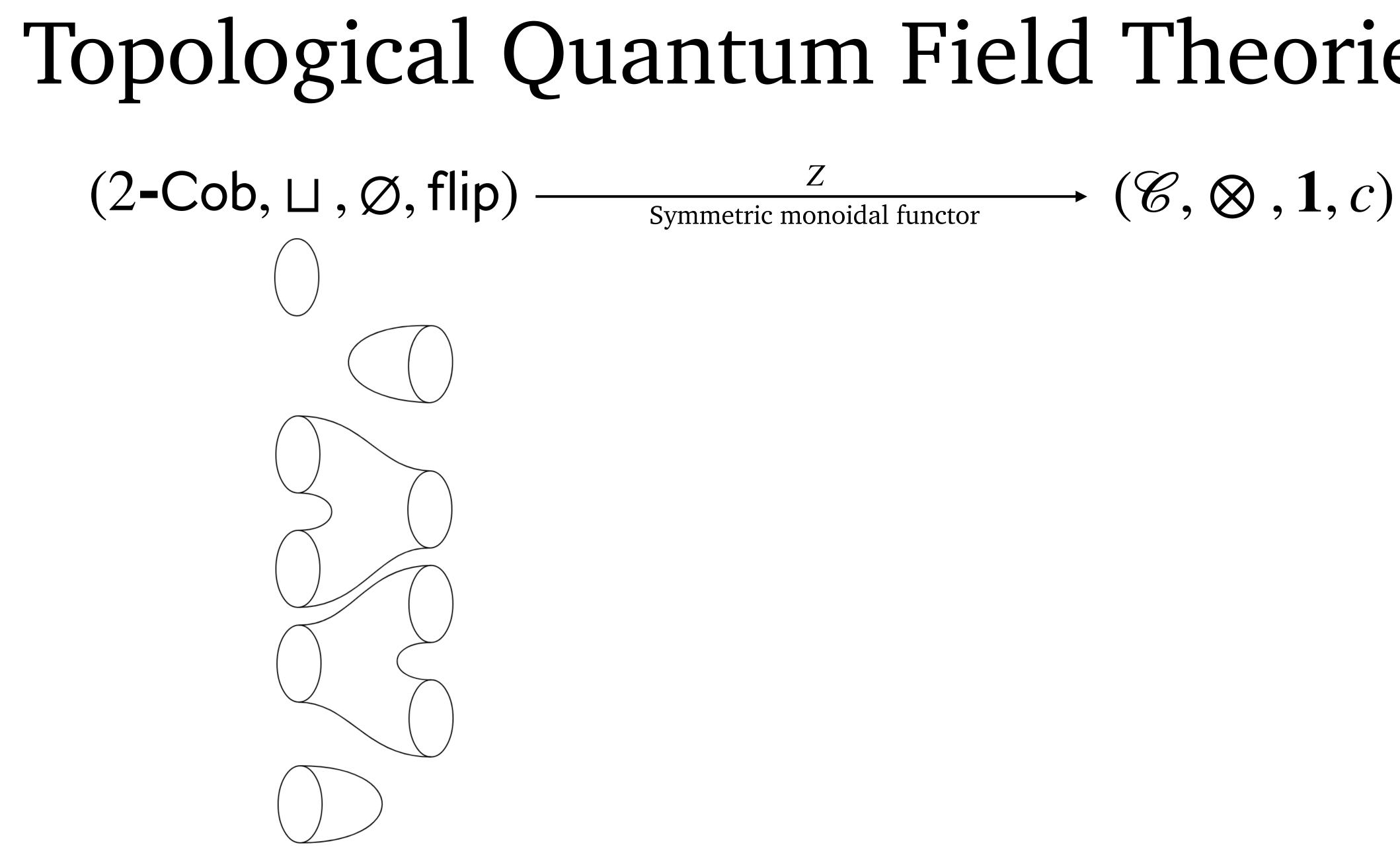
$\rightarrow (\mathscr{C}, \otimes, \mathbf{1}, \mathbf{C})$

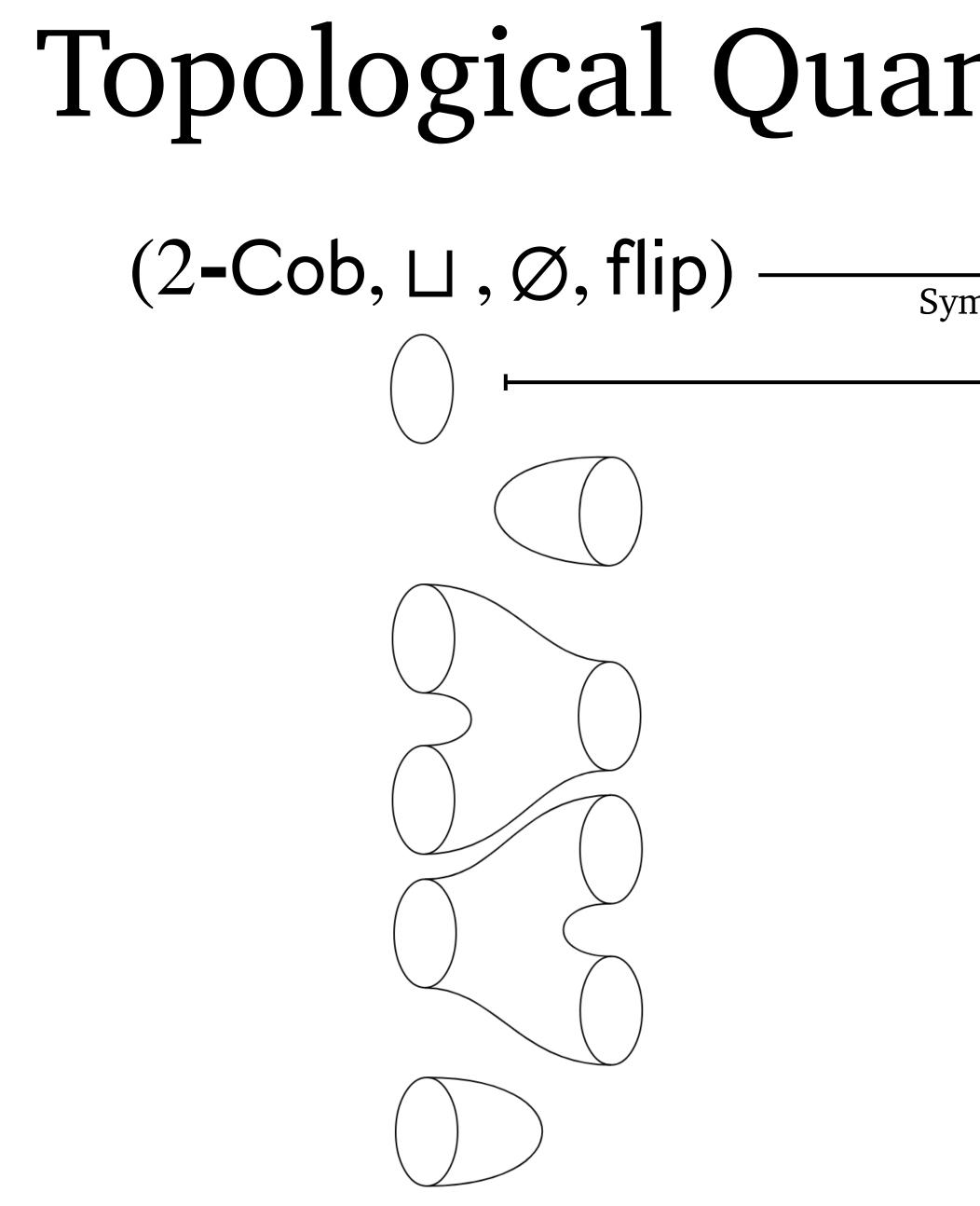
 $(\mathscr{C}, \bigotimes, \mathbf{1})$ is a monoidal category;

 $c := \{c_{X,Y} : X \otimes Y \xrightarrow{\sim} Y \otimes X\}$ $c^2 = \mathrm{Id}$

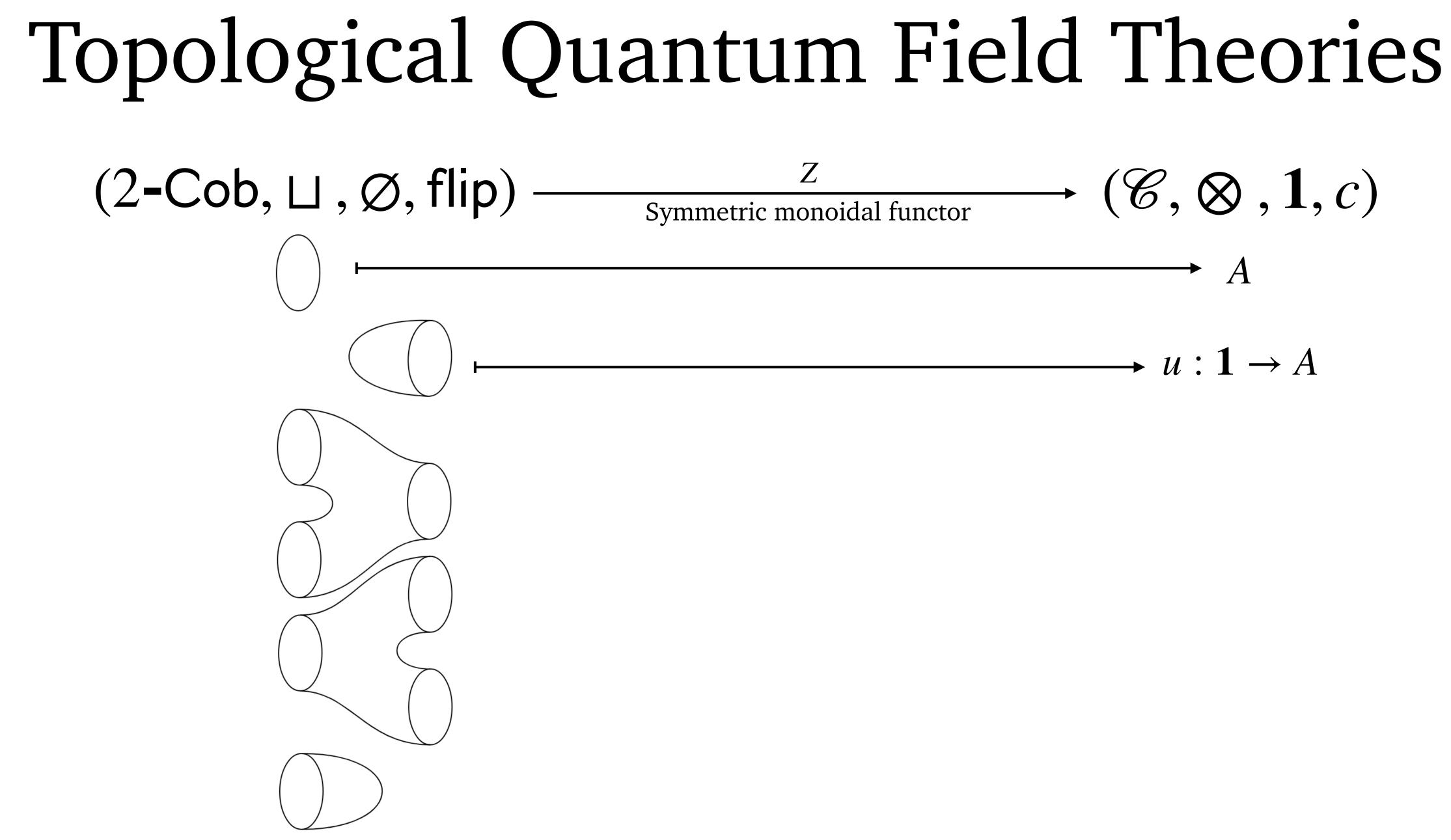
+ Axioms

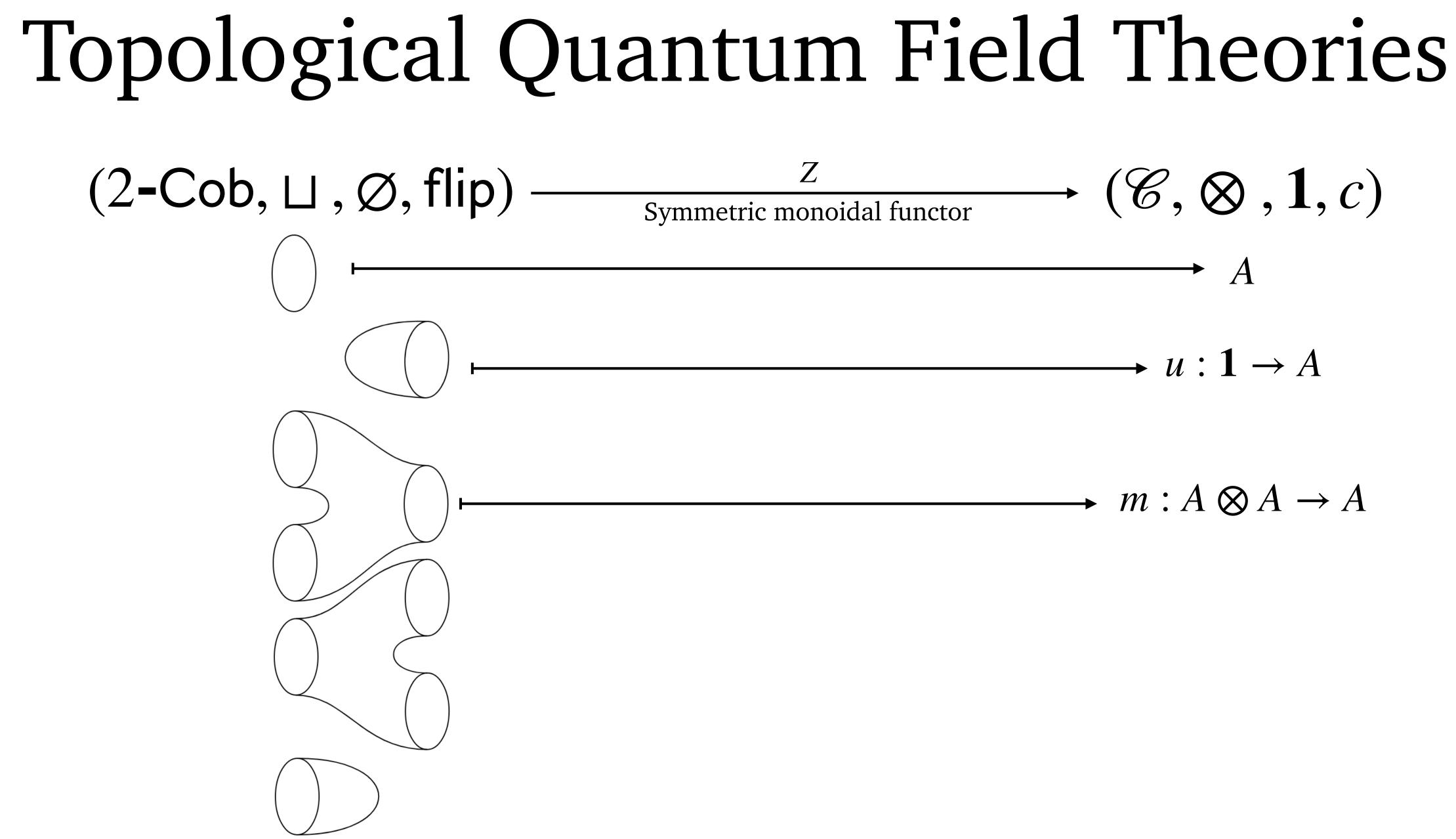
 $(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, 1, \mathcal{C})$ Symmetric monoidal functor

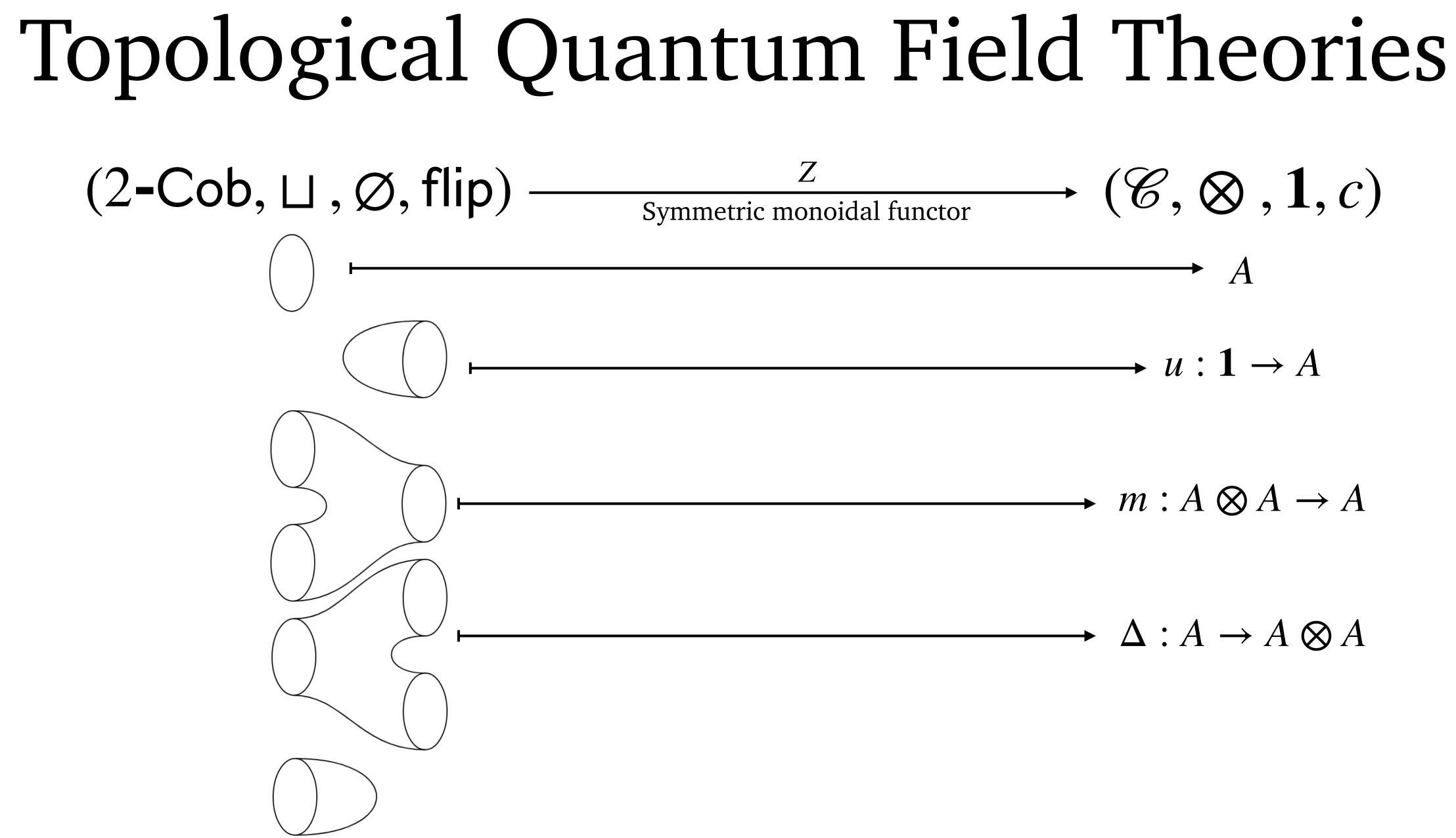


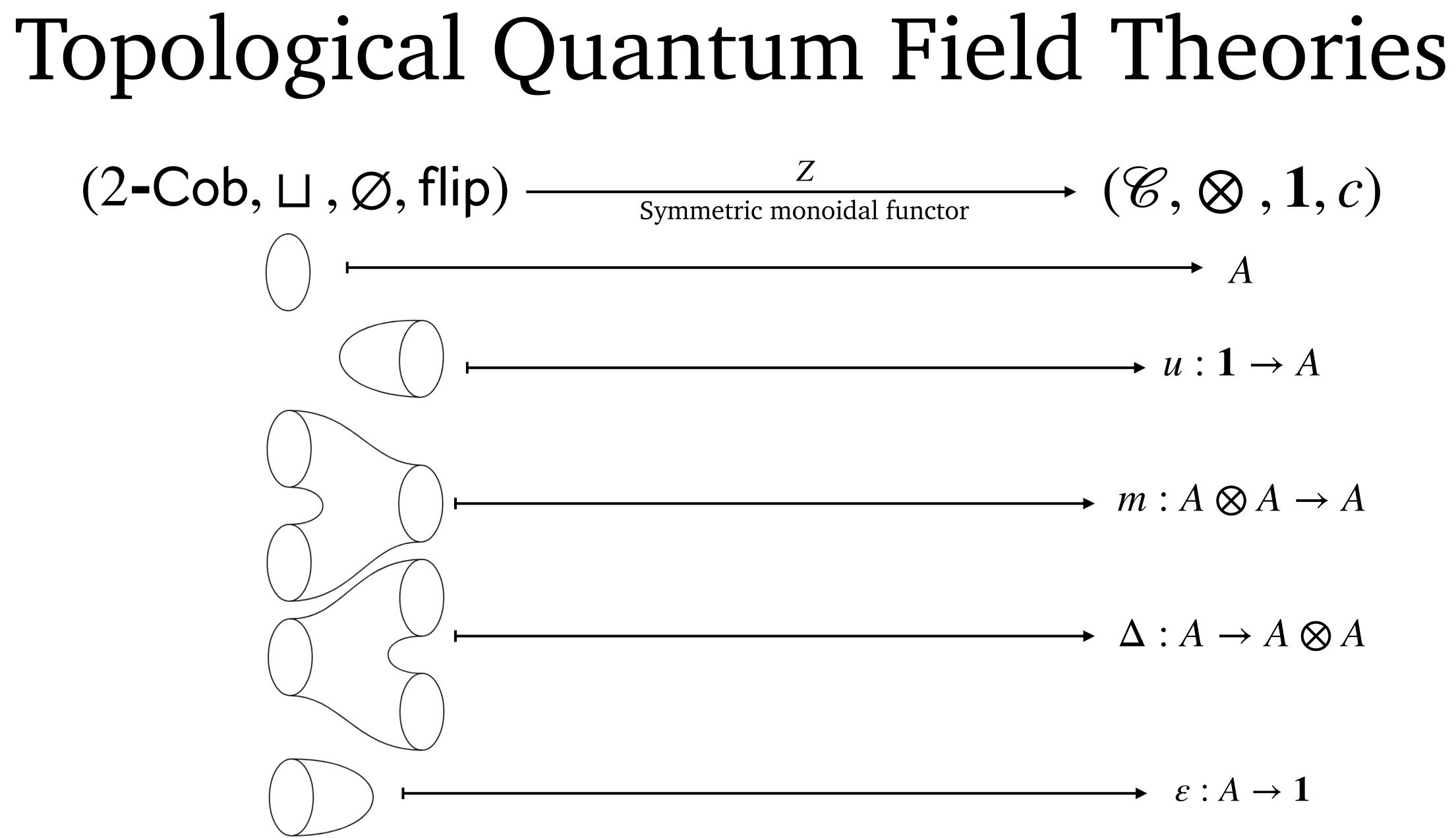


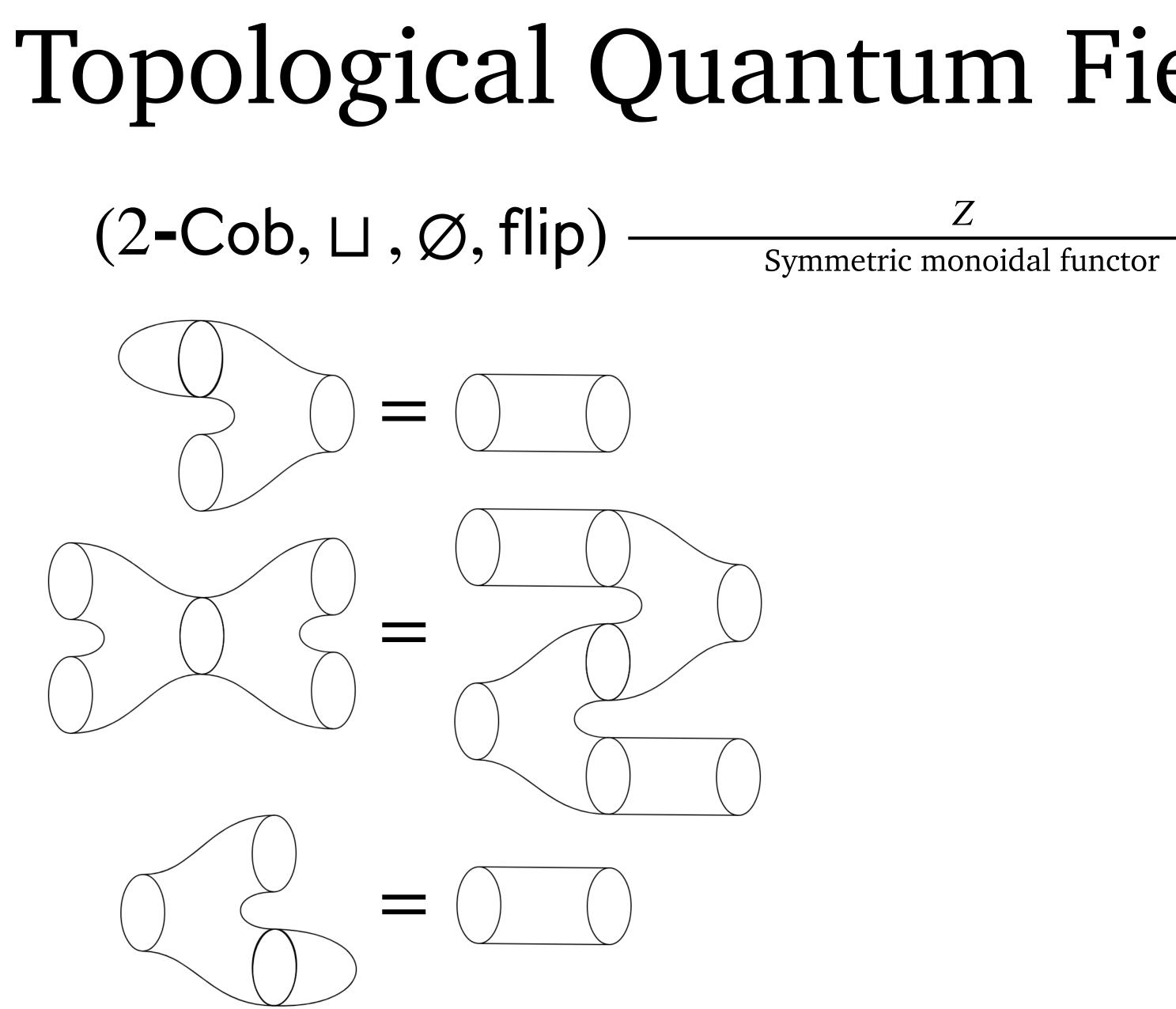
 $(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, \mathbf{1}, c)$ A



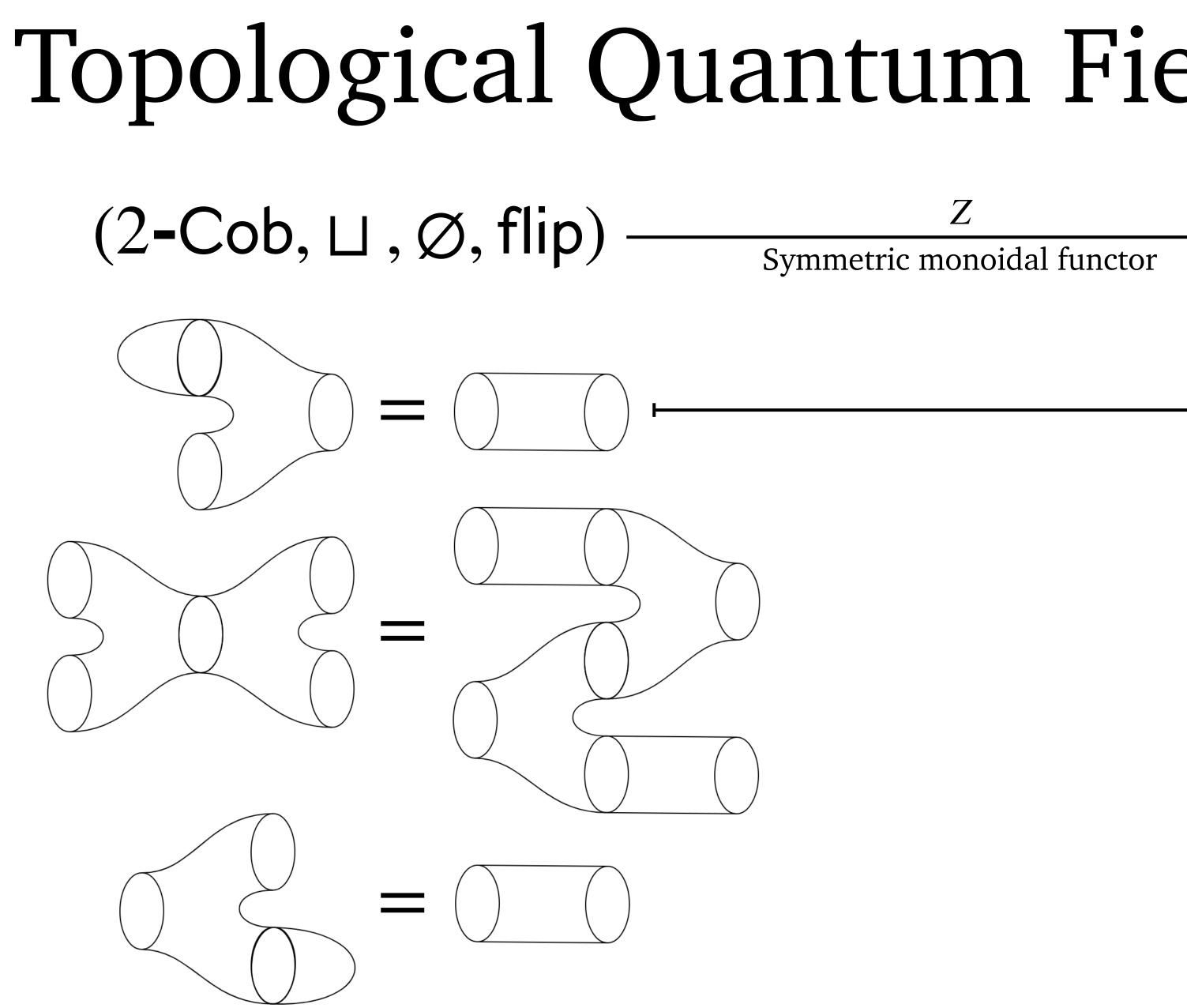






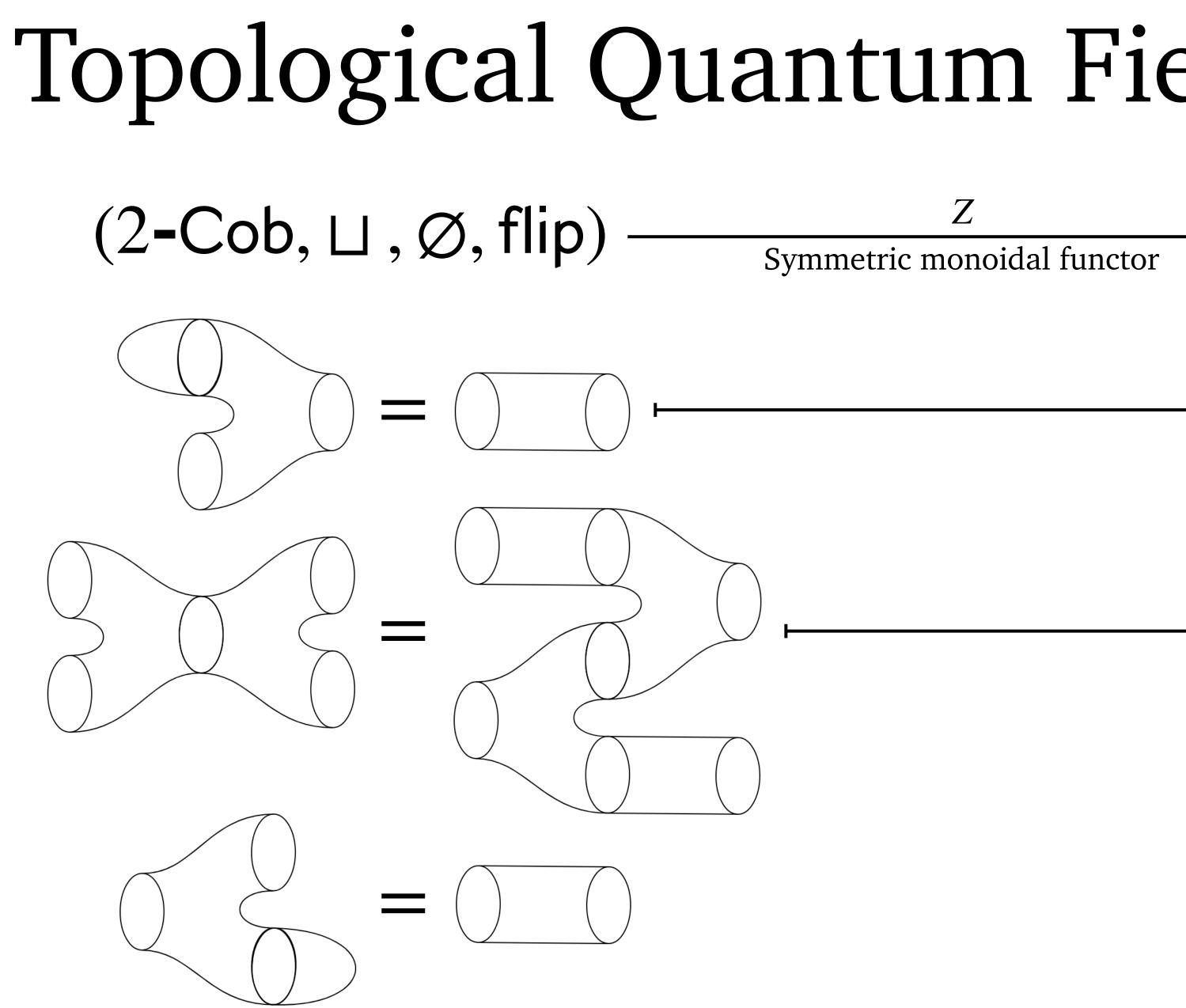


 $\rightarrow (\mathscr{C}, \otimes, \mathbf{1}, \mathbf{C})$



 $\rightarrow (\mathscr{C}, \otimes, \mathbf{1}, \mathbf{C})$

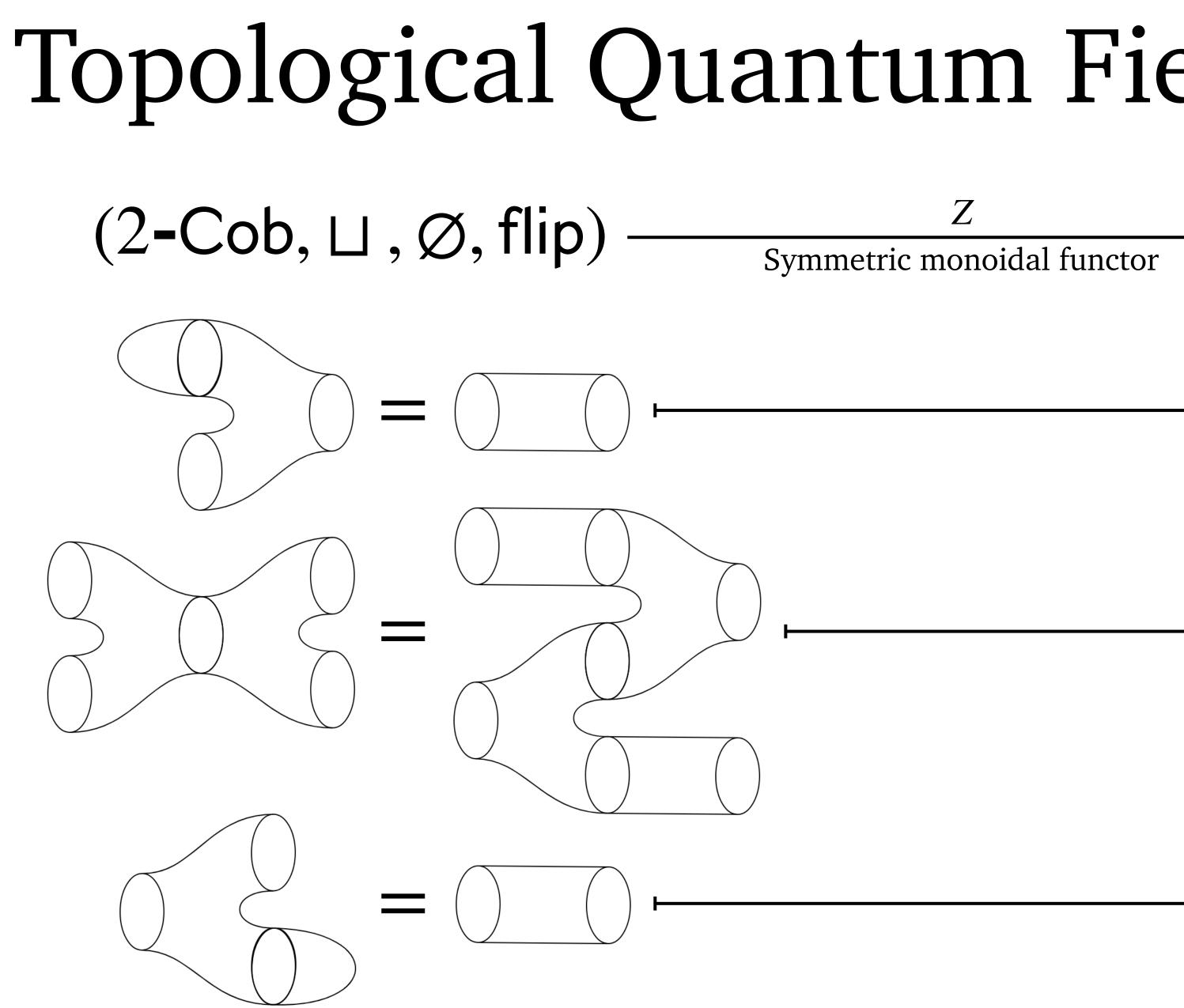
 $\rightarrow m(u \otimes id_A) = id_A$



 $\rightarrow m(u \otimes id_A) = id_A$

 $\rightarrow (\mathscr{C}, \otimes, \mathbf{1}, \mathbf{C})$

 $\bullet \ \Delta m = (m \otimes \mathrm{id}_A)(\mathrm{id}_A \otimes \Delta)$



 $\rightarrow m(u \otimes id_A) = id_A$

 $\rightarrow (\mathcal{C}, \otimes, \mathbf{1}, \mathbf{C})$

 $\bullet \ \Delta m = (m \otimes \mathrm{id}_A)(\mathrm{id}_A \otimes \Delta)$

 $\bullet \quad (\mathrm{id}_A \otimes \varepsilon) \Delta = \mathrm{id}_A$

 $(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, \mathbf{1}, \mathcal{C})$ Symmetric monoidal functor

• A structure in \mathscr{C} satisfying the same relations as $Z(S^1)$ is called a commutative Frobenius algebra in \mathscr{C} .

- $(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, 1, \mathcal{C})$ • A structure in \mathscr{C} satisfying the same relations as $Z(S^1)$ is called a commutative Frobenius algebra in \mathscr{C} .
- Specifically, in any monoidal category, we can define these in a purely categorical way: A Frobenius algebra in \mathscr{C} is a tuple $(A, m, u, \Delta, \varepsilon)$

- $(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, 1, \mathcal{C})$ • A structure in \mathscr{C} satisfying the same relations as $Z(S^1)$ is called a commutative Frobenius algebra in \mathscr{C} .
- Specifically, in any monoidal category, we can define these in a purely categorical way: A Frobenius algebra in \mathscr{C} is a tuple $(A, m, u, \Delta, \varepsilon)$

 $A \in \mathscr{C}$

- $(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, 1, c)$ • A structure in \mathscr{C} satisfying the same relations as $Z(S^1)$ is called a commutative Frobenius algebra in \mathscr{C} .
- Specifically, in any monoidal category, we can define these in a purely categorical way: A Frobenius algebra in \mathscr{C} is a tuple $(A, m, u, \Delta, \varepsilon)$

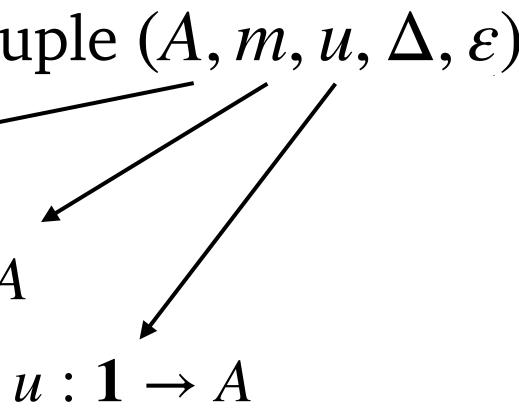
$$A \in \mathscr{C}$$

 $m: A \otimes A \to A$

- $(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, 1, \mathcal{C})$ • A structure in \mathscr{C} satisfying the same relations as $Z(S^1)$ is called a commutative Frobenius algebra in \mathscr{C} .
- Specifically, in any monoidal category, we can define these in a purely categorical way: A Frobenius algebra in \mathscr{C} is a tuple $(A, m, u, \Delta, \varepsilon)$

$$A \in \mathscr{C}$$

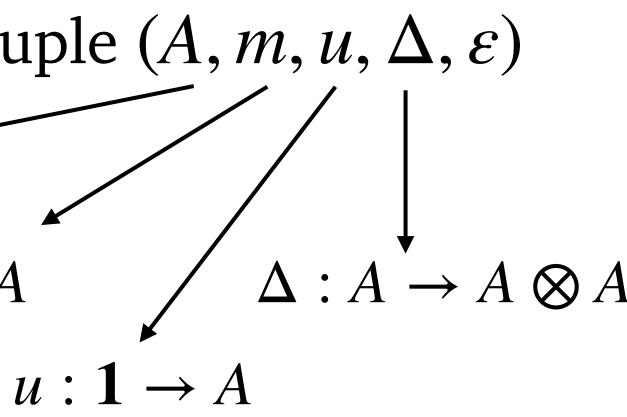
$$m:A\otimes A\to A$$



- $(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, 1, \mathcal{C})$ • A structure in \mathscr{C} satisfying the same relations as $Z(S^1)$ is called a commutative Frobenius algebra in \mathscr{C} .
- Specifically, in any monoidal category, we can define these in a purely categorical way: A Frobenius algebra in \mathscr{C} is a tuple $(A, m, u, \Delta, \varepsilon)$

$$A \in \mathscr{C}$$

$$m:A\otimes A\to A$$



- $(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, 1, \mathcal{C})$ • A structure in \mathscr{C} satisfying the same relations as $Z(S^1)$ is called a commutative Frobenius algebra in \mathscr{C} .
- Specifically, in any monoidal category, we can define these in a purely categorical way: A Frobenius algeb

ra in
$$\mathscr{C}$$
 is a tuple $(A, m, u, \Delta, \varepsilon)$
 $A \in \mathscr{C}$
 $formula \in \mathscr{C}$

- $(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, 1, c)$ • A structure in \mathscr{C} satisfying the same relations as $Z(S^1)$ is called a commutative Frobenius algebra in \mathscr{C} .
- Specifically, in any monoidal category, we can define these in a purely categorical way: A Frobenius algebra in \mathscr{C} is a tuple $(A, m, u, \Delta, \varepsilon)$ satisfying - $(A, m, u) \in \mathsf{Alg}(\mathscr{C});$ Associativity: $m(m \otimes \mathrm{id}_A) = m(\mathrm{id}_A \otimes m)$
 - Unitality: $m(u \otimes id_A) = id_A = m(id_A \otimes u)$

- $(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, \mathbf{1}, \mathcal{C})$ • A structure in \mathscr{C} satisfying the same relations as $Z(S^1)$ is called a commutative Frobenius algebra in \mathscr{C} .
- Specifically, in any monoidal category, we can define these in a purely categorical way:

- A Frobenius algebra in \mathscr{C} is a tuple $(A, m, u, \Delta, \varepsilon)$ satisfying - $(A, \Delta, \varepsilon) \in \mathsf{Coalg}(\mathscr{C});$ Coassociativity: $(\Delta \otimes \mathrm{id}_A)\Delta = (\mathrm{id}_A \otimes \Delta)\Delta$ \frown Counitality: $(\varepsilon \otimes id_A)\Delta = id_A = (id_A \otimes \varepsilon)\Delta$

- $(2\text{-Cob}, \sqcup, \emptyset, \mathsf{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, \mathbf{1}, c)$ Symmetric monoidal functor • A structure in \mathscr{C} satisfying the same relations as $Z(S^1)$ is called a commutative Frobenius algebra in \mathscr{C} .
- Specifically, in any monoidal category, we can define these in a purely categorical way:

A Frobenius algebra in \mathscr{C} is a tuple $(A, m, u, \Delta, \varepsilon)$ satisfying

- $(A, m, u) \in \mathsf{Alg}(\mathscr{C});$
- $(A, \Delta, \varepsilon) \in \text{Coalg}(\mathscr{C});$
- $(\mathrm{id}_A \otimes m)(\Delta \otimes \mathrm{id}_A) = \Delta m = (m \otimes \mathrm{id}_A)(\mathrm{id}_A \otimes \Delta)$

the following result:

2-TQFT(\mathscr{C}) $\stackrel{\otimes}{\simeq}$ ComFrobAlg(\mathscr{C})

the following result:

 $2-TQFT(\mathscr{C})$

• This is then extended in a number of ways.

)
$$\stackrel{\otimes}{\simeq}$$
 ComFrobAlg(\mathscr{C})

the following result:

 $2-TQFT(\mathscr{C})$

• This is then extended in a number of ways. - *n*-TQFTs are symmetric monoidal functors from *n*-Cob to a symmetric monoidal category \mathscr{C} .

)
$$\stackrel{\otimes}{\simeq}$$
 ComFrobAlg(\mathscr{C})

the following result:

$2-TQFT(\mathscr{C})$

- This is then extended in a number of ways.
 - *n*-TQFTs are symmetric monoidal functors from *n*-Cob to a symmetric monoidal category \mathscr{C} .
 - Un-orient our cobordism categories and consider symmetric monoidal functors from *n*-UCob to a symmetric monoidal category \mathscr{C} .

$$) \stackrel{\otimes}{\simeq} \text{ComFrobAlg}(\mathscr{C})$$

$(2-\text{UCob}, \sqcup, \emptyset, \text{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, 1, c)$

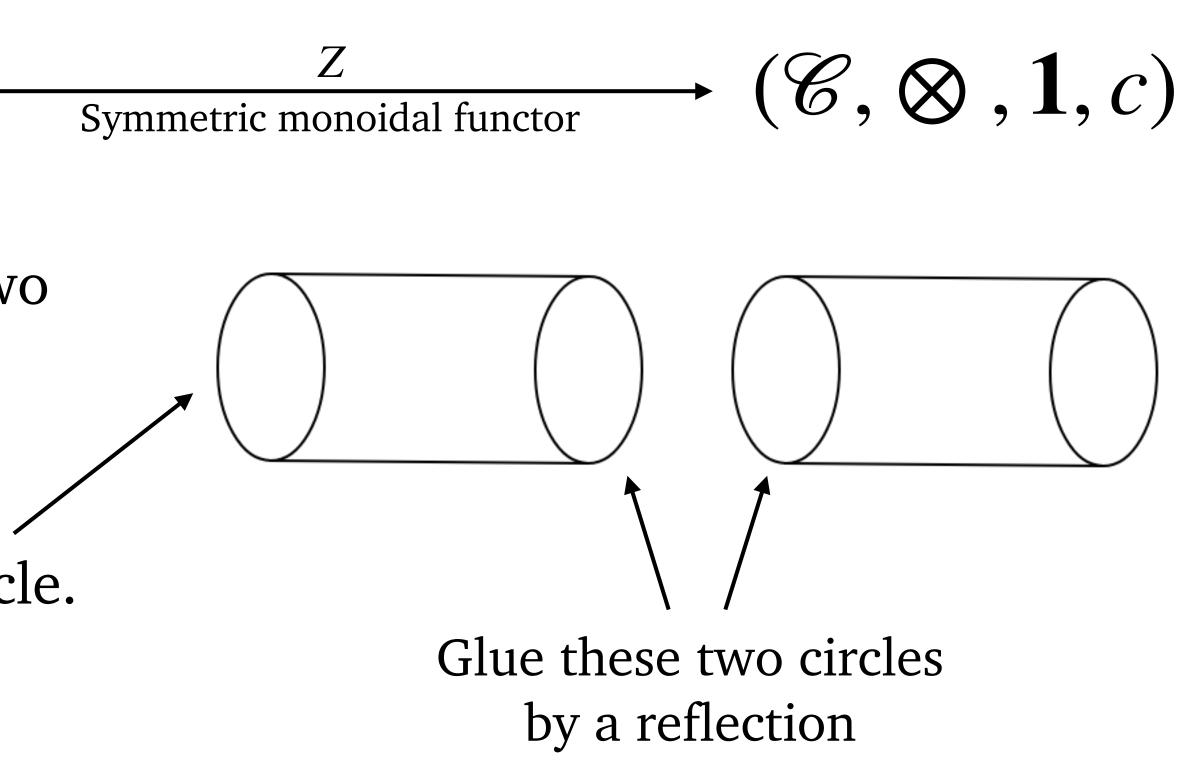
 $(2-\text{UCob}, \sqcup, \emptyset, \text{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, 1, c)$

2-UCob is generated by all the generators of 2-Cob along with two new cobordisms:

 $(2-UCob, \sqcup, \emptyset, flip)$ —

2-UCob is generated by all the generators of 2-Cob along with two new cobordisms:

1. A cobordism from S^1 to S^1 that \checkmark switches the orientation of the circle.

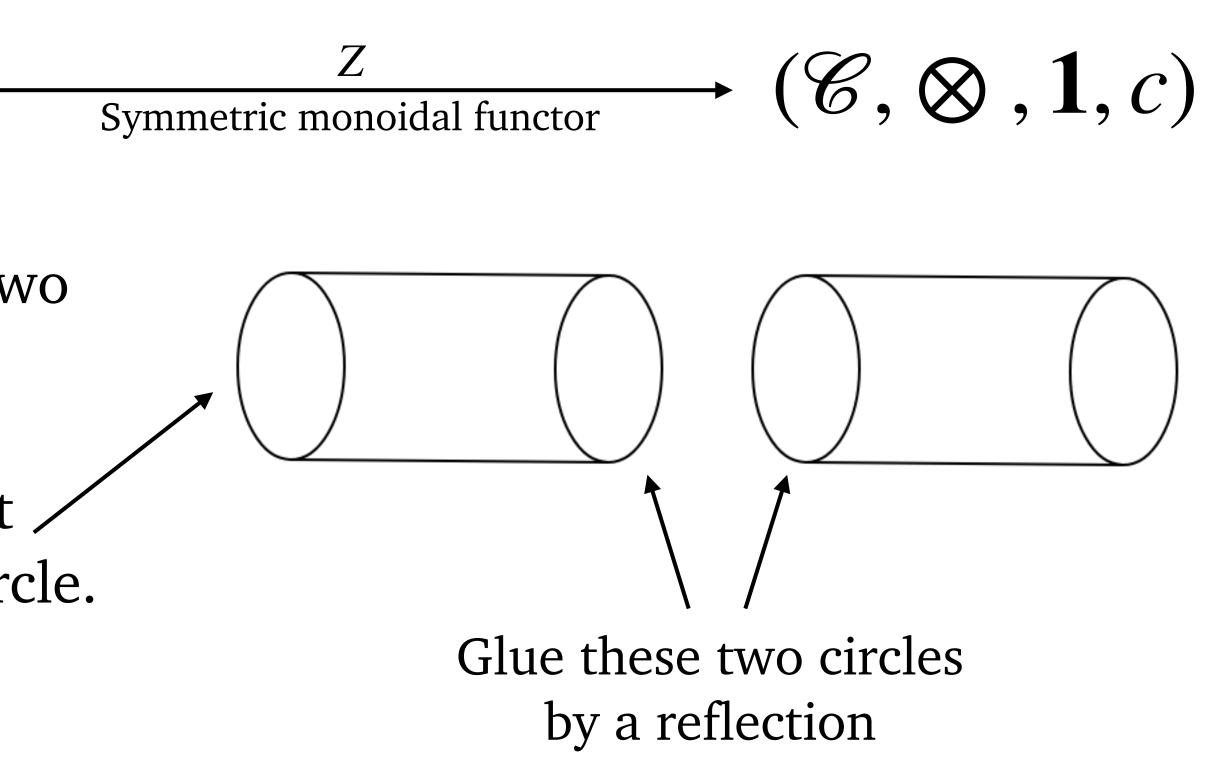


 $(2-UCob, \sqcup, \emptyset, flip)$ —

2-UCob is generated by all the generators of 2-Cob along with two new cobordisms:

1. A cobordism from S^1 to S^1 that \checkmark switches the orientation of the circle.

2. The mobius band, which can be considered a cobordism from \emptyset to S^1 .



 $(2-\text{UCob}, \sqcup, \emptyset, \text{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, 1, c)$

2-UCob is generated by all the generators of 2-Cob along with two new cobordisms:

1. A cobordism from S^1 to S^1 that \square switches the orientation of the circle.

2. The mobius band, which can be considered a cobordism from \emptyset to S^1 .

 $\phi: A \to A$ satisfying $\phi^2 = \mathrm{id}_A$

 $(2-\text{UCob}, \sqcup, \emptyset, \text{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, 1, c)$

2-UCob is generated by all the generators of 2-Cob along with two new cobordisms:

1. A cobordism from S^1 to S^1 that \square switches the orientation of the circle.

2. The mobius band, which can be \vdash considered a cobordism from \emptyset to S^1 .

- $\phi: A \to A$ satisfying $\phi^2 = \mathrm{id}_A$
- A special element of A: $\theta: \mathbf{1} \to A$

Ref: You Qi's TQFT Course Notes

 $(2-\text{UCob}, \sqcup, \emptyset, \text{flip}) \xrightarrow{Z} (\mathscr{C}, \otimes, 1, c)$

2-UCob is generated by all the generators of 2-Cob along with two new cobordisms:

1. A cobordism from S^1 to S^1 that \square switches the orientation of the circle.

2. The mobius band, which can be \vdash considered a cobordism from \emptyset to S^1 .

> These two cobordisms also satisfy some other relations, Ref: You Qi's TQFT giving us relations that ϕ and θ satisfy. Course Notes

- $\phi: A \to A$ satisfying $\phi^2 = \mathrm{id}_A$
- A special element of A: $\theta: \mathbf{1} \to A$

An extended Frobenius algebra in \mathscr{C} is a Frobenius algebra $(A, m, u, \Delta, \varepsilon)$ equipped with two additional morphisms $\phi: A \to A$ and $\theta: \mathbf{1} \to A$ (called the **extended structure**) satisfying

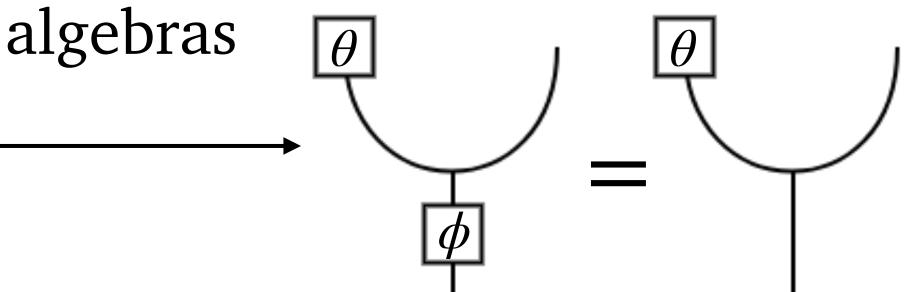
An extended Frobenius algebra in \mathscr{C} is a Frobenius algebra $(A, m, u, \Delta, \varepsilon)$ equipped with two additional morphisms $\phi: A \to A$ and $\theta: \mathbf{1} \to A$ (called the **extended structure**) satisfying

- ϕ is an involution of Frobenius algebras

An extended Frobenius algebra in \mathscr{C} is a Frobenius algebra $(A, m, u, \Delta, \varepsilon)$ equipped with two additional morphisms $\phi: A \to A$ and $\theta: \mathbf{1} \to A$ (called the **extended structure**) satisfying

- ϕ is an involution of Frobenius algebras

 $- \phi m(\theta \otimes id_A) = m(\theta \otimes id_A)$

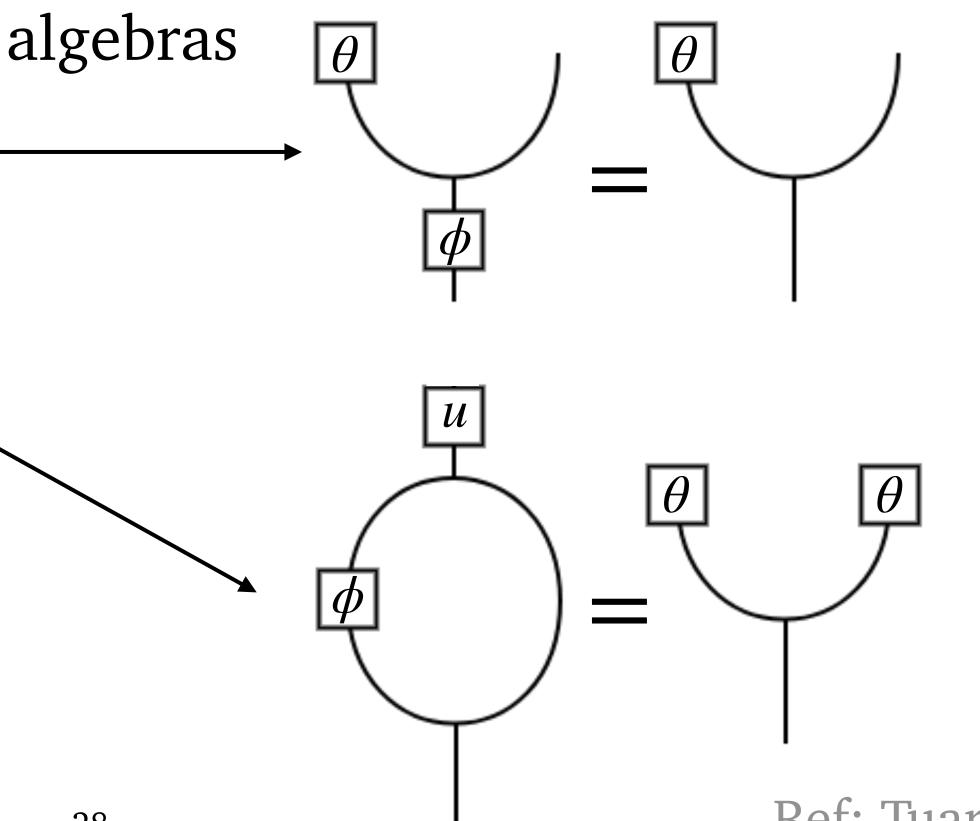


Ref: Tuarev-Turner, 2006

An **extended Frobenius algebra in** \mathscr{C} is a Frobenius algebra $(A, m, u, \Delta, \varepsilon)$ equipped with two additional morphisms $\phi : A \to A$ and $\theta : \mathbf{1} \to A$ (called the **extended structure**) satisfying

- ϕ is an involution of Frobenius algebras

- $\phi m(\theta \otimes id_A) = m(\theta \otimes id_A)$
- $m(\phi \otimes id_A)\Delta u = m(\theta \otimes \theta)$



An extended Frobenius algebra in \mathscr{C} is a Frobenius algebra $(A, m, u, \Delta, \varepsilon)$ equipped with two additional morphisms $\phi: A \to A$ and $\theta: \mathbf{1} \to A$ (called the extended structure) satisfying

- ϕ is an involution of Frobenius algebras
- $\phi m(\theta \otimes id_A) = m(\theta \otimes id_A)$
- $m(\phi \otimes id_A)\Delta u = m(\theta \otimes \theta)$

An extended Frobenius algebra is ϕ -trivial if $\phi = id_A$ and is θ -trivial if $\theta = 0$.

Ref: Tuarev-Turner, 2006

An extended Frobenius algebra in \mathscr{C} is a Frobenius algebra $(A, m, u, \Delta, \varepsilon)$ equipped with two additional morphisms $\phi: A \to A$ and $\theta: \mathbf{1} \to A$ (called the extended structure) satisfying

- ϕ is an involution of Frobenius algebras
- $\phi m(\theta \otimes id_A) = m(\theta \otimes id_A)$
- $m(\phi \otimes id_A)\Delta u = m(\theta \otimes \theta)$

An extended Frobenius algebra is ϕ -trivial if $\phi = id_A$ and is θ -trivial if $\theta = 0$. (i.e. is the zero map $0_{\mathbf{1}.A}:\mathbf{1}\to A$

if it exists)

Ref: Tuarev-Turner, 2006

following result:

 $2-uTQFT(\mathscr{C}) \stackrel{\otimes}{\simeq} ExtFrobAlg(\mathscr{C})$ $Z \mapsto Z(S^1)$

• Again, extended Frobenius algebras completely describe 2-uTQFTs via the

following result:

2-uTQFT(%)

• Our work builds on this set up in three main directions:

• Again, extended Frobenius algebras completely describe 2-uTQFTs via the

$$\stackrel{\otimes}{\simeq} \mathsf{ExtFrobAlg}(\mathscr{C})$$
$$Z \mapsto Z(S^1)$$

Ref: Tuarev-Turner, 2006

following result:

2-uTQFT(%)

• Our work builds on this set up in three main directions:

• Again, extended Frobenius algebras completely describe 2-uTQFTs via the

$$\stackrel{\otimes}{\simeq} \mathsf{ExtFrobAlg}(\mathscr{C})$$
$$Z \mapsto Z(S^1)$$

- Understanding and classifying extended Frobenius algebras over k;

following result:

2-uTQFT(%)

- Our work builds on this set up in three main directions:

 - monoidal categories;

• Again, extended Frobenius algebras completely describe 2-uTQFTs via the

$$\stackrel{\otimes}{\simeq} \mathsf{ExtFrobAlg}(\mathscr{C})$$
$$Z \mapsto Z(S^1)$$

- Understanding and classifying extended Frobenius algebras over k; - Constructing extended Frobenius algebras in a variety of symmetric

following result:

2-uTQFT(@) 7

- Our work builds on this set up in three main directions:

 - monoidal categories;

• Again, extended Frobenius algebras completely describe 2-uTQFTs via the

$$\stackrel{\otimes}{\simeq} \mathsf{ExtFrobAlg}(\mathscr{C})$$
$$Z \mapsto Z(S^1)$$

- Understanding and classifying extended Frobenius algebras over k; - Constructing extended Frobenius algebras in a variety of symmetric

- Understanding which functors preserve extended Frobenius algebras.

Theorem. (Czenky-K-Quinonez-Walton, 2024) The extended structures of the following well known \Bbbk -Frobenius algebras are classified.

Theorem. (Czenky-K-Quinonez-Walton, 2024) The extended structures of the following well known \Bbbk -Frobenius algebras are classified.

(a) k over itself:

Theorem. (Czenky-K-Quinonez-Walton, 2024) The extended structures of the following well known \Bbbk -Frobenius algebras are classified.

(a) k over itself: all extensions are ϕ -trivial;

Theorem. (Czenky-K-Quinonez-Walton, 2024) The extended structures of the following well known \Bbbk -Frobenius algebras are classified.

(a) k over itself: all extensions are φ-trivial;
(b) The group algebra kC₂:

Theorem. (Czenky-K-Quinonez-Walton, 2024) The extended structures of the following well known \Bbbk -Frobenius algebras are classified.

(a) k over itself: all extensions are φ-trivial;
(b) The group algebra kC₂: all extensions are φ- or θ- trivial;

Theorem. (Czenky-K-Quinonez-Walton, 2024) The extended structures of the following well known k-Frobenius algebras are classified.

(a) k over itself: all extensions are ϕ -trivial; (b) The group algebra $\& C_2$: all extensions are ϕ - or θ - trivial; (c) The Sweedler algebra $T_2(-1)$

$$:= \mathbb{k}\langle g, x \rangle / (g^2 - 1, x^2, gx + xg):$$

Theorem. (Czenky-K-Quinonez-Walton, 2024) The extended structures of the following well known k-Frobenius algebras are classified.

(a) k over itself: all extensions are ϕ -trivial; (b) The group algebra $\& C_2$: all extensions are ϕ - or θ - trivial; (c) The Sweedler algebra $T_2(-1)$ all extensions are ϕ -trivial.

$$:= \mathbb{k}\langle g, x \rangle / (g^2 - 1, x^2, gx + xg):$$

- **Theorem.** (Czenky-K-Quinonez-Walton, 2024) The extended structures of the following well known k-Frobenius algebras are classified.
 - (a) k over itself: all extensions are ϕ -trivial; (b) The group algebra $\& C_2$: all extensions are ϕ - or θ - trivial; (c) The Sweedler algebra $T_2(-1)$ all extensions are ϕ -trivial.
- **Proposition.** (Czenky-K-Quinonez-Walton, 2024) Every f.d. Hopf algebra over k admits a ϕ -trivial extended Frobenius structure.

$$:= \mathbb{k}\langle g, x \rangle / (g^2 - 1, x^2, gx + xg):$$

Theorem. (Czenky-K-Quinonez-Walton, 2024) The extended structures of the following well known k-Frobenius algebras are classified.

- (a) k over itself: all extensions are ϕ -trivial;
- (b) The group algebra $\& C_2$: all extensions are ϕ or θ trivial;
- (c) The Sweedler algebra $T_2(-1)$ all extensions are ϕ -trivial.
- (d) The group algebra $\& C_4$:

$$:= \mathbb{k}\langle g, x \rangle / (g^2 - 1, x^2, gx + xg):$$

Theorem. (Czenky-K-Quinonez-Walton, 2024) The extended structures of the following well known k-Frobenius algebras are classified.

- (a) k over itself: all extensions are ϕ -trivial;
- (b) The group algebra $\& C_2$: all extensions are ϕ or θ trivial;
- (c) The Sweedler algebra $T_2(-1)$ all extensions are ϕ -trivial.
- (d) The group algebra $\& C_4$: extensions are either ϕ -trivial, θ -trivial, or ϕ maps a generator g of C_4 to $\omega_4 g^3$.

$$:= \mathbb{k}\langle g, x \rangle / (g^2 - 1, x^2, gx + xg):$$

Proposition. (Czenky-K-Quinonez-Walton, 2024) Every separable Frobenius algebra admits an extended Frobenius algebra structure.

Proposition. (Czenky-K-Quinonez-Walton, 2024) Every separable Frobenius algebra admits an extended Frobenius algebra structure.

 $\Delta = \mathrm{id}_A$

Proposition. (Czenky-K-Quinonez-Walton, 2024) Every separable Frobenius algebra admits an extended Frobenius algebra structure. $\Delta = \mathrm{id}_A$ *b*-trivial

Proposition. (Czenky-K-Quinonez-Walton, 2024) Every separable Frobenius algebra admits an extended Frobenius algebra structure.

Proposition. (Czenky-K-Quinonez-Walton, 2024) Hopf algebras with additional structure admit an extended Frobenius structure.

Proposition. (Czenky-K-Quinonez-Walton, 2024) Every separable Frobenius algebra admits an extended Frobenius algebra structure.

Proposition. (Czenky-K-Quinonez-Walton, 2024) Hopf algebras with additional structure admit an extended Frobenius structure. not necessarily ϕ -trivial

Proposition. (Czenky-K-Quinonez-Walton, 2024) Every separable Frobenius algebra admits an extended Frobenius algebra structure.

Proposition. (Czenky-K-Quinonez-Walton, 2024) Hopf algebras with additional structure admit an extended Frobenius structure.

Proposition. (Czenky-K-Quinonez-Walton, 2024) The monoidal product of two extended Frobenius algebras is again extendable.

Proposition. (Czenky-K-Quinonez-Walton, 2024) Every separable Frobenius algebra admits an extended Frobenius algebra structure.

Proposition. (Czenky-K-Quinonez-Walton, 2024) Hopf algebras with additional structure admit an extended Frobenius structure.

Proposition. (Czenky-K-Quinonez-Walton, 2024) The monoidal product of two extended Frobenius algebras is again extendable.

Proposition. (Czenky-K-Quinonez-Walton, 2024) The bi-product of two extended Frobenius algebras is again extendable.

Algebra in \mathscr{C} :

Algebra in \mathscr{C} :

•Object $A \in \mathscr{C}$;

• $m: A \otimes A \to A;$

• $u: \mathbf{1} \to A;$

•Axioms.

Algebra in \mathscr{C} : \longrightarrow Mo

•Object $A \in \mathscr{C}$;

• $m: A \otimes A \to A;$

• $u: \mathbf{1} \to A;$

•Axioms.

Monoidal Functor $(\mathscr{C}, \otimes, 1) \rightarrow (\mathscr{C}', \otimes', 1')$:

•Functor $F: \mathscr{C} \to \mathscr{C}'$;

• $F^{(2)}: F(-) \otimes' F(-) \Rightarrow F(-\otimes -);$

• $F^{(0)}: \mathbf{1}' \to F(\mathbf{1});$

•Axioms.

Ref: *Monoidal functors, species and Hopf algebras* by Aguiar and Mahajan, 2010

Algebra in \mathscr{C} :

• Object $A \in \mathscr{C}$;

• $m: A \otimes A \to A;$

• $u: \mathbf{1} \to A;$

•Axioms.

- Monoidal Functor $(\mathscr{C}, \otimes, 1) \rightarrow (\mathscr{C}', \otimes', 1')$:
 - •Functor $F: \mathscr{C} \to \mathscr{C}'$;
 - $F^{(2)}: F(-) \otimes' F(-) \Rightarrow F(-\otimes -);$
 - • $F^{(0)}: \mathbf{1}' \to F(\mathbf{1});$
 - Axioms.

Monoidal Functors Preserve Algebras!

Ref: *Monoidal functors*, species and Hopf algebras by Aguiar and Mahajan, 2010

Coalgebra in \mathscr{C} :

Coalgebra in \mathscr{C} :

•Object $A \in \mathscr{C}$;

• $\Delta : A \to A \otimes A;$

• $u: A \rightarrow 1;$

Coalgebra in \mathscr{C} : • Object $A \in \mathscr{C}$;

- • $\Delta: A \to A \otimes A;$
- • $u: A \rightarrow 1;$

•Axioms.

• Axioms.

- Comonoidal Functor $(\mathscr{C}, \otimes, 1) \rightarrow (\mathscr{C}', \otimes', 1')$:
 - •Functor $F: \mathscr{C} \to \mathscr{C}'$;

• $F_{(2)}: F(-\otimes -) \Rightarrow F(-) \otimes' F(-);$

• $F_{(0)}: F(\mathbf{1}) \rightarrow \mathbf{1}';$

Ref: Monoidal functors, species and Hopf algebras by Aguiar and Mahajan, 2010

Functorial Constructions Coalgebra in \mathscr{C} :

• Object $A \in \mathscr{C}$;

- • $\Delta : A \to A \otimes A;$
- • $u: A \rightarrow 1;$ • $F_{(0)}: F(\mathbf{1}) \rightarrow \mathbf{1}';$

• Axioms.

Comonoidal Functors Preserve Coalgebras!

- Comonoidal Functor $(\mathscr{C}, \otimes, 1) \rightarrow (\mathscr{C}', \otimes', 1')$:
 - •Functor $F: \mathscr{C} \to \mathscr{C}'$;

• $F_{(2)}: F(-\otimes -) \Rightarrow F(-) \otimes' F(-);$

• Axioms.

Ref: Monoidal functors, species and Hopf algebras by Aguiar and Mahajan, 2010

Frobenius Algebra in \mathscr{C} :

Frobenius Algebra in \mathscr{C} : •Object $A \in \mathscr{C}$;

•Algebra structure (*m*, *u*);

- Coalgebra structure (Δ, ε) ;
- •*m* and Δ satisfy Frobenius Law;
- •Axioms.

Frobenius Algebra in \mathscr{C} : • Object $A \in \mathscr{C}$;

•Algebra structure (*m*, *u*);

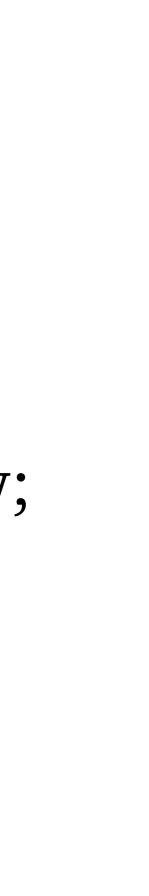
• Coalgebra structure (Δ, ε) ;

•*m* and Δ satisfy Frobenius Law;

• Axioms.

Frobenius Monoidal Functor:

- •Functor $F: \mathscr{C} \to \mathscr{C}'$;
- Monoidal structure $(F^{(2)}, F^{(0)});$
- Comonoidal structure $(F_{(2)}, F_{(0)});$
- • $F^{(2)}$ and $F_{(2)}$ satisfy Frobenius Law;
- Axioms.



Frobenius Algebra in \mathscr{C} : • Object $A \in \mathscr{C}$;

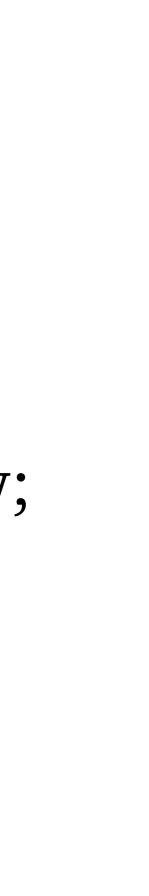
- •Algebra structure (*m*, *u*);
- Coalgebra structure (Δ, ε) ;
- •*m* and Δ satisfy Frobenius Law;

• Axioms.

Frobenius Monoidal Functors Preserve Frobenius Algebras!

Frobenius Monoidal Functor:

- •Functor $F: \mathscr{C} \to \mathscr{C}'$;
- Monoidal structure $(F^{(2)}, F^{(0)});$
- Comonoidal structure $(F_{(2)}, F_{(0)});$
- • $F^{(2)}$ and $F_{(2)}$ satisfy Frobenius Law;
- Axioms.



Extended Frobenius Algebra in \mathscr{C} :

Extended Frobenius Algebra in \mathscr{C} :

- • $(A, m, u, \Delta, \varepsilon) \in \mathsf{FrobAlg}(\mathscr{C});$
- Extended structure (ϕ, θ) ;

•
$$\phi m(\theta \otimes id_A) = m(\theta \otimes id_A)$$

• $m(\phi \otimes id_A)\Delta u = m(\theta \otimes \theta)$

Extended Frobenius Algebra in \mathscr{C} :

- • $(A, m, u, \Delta, \varepsilon) \in \mathsf{FrobAlg}(\mathscr{C});$
- Extended structure (ϕ, θ) ;

$$\begin{array}{c} A \rightarrow A \\ \phi^2 = \mathrm{id}_A \end{array}$$

• $\phi m(\theta \otimes id_A) = m(\theta \otimes id_A)$

• $m(\phi \otimes id_A)\Delta u = m(\theta \otimes \theta)$

Extended Frobenius Algebra in \mathscr{C} :

- • $(A, m, u, \Delta, \varepsilon) \in \mathsf{FrobAlg}(\mathscr{C});$
- Extended structure (ϕ, θ) ;

$$\begin{array}{ccc} A \to A & \mathbf{i} \\ \phi^2 = \mathrm{id}_A \end{array} & \mathbf{i} \to A \end{array}$$

$$\bullet \phi m(\theta \otimes \mathrm{id}_A) = m(\theta \otimes \mathrm{id}_A)$$

• $m(\phi \otimes id_A)\Delta u = m(\theta \otimes \theta)$

Extended Frobenius Algebra in \mathscr{C} :

• Extended structure (ϕ, θ) ; $A \to A \qquad 1 \to A$

$$\phi^2 = \mathrm{id}_A$$
$$\phi m(\theta \otimes \mathrm{id}_A) = m(\theta \otimes \mathrm{id}_A)$$

• $m(\phi \otimes id_A)\Delta u = m(\theta \otimes \theta)$

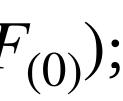
Extended Frobenius Monoidal Functor $\mathscr{C} \to \mathscr{C}'$: • $(A, m, u, \Delta, \varepsilon) \in \mathsf{FrobAlg}(\mathscr{C}); \checkmark \mathsf{Frobenius}$ monoidal functor $(F, F^{(2)}, F^{(0)}, F_{(2)}, F_{(0)});$

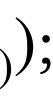
• Extended structure (\hat{F}, \check{F}) ;

$$\hat{F}_{1\otimes X} \circ F_{1,X}^{(2)} \circ (\check{F} \otimes' \operatorname{id}_{F(X)}) = F_{1,X}^{(2)} \circ (\check{F} \otimes' \operatorname{id}_{F(X)})$$

$$\cdot F_{1,1}^{(2)} \circ (\hat{F}_1 \otimes' \operatorname{id}_{F(1)}) \circ F_{(2)}^{1,1} \circ F^{(0)} = F_{1,1}^{(2)} \circ (\check{F} \otimes' \check{F})$$

$$\cdot F_{X,Y}^{(2)} \circ (\hat{F}_X \otimes' \operatorname{id}_{F(Y)}) \circ F_{(2)}^{X,Y} = F_{X\otimes Y,1}^{(2)} \circ (\hat{F}_{X\otimes Y} \otimes' \operatorname{id}_{F(1)}) \circ F_{(2)}^{X\otimes Y}$$





Extended Frobenius Algebra in \mathscr{C} : • $(A, m, u, \Delta, \varepsilon) \in \mathsf{FrobAlg}(\mathscr{C});$

• Extended structure (ϕ, θ) ; $A \to A \qquad 1 \to A$

$$\phi^2 = \mathrm{id}_A$$
$$\phi m(\theta \otimes \mathrm{id}_A) = m(\theta \otimes \mathrm{id}_A)$$

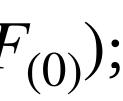
• $m(\phi \otimes id_A)\Delta u = m(\theta \otimes \theta)$

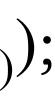
Extended Frobenius Monoidal Functor $\mathscr{C} \to \mathscr{C}'$: • Frobenius monoidal functor $(F, F^{(2)}, F^{(0)}, F_{(2)}, F_{(0)})$;

• Extended structure
$$(\hat{F}, \check{F})$$
;
 $F \Rightarrow F$
 $\hat{F}^2 = \mathrm{Id}$
• $\hat{F}_{1 \otimes X} \circ F_{1,X}^{(2)} \circ (\check{F} \otimes' \mathrm{id}_{F(X)}) = F_{1,X}^{(2)} \circ (\check{F} \otimes' \mathrm{id}_{F(X)})$

•
$$F_{1,1}^{(2)} \circ (\hat{F}_1 \otimes' \operatorname{id}_{F(1)}) \circ F_{(2)}^{1,1} \circ F^{(0)} = F_{1,1}^{(2)} \circ (\check{F} \otimes' \check{F})$$

• $F_{X,Y}^{(2)} \circ (\hat{F}_X \otimes' \operatorname{id}_{F(Y)}) \circ F_{(2)}^{X,Y} = F_{X \otimes Y,1}^{(2)} \circ (\hat{F}_{X \otimes Y} \otimes' \operatorname{id}_{F(1)}) \circ F_{(2)}^{X \otimes Y}$





Extended Frobenius Algebra in \mathscr{C} : • $(A, m, u, \Delta, \varepsilon) \in \mathsf{FrobAlg}(\mathscr{C});$

• Extended structure (ϕ, θ) ; $A \to A \qquad 1 \to A$

$$\phi^2 = \mathrm{id}_A$$
$$\phi m(\theta \otimes \mathrm{id}_A) = m(\theta \otimes \mathrm{id}_A)$$

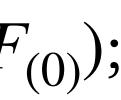
• $m(\phi \otimes id_A)\Delta u = m(\theta \otimes \theta)$

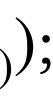
Extended Frobenius Monoidal Functor $\mathscr{C} \to \mathscr{C}'$: • Frobenius monoidal functor $(F, F^{(2)}, F^{(0)}, F_{(2)}, F_{(0)})$;

• Extended structure
$$(\hat{F}, \check{F})$$
;
 $F \Rightarrow F$
 $\hat{F}' = \mathrm{Id}$
• $\hat{F}_{1 \otimes X} \circ F_{1,X}^{(2)} \circ (\check{F} \otimes' \mathrm{id}_{F(X)}) = F_{1,X}^{(2)} \circ (\check{F} \otimes' \mathrm{id}_{F(X)})$

$$\bullet F_{1,1}^{(2)} \circ (\hat{F}_1 \otimes' \operatorname{id}_{F(1)}) \circ F_{(2)}^{1,1} \circ F^{(0)} = F_{1,1}^{(2)} \circ (\check{F} \otimes' \check{F})$$

$$\bullet F_{X,Y}^{(2)} \circ (\hat{F}_X \otimes' \operatorname{id}_{F(Y)}) \circ F_{(2)}^{X,Y} = F_{X \otimes Y,1}^{(2)} \circ (\hat{F}_{X \otimes Y} \otimes' \operatorname{id}_{F(1)}) \circ F_{(2)}^{X \otimes Y}$$





Extended Frobenius Algebra in \mathscr{C} : • $(A, m, u, \Delta, \varepsilon) \in \mathsf{FrobAlg}(\mathscr{C});$

• Extended structure (ϕ, θ) ; $A \to A \qquad \mathbf{1} \to A$

$$\phi^2 = \mathrm{id}_A$$
$$\phi m(\theta \otimes \mathrm{id}_A) = m(\theta \otimes \mathrm{id}_A)$$

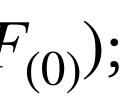
• $m(\phi \otimes id_A)\Delta u = m(\theta \otimes \theta)$

Extended Frobenius Monoidal Functor $\mathscr{C} \to \mathscr{C}'$: • Frobenius monoidal functor $(F, F^{(2)}, F^{(0)}, F_{(2)}, F_{(0)})$;

• Extended structure
$$(\hat{F}, \check{F})$$
;
 $F \Rightarrow \check{F}$
 $\hat{F}^2 = \mathrm{Id}$
• $\hat{F}_{1 \otimes X} \circ F_{1,X}^{(2)} \circ (\check{F} \otimes' \mathrm{id}_{F(X)}) = F_{1,X}^{(2)} \circ (\check{F} \otimes' \mathrm{id}_{F(X)})$

•
$$F_{1,1}^{(2)} \circ (\hat{F}_1 \otimes' \operatorname{id}_{F(1)}) \circ F_{(2)}^{1,1} \circ F^{(0)} = F_{1,1}^{(2)} \circ (\check{F} \otimes' \check{F})$$

• $F_{X,Y}^{(2)} \circ (\hat{F}_X \otimes' \operatorname{id}_{F(Y)}) \circ F_{(2)}^{X,Y} = F_{X \otimes Y,1}^{(2)} \circ (\hat{F}_{X \otimes Y} \otimes' \operatorname{id}_{F(1)}) \circ F_{(2)}^{X \otimes Y}$



Theorem. (Czenky-K-Quinonez-Walton, 2024) Extended Frobenius monoidal functors preserve extended Frobenius algebras.

Theorem. (Czenky-K-Quinonez-Walton, 2024) Extended Frobenius monoidal functors preserve extended Frobenius algebras.

Proposition. (Czenky-K-Quinonez-Walton, 2024) Every separable Frobenius monoidal functor, F, is extended by taking

- $\hat{F} = \mathrm{Id}$ and $\check{F} = F^{(0)}$.

Theorem. (Czenky-K-Quinonez-Walton, 2024) Extended Frobenius monoidal functors preserve extended Frobenius algebras.

Proposition. (Czenky-K-Quinonez-Walton, 2024) Every separable Frobenius monoidal functor, F, is extended by taking

Examples Let A be an extended Frobenius algebra in \mathscr{C} .

- $A \otimes : \mathscr{C} \to \mathscr{C}$ is an extended Frobenius monoidal functor.
- $A \sqcup : \mathscr{C} \to \mathscr{C}$ is an extended Frobenius monoidal functor.

 $\hat{F} = \mathrm{Id}$ and $\check{F} = F^{(0)}$.

Theorem. (Czenky-K-Quinonez-Walton, 2024) Extended Frobenius monoidal functors preserve extended Frobenius algebras.

Proposition. (Czenky-K-Quinonez-Walton, 2024) Every separable Frobenius monoidal functor, F, is extended by taking

Examples Let A be an extended Frobenius algebra in \mathscr{C} . • $A \otimes - : \mathscr{C} \to \mathscr{C}$ is an extended Frobenius monoidal functor. • $A \sqcup - : \mathscr{C} \to \mathscr{C}$ is an extended Frobenius monoidal functor.

 $\hat{F} = \mathrm{Id}$ and $\check{F} = F^{(0)}$.

- (These functors are separable Frobenius \iff the algebra A is separable Frobenius) 36

 Algebraic objects in monoidal cat current research.

• Algebraic objects in monoidal categories has become an active area of

- current research.

• Algebraic objects in monoidal categories has become an active area of

• We explored division algebras and extended Frobenius algebras in the

- current research.
- Division Algebras:

• Algebraic objects in monoidal categories has become an active area of

• We explored division algebras and extended Frobenius algebras in the

- current research.
- Division Algebras:
 - Simplistic vs. Essential;

• Algebraic objects in monoidal categories has become an active area of

• We explored division algebras and extended Frobenius algebras in the

- current research.
- Division Algebras:
 - Simplistic vs. Essential;
 - Internal Hom constructions;

• Algebraic objects in monoidal categories has become an active area of

• We explored division algebras and extended Frobenius algebras in the

- current research.
- Division Algebras:
 - Simplistic vs. Essential;
 - Internal Hom constructions;
 - Monadic constructions.

• Algebraic objects in monoidal categories has become an active area of

• We explored division algebras and extended Frobenius algebras in the

- current research.
- Division Algebras:
 - Simplistic vs. Essential;
 - Internal Hom constructions;
 - Monadic constructions.
- Extended Frobenius algebras:

• Algebraic objects in monoidal categories has become an active area of

• We explored division algebras and extended Frobenius algebras in the

- current research.
- Division Algebras:
 - Simplistic vs. Essential;
 - Internal Hom constructions;
 - Monadic constructions.
- Extended Frobenius algebras:
 - Examples over k;

• Algebraic objects in monoidal categories has become an active area of

• We explored division algebras and extended Frobenius algebras in the

- current research.
- Division Algebras:
 - Simplistic vs. Essential;
 - Internal Hom constructions;
 - Monadic constructions.
- Extended Frobenius algebras:
 - Examples over \Bbbk ;
 - Categorical constructions;

• Algebraic objects in monoidal categories has become an active area of

• We explored division algebras and extended Frobenius algebras in the

- current research.
- Division Algebras:
 - Simplistic vs. Essential;
 - Internal Hom constructions;
 - Monadic constructions.
- Extended Frobenius algebras:
 - Examples over \Bbbk ;
 - Categorical constructions;
 - Functorial constructions.

• Algebraic objects in monoidal categories has become an active area of

• We explored division algebras and extended Frobenius algebras in the

Thank you!